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Abstract
We study the use of flow-based algorithmic and proof techniques applied to pre-

emptive scheduling of jobs on parallel identical machines. For the classical problem

in which the jobs have individual release dates and must be finished by a common

deadline, we present and prove unified necessary and sufficient conditions for the

existence of a feasible schedule by examining the structure of minimum cuts in a

special network. We then study an enhanced model that allows the presence of addi-

tional resources, provided that some jobs at any time of their processing require one

unit of a particular resource. We extend our argument developed for the classical case

to this enhanced model. The generalized necessary and sufficient conditions for the

existence of a feasible schedule are presented and proved using the max-flow/min-cut

reasoning.
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1 INTRODUCTION

Numerous modeling, algorithmic and proof techniques designed in machine scheduling are based on various network flow

models and methods. According to Google Scholar, in scheduling literature the network flow based algorithms and reasoning

appear in more than fifty thousand publications. One of the earliest examples of handling a scheduling problem by a network

flow approach is the classical paper by Horn [10] written 50 years ago. Horn designs two sets of necessary and sufficient

conditions for the existence of a feasible schedule for a basic scheduling problem on parallel identical machines. The purpose

of this study is to demonstrate that the conditions developed by Horn, despite their differences, can be derived from the same

principles that rely on the maximum-flow minimum-cut theorem. Moreover, we show how a similar proof technique can be

extended to a more general scheduling model with resource constraints.

The classical machine scheduling models are traditionally formulated in terms of jobs to be processed on machines. In the

main model that we consider the jobs have to be processed on identical parallel machines. Preemption is allowed, that is, the

processing of any job can be interrupted and resumed later, possibly on a different machine. Problems of preemptive scheduling

have numerous practical applications. One of the popular illustrations can be found in computing, when a number of files (jobs)

have to be processed by programmers of similar skills (identical parallel machines). At a time, a file is only available to at most

one programmer and each programmer can process at most one file. A programmer can interrupt the processing of a file which

will be done later by another programmer.
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The classical paper by Horn [10] studies the feasibility problem in which the jobs have different release dates and must

be completed by a common deadline. Horn presents necessary and sufficient conditions for the existing a feasible preemptive

schedule. These conditions can be seen as one of the corner stones of scheduling theory, and they are present in essentially any

scheduling book. One of these conditions is formulated as a set of inequalities, while the other is related to the maximum flow in

a special network G0. The conditions as described in [10] show no apparent link between them. We present a unified condition

which combines both previously known conditions, linking them in terms of the cuts in network G0.

The proof technique that we develop here appears to be useful for extending Horn’s conditions to a more general problem

that requires the use of additional resources. Scheduling under Resource Constraints is an established research area within

machine scheduling. There are multiple publications in this area which have been reviewed in a number of surveys, from the

earliest [2] till the most recent [3]. It has been introduced to handle various practical situations that cannot be adequately covered

by the classical models; some of such examples are given in Section 5.1. The scheduling problem with resource constraints

that we consider in this paper can be illustrated by extending the example given above. Suppose that some of the files for their

processing require a special software (an additional resource). Programmers have that software installed on their computers.

However, the software provider insists that the software can be run on one computer only at a time. Notice that similar licenses

are applied to many software products, for example, to a popular video editor.

The remainder of this article is organized as follows. We start with the feasibility problem with no resource constraints,

provided that jobs have different release dates and a common deadline. Section 2 contains some introductory comments, defi-

nitions and notation. Section 3 reproduces two forms of the classical Horn’s conditions that are necessary and sufficient for the

existence of a feasible schedule. The unified conditions are formulated in Section 4. The proof shows the equivalence of four

statements, two of which are the classical Horn’s conditions and their equivalence is due to their link to the minimum cuts in a

special network.

We then turn to the extended model, in which the jobs require additional resources. Section 5.1 provides some prelimi-

nary information on resource constrained scheduling. The model with no release dates is considered in Section 5.2, where a

polynomial-time algorithm is provided. For the problem with different release dates, the necessary and sufficient conditions for

the existence of a feasible schedule, including the unified condition, are formulated and proved in Section 5.3. Conclusions are

discussed in Section 6.

2 PRELIMINARIES

In this section, we formally define the basic scheduling models under study and briefly review the results on computational

complexity.

In the basic problem, the jobs J1, J2, … , Jn have to be processed with preemptions on m identical parallel machines

M1, … ,Mm. Denote N = {1, 2, … , n}. The processing time of job Jj, j ∈ N, is equal to p(j). For job Jj, its release date is given

and is denoted by r(j). The completion time of job Jj in a feasible schedule is denoted by C(j). We consider the problems, in

which it is required to verify whether there exists a preemptive schedule such that all jobs are completed by a given common

deadline D. More formally, in a feasible schedule S0 a job Jj is not allowed to be processed outside the time interval
[
r(j),D

]
.

In order to refer to a scheduling problem in a clear and compact way, the three-field classification scheme of the form 𝛼 | 𝛽 | 𝛾
is widely accepted, where 𝛼 describes the machine environment, 𝛽 presents the processing conditions and 𝛾 is the objective

function. The main focus of this paper is on scheduling models with identical parallel machines, in which case in the field 𝛼 we

write “P” if the number of machines is variable (part of the input). If the number of machines is fixed and equal to m, then we

write “Pm” rather than “P”. In the review parts of this paper we may refer to more general models, with uniform (or uniformly

related) machines that differ in their speeds and with unrelated machines. For these machine environments, in the field 𝛼 we

write “Q” and “R”, respectively.

The classical problem with no resource constraints of finding a feasible nonpreemptive schedule on m parallel identical

machines in which all jobs are completed by a common deadline D can be denoted either by P|C(j) ≤ D|− if all jobs are released

at time zero or by P|r(j),C(j) ≤ D|− if the jobs have individual release dates r(j). A similar problem with preemption allowed

is denoted by P|pmtn, C(j) ≤ D|− and by Pm|r(j), pmtn, C(j) ≤ D|−, respectively.

In each of these problems, it is required to determine whether a required feasible schedule exists and, if it does, to find

it. These decision problems are closely related to their optimization counterparts, in which the goal is to find a schedule that

minimizes the makespan C∗
max = max {C(j) | j ∈ N}. In the corresponding three-field notation, the third field 𝛾 becomes Cmax,

while the string “C(j) ≤ D” is removed from the middle field 𝛽; for instance, the problem of finding a makespan-optimal

preemptive schedule for the jobs with release dates is denoted by P|r(j), pmtn|Cmax. It is clear that solving an optimization

problem can be reduced to a sequence of the corresponding decision problems. On the other hand, if an optimal makespan C∗
max

is found, then the corresponding decision problem is feasible for all D ≥ C∗
max and infeasible for any smaller deadline.
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We briefly review the results on the computational complexity of the problems with no resource constraints; more details and

appropriate references can be found in a focused survey [4]. If preemption is not allowed, then already problem P2| |Cmax, the

simplest of the outlined range, is NP-hard. Moreover, problem P| |Cmax is NP-hard in the strong sense. If preemption is allowed,

then problem P|pmtn|Cmax with no release dates is solvable in O(n) time as proved by McNaughton [18]. This algorithm will

be part of several algorithms presented in this paper, therefore, we outline it below.

If all jobs arrive at time zero, for any schedule S0 that is feasible for problem P|pmtn|Cmax the makespan Cmax(S0) cannot

be smaller than the processing time of an individual job. Additionally, in any feasible schedule there must be a machine with a

total load of at least p(N)∕m, which is the average machine load. Thus,

Cmax(S0) ≥ T0,

where

T0 = max

{
max {p(j) | j ∈ N}, 1

m
p(N)

}
.

