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Abstract. Assessing the robustness of a water resource sys-

tem’s performance under climate change involves exploring

a wide range of streamflow conditions. This is often achieved

through rainfall–runoff models, but these are commonly val-

idated under historical conditions with no guarantee that cal-

ibrated parameters would still be valid in a different cli-

mate. In this note, we introduce a new method for the sta-

tistical generation of plausible streamflow futures. It flexibly

combines changes in average flows with changes in the fre-

quency and magnitude of high and low flows. It relies on

a three-parameter analytical representation of the flow dura-

tion curve (FDC) that has been proved to perform well across

a range of basins in different climates. We rigorously prove

that, for common sets of streamflow statistics mirroring av-

erage behaviour, variability, and low flows, the parameterisa-

tion of the FDC under this representation is unique. We also

show that conditions applied to these statistics for a solution

to exist are commonly met in practice. These analytical re-

sults imply that streamflow futures can be explored by sam-

pling wide ranges of three key flow statistics and by deriving

the corresponding FDC in relation to model basin response

across the full spectrum of flow conditions. We illustrate this

method by exploring in which hydro-climatic futures a pro-

posed run-of-river hydropower plant in eastern Turkey is fi-

nancially viable. Results show that, contrary to approaches

that modify streamflow statistics using multipliers applied

uniformly throughout a time series, our approach seamlessly

represents a large range of futures with increased frequen-

cies of both high and low flows. This matches expected im-

pacts of climate change in the region and supports analyses of

the financial robustness of the proposed infrastructure to cli-

mate change. We conclude by highlighting how refinements

to the approach could further support rigorous explorations

of hydro-climatic futures without the help of rainfall–runoff

models.

1 Introduction

Projections of climate change and its impact on water re-

sources are inherently uncertain, and this is likely to increase

as a result of climatic, technological, economic, and sociopo-

litical changes (Maier et al., 2016; McPhail et al., 2018). Wa-

ter resource planners and decision makers are rightly con-

cerned about the potential effects of future uncertainties, with

the upfront cost of action to be weighed against the high po-

tential social and environmental costs of inaction over time

(Singh, 2018; Ray et al., 2018). Conventional engineering

approaches to water system planning have been summarised

as “predict then act” (Lempert et al., 2013), with optimisation

of a design objective under the assumption of a best-estimate

(i.e. most likely) prediction of the future suggesting the best

course of action. To produce future streamflow in this frame-

work, rainfall–runoff models are routinely forced by rain-

fall and temperature projections of dynamically downscaled

global climate models (GCMs; Peel and Blöschl, 2011; Chen

et al., 2019). There are, however, two categories of issues

with this type of approach.

First, a predict-then-act approach is not compatible with

hard-to-quantify uncertainties as it works best when a known

single-probability density function is available for each key

parameter (Singh et al., 2015). If the future turns out to be

different from the hypothesised projection(s), the optimal so-

lution could fail, sometimes catastrophically (Haasnoot et al.,
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2013; Hamarat et al., 2013). To avoid this, several emerging

decision-making frameworks (Lempert, 2002; Bryant and

Lempert, 2010; Brown et al., 2012; Haasnoot et al., 2013;

Kasprzyk et al., 2013) strive to find adaptation solutions that

are robust in relation to uncertain and changing conditions. In

the climate adaptation context, a robust alternative maintains

satisfactory expected performance under a range of plausi-

ble futures (Maier et al., 2016; McPhail et al., 2018; Mar-

chau et al., 2019) instead of being optimal in a single future.

Therefore, to identify robust alternatives, uncertainties have

to be described with the aid of scenarios that represent coher-

ent future pathways based on different sets of assumptions

(Maier et al., 2016). In water resource applications, this en-

tails defining specific ranges for future uncertainties includ-

ing streamflow then sampling them to generate an ensemble

of plausible future conditions.

