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Occlusion-Robust Autonomous Robotic

Manipulation of Human Soft Tissues with 3D

Surface Feedback
Junlei Hu, Dominic Jones Member, IEEE, Mehmet R. Dogar, Pietro Valdastri, Fellow, IEEE

Abstract—Robotic manipulation of 3D soft objects remains
challenging in the industrial and medical fields. Various meth-
ods based on mechanical modelling, data-driven approaches
or explicit feature tracking have been proposed. A unifying
disadvantage of these methods is the high computational cost
of simultaneous imaging processing, identification of mechanical
properties, and motion planning, leading to a need for less
computationally intensive methods. We propose a method for
autonomous robotic manipulation with 3D surface feedback to
solve these issues. First, we produce a deformation model of the
manipulated object, which estimates the robots’ movements by
monitoring the displacement of surface points surrounding the
manipulators. Then, we develop a 6-degree-of-freedom velocity
controller to manipulate the grasped object to achieve a desired
shape. We validate our approach through comparative simu-
lations with existing methods and experiments using phantom
and cadaveric soft tissues with the da Vinci Research Kit. The
results demonstrate the robustness of the technique to occlusions
and various materials. Compared to state-of-the-art linear and
data-driven methods, our approach is more precise by 46.5%
and 15.9% and saves 55.2% and 25.7% manipulation time,
respectively.

Index Terms—Shape control, dual arm manipulation, robotic
manipulation of soft objects

I. INTRODUCTION

ROBOTIC manipulation of soft, deformable objects is a

common practice in industry, from fabric folding to food

packaging [1], [2], [3], [4], [5], with similar problems observed

in medical scenarios. Despite recent progress in the robotic

manipulation of deformable linear and planar objects, such as

ropes and clothing items, the shape control of 3D objects is

still a challenge.

In robotic-assisted minimally invasive surgery (RAMIS)

[6], soft tissues within the abdomen are manipulated with

the teleoperated end-effectors of a surgical robot [7]. Re-

cently, the research focus in this area has trended towards
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autonomous task execution, aiming to remove the operating

surgeon from the control loop. This creates a need for robust

autonomous control systems that can operate effectively in

a surgical environment. Several research efforts are currently

dedicated to autonomous robotic manipulation of soft objects

in RAMIS, such as autonomous fat retraction [8] and intestinal

anastomosis using threads manipulation [9]. However, research

on increasing computer assistance when manipulating human

soft tissues has not yet been explored.

Two critical complexities of robotic manipulation of 3D

soft objects stem from estimating mechanical properties and

representing surface shape [10]. It is uneconomical to build

a patient-specific biomechanical model before surgery and

impractical to identify the deformation properties of the soft

tissues during manipulation tasks [11]. Regarding 3D shape

representation, using fluorescent fiducial markers [9] or key-

point features [11], [12] as nodes to generate a surface may

simplify the problem. However, placing such markers within

the abdominal cavity is undesirable due to the risk of leaving

foreign objects in the body after surgery. Current research

on markerless keypoint tracking shows limited success in

accuracy and framerate [13]. A more efficient way of detecting

the surface shape is to use the entire feedback surface before

establishing the explicit or implicit representation. In this

study, we mainly focus on using the 3D point cloud of the

surface as feedback to control the shape of the soft object

autonomously. Based on this, we propose a controller for

the robotic manipulation of 3D soft objects without prior

knowledge of their underlying mechanical properties.

A. Related Work

Similar to robotic manipulation of rigid objects, the soft

object manipulation controller needs to define a representative

state first and then search for optimal actions based on given

objective tasks, as illustrated in Fig. 1.

Unlike rigid objects, the state of a soft object cannot be

described solely by orientation and translation. In systems

with force sensing, deformable objects are typically modelled

using physics-based approaches such as mass-spring, position-

based dynamics, or continuum mechanics [10], [14], [15],

and the states are designed based on the physical configura-

tions. However, estimating mechanical properties in real-time

remains challenging, leading to low-fidelity physical models

and limited manipulation precision. Several recent works have

achieved successful vision-guided manipulations without addi-

tional physics modelling or parameter identification [11], [16],
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Fig. 1. An illustration of the problem of robotic manipulation of soft tissues
in RAMIS. A multi-arm robot system grasps the soft tissue to deform its
shape. The system state can be represented with point clouds or latent spaces.

[17], demonstrating the potential of this approach. Therefore,

this study solely relies on vision information as feedback.

In vision-based manipulation, the representative state is

commonly simplified as a combination of position and shape

terms [11], [12], [18] with explicit features such as fiducial

markers. Simplifying the problem through explicit feature

definition requires increasing the computational load to track

specific features. This reduces the data in the feedback loop,

providing higher efficiency at the cost of lower precision

in shape matching [18]. More recently, the high-dimensional

image space and low-dimensional latent space have been used

to represent the surface state. Working in the high dimensional

image space, visual-dynamics-based states for robotic motion

planning are trained on unlabelled video data at pixel level

with accompanying depth maps (RGBD images) [16], produc-

ing dynamic models directly from the input images. Due to the

high dimensionality of the space, the models require extremely

large amounts of training data and have a high computational

cost. To increase efficiency, at the trade-off of lower precision,

the problem’s dimensionality can be reduced by identifying

underlying features in the low-dimensional latent space of

the RGBD images. Typical features used as states include

histogram-of-oriented-wrinkles features [1], [19], Fourier co-

efficients of 2D contours [20], latent manifolds [5], combina-

tions of low-level geometric feature extraction and high-level

semantic shape analysis [17], and voxelised objects [3]. While

these latent-space features provide increased efficiency, there

has been limited investigation of the generalisation ability

of these representations, with models requiring careful state

selection in various tasks to maintain the specified precision.