For problem P|pmtn|Cmax, McNaughton’s algorithm delivers an optimal schedule with the makespan equal to T0. It is

convenient to represent the algorithm as the following procedure. Consider an artificial schedule SA in which the jobs are placed

on an auxiliary single machine next to each other. Schedule SA is cut into pieces of length T0 and each such piece is allocated

to the next one of the m original machines. In the resulting schedule, let m′
be such a number of machines, m′ ≤ m, that

the total load of each machine Mi, 1 ≤ i ≤ m′
, is equal to T0 and is less than T0 for each machine Mi, m′

< i ≤ m. More

formally, for T0 = 1

m
p(N) define m′ = m. If T0 = max {p(j) | j ∈ N} > 1

m
p(N), identify the machine Mm′ such that m′

< m and

m′T0 < p(N) ≤
(
m′ + 1

)
T0. In any case, assign a segment of schedule SA in the time interval [(i − 1)T0, iT0] to be processed on

machine Mi, i = 1, 2, … ,m′
, from time zero. If m′

< m, assign the last segment in the interval
[
m′T0, p(N)

]
to machine Mm′+1

and in the case m′ + 2 ≤ m assign no jobs to any of the machines Mi, m′ + 2 ≤ i ≤ m. The resulting schedule has at most m− 1

preemptions. No preempted job is processed by two or more machines simultaneously, so that the resulting schedule is feasible.

The algorithm takes O(n) time.

3 RELATED WORK

In this section, we formulate the original Horn’s conditions for the existence of a feasible schedule for problem

P|r(j), pmtn, C(j) ≤ D|−, in which the jobs have individual release dates r(j), j ∈ N. Further in this paper, for a problem with

release dates it is assumed that there are h distinct release dates R(1), R(2), · · · ,R(h) such that

R(1) < R(2) < · · · < R(h),

and for completeness we add R(h+1) = D. We also use notation p(Q) =
∑

j∈Q p(j) for the total processing time of the jobs from

a nonempty set Q ⊆ N. For completeness, define p
(
∅
)
= 0.

Problem P|r(j), pmtn, C(j) ≤ D|− is independently studied in [7] and [10]. In fact, Horn [10] formulates his findings for

the “dual” problem of the existence of a feasible schedule, provided that all jobs are available at time zero and have individual

due dates. Below, we interpret his results in terms of problem P|r(j), pmtn, C(j) ≤ D|−.

Following [10], given an instance of problem P|r(j), pmtn,C(j) ≤ D|−, let g(z)(j) denote the minimum amount of processing
of job Jj, j ∈ N, which must be completed in the interval

[
R(z),R(h+1)]

, 1 ≤ z ≤ h, in any feasible schedule. Clearly, if job Jj
arrives no earlier than R(z), then to be completed by time R(h+1) = D it must be fully processed in the interval

[
R(z),R(h+1)]

.

Alternatively, if r(j) < R(z), then job Jj cannot be processed before time R(z) for more than R(z) − r(j) time units. Thus, for any

j ∈ N and any z, 1 ≤ z ≤ h, we have that

g(z)(j) =

{
p(j), if r(j) ≥ R(z),
max

{
0, p(j) −

(
R(z) − r(j)

)}
, if r(j) < R(z).

(1)

Horn [10] uses the quantities (1) to formulate the conditions presented below in Theorem 1.

Theorem 1. For problem P|r(j), pmtn,C(j) ≤ D|−, a feasible schedule exists if and only if
• the inequality

p(j) ≤ R(h+1) − r(j), (2)

holds for every job Jj, j ∈ N,

• and the inequality ∑

j∈N
g(z)(j) ≤ m

(
R(h+1) − R(z)

)
(3)

holds for every interval
[
R(z),R(h+1)]

, 1 ≤ z ≤ h.
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530 SHIOURA ET AL.

Another approach employed in [10] links problem P|r(j), pmtn,C(j) ≤ D|− to finding the maximum flow in a special

network.

Consider a generic network G = (V ,A) with the set of vertices V and the set of arcs A, in which the set V includes the

source s and the sink t. The capacity of arc (v, v′) is denoted by 𝜇(v, v′), which can be infinite for some arcs. Recall that a flow

f is a function f ∶ A → R that assigns real numbers to arcs. A flow f ∶ A → R is said to be feasible if it satisfies the capacity
constraints

0 ≤ f (v, v′) ≤ 𝜇(v, v′), (v, v′) ∈ A, (4)

and the flow balance constraints
∑

v′∈V , (v,v′)∈A
f (v, v′) =

∑

v′∈V , (v′,v)∈A
f (v′, v), v ∈ V⧵{s, t}. (5)

In the maximum flow problem, it is required to find a feasible flow of the maximum value, where the value of a flow f is the

total flow on the arcs that leave the source (or, equivalently, enter the sink):

the value of flow f =
∑

v′∈V , (s,v′)∈A
f (s, v′) =

∑

v∈V , (v,t)∈A
f (v, t).

A partition (S,T) of the node set V such that s ∈ S and t ∈ T is called an s-t cut. For an s-t cut (S,V⧵S), we define the arc

set A(S,V⧵S) by

A(S,V⧵S) = {(u, v) ∈ A | u ∈ S, v ∈ V⧵S},

and the capacity 𝜅(S) ∈ R ∪ {+∞} of the s-t cut by

𝜅(S) =
∑

(u,v)∈A(S,V⧵S)
𝜇(u, v).

Thus, the capacity 𝜅(S) of an s-t cut (S,T) is defined as the total capacity of the arcs that go from the nodes of set S to the nodes

of set T .

An s-t cut (S,T) is called a minimum s−t cut if its capacity 𝜅(S) is the minimum among all s-t cuts in G. The maximum-flow

minimum-cut theorem, the most well-known statement of network optimization, asserts that the value of the maximum flow is

equal to the capacity of a minimum s-t cut.

Following [10], given an instance of problem P|r(j), pmtn,C(j) ≤ D|−, define a network G0 = (V ,A) in which the vertex

set V contains

• the source s and the sink t;
• n job nodes j = 1, 2, … , n;

• h interval nodes I(z), each associated with the interval
[
R(z),R(z+1)]

, 1 ≤ z ≤ h.

Throughout this paper, we denote the length of an interval
[
R(z),R(z+1)]

by 𝓁(z), 1 ≤ z ≤ h. In network G0, the set A of arcs

is A = As ∪ A′ ∪ At
and their capacities are as follows:

As = {(s, j) | 1 ≤ j ≤ n}, 𝜇(s, j) = p(j);
A′ =

{(
j, I(z)

)
| 1 ≤ j ≤ n, 1 ≤ z ≤ h, r(j) ≤ R(z)

}
, 𝜇(j, I(z)) = 𝓁(z);

At = {
(
I(z), t

)
| 1 ≤ z ≤ h}, 𝜇

(
I(z), t

)
= m𝓁(z).

The structure of network G0 is shown in Figure 1. The following statement comes from [10].

Theorem 2. For problem P|r(j), pmtn,C(j) ≤ D|−, a feasible schedule exists if and only if a maximum flow in
network G0 has the value p(N).

The two types of conditions in Theorems 1 and 2 look very different and they are treated in [10] from different principles.

The proof of sufficiency of the conditions in Theorem 1 is a technical inductive argument, while the formal proof of Theorem 2

is not presented in [10]. There is no apparent link between the two types of conditions, while they both are aimed at checking

feasibility of the same problem.

4 A NEW UNIFIED NETWORK-FLOW-BASED THEOREM FOR HORN’S
FEASIBILITY CONDITIONS

In this section, we prove a statement that establishes the equivalence of both original Horn’s conditions.
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SHIOURA ET AL. 531

FIGURE 1 Network G0 = (V ,A).

For our purpose it is convenient to reformulate Theorem 2 in terms of a minimum cut as follows. For S ⊆ V with s ∈ S, t ∉ S,

let 𝜅(S) be the capacity of the s-t cut (S,V⧵S).

Theorem 3. For problem P|r(j), pmtn,C(j) ≤ D|−, a feasible schedule exists if and only if in network G0 = (V ,A)
the inequality

p(N) ≤ 𝜅(S) (6)

holds for every S ⊆ V with s ∈ S, t ∉ S.

We link the inequalities in Theorem 1 with the special cuts in network G0. In what follows, we often denote the minimum

cut in network G0 by (S∗,V⧵S∗).
For each z, 1 ≤ z ≤ h, define the index set

N(z)
+ = {j ∈ N | r(j) < R(z), p(j) ≥ R(z) − r(j)}

such that each job Jj, j ∈ N(z)
+ , arrives before time R(z) but cannot be completed by time R(z), and the index set

N(z)
− =

{
j ∈ N | r(j) ≥ R(z)

}

such that each job Jj, j ∈ N(z)
− , arrives no earlier than time R(z).