The second category of issues is with the use of rainfall–

runoff models to generate future flow conditions. Indeed,

these models have generally been calibrated and validated

under historical conditions, with no assurance that these pa-

rameters would still be valid under different hydro-climatic

conditions (Peel and Blöschl, 2011). There is evidence

that rainfall–runoff models’ predictive skill decreases with

changed climatic conditions (Saft et al., 2016; Seibert and

van Meerveld, 2016; Fowler et al., 2020). In fact, a study of

the Rhine–Meuse basin from 1901 to 2010 shows that op-

timal calibration evolves with climate variability, and land

use and river structure change (Ruijsch et al., 2021). To

compound these calibration issues, the significant resources

and modelling skill needed for calibration and validation

mean that is costly for water resource assessments based on

rainfall–runoff models to explore the full uncertainty space

associated with climate change, with far-reaching conse-

quences for planning.

For these reasons, approaches aimed at finding climate-

robust adaptation solutions have often relied on multipliers

applied uniformly along a time series also known as the delta

change approach (Brown et al., 2012). Examples of this af-

fect streamflow either directly through multiplication (e.g.

Herman et al., 2014, 2015) or indirectly through application

to climate variables such as temperature and precipitation be-

fore using regression to deduce annual runoff (e.g. Ray et al.,

2018). More sophisticated versions of this exist; Quinn et al.

(2018), for example, distinguished several multipliers to iso-

late changes to the mean, variance, and monsoonal dynamics

in the Red River basin in Vietnam. However, to our knowl-

edge, there is no approach that seeks to describe catchment

response under changing climate in a coherent way across

the full range of hydrological conditions.

As the representation of the empirical cumulative distri-

bution function (CDF) of streamflow (Vogel and Fennessey,

1994), a flow duration curve (FDC) precisely represents the

full range of hydrological conditions. The FDC is unique to

each catchment, and it is influenced by various factors in-

cluding climate, topography, physiography, vegetation cover,

and land use (Castellarin et al., 2013; Brown et al., 2013;

Sadegh et al., 2016). It has become a popular tool used in

modern hydrology for various water resource applications

(Leong and Yokoo, 2021) since it provides concise and valu-

able information about river streamflow variability and catch-

ment response (Blöschl et al., 2013; Boscarello et al., 2016).

For example, slope steepness in the middle part of an FDC is

characteristic of a catchment’s precipitation retention prop-

erties (Yilmaz et al., 2008).

This remark has led Sadegh et al. (2016) to adapt a

set of soil retention functions such as those proposed by

Van Genuchten (1980) and Kosugi (1996) to mimic the em-

pirical FDCs of catchments. These models are used in soil

physics and hydrology to characterise water flow in un-

saturated soils and to estimate soil water retention prop-

erties. This analogy is based on the idea that both water-

sheds and soils are governed by similar hydroclimatological

forcing and are able to store and dispel precipitation in re-

sponse to similar gradients (Vrugt and Sadegh, 2013; Sadegh

et al., 2016). Fitting FDCs to a set of 430 catchments of the

MOPEX dataset (Duan et al., 2006), Sadegh et al. (2016)

found that the three-parameter Kosugi model they proposed

offered the best quality of fit across a broad range of climate

zones under a goodness-of-fit criterion that weighs high and

low flows equally. It is based on a lognormal distribution with

three parameters (Kosugi, 1994, 1996) that are determined by

calibration against the empirical FDC of a watershed.

This paper leverages the existence of high-performing pa-

rameterisations of the FDC across a range of climates to sta-

tistically generate plausible streamflow futures. We directly

link parameter triplets of the Kosugi model with the follow-

ing three streamflow statistics that are relevant to the man-

agement of water resources: central tendency, variability, and

low-flow indicator. This one-on-one correspondence enables

us to (1) sample hydro-climatic futures according to plausi-

ble ranges for streamflow statistics and (2) convert these into

ensembles of FDCs that represent the differentiated impacts

of climate change across flow quantiles. The latter is consis-

tent with studies of historically observed streamflow change

(e.g. Pumo et al., 2016).

2 Methodology

This section demonstrates the technique that is the core of

this paper and introduces its workflow. First, Sect. 2.1 will in-

troduce the Kosugi model of the flow duration curve (FDC).

Then Sect. 2.2 will give results on how to parameterise the

FDC with the Kosugi model to reproduce desired stream-

flow statistics. These are the key results that enable us to

build the methodological workflow to produce an ensemble

of climate-perturbed flow duration curves, which we present

in Sect. 2.3.