Notice that for each j ∈ N such that p(j) + r(j) < R(z) it follows from (1) that g(z)(j) = 0, so that

∑

j∈N
g(z)(j) =

∑

j∈N(z)
−

g(z)(j) +
∑

j∈N(z)
+

g(z)(j) =
∑

j∈N(z)
−

p(j) +
∑

j∈N(z)
+

(
p(j) + r(j) − R(z)

)
. (7)

Define

Sj = {s, j}, j = 1, 2, … , n;

S(z) = {s} ∪ N(z)
+ ∪ N(z)

− ∪ {I(z′) | z ≤ z′ ≤ h}.

For illustration, consider an instance with n = 4 jobs that have distinct release dates, so that R(z) = r(z), 1 ≤ z ≤ 4. Set

S3 = {s, 3} is shown in Figure 2. Assuming that p(1) + r(1) < R(3), set S(3) is {s} ∪ {2} ∪ {3, 4} ∪
{

I(3), I(4)
}

and it is shown in

Figure 3.

The statement that presents the unified conditions that link Theorems 1 and 2 is given below.

Theorem 4. For problem P|r(j), pmtn,C(j) ≤ D|−, the following statements are equivalent:

(a) a feasible schedule exists;

(b) the inequality (2) holds for every job Jj, j ∈ N , and the inequality (3) holds for every interval
[
R(z),R(h+1)]

,

1 ≤ z ≤ h;

(c) for each j ∈ N, the inequality
p(N) ≤ 𝜅(Sj) (8)
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532 SHIOURA ET AL.

FIGURE 2 Vertex set S3.

FIGURE 3 Vertex set S(3).

holds, and for each z, 1 ≤ z ≤ h, the inequality

p(N) ≤ 𝜅(S(z)) (9)

holds;

(d) for network G0 the inequality (6) holds for every S ⊆ V with s ∈ S, t ∉ S.

We split the proof of Theorem 4 into several lemmas.

Lemma 1. In Theorem 4, statement (a) implies statement (b).

Proof. In a feasible schedule, any job Jj, j ∈ N, must be fully processed in the interval between its arrival time and

the deadline D; hence, the condition (2) follows. Additionally, in a feasible schedule the processing capacity must

be sufficient to perform the minimum processing of all jobs that must be done after time R(z), 1 ≤ z ≤ h; hence, the

condition (3) holds. ▪

Lemma 2. In Theorem 4, statement (b) implies statement (c).

Proof. In fact, we prove a more general property: For each j ∈ N, condition (2) is equivalent to the inequality (8)

and for each z, 1 ≤ z ≤ h, condition (3) is equivalent to the inequality (9).
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SHIOURA ET AL. 533

For a fixed j ∈ N, by the definition of network G0, the cut (Sj,V ⧵Sj) consists of all arcs that leave the source

except the arc (s, j) and also of all arcs (j, Iz) with r(j) ≤ R(z). Thus,

𝜅(Sj) − p(N) =
∑

j′∈N⧵{j}
𝜇(s, j′) +

∑

z∶ R(z)≥r(j)
𝜇(j, I(z)) − p(N)

= p(N⧵{j}) +
∑

z∶ R(z)≥r(j)
(R(z+1) − R(z)) − p(N)

= R(h+1) − r(j) − p(j).

Hence, the inequality (8) is equivalent to the condition (2).

Fix a z, 1 ≤ z ≤ h. In network G0, a node j ∈ N(z)
− is not connected to any of the nodes of set {I(z′) | 1 ≤ z′ < z}

and the cut (S(z),V⧵S(z)) contains no arcs to the nodes of set {I(z′) | z ≤ z′ ≤ h}; thus, the cut (S(z),V⧵S(z)) contains

no arcs leaving the nodes of set N(z)
− .

On the other hand, the cut (S(z),V⧵S(z)) consists of the arcs (s, j) for each j ∈ N⧵
(

N(z)
+ ∪ N(z)

−
)

, of the arcs that

link each node j ∈ N(z)
+ to the interval nodes of the set

{
I(z′) | 1 ≤ z′ < z,R(z′) ≥ r(j)

}
, and of the arcs that link each

node of the set {I(z′) | z ≤ z′ ≤ h} to the sink t. Thus, we have

𝜅(S(z)) − p(N)

=
∑

j∈N⧵(N(z)
+ ∪N(z)

− )

𝜇(s, j) +
∑

j∈N(z)
+

∑

z′∶ z′<z,R(z′ )≥r(j)

𝜇(j, I(z′)) +
h∑

z′=z
𝜇(I(z′), t) − p(N)

=
∑

j∈N⧵(N(z)
+ ∪N(z)

− )

p(j) +
∑

j∈N(z)
+

∑

z′∶ z′<z,R(z′)≥r(j)

𝓁(z′) +
h∑

z′=z
m𝓁(z′) − p(N)

= p(N ⧵ (N(z)
+ ∪ N(z)

− )) +
∑

j∈N(z)
+

(R(z) − r(j)) + m(R(h+1) − R(z)) − p(N)

= −p(N(z)
+ ∪ N(z)

− ) +
∑

j∈N(z)
+

(R(z) − r(j)) + m(R(h+1) − R(z))

= −
∑

j∈N(z)
−

p(j) −
∑

j∈N(z)
+

[
p(j) − (R(z) − r(j))

]
+ m(R(h+1) − R(z)).

Due to (7), we deduce

𝜅(S(z)) − p(N) = −
∑

j∈N
g(z)(j) + m(R(h+1) − R(z)),

that is, the inequality (9) is equivalent to the condition (3). ▪

Lemma 3. In Theorem 4, statement (c) implies statement (d).

Proof. We demonstrate that conditions (8) and (9) imply that for any cut (S,V⧵S) inequality p(N) ≤ 𝜅(S) holds.

We prove this by examining the structure of the possible cuts.

Case 1. Let (S,V⧵S) be an s-t cut such that S ∩
{

I(z) | 1 ≤ z ≤ h
}
= ∅, that is, S does not include any interval

nodes. We deduce

𝜅(S) − p(N) =
∑

j′∈N⧵S
𝜇(s, j′) +

∑

j′∈N∩S

∑

z∶ R(z)≥r(j′)
𝜇(j′, z) − p(N)

=
∑

j′∈N⧵S
p(j′) +

∑

j′∈N∩S
(R(h+1) − r(j′)) − p(N)

= −p(N ∩ S) +
∑

j′∈N∩S
(R(h+1) − r(j′))

=
∑

j′∈N∩S
(R(h+1) − r(j′) − p(j′)).

Recall that conditions (8) hold and that they are equivalent to conditions (2), as proved in Lemma 2. Thus,

inequality r(j) + p(j) ≤ R(h+1)
holds for any j ∈ N, and hence (6) holds.
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534 SHIOURA ET AL.

Case 2. Let (S,V⧵S) be an s-t cut such that S ∩ N = ∅, that is, S does not include any job nodes. Then

𝜅(S) − p(N) =
∑

j∈N
𝜇(s, j) +

∑

z∶ I(z)∈S

𝜇(I(z), t) − p(N)

=
∑

j∈N
p(j) +

∑

z∶ I(z)∈S

m
(
R(z+1) − R(z)

)
− p(N) =

∑

z∶ I(z)∈S

m𝓁(z) > 0,

so that (6) holds as a strict inequality.

Case 3. Let (S,V⧵S) be an s-t cut such that S contains at least one job node and at least one interval node. Suppose

I(z) ∈ S. Let k denote the number of jobs Jj, j ∈ S ∩N, with r(j) ≤ R(z). First, we prove that in this case the equality

𝜅(S) − 𝜅(S⧵{I(z)}) = (m − k)(R(z+1) − R(z))

holds. Moreover, we show that the inequality k ≥ m holds if (S,V⧵S) is a minimum s-t cut.

Compare the capacities of the cuts (S,V⧵S) and (S⧵{I(z)},V⧵
(
S⧵{I(z)}

)
). We have

𝜅(S) − 𝜅(S⧵{I(z)}) = 𝜇(I(z), t) −
∑

j∈S∩N∶ r(j)≤R(z)
𝜇(j, I(z)) (10)

= m(R(z+1) − R(z)) − k(R(z+1) − R(z))
= (m − k)(R(z+1) − R(z)),

as required. If (S,V⧵S) is a minimum s-t cut, then we have

0 ≥ 𝜅(S) − 𝜅(S⧵{I(z)}) = (m − k)(R(z+1) − R(z)), (11)

which, together with R(z+1) − R(z) > 0, implies that k ≥ m.

In what follows, we consider a minimum s-t cut (S∗,V⧵S∗)which satisfies the conditions of Case 3 stated above.

Splitting our consideration into two subcases, we show that the total capacity of any minimum s-t cut (S∗,V⧵S∗) is

equal to 𝜅

(
S(z)

)
, and thus p(N) ≤ 𝜅

(
S(z)

)
.

Case 3.1. Let I(z) ∈ S∗ and I(z+1) ∉ S∗ for some z, 1 ≤ z < h. We show that in this case, that is, if set S∗ does

not contain a pair of consecutively numbered interval nodes, the inequality

𝜅(S∗ ∪ {I(z+1)}) ≤ 𝜅(S∗)

holds, that is, I(z+1)
can be added to S∗ without increasing the capacity of the resulting cut.

Let k (respectively, ̃k) be the number of jobs Jj, j ∈ S∗ ∩ N, with r(j) ≤ R(z) (respectively, with r(j) ≤ R(z+1)
).

Then, k ≤ ̃k holds. Since (S∗,V⧵S∗) is a minimum s-t cut with I(z) ∈ S∗, it follows from (11) that k ≥ m. Applying

(10) to sets S∗ ∪ {I(z+1)} and S∗, we obtain

𝜅(S∗ ∪ {I(z+1)}) − 𝜅(S∗) = (m − ̃k)(R(z+2) − R(z+1)) ≤ 0,

where the inequality is due to ̃k ≥ k ≥ m and R(z+2) − R(z+1)
> 0.

Case 3.2. Let (S∗,V⧵S∗) be a minimum s-t cut such that I(z), I(z+1)
, … , I(h) ∈ S∗ and I(1), I(2), … , I(z−1) ∉ S∗

for some z, 1 ≤ z ≤ h.

Assume that (S(z)⧵S∗) ∩ N ≠ ∅. Then there exists some j that belongs to (S(z)⧵S∗) ∩ N =
(

N(z)
+ ∪ N(z)

−
)
⧵S∗. If

j ∈ N(z)
+ ⧵S∗, then r(j) < R(z) and p(j) ≥ R(z) − r(j) hold, and therefore

𝜅(S∗ ∪ {j}) − 𝜅(S∗) =
∑

z′∶ r(j)≤R(z′)<R(z)
𝜇(j, I(z′)) − 𝜇(s, j) = (R(z) − r(j)) − p(j) ≤ 0.

If j ∈ N(z)
− ⧵ S∗, that is, r(j) ≥ R(z), then in network G0 there is no arc from node j to the nodes of the set

{I(1), I(2), … , I(z−1)}, and therefore

𝜅(S∗ ∪ {j}) − 𝜅(S∗) = −𝜇(s, j) = −p(j) ≤ 0.

In either case, we have that 𝜅(S∗ ∪ {j}) ≤ 𝜅(S∗), so that (S∗ ∪ {j},V⧵(S∗ ∪ {j})) is also a minimum s-t cut. Thus, for

the minimum cut (S∗,V⧵S∗) we can add all nodes j ∈ S(z) ∩ N to set S∗ without increasing the capacity of the cut.

Assume now that (S(z) ⧵S∗) ∩ N = ∅ but there exists some j ∈ (S∗ ⧵S(z)) ∩ N. Then, j ∉ N(z)
+ ∪ N(z)

− so that

p(j) + r(j) < R(z). Therefore, we obtain

𝜅(S∗⧵{j}) − 𝜅(S∗) = 𝜇(s, j) −
∑

z′∶ z′<z, R(z′ )≥r(j)

𝜇(j, I(z′))

= p(j) − (R(z) − r(j)) < 0,
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SHIOURA ET AL. 535

a contradiction to the minimality of the s-t cut (S∗,V⧵S∗). Hence, we have that (S∗⧵S(z)) ∩N = ∅, which along with

(S(z)⧵S∗) ∩ N = ∅ implies that S∗ = S(z), so that
(
S(z),V⧵S(z)

)
is a minimum s-t cut.

Thus, we have proved that for any s-t cut its total capacity is no less than p(N), that is, (6) holds for any set

S ⊆ V , as required. ▪

Lemma 4. In Theorem 4, statement (d) implies statement (a).

Proof. We know that the capacity of any cut in network G0 is no less than p(N). It is clear that S∗ = {s} defines a

minimum s-t cut (S∗,V⧵S∗) with 𝜅(S∗) = p(N), that is, there exists a maximum flow f of value p(N). For j ∈ N, let

the flow through the arc
(
j, I(z)

)
such that r(j) ≤ I(z) be equal to p(z)(j). In terms of the original scheduling problem,

p(z)(j) is the duration of processing of job Jj in the interval
[
R(z),R(z+1)]

.

The actual feasible schedule S0 can be found by solving a sequence of auxiliary problems P(z), 1 ≤ z ≤ h. Each

problem P(z) is in fact problem P|pmtn|Cmax of processing jobs Jj with p(z)(j) > 0 in the interval
[
R(z),R(z+1)]

and

can be solved by McNaughton’s algorithm outlined in Section 2.

Since the flow through an arc (s, j) is equal to p(j), j ∈ N, it follows that in schedule S0 each job will be processed

in full. For each interval
[
R(z),R(z+1)]

, the value p(z)(j), that is, the duration of processing of each job Jj in that

interval, does not exceed the length 𝓁(z) of the interval. Additionally, the total processing amount assigned to an

interval
[
R(z),R(z+1)]

, equal to
∑

j∶ r(j)≥R(z) p(z)(j), does not exceed m𝓁(z), the total processing capacity of the interval.

Thus, schedule S0 is feasible. ▪

Notice that in network G0 there are O(n) vertices, therefore the maximum flow in G0 can be found in O
(
n3
)

time, for

example, by the algorithm in [15]. In [10], in order to prove the sufficiency of the conditions (2) and (3) an iterative construction

procedure is given that finds a feasible schedule, provided that the conditions hold. The running time of that procedure is

not estimated in [10]. However, due to the equivalency between both types of conditions presented in [10], we deduce that

finding a feasible schedule based on any of these conditions requires O
(
n3
)

time. This, however, does not mean that problem

P|r(j), pmtn,C(j) ≤ D|− and even a more general problem Q|r(j), pmtn,C(j) ≤ D|− with uniform machines cannot be solved

faster; see, for example, a very efficient algorithms by Sahni [20] and by Labetoulle et al. [16], respectively. Notice also that

in [16] for problem Q|r(j), pmtn,C(j) ≤ D|− the generalization of the parameter denoted in our paper by g(z)(j) is introduced,

as the minimum amount of processing of a job which must be completed in the interval
[
R(z),R(h+1)]

. However, that paper

gives preference to the algorithmic aspects of finding a feasible schedule rather than formulating and proving the necessary and

sufficient conditions similar to those in Theorem 1.

5 EXTENSION OF HORN’S CONDITIONS TO PREEMPTIVE SCHEDULING
UNDER RESOURCE CONSTRAINTS

We now turn to an enhanced model of parallel machine scheduling with resource constraints. We start with some preliminary

information.

5.1 Definitions and preliminaries
Let us extend the model of preemptive scheduling on parallel machines in the following way. There are Q renewable resources

and at any time moment exactly one unit of each resource is available. Some jobs at any time of their processing must consume

one unit of exactly one of these Q resources. An instance may also contain n0 jobs which do not require these resources; however,

it is convenient to think of any such a job as a job that consumes one unit of a unique additional resource k, Q+1 ≤ k ≤ Q+n0.