Hydrol. Earth Syst. Sci., 27, 2499–2507, 2023 https://doi.org/10.5194/hess-27-2499-2023
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2.1 Kosugi model of the flow duration curve

The flow duration curve (FDC) is a cumulative-frequency

curve that ranks the observed record of n discharge values in

descending order {q1,q2, . . .,qn}. The ranking of each value

directly gives its empirical probability of exceedance u. In

this work, we represent the FDC with the three-parameter

Kosugi model, which has been shown to provide an excel-

lent approximation of FDCs under a wide range of climates

(Sadegh et al., 2016) and is given by

q(u) = c + (a − c) z(u)b, with ;z(u) = exp
[√

2 erfc−1 (2 u)
]

, (1)

where q is the streamflow value for a given value of the ex-

ceedance probability u ∈ [0,1], (a,b,c) are the three coeffi-

cients of the Kosugi model, and erfc is the complementary

error function. Given a discharge record, the Kosugi model

is fitted by minimising the root-mean-square srror (RMSE).

Minimising the RMSE on q(u) would lead to weighing errors

in the high flows more than those in the low flows. For this

reason, we minimise the RMSE in the exceedance probabil-

ity space, i.e. the error on U , the inverse of the q(u) function

defined in Eq. (1):

RMSE(x) =

[

1

n

n
∑

i=1

[

ui −U(qi |a,b,c)
]2

]0.5

where U(q|a,b,c) =
1

2
erfc

[

1
√

2 b
ln

(

q − c

a − c

)]

. (2)

To fit the Kosugi model and capture flow variability

within the FDC, it is necessary to have daily discharge mea-

surements over a sufficient period of time, e.g. more than

20 years.

2.2 Correspondence between common flow statistics

and the Kosugi model

In this paragraph, we directly relate the three parameters of

the Kosugi FDC model with sets of three streamflow statis-

tics that are of interest to water resource management. This

is key to relating a hydro-climatic future (described with dif-

ferent flow statistics) to a well-defined FDC. The central ten-

dency and the spread or the degree of variation are the two

key aspects of describing a distribution (Weisberg, 1992; Mc-

Cluskey and Lalkhen, 2007). Low flows are also of interest

where water scarcity and availability are issues. With this, we

construct a triplet of streamflow statistics (M,V,L), where

M is the central tendency (mean or median), V is variability

(standard deviation or coefficient of variation), and L can be

given by a low-flow quantile (first or fifth percentile of flow

distribution).

We can entirely define the flow distribution associated with

a hydro-climatic future defined by (M,V,L) if we can find

a relationship relating it to parameters (a,b,c) of the Kosugi

model defined in Eq. (1).

(a,b,c) = F (M,V,L) (3)

This correspondence needs to be unique: if there is more

than one (a,b,c) for a future defined by (M,V,L), a method

based on the Kosugi model cannot define future flows unam-

biguously. In this paper, we focus on two sets of (M,V,L).

On the one hand, using M as the mean, V as the standard de-

viation, and L as a low-flow percentile corresponds to a very

common statistical description of a flow distribution. We will

refer to this as the mean case hereafter. On the other hand,

there are cases where using the median, coefficient of varia-

tion, and low-flow quantile for (M,V,L) is of interest. This

is the case e.g. in appraisals of run-of-river hydropower; see

Sect. 3. We will refer to this as the median case hereafter.

Step-by-step derivation of these equations, along with

proof of the uniqueness of a parameterisation, and conditions

for the existence of solutions are provided in the Supplement

to this paper. In this section, we provide the main results for

both the mean and median cases.