Such an interpretation allows us to denote q = Q + n0 as the total number of resources. Therefore, for the set of jobs the index

set N can be seen as partitioned into q disjoint sets N1, … , Nq such that each job of set Nk at any time of its processing requires

one unit of resource k, 1 ≤ k ≤ q. No two jobs of set Nk, 1 ≤ k ≤ q, that is, the jobs that require the same resource, cannot be

processed simultaneously.

For the scheduling problems under the resource constraints, the notation that has become standard since its first appearance

in [2] places into the middle field 𝛽 of the 𝛼 | 𝛽 | 𝛾 notation described in Section 2 a string that specifies the rules of resource

usage by addressing three parameters.

Widely accepted, that notation, however, does not provide enough details in order to distinguish between various versions

of the resource-constrained scheduling problems. Following [24], we adopt the extended scheme that adds to the middle field

𝛽 a string of the form “res 𝜌1𝜌2𝜌3𝜌4”, where
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536 SHIOURA ET AL.

• 𝜌1 is the number of available renewable resources;

• 𝜌2 is an upper bound on the number of resources a job may need;

• 𝜌3 is an upper bound on the number of units of any resource available at a time;

• 𝜌4 is an upper bound on the number of units of any resource that can be consumed by a job at a time.

The value of each of these parameters is either a known constant or the symbol “⋅”; in the latter case the value of the parameter

is variable (part of the input). In accordance with this updated scheme, for the resource-constrained problems considered in this

paper the string “res ⋅ 111” is used. This notation implies that

• 𝜌1 = “⋅”, that is, there are several renewable resources (we use the variable q to denote their number);

• 𝜌2 = 1, that is, each job needs at most one resource at any time of its processing;

• 𝜌3 = 1, that is, one unit of each resource is available at a time;

• 𝜌4 = 1, that is, a job that requires a resource consumes one unit of that resource at any time of its processing.

In the traditional scheme the parameter 𝜌2 was missing. Therefore, in most of the previously considered models with resource

constraints it was assumed that a job might need any number of resources.

In fact, there is a considerable interest, both from the theoretical and practical prospective, in scheduling models in which a

job may only need a fixed number of resources, in particular in those models that are described by the string “res ⋅ 111”.

A natural meaningful interpretation of problem P|res ⋅ 111|Cmax is related to human resource management. The projects

(jobs) can be performed by any of the available m teams (machines). However, to be able to perform certain projects a team

must additionally include an extra employee with a special skill. For each skill k, 1 ≤ k ≤ q, there is exactly one employee who

possesses this skill, that is, such an employee can be seen as a renewable resource k. See [24].

Hebrard et al. [8] motivate their study of problem P|res ⋅ 111|Cmax by the problem that arises in satellite data download

management. Janssen et al. [14] study the problem with the same environment but with the objective of the sum of the completion

times and present a motivation scenario of using photolithography equipment in the microelectronic industry.

The problems with resources can be considered as special cases of multiprocessor task scheduling, where jobs have

prescribed processing modes, with specific subsets of machines associated with each job; see, for example, [11, 12].

A review of resource-constrained scheduling on parallel machines can be found in [5]. For the purposes of this paper, we only

mention the results on the models with preemption allowed. The most general problem Rm|pmtn, res ⋅ ⋅ ⋅ ⋅|Cmax with a fixed

number m of unrelated machines reduces to a linear programming problem with O(nm) variables and is therefore polynomially

solvable. If the number of machines is variable then problem Q|pmtn, res 1111|Cmax with uniform machines and a single

additional resource is solvable in O(n + m log m) time; see the survey [2] and the references within. The approximability results

for problem P|pmtn, res ⋅ ⋅ ⋅ ⋅|Cmax are presented in [13].

In the remainder of this paper, we present a polynomial-time algorithm for problem P|pmtn, res ⋅ 111,C(j) ≤ D|− and the

necessary and sufficient conditions for the existence of a feasible schedule for problem P|r(j), pmtn, res ⋅ 111,C(j) ≤ D|−,

similar to those discussed in Section 4.

5.2 Zero release dates
In this subsection, we show that problem P|pmtn, res ⋅ 111,C(j) ≤ D|− and its optimization counterpart, problem

P|pmtn, res ⋅ 111|Cmax, can be solved by a simple adaptation of McNaughton’s algorithm for the classical problem

P|pmtn|Cmax with no resource constraints, presented in Section 2.

Similarly to problem P|pmtn|Cmax, the makespan of any schedule S that is feasible for problem P|pmtn, res ⋅ 111|Cmax

cannot be smaller than the average machine load p(N)∕m. Additionally, for any k, 1 ≤ k ≤ q, no two jobs that require the same

resource k can be processed in parallel, that is,

Cmax(S) ≥ max

{
1

m
p(N),max {p(Nk) | 1 ≤ k ≤ q}

}
. (12)

In our consideration, we often rely on the so-called group technology approach. Given an instance of a problem with the

“res ⋅ 111” constraints, associate each set Nk, the index set of jobs that require resource k, with a composite job Vk , 1 ≤ k ≤ q.

The processing times of these composite jobs are defined by

p(Vk) = p(Nk), 1 ≤ k ≤ q.

Replace the original instance I of problem P|pmtn, res ⋅ 111|Cmax by instance IG that consists of the composite jobs Vk,

1 ≤ k ≤ q, described above. Solve problem P|pmtn|Cmax for instance IG by McNaughton’s algorithm. Let S∗G be the resulting

schedule of the composite jobs. We can convert schedule S∗G into a schedule of the original jobs J1, … , Jn that is optimal for
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SHIOURA ET AL. 537

problem P|pmtn, res ⋅ 111|Cmax by replacing a composite job Vk (or its segment if it is processed with preemption) by the

block of jobs of set
{

Jj | j ∈ Nk
}

(one job maybe preempted). Clearly,

Cmax

(
S∗G

)
= max

{
1

m
p(N),max {p(Vk) | 1 ≤ k ≤ q}

}
.

It follows from (12) that such a schedule is optimal for problem P|pmtn, res ⋅ 111|Cmax since its makespan is the same as

Cmax

(
S∗G

)
.

Thus, the following statement holds.

Theorem 5. Problem P|pmtn, res ⋅ 111|Cmax is solvable in O(n) time.

It immediately follows that problem P|pmtn, res ⋅ 111,C(j) ≤ D|− has a feasible solution if and only if D ≥ Cmax

(
S∗G

)
.

5.3 Nonzero release dates
In this subsection, we consider problem P|r(j), pmtn, res ⋅ 111,C(j) ≤ D|−. We formulate the necessary and sufficient condi-

tions for the existence of a feasible schedule. We start with the conditions that are similar to those in Theorem 1 developed in [10]

for problem P|r(j), pmtn,C(j) ≤ D|− with no resource constraints. We also link problem P|r(j), pmtn, res ⋅ 111,C(j) ≤ D|−
with finding the maximum flow in a special network. Then we formulate and prove the unified necessary and sufficient feasibility

conditions, thereby extending Theorem 4 to the problem with resource constraints.

Throughout this subsection, given a set Y and a logical condition 𝜆, denote by Y[𝜆] the subset of the elements of Y that

satisfy 𝜆. For example, Nk
[
r(j) ≤ R(z)

]
denotes the index set of jobs Jj, j ∈ Nk, that require resource k and arrive no later than

time R(z), 1 ≤ k ≤ q, 1 ≤ z ≤ h. We also use notation N(z)
k = Nk

[
r(j) = R(z)

]
for the index set of jobs Jj, j ∈ Nk, that require

resource k and arrive at time R(z), 1 ≤ k ≤ q, 1 ≤ z ≤ h.

We start with formulating an extension of Horn’s conditions, that is, the necessary and sufficient conditions for the existence

of a feasible schedule for problem P|r(j), pmtn, res ⋅ 111,C(j) ≤ D|−.

Let g(z)(Nk) denote the minimum amount of processing of the jobs of set Nk, 1 ≤ k ≤ q, which must be completed in the

interval
[
R(z),R(h+1)]

, 1 ≤ z ≤ h.