2.2.1 Mean case

In the mean case, we know (M,V,L) = (µ,σ,qlow), where

µ is the mean, σ is the standard deviation, and qlow is the

first or fifth percentile of flow. To parameterise the Kosugi

equation in this case, one needs to first find b, which is the

solution of

σ

µ − qlow
=

√

eb2 − 1

1 − e−b2/2εb
, (4)

where ε is the value of z(u) at qlow. For instance ε =
z(0.99) ≈ 0.0976 if qlow is the first percentile, and ε =
z(0.95) ≈ 0.1930 if qlow is the fifth percentile. There is at

most one solution to this equation, and it exists if

σ

µ − qlow
>

−1

ln(ε)
, (5)

where ε < 1 so ln(ε) < 0 and −1/ ln(ε) ≈ 0.43 if qlow is the

first percentile; this equates to 0.61 if qlow is the fifth per-

centile. Then one can deduce a and c using the following

equations:



















a =
qlow (1 − e−b2/2) + µe−b2/2(1 − εb)

1 − e−b2/2εb

c =
qlow − µ e−b2/2 εb

1 − e−b2/2εb
.

(6)

2.2.2 Median case

In the median case, we know (M,V,L) = (m,CV,qlow),

where m is the median, CV = µ/σ is the coefficient of vari-

ation, and qlow continues being a low-flow percentile. One

parameter of the Kosugi equation is easy to obtain:

a = m. (7)

https://doi.org/10.5194/hess-27-2499-2023 Hydrol. Earth Syst. Sci., 27, 2499–2507, 2023
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To find the other parameters, it is necessary to find the b that

is the solution of

CV = (1 − R)

√

eb2 − 1

1 − R + (R − εb)e−b2/2
, (8)

where R = qlow/m. b is unique and exists provided there is

a similar existence condition as in the mean case:

CV

1 − R
>

−1

ln(ε)
. (9)

Then the final parameter c is obtained through

c =
qlow − mεb

1 − εb
. (10)

2.2.3 Domain of validity of existence conditions

In this paragraph, we explain what the conditions for the ex-

istence and uniqueness provided imply – see Eqs. (5) and (9)

for the mean case and the median case, respectively. Both

equations are equivalent to

CV >
−(1 − R)

ln(ε)
, (11)

where 0 < R < 1 is a ratio of the low flows by the mean or

median; recall that −1/ ln(ε) ≈ 0.43 if the low-flow parame-

ter is the first percentile and −1/ ln(ε) ≈ 0.61 if it is the fifth

percentile.

From Eq. (11), it is sufficient to have CV > −1/ ln(ε) for

both existence conditions to be verified. This condition has

been verified for a large majority of the catchments over a

large dataset of 6807 gauges in the continental US (see Ye

et al., 2021). Yet, for the existence condition to not be met,

the multiplier of (1 − R) must also be close to 1. In other

words, low flows must be extremely low relative to the mean

(for the mean case) or median (for the median case), but

this may be incompatible with a low value of CV. In fact,

in Fig. 10 from Ye et al. (2021), all time series with zero flow

days in the sample have a CV value close to or equal to 1.

Together, these remarks suggest that the existence condition

should be realised in most cases where flows are not strongly

regulated. However, we would like to point out that whether

the conditions of Eqs. (5) or (9) are met for historical flows is

of limited relevance. They need to be verified for each plausi-

ble future flow for which a FDC is generated. For this reason,

we consider it to be the case that checking these conditions

across large databases of historical flows would be of limited

interest within the scope of this work.

2.3 Producing an ensemble of climate-perturbed flow

duration curves

Figure 1 illustrates our four-step methodology. In step (1),

we fit the Kosugi FDC model to the available discharge

record by finding the parameters (ah,bh,ch) for the histori-

cal record using Eq. (3) and the chosen historical flow statis-

tics (Mh,Vh,Lh). We need to verify that this fit is close in

terms of performance to the best-fit model (a∗,b∗,c∗) ob-

tained through RMSE minimisation as described by Eq. (2).

It is essential to prove that the FDC model provides a good

representation of historical observations, otherwise a pertur-

bation of the model would be a poor representation of a per-

turbation of the historical flow regime. We then check the

method by deriving the FDC parameters based on three key

statistics of historical flow. The method can be used if both

curves adequately fit the functional shape of the empirical

FDC.

To generate future flows, one needs to sample a set

of futures in step (2). This corresponds to sampling the

chosen parameters (M,V,L) to construct an ensemble

{(Mi,Vi,Li)1≤i≤N } of N alternative futures, reflecting a

broad range of plausible future conditions. Then in step (3),

we find the unique set of parameters (ai,bi,ci) for each

triplet (Mi,Vi,Li) and construct the corresponding FDC. Fi-

nally, in step (4), we use the resulting ensemble of FDCs

to support robustness assessments in a changing climate by

evaluating the performance of a decision adaptation(s) across

future scenarios.

Note that the first three steps of this workflow can be

replicated for any site using the Zenodo repository (Yildiz,

2023) that accompanies this paper. The fourth step depends

on the specificities of each robustness assessment, e.g. what

infrastructure is considered or what performance measures

are used.

3 Case study

This section demonstrates the fitness of our method for ro-

bustness assessments.

3.1 Site description

The case study involves the climate change impact analy-

sis of a proposed run-of-river (RoR) hydropower plant at

the Besik site on the Mukus River in the province of Van

located in the eastern Anatolia region of Turkey (38.15◦ N,

42.80 E). Summers are dry and hot with temperatures above

30 ◦C. Spring and autumn are generally mild, but during

both seasons, sudden hot and cold spells frequently occur.

A total of 27 years of daily discharge observation are avail-

able. The discharge fluctuates considerably between values

of 2 and 38 m3 s−1, with a median flow of 4.79 m3 s−1, a

first-percentile flow of 2.23 m3 s−1, and a coefficient of vari-

ation of 0.60. The design of the run-of-river hydropower

project was optimised using the HYPER toolbox (Yildiz and

Vrugt, 2019). The resulting design has an installed capacity

of 8.73 MW, a penstock length of 208 m with a diameter of

Hydrol. Earth Syst. Sci., 27, 2499–2507, 2023 https://doi.org/10.5194/hess-27-2499-2023
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Figure 1. Flowchart of the approach: (1) Kosugi model parameters are calibrated with a historical FDC; (2) a set of scenarios with modified

flow statistics are determined; (3) a new set of Kosugi model coefficients are derived for each future scenario, and future scenarios are created

using these coefficients; (4) future scenarios can be used in robustness assessments.

1.60 m, and two side-by-side Francis turbines whose design

discharges are 4.80 and 2.87 m3 s−1, respectively.

3.2 Generation of climate-perturbed flow duration

curves

Contrary to reservoir-based hydropower plants, RoR

schemes have virtually no storage, so they are vulnerable to

changes in flow as they cannot modulate flows and only oper-

ate in a predefined range. Extreme low flows are insufficient

to activate the turbines, and equally, flows above the design

discharge do not produce additional energy. Because of this

focus on the mid-range flows, the median is a more impor-

tant indicator of performance than the mean flow, which can

be skewed by high discharges. For this reason, this applica-

tion will relate the median, coefficient of variation, and first-

percentile flows to Kosugi parameters (the median case).

In step (1) of our approach, we fit the three-parameter Ko-

sugi model to the daily discharge data. Figure 2 shows the

historical records (red circles), the fitted Kosugi model (black

line), and the derived FDC based on the three statistical pa-

rameters of historical records (FDC from (Mh,Vh,Lh)). Both

fitted curves offer close fits across the entire spectrum of flow

conditions described by the FDC of historical records. In par-

ticular, the quality of the fit for middle and low flows shows

the consistency of the proposed approach as their estimation

is vital in assessing and managing water resources such as

hydropower plants.

In step (2), we determine plausible ranges for the three

statistical parameters over the operational life of the pro-

posed plant. In Turkey, hydropower projects are licensed to

generate electricity for a period of 49 years. Several climate

projections indicate a decrease in the mean discharge val-

ues that could reach up to 60 % (SYGM, 2016). An increas-

ing intensity of drought conditions is expected for the pe-

riod of 2040–2071 in the region of the presented case study

(Demircan et al., 2017; Turkes et al., 2020; Yildiz et al.,

Figure 2. Plot of the daily flow duration curves (FDCs) used in

the case study (red circles). Black line represents the fitted Kosugi

model, and the blue line is the FDC deduced from (Mh,Vh,Lh):

historical median, CV, and first percentile.