Lemma 5. In any schedule that is feasible for problem P | r(j), pmtn, res ⋅ 111,C(j) ≤ D |−, the total processing
time of the jobs of set Nk after time R(z), 1 ≤ k ≤ q, 1 ≤ z ≤ h, is at least

g(z)(Nk) = max
1≤z′≤z

{
p
(

Nk

[
r(j) ≥ R(z′)

])
− (R(z) − R(z′))

}
.

Proof. For each k, 1 ≤ k ≤ q, and each z, 1 ≤ z ≤ h, set Nk
[
r(j) ≥ R(z)

]
is a subset of jobs of set

{
Jj | j ∈ Nk

}
that

arrive no earlier than R(z). All these jobs must be fully processed in the interval
[
R(z),R(h+1)]

with no overlap, so that

g(z)(Nk) ≥ p
(
Nk[r(j) ≥ R(z)]

)
= p

(
N(z)

k ∪ N(z+1)
k ∪ · · · ∪ N(h)

k

)
.

We also need to take into account those jobs of set Nk that for some z′, 1 ≤ z′ < z, arrive at or after R(z′) but are

not fully completed before R(z) and therefore must be processed in the interval [R(z),R(h+1)]. Since these jobs can be

processed in the interval
[
R(z′),R(z)

]
for at most R(z) −R(z′) time units, it follows that the total processing time of the

jobs of set

{
Jj | j ∈ Nk

[
r(j) ≥ R(z′)

]}
after time R(z) is at least p

(
Nk

[
r(j) ≥ R(z′)

])
− (R(z) − R(z′)). ▪

Based on the determined values of g(z)(Nk), we can formulate the following statement, which is an extension of Theorem 1.

Theorem 6. For problem P | r(j), pmtn, res ⋅ 111,C(j) ≤ D |−, a feasible schedule exists if and only if for
each k, 1 ≤ k ≤ q, the inequality

g(z)(Nk) ≤ R(h+1) − R(z) (13)

holds for each z, 1 ≤ z ≤ h, and the inequality
q∑

k=1

g(z)(Nk) ≤ m
(
R(h+1) − R(z)

)
(14)

holds for each z, 1 ≤ z ≤ h.

We refer to the conditions in Theorem 6 as extended Horn’s conditions. They are part of the unified conditions formulated

and proved in Theorem 8.
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538 SHIOURA ET AL.

FIGURE 4 Network GRes = (V ,A) with q = 3 and h = 4.

As in Section 3, define 𝓁(z) = R(z+1) − R(z), z = 1, 2, … , h. Create the network GRes = (V ,A) with a set of vertices V and

the set of arcs A. The set V includes

• the source s and the sink t;
• q resource nodes Nk, each associated with the set of jobs that require resource k, 1 ≤ k ≤ q;

• q×h resource-interval nodes N(z)
k , each associated with the set of jobs that require resource k, 1 ≤ k ≤ q, and have release

date r(j) = R(z), 1 ≤ z ≤ h;

• h interval nodes I(z), each associated with the interval
[
R(z),R(z+1)]

, 1 ≤ z ≤ h.

The set A of arcs is A = As ∪ A1 ∪ A2 ∪ A3 ∪ At
and the arc capacities are as follows:

As = {(s,Nk) | 1 ≤ k ≤ q} , 𝜇 (s,Nk) = p (Nk) ;

A1 =
{(

Nk,N(z)
k

)
| 1 ≤ k ≤ q, 1 ≤ z ≤ h

}
, 𝜇

(
Nk,N(z)

k

)
= p

(
N(z)

k

)
;

A2 =
{(

N(z)
k ,N(z+1)

k

)
| 1 ≤ k ≤ q, 1 ≤ z ≤ h − 1

}
, 𝜇

(
N(z)

k ,N(z+1)
k

)
= +∞;

A3 =
{(

N(z)
k , I(z)

)
| 1 ≤ k ≤ q, 1 ≤ z ≤ h

}
, 𝜇

(
N(z)

k , I(z)
)
= 𝓁z;

At =
{(

I(z), t
)
| 1 ≤ z ≤ h

}
, 𝜇

(
I(z), t

)
= m 𝓁z.

The structure of network GRes is shown in Figure 4. The following statement is an extension of Theorem 2.

Theorem 7. For problem P | r(j), pmtn, res ⋅111,C(j) ≤ D |−, a feasible schedule exists if and only if a maximum
flow in network GRes has the value p(N).
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SHIOURA ET AL. 539

FIGURE 5 Vertex set S(z)k with k = 2, z = 2.

Notice that under the conditions of Theorem 7 an analogue of Theorem 3 holds, which guarantees that a maximum flow in

GRes is equal to p(N) if and only if the inequality (6) holds for any s-t cut (S,V⧵S).
Instead of proving Theorems 6 and 7 directly, we formulate and prove a statement similar to Theorem 4 that presents the

unified conditions.

For each z, 1 ≤ z ≤ h, and each k, 1 ≤ k ≤ q, define a vertex set S(z)k by

S(z)k = {s} ∪ {Nk} ∪ {N(z)
k ,N(z+1)

k , … ,N(h)
k }.

For each z, 1 ≤ z ≤ h, and each vector (z1, … , zq) with z1, … , zq ∈ {1, 2, … , z}, we define a vertex set S(z)
(
z1, … , zq

)
by

S(z)
(
z1, … , zq

)
= {s} ∪ {N1, … ,Nq}∪

q⋃

k=1

{N(zk)
k ,N(zk+1)

k , … ,N(h)
k } ∪ {I(z), … , I(h)}.

Sets S(z)k and S(z)
(
z1, … , zq

)
for a small value of z are illustrated in Figures 5 and 6, respectively.

The statement that presents the unified conditions that link Theorems 6 and 7 is given below.

Theorem 8. For problem P | r(j), pmtn, res ⋅ 111,C(j) ≤ D |−, the following statements are equivalent:

(a) a feasible schedule exists;

(b) for each k, 1 ≤ k ≤ q, and each z, 1 ≤ z ≤ h, the inequalities (13) and (14) hold;

(c) for each k, 1 ≤ k ≤ q, and each z, 1 ≤ z ≤ h, the inequality

p(N) ≤ 𝜅

(
S(z)k

)
(15)
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540 SHIOURA ET AL.

FIGURE 6 Vertex set S(z)
(
z1, … , zq

)
with z1 = 2, z2 = 3, z3 = 1, z = 3.

holds, and for each z, 1 ≤ z ≤ h, and each vector
(
z1, … , zq

)
with z1, … , zq ∈ {1, 2, … , z} the inequality

p(N) ≤ 𝜅

(
S(z)

(
z1, … , zq

))
(16)

holds;

(d) for network GRes the inequality (6) holds for every S ⊆ V with s ∈ S, t ∉ S.

As in Section 4, we split the proof into several lemmas.

Lemma 6. In Theorem 8, statement (a) implies statement (b).

Proof. By Lemma 5, in any feasible schedule the total processing time of the jobs of set Nk after time R(z), 1 ≤ k ≤ q,

1 ≤ z ≤ h, is at least g(z)(Nk). This amount must be fully processed in the interval
[
R(z),R(h+1)]

; hence, the condition

(13) holds. Additionally, in a feasible schedule the processing capacity must be sufficient to perform the minimum

processing of all jobs that must be done after time R(z), 1 ≤ z ≤ h; this implies the condition (14). ▪

Lemma 7. In Theorem 4, statement (b) implies statement (c).

Proof. As in Section 4, we actually prove a more general property: For each k, 1 ≤ k ≤ q, and each z, 1 ≤ z ≤ h,

condition (13) is equivalent to the inequality (15) and for each z, 1 ≤ z ≤ h, condition (14) is equivalent to the

inequality (16) for each vector
(
z1, … , zq

)
with z1, … , zq ∈ {1, 2, … , z}.
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SHIOURA ET AL. 541

Let us fix a resource k ∈ {1, 2, … , q}. The inequalities (13) can be rewritten as

max
1≤z′≤z

{
p
(

N(z
′)

k ∪ N(z
′+1)

k ∪ · · · ∪ N(h)
k

)
− (R(z) − R(z′))

}
≤ R(h+1) − R(z), 1 ≤ z ≤ h,

which is equivalent to

h∑

u=z′
p(N(u)

k ) ≤ R(h+1) − R(z′), 1 ≤ z′ ≤ z ≤ h.

Changing the variables, we deduce the equivalent inequalities

h∑

z′=z
p
(

N(z
′)

k

)
≤ R(h+1) − R(z), 1 ≤ z ≤ h. (17)

The s-t cut

(
S(z)k ,V⧵S(z)k

)
consists of all arcs (s,Nk′ ), 1 ≤ k′ ≤ q, k′ ≠ k, all arcs

(
Nk,N

(z′)
k

)
for 1 ≤ z′ < z and

all arcs

(
N(z

′)
k , I(z′)

)
for z ≤ z′ ≤ h. Thus,

𝜅(S(z)k ) = (p(N) − p(Nk)) +
z−1∑

z′=1

p
(

N(z
′)

k

)
+

h∑

z′=z
𝓁z′ .

To prove (15) compute

𝜅(S(z)k ) − p(N) = −p(Nk) +
z−1∑

z′=1

p
(

N(z
′)

k

)
+
(
R(h+1) − R(z)

)

= −
h∑

z′=1

p
(

N(z
′)

k

)
+

z−1∑

z′=1

p
(

N(z
′)

k

)
+
(
R(h+1) − R(z)

)

= −
h∑

z′=z
p
(

N(z
′)

k

)
+
(
R(h+1) − R(z)

)
, (18)

so that (17) is equivalent to the desired inequality (15).

Now we fix a z ∈ {1, 2, … , h}. The inequality (14) can be explicitly written as

q∑

k=1

max
1≤zk≤z

{
p
(

N(zk)
k ∪ N(zk+1)

k ∪ · · · ∪ N(h)
k

)
− (R(z) − R(zk))

}
≤ m(R(h+1) − R(z)). (19)

Select a vector
(
z1, … , zq

)
with zk ∈ {1, 2, … , z}, 1 ≤ k ≤ q. The s-t cut

(
S(z)

(
z1, … , zq

)
,V⧵S(z)

(
z1, … , zq

))

includes all arcs

(
Nk,N

(z′)
k

)
with 1 ≤ z′ < zk and all arcs

(
N(z

′)
k , I(z′)

)
for zk ≤ z′ < z; recall that the nodes

I(z), … I(h) belong to S(z)
(
z1, … , zq

)
. Additionally, the cut also includes all arcs

(
I(z′), t

)
for z ≤ z′ ≤ h. Thus,

𝜅

(
S(z)

(
z1, … , zq

))
− p(N) =

q∑

k=1

(
∑

z′<zk

p
(

N(z
′)

k

)
+

∑

zk≤z′<z
𝓁z′

)

+
∑

z′≥z
m𝓁z′ − p(N)

=
q∑

k=1

((
∑

z′<zk

p
(

N(z
′)

k

)
− p(Nk)

)

+
(
R(z) − R(zk)

)
)

+ m
(
R(h+1) − R(z)

)

= −
q∑

k=1

(
p
(

N(zk)
k ∪ N(zk+1)

k ∪ · · · ∪ N(h)
k

)
−
(
R(z) − R(zk)

))
+ m

(
R(h+1) − R(z)

)
,

which implies the equivalence of (19) and (16). ▪

Lemma 8. In Theorem 4, statement (c) implies statement (d).

Proof. We prove the lemma by showing that if the conditions (15) and (16) (or, equivalently, the conditions (13)

and (14), respectively) hold, then the capacity of a minimum s-t cut in network GRes is equal to p(N).
Consider the s-t cut (S′,V⧵S′) with S′ = {s}. The capacity 𝜅(S′) of (S′,V⧵S′) is equal to p(N). Hence, it suffices

to show that the inequality

p(N) ≤ 𝜅(S∗) (20)
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542 SHIOURA ET AL.

holds for a minimum s-t cut (S∗,V⧵S∗). To prove that we show that there exists a minimum s-t cut with some nice

structure.

First, observe that if for a minimum s-t cut (S∗,V ⧵S∗) we have that N(z)
k ∈ S∗ for some k, 1 ≤ k ≤ q, and z,

1 ≤ z ≤ h − 1, then N(z+1)
k ∈ S∗. Indeed, if N(z+1)

k ∉ S∗ then (S∗,V ⧵S∗) is not a minimum cut, since the arc set

A(S∗,V⧵S∗) would contain the arc (N(z)
k ,N(z+1)

k ) of infinite capacity, implying that 𝜅(S∗) = +∞.

Thus, in a possible minimum s-t cut (S∗,V⧵S∗) set S∗ for each k, 1 ≤ k ≤ q, either does not contain the vertices

of set {N(1)
k ,N(2)

k , … ,N(h)
k } or for some zk contains all vertices of set {N(zk)

k ,N(zk+1)
k , … ,N(h)

k } and none of the

vertices of set {N(1)
k , … ,N(zk−1)

k }. More formally,

S∗ ∩ {N(1)
k ,N(2)

k , … ,N(h)
k } = {N(zk)

k ,N(zk+1)
k , … ,N(h)

k }, 1 ≤ k ≤ q, (21)

for some z1, z2, … , zq ∈ {1, 2, … , h, h + 1}, where zk = h + 1 means that S∗ ∩ {N(1)
k ,N(2)

k , … ,N(h)
k } = ∅.

In the rest of the proof, we assume that (S∗,V⧵S∗) is a minimum s-t cut that possesses this structure.

Let (S,V ⧵S) be an s-t cut of a finite total capacity, 𝜅(S) < +∞. We show that if for some k, 1 ≤ k ≤ q,

vertex Nk does not belong to S, then it can be added to S without increasing the capacity of the resulting cut, that

is, 𝜅(S ∪ {Nk}) ≤ 𝜅(S).
To see this, suppose that we add node Nk to S. Then, the arc set A(S ∪ {Nk},V ⧵(S ∪ {Nk})) is obtained from

the arc set A(S,V ⧵S) by deleting the arc (s,Nk) of capacity p(Nk) followed by adding some of the arcs (Nk,N(z)
k ),

1 ≤ z ≤ h. Since the capacity of arc

(
Nk,N(z)

k

)
is equal to p

(
N(z)

k

)
and

∑h
z=1

p
(

N(z)
k

)
= p(Nk), we have that

𝜅(S ∪ {Nk}) − 𝜅(S) ≤ −𝜇(s,Nk) +
h∑

z=1

𝜇(Nk,N(z)
k ) = −p(Nk) +

h∑

z=1

p(N(z)
k ) = 0,

as required. Thus, for the minimum cut (S∗,V⧵S∗) we can add all nodes Nk to set S∗ without increasing the capacity

of the cut, so that

{N1, … ,Nq} ⊆ S∗. (22)

Due to (21) and (22) we deduce that the vertex set S∗ contains the nodes

{s} ∪ {N1, … ,Nq}∪
q⋃

k=1

{N(zk)
k ,N(zk+1)

k , … ,N(h)
k },

and possibly some vertices in {I(1), … , I(h)}. We consider the following two possible cases and show that (20)

holds in each case.

Case 1. For the minimum cut (S∗,V ⧵ S∗) set S∗ does not contain any of the interval nodes, that is, S∗ ∩
{I(1), … , I(h)} = ∅.

In this case, we have

S∗ = {s} ∪ {N1, … ,Nq}∪
q⋃

k=1

{
N(zk)

k ,N(zk+1)
k , … ,N(h)

k

}
.

See Figure 7 for an illustration of a cut of such a structure.

Similarly to the proof of Lemma 7, we obtain

𝜅(S∗) − p(N) =
q∑

k=1

(zk−1∑

z′=1

p
(

N(z
′)

k

)
+

h∑

z′=zk

𝓁z′

)

− p(N)

=
q∑

k=1

(zk−1∑

z′=1

p
(

N(z
′)

k

)
− p(Nk) +

(
R(h+1) − R(zk)

)
)

=
q∑

k=1

(

−
h∑

z′=zk

p
(

N(z
′)

k

)
+
(
R(h+1) − R(zk)

)
)

.