2022). In parallel, precipitation variability is widely fore-

cast to increase (GCMs; Pendergrass et al., 2017), with the

coefficient of variation of precipitation projected to almost

double by 2060 in various neighbouring regions such as the

Mediterranean (Giorgi and Lionello, 2008) or Iran (Zarrin

and Dadashi-Roudbari, 2021). To reflect these various re-

sults while reflecting the uncertainties that surround them,

we chose wide ranges for the scaling factors of our three

parameters. These sampling ranges are summarised in Ta-

ble 1 and reflect the concurrent tendencies for severe drying

and an increase in variability. Recall that these ranges repre-

sent plausible rather than probable values. We then sampled

N = 500 alternative future streamflow conditions using Latin

hypercube sampling.

Next, in step (3), we primarily check if the samples sat-

isfy the condition for existence; the smallest and largest mea-

sured values of CV
1−R

across the sample are 0.75 and 5.15,

respectively. All values are significantly larger than the ex-

istence condition for the parameterisation (−1/ ln(ε) ≈ 0.43;

see Eq. 9). Therefore, we can derive the distribution param-

https://doi.org/10.5194/hess-27-2499-2023 Hydrol. Earth Syst. Sci., 27, 2499–2507, 2023
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Table 1. Sampling ranges for multipliers of statistical parameters,

where 1 corresponds to the values for the historical time series.

Sampling Lower-bound Upper-bound

parameter multiplier multiplier

Median, m 0.3 1

Coefficient of variation, CV 1 2

First percentile, qlow 0.3 1

Figure 3. Plot of the flow duration curves (FDCs) of the histori-

cal record (blue line) and sampled flow duration curves (grey lines)

constructed by deriving the FDC parameters for the Kosugi model

shown in Table 1. The figure also compares the 20 % mean flow

reductions obtained with the delta change method (uniform multi-

plier, dashed black line) and the 12 future scenarios we generated

with mean flow reductions between 19 % and 21 % (orange lines).

eters of the Kosugi model by using Eqs. (7) to (10) for each

sampled future. Thereafter, we generate future scenarios by

using these distribution parameters. Figure 3 showcases the

versatility of our method and compares this to the lack of

flexibility provided by a uniform multiplier across the FDC

of historical flows. For instance, a uniform 20 % reduction

across the flow distribution (dotted black lines) provides a

single possible future. For comparison, there are 12 scenar-

ios from our ensemble generated with mean flow reductions

ranging from 19 % to 21 % (orange lines), and they display

a wide range of low- and median-flow behaviours (generally

lower than the dotted black line) combined with higher high

flows. Clearly, our method can provide a suitable range of

hydroclimatic conditions, with increased frequency of high

flows and low flows, in accordance with the likely impacts

of climate change in the region. This versatility can be com-

pared to the lack of flexibility offered by a uniform multiplier

across the FDC of historical flows, also shown in Fig. 3 with

the examples of ±20% across the flow distribution (dotted

red and black lines).

3.3 Application to infrastructure robustness

Finally, in step (4), we evaluate the performance of a de-

sign under generated future flows. We input each ensemble

Figure 4. Plot of generated flow duration curves (FDCs), with each

solution coloured by its net present value (NPV). Grey-coloured

lines signify states of the world (SOWs) in which NPV is negative.

NPV of the optimal design based on observed discharge (blue line)

is USD 10 M.

member into state-of-the-art software to compute the techni-

cal performance, energy production, and economic profit of

a design with a given site’s characteristics (HYPER; Yildiz

and Vrugt, 2019). This enables us to quantify the net present

value (NPV) of the optimal design of the run-of-river hy-

dropower project under a range of changing climate condi-

tions. The inputs of the HYPER model are daily discharge

records, ecological flow requirements, and project-based pa-

rameters such as gross head, penstock length, interest rate,

energy price, project lifetime and site factors for civil works,

maintenance, and operation cost factors and fixed costs such

as transmission lines and expropriation costs. Recall that the

NPV is the value of projected cash flows discounted to the

present. We assess that the investment is robust in relation to

a future climate if the NPV is greater than zero. Future FDCs,

with their respective robustness measures, are presented in

Fig. 4. The figure shows that, although the NPV of the cur-

rent design based on historical records (blue line) is around

USD 10 million, it decreases dramatically and even becomes

negative (grey lines) under dry futures characterised partic-

ularly by a median m under 2.3 m3 s−1 or by an m under

2.6 m3 s−1 accompanied by qlow under 1.10 m3 s−1 and CV

below 0.8. The project is unfeasible under such conditions.

4 Discussion and conclusion

In this technical note, we present an effective, practical, and

novel approach based on a near-universal parameterisation

of flow duration curves (FDCs) and perturbation of these pa-

rameters to simulate a range of futures in a way that is hydro-

logically consistent across the spectrum of hydrological con-

ditions. Our application to a run-of-river hydropower project

in eastern Turkey showcases the ability of our method to pro-

vide a large range of climate-modified catchment responses,

including increased frequency of both high flows and low

flows to mimic the future projections for the area (i.e. more

arid conditions with increased trends of extreme hydrolog-
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ical events). It compares favourably with existing statisti-

cal methods for perturbing flows, such as the delta change

approach. This then supports robustness analyses for rivers

for which no detailed hydrological model is available (ap-

plied here to assess the financial viability of run-of-river hy-

dropower design in a changing climate). The ease of applica-

tion of the method illustrates its wide applicability in terms

of supporting robustness assessments of infrastructure where

streamflow variability impacts performance. We now con-

clude with some remarks on how this novel approach could

be extended to further support such assessments.

Even though the three-parameter Kosugi model has been

shown to fit FDCs well across a wide range of catchment

characteristics (Sadegh et al., 2016), this does not guarantee

that it would be a good fit in all cases. Sadegh et al. (2016)

proposed other functional forms such as the two-parameter

Kosugi model and the two-parameter and three-parameter

van Genuchten models for the FDC. Despite the superior fit

of the three-parameter Kosugi model across a range of cli-

mate zones, these models could also be perturbed to generate

future flows.

Our method focuses on catchments free of major flow reg-

ulation (reservoir, effluent discharge). Yet, those catchments

do not have to be pristine and can, for example, experience

significant human interference in land use change. Indeed,

the MOPEX dataset (Duan et al., 2006), which was used

to assess the quality of the three-parameter Kosugi model

(Sadegh et al., 2016), has been found to be affected by sig-

nificant human interference (Wang and Hejazi, 2011).

We also identified two current limitations to this method

that we believe can be addressed by future developments.

First, recent studies reveal that there is an increasing trend

in the number of zero-flow days in many regions such as the

Mediterranean (e.g. Tramblay et al., 2021). Yet, the number

of zero-flow days remains constant in this approach. Prelim-

inary results show that our proposed method supports time

series with a large number of zero-flow days by keeping the

number of no-flow days constant and perturbing the FDC

when flows are positive. Admittedly, this approximation ig-

nores the fact that a change in climate regime could affect

the number of no-flow days. Future work needs to exam-

ine the possibility of using the proportion of no-flow days

as the low-flow indicator L instead of a low-flow quantile.

Derivations for the existence and unicity of a parameterisa-

tion should then also be extended to that case.

Our approach only considers the FDC and says nothing

of the seasonality, frequency, and duration of dry and wet

spells. The shifting seasonality of flows in a changing cli-

mate can easily be captured by combining our approach with

methods such as the log space rescaling of stationary flows

(Quinn et al., 2018) or the reconstruction of annual-flow hy-

drographs (Nazemi et al., 2013). Beyond changes in season-

ality, there is mounting evidence that climate change is bound

to cause hydrological intensification; i.e. it will make dry pe-

riods longer and more severe and wet periods more intense

(Ficklin et al., 2022). Information on hydrological intensifi-

cation scenarios comes from outputs from large-scale climate

models, and integrating that information requires turning the

climate information into streamflow. One way to do it with-

out the help of a rainfall–runoff model is to control the pa-

rameters of a daily streamflow model with a monthly climate

model (Stagge and Moglen, 2013). The generation of an FDC

for every climate the daily streamflow model simulates could

then be used to improve results, e.g. by providing a quantile-

by-quantile adjustment of the synthetic streamflow genera-

tor outputs. A similar procedure could combine hydrological

model simulations with statistical generation of FDCs. The

latter could correct outputs from the former if they were ob-

tained with a calibration that reflects historical conditions.