For each k, 1 ≤ k ≤ q, such that zk = h + 1, we have that

−
h∑

z′=zk

p
(

N(z′)
k

)
+
(
R(h+1) − R(zk)

)
= R(h+1) − R(h+1) = 0,
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SHIOURA ET AL. 543

FIGURE 7 A minimum s-t cut (S∗,V⧵S∗) in Case 1.

while for each each k, 1 ≤ k ≤ q, such that zk ≤ h, we have that

−
h∑

z′=zk

p(N(z′)
k ) + (R(h+1) − R(zk)) = 𝜅(S(zk)

k ) − p(N) ≥ 0,

where in the latter expression the equality is by (18) and the inequality is by (15). Hence, the inequality (20) follows.

Case 2. For the minimum cut (S∗,V⧵S∗) set S∗ contains some of the interval nodes, that is, S∗∩{I(1), … , I(h)} ≠
∅. For illustration, see Figure 8.

For each z, 1 ≤ z ≤ h, compute

𝜂z = | S∗ ∩ {N(z)
1
,N(z)

2
, … ,N(z)

q } | ,

the number of the resource-interval nodes contained in S∗. Due to (21), we have 𝜂1 ≤ 𝜂2 ≤ · · · ≤ 𝜂h, which implies

that there exists some z′ ∈ {1, 2, … , h, h + 1} such that

𝜂1 ≤ · · · ≤ 𝜂z′−1 < m ≤ 𝜂z′ ≤ · · · ≤ 𝜂h;

if z′ = h + 1 then we have 𝜂z < m for all z.

For each z, 1 ≤ z ≤ h, such that I(z) ∈ S∗ and 𝜂z < m it follows that

𝜅(S∗⧵{I(z)}) − 𝜅(S∗) = 𝜂z𝓁z − m𝓁z < 0,
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544 SHIOURA ET AL.

FIGURE 8 A minimum s-t cut (S∗,V⧵S∗) in Case 2.

a contradiction to the minimality of the s-t cut (S∗,V ⧵S∗). Hence, for each z, 1 ≤ z ≤ h, if I(z) ∈ S∗ then 𝜂z ≥ m
holds. This observation, together with the assumption S∗ ∩ {I(1), … , I(h)} ≠ ∅, implies that z′ ≤ h, that is, there

exists some z with 𝜂z ≥ m.

We then suppose that I(z) ∉ S∗ for some z with z′ ≤ z ≤ h. Since 𝜂z ≥ m, it follows that

𝜅(S∗ ∪ {I(z)}) − 𝜅(S∗) = m𝓁z − 𝜂z𝓁z ≤ 0,

which implies that (S∗ ∪ {I(z)},V⧵(S∗ ∪ {I(z)})) is also a minimum s-t cut. Hence, we may assume that

{I(z′), I(z′+1)
, … , I(h)} ⊆ S∗. (23)

We then assume that N(z)
k ∉ S∗ for some k, 1 ≤ k ≤ q, and z is the largest index in

{
z′, z′ + 1, … , h

}
. Since

Nk ∈ S∗ by the assumption (22), it follows that

𝜅(S∗ ∪ {N(z)
k }) − 𝜅(S∗) = −p(N(z)

k ) ≤ 0,

which implies that (S∗ ∪ {N(z)
k },V⧵(S∗ ∪ {N

(z)
k })) is also a minimum s-t cut. Hence, we may assume that

q⋃

k=1

{N(z
′)

k ,N(z
′+1)

k , … ,N(h)
k } ⊆ S∗. (24)

This assumption implies, in particular, that zk ≤ z′ by the assumption (21).

From (21), (22), (23), and (24), we deduce that S∗ = S(z)
(
z1, … , zq

)
. Hence, the desired inequality (20) follows

from (16). This concludes the proof of the lemma. ▪
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SHIOURA ET AL. 545

Lemma 9. In Theorem 8, statement (d) implies statement (a).

Proof. We know that the capacity of any cut in network GRes is no less than p(N). It is clear that S∗ = {s} defines a

minimum s-t cut with 𝜅(S∗) = p(N), that is, there exists a maximum flow f of value p(N). For k, 1 ≤ k ≤ q, let the

flow through the arc

(
N(z)

k , I(z)
)

be equal to p(z)k . In terms of the composite job Vk, p(z)k is the duration of processing

of that job in the interval
[
R(z),R(z+1)]

.

The actual feasible schedule S0 can be found by solving a sequence of auxiliary problems P(z), 1 ≤ z ≤ h. Each

problem P(z) is in fact problem P|pmtn,C(j) ≤ D|− of processing composite jobs Vk with p(z)k > 0 in the interval[
R(z),R(z+1)]

and can be solved by McNaughton’s algorithm outlined in Section 2. For each interval
[
R(z),R(z+1)]

the

composite job Vk (or its segments) is replaced by the original jobs (or their segments) Jj, j ∈ Nk, with r(j) ≥ R(z).
Similarly to the proof of Lemma 4, it can be verified that in schedule S0 each original job will be processed in

full. Additionally, for each interval
[
R(z),R(z+1)]

the total duration of the jobs that require the same resource does

not exceed its length 𝓁(z), and total processing amount assigned to the interval does not exceed its total processing

capacity m𝓁(z). Thus, schedule S0 is feasible. ▪

To estimate the running time needed for finding a feasible schedule based on Theorem 8, notice that there are 2+ q+ qh+ h
nodes in GRes = (V ,A). There are q arcs leaving the source, at most three distinctive arcs coming to and leaving each node N(z)

k ,

1 ≤ k ≤ q, 1 ≤ z ≤ h, and h arcs coming to the sink, that is, at most q+ 3qh+ h arcs all together. Thus, |A| = O(|V|) and using

the algorithm in [19] the maximum flow in GRes can be found in O
(

|V|2

log |V|

)
= O

(
q2h2

log(qh)

)
= O

(
q2n2

log(qn)

)
time.

6 CONCLUSIONS

The necessary and sufficient conditions for the existence of a feasible solution for problem P|r(j), pmtn, C(j) ≤ D|− have

been known and widely used for 50 years. One of these conditions is in the form of a system of inequalities, while the

other is related to finding the maximum flow in a special network. In this paper, we have strengthened the understand-

ing of the connection between these two conditions by establishing their link to the minimum cuts in such a network. The

elaborated proof technique is essentially based on the underlying network model and on the maximum-flow minimum-cut

theorem.

To illustrate further applications of the proof technique, we study the enhanced version of the problem, in which jobs require

additional resources, namely problem P|r(j), pmtn, res ⋅ 111,C(j) ≤ D|−. For that problem we develop the network model,

formulate the feasibility conditions, and present a formal proof of their correctness. The conditions can be used not only for

verifying feasibility, but also for optimization versions of the problem, for example, for minimizing the makespan if a common

deadline D is treated as a parameter, or for minimizing the total compression cost if job processing times are controllable in the

sense of [23].

Another generalization of the problem under study, problem Q|r(j), pmtn, C(j) ≤ D|−with parallel machines having differ-

ent speeds, can be a subject of future research. While the correctness of the associated network is proved in [6] and feasibility

can be verified via solving a network flow problem, it seems interesting to derive conditions in an analytical form, with a poly-

nomial number of inequalities. Notice that the makespan minimization problem Q|r(j), pmtn|Cmax is studied in [16]. Although

the necessary and sufficient optimality conditions for problem Q|r(j), pmtn, C(j) ≤ D|− are not derived in [16], the algorithm

for the makespan minimization and its justification are essentially based on an analogue of the parameter denoted in our paper

by g(z)(j).
Overall, network models play an important role in scheduling research, and there is a potential for future application of our

methodology. Possible problems to be addressed are, for example, parallel machine problems with job splitting [22], parallel

machine problems with additional restrictions on machines’ availability ([1] and subsequent papers), machines’ availability and

eligibility [17], open-shop scheduling with preemption [21], and just-in-time scheduling [9], to name a few.
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