Code and data availability. The climate-perturbed FDC genera-

tion model has been developed in Python 3.10.4 and is pro-

vided with an environment file. It is accessible from the Zenodo

open-access repository at https://doi.org/10.5281/zenodo.7662679

(Yildiz, 2023), with a link to the GitHub source codes of the latest

release, including a detailed run guide and input files to statistically

generate plausible streamflow futures.

Supplement. The supplement related to this article is available on-

line at: https://doi.org/10.5194/hess-27-2499-2023-supplement.

Author contributions. VY: conceptualisation, methodology, writ-

ing – original draft, formal analysis, software development, inves-

tigation. CR: supervision, conceptualisation, methodology, formal

analysis, writing – review and editing, investigation. RM: investiga-

tion. SB: conceptualisation, investigation, supervision. All the au-

thors have read and agreed to the published version of the paper.

Competing interests. The contact author has declared that none of

the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains

neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Acknowledgements. Solomon Brown and Robert Milton were sup-

ported by the UK Engineering and Physical Sciences Research

Council (EPSRC) through the “Table Top Manufacturing of Tai-

lored Silica for Personalised Medicine [SiPM]” project (reference

no. EP/V051458/1). We also appreciate the insights and comments

from the associate editor Micha Werner and from two anonymous

referees as they have greatly improved this paper. The first author

gratefully acknowledges support from the General Directorate of

State Hydraulic Works (DSI-TURKEY).

https://doi.org/10.5194/hess-27-2499-2023 Hydrol. Earth Syst. Sci., 27, 2499–2507, 2023



2506 V. Yildiz et al.: Climate-perturbed FDC generation

Financial support. This research has been supported by the

UK Engineering and Physical Sciences Research Council (grant

no. EP/L016818/1).

Review statement. This paper was edited by Micha Werner and re-

viewed by two anonymous referees.

References

Blöschl, G., Sivapalan, M., Wagener, T., Savenije, H., and Viglione,

A.: Runoff prediction in ungauged basins: synthesis across

processes, places and scales, Cambridge University Press,

https://doi.org/10.1017/CBO9781139235761, 2013.

Boscarello, L., Ravazzani, G., Cislaghi, A., and Mancini,

M.: Regionalization of flow-duration curves through

catchment classification with streamflow signatures and

physiographic–climate indices, J. Hydrol. Eng., 21, 05015027,

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001307, 2016.

Brown, A. E., Western, A. W., McMahon, T. A., and Zhang, L.:

Impact of forest cover changes on annual streamflow and flow

duration curves, J. Hydrol., 483, 39–50, 2013.

Brown, C., Ghile, Y., Laverty, M., and Li, K.: Decision scaling:

Linking bottom-up vulnerability analysis with climate projec-

tions in the water sector, Water Resour. Res., 48, W09537,

https://doi.org/10.1029/2011WR011212, 2012.

Bryant, B. P. and Lempert, R. J.: Thinking inside the box: A partic-

ipatory, computer-assisted approach to scenario discovery, Tech-

nol. Forecast. Soc., 77, 34–49, 2010.

Castellarin, A., Botter, G., Hughes, D., Liu, S., Ouarda, T., Parajka,

J., Post, D., Sivapalan, M., Spence, C., Viglione, A., Castellarin,

A., Botter, G., Hughes, D., Liu, S., Ouarda, T., Parajka, J., Post,

D., Sivapalan, M., Spence, C., Viglione, A., and Vogel, R. M.:

Prediction of flow duration curves in ungauged basins, Runoff

prediction in ungauged basins: Synthesis across processes,

places and scales, 135–162, https://sites.tufts.edu/richardvogel/

files/2019/04/2013_predictionFlowDurationCurves.pdf (last ac-

cess: 4 July 2023), 2013.

Chen, C., Kalra, A., and Ahmad, S.: Hydrologic responses to cli-

mate change using downscaled GCM data on a watershed scale,

J. Water Clim. Change, 10, 63–77, 2019.

Demircan, M., Gürkan, H., Eskioğlu, O., Arabaci, H., and Coşkun,
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