To address the aforementioned limitations, researchers are

exploring the use of depth maps or point clouds generated by

stereo cameras to track deformation in 3D visual-based robotic

manipulations [16], [17], [21], [22]. However, using these 3D

shapes as representative states is not well-studied yet.

Once the state representation is determined, one must find

the optimal action. Two common methods are model-based

and learning-based approaches. In model-based methods, lo-

cal linearisation, using approximated Jacobian relations, is a

popular tool for closed-loop control [11], [20], [23], [24], [25].

The deformation Jacobian matrix derived from the linearised

equilibrium equation can map the state to the action. Utilising

linear control laws can be efficient for the global stabilisation

of nonlinear systems if the parameters are well estimated.

Learning-based approaches for acquiring actions can be

classified into reinforcement learning (RL) and imitation learn-

ing (IL). RL learns a control policy through trial-and-error

interactions and reward collection, working well in some

simple tasks [21], [26]. To handle complex state spaces in

certain tasks, Deep Reinforcement Learning (DRL) [2] has

been used by combining the nature of smooth policy updates

with the capability of automatic feature extraction in deep

neural networks. DRL enhances the sample efficiency and

learning stability with fewer samples. On the other hand,

IL leverages human-provided demonstrations of soft object

manipulation instead of relying on sparse rewards or manually

specified rewards. IL has proven effective in soft object

manipulation with examples showing promise in manipulating

planar soft objects such as clothes folding and dressing [1],

[27], [28]. Learning-based methods typically require a large

amount of data to operate effectively, necessitating repeated

interactions with the soft object to allow the models to

cover a broader range of scenarios. However, acquiring and

labelling large datasets from real-robot interactions can be

costly [10]. To address this issue, simulation-based training has

been employed in previous studies [29], [30]. Nevertheless,

the significant differences between simulated environments

and real-world scenarios limit the applicability of simulation-

trained models [8]. Furthermore, in RAMIS, variations in the

mechanical properties and appearance of soft tissues render

nonadaptive RL or IL models unsuitable for many surgical

settings.

B. Contributions

In this work, we demonstrate the ability to control the

shape of a soft object. The contribution of this work can be

summarised as follows:

• The proposed 3D soft object robotic manipulation method

uses the down-sampled grid points of the feedback sur-

face as the state representation and establishes a direct

non-linear mapping from shape difference to robot move-

ment based on the weighted residual deformation model,

yielding multiple 6-DoF Cartesian end-effector postures.

• The method can achieve robustness to occlusion by

adjusting the down-sampling resolution.

• The proposed method for shape control has been vali-

dated in simulation and real-world setups, including ex-

periments in autonomous RAMIS on cadaveric intestinal

tissues.

II. PRELIMINARIES

A. Continuum Deformation

The deformation gradient, F = ∂x
∂X

= ∂u
∂X

+ I 1, de-

termines how an infinitesimal material element dX changes

1X is the material coordinates, and x is the spatial coordinates
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as a result of the deformation u. In the finite element

method (FEM) theory, F can be discretised via tetrahedral-

isation of the shape. For each tetrahedron, denoted by its

four vertices {Xi0 ,Xi1 ,Xi2 ,Xi3} in material coordinates

and {xi0 ,xi1 ,xi2 ,xi3} in spatial coordinates, the deformation

gradient at i-th vertex is represented by

Fi = V̂iV
−1
i (1)

where V̂i = [xi1 − xi0 xi2 − xi0 xi3 − xi0 ] ∈ R
3×3

and Vi = [Xi1 − Xi0 Xi2 − Xi0 Xi3 − Xi0 ] ∈ R
3×3.

Thus, the partial differential equations (PDEs) can represent

the relation between the deformation and reference shape using

the definition and estimation of the deformation gradient:

Lu = x (2)

where L is the differential operator.

Solving the PDEs with information about mechanical prop-

erties (e.g. Young’s modulus, Poisson’s ratio) is challenging.

The weighted residual method (WRM) approximates differ-

ential equation solutions as a linear combination of shape

functions with unknown coefficients. According to Eq. (2),

the displacement of feature points can be employed as the

boundary condition. The displacement field u of surface points

is approximated using WRM on feature points. When dealing

with a point cloud, the registration of the current and desired

point clouds yields the displacement of some grid points:

u (xi) = ui. (3)

This study uses this idea to generate an approximation of the

displacement field and subsequently calculate the movements

of robotic manipulators to minimise the disparity.

B. Problem Formulation

Consider a soft object O, which is grasped by a multi-robot

system to be deformed into a desired shape T . Let the surface

S = {pi ∈ R
3}Ni=1 be a set of 3D points in Cartesian frame

captured by a stereo camera from O. As shown in Fig. 2,

the soft object is controlled by a multi-robot system. During

the manipulation, the point cloud S of the soft object is cap-

tured by an RGBD camera. The multi-robot system includes

K(K > 1) robotic manipulators, whose positions and postures

of the grippers in the spatial frame are the manipulation points,

denoted as R = {(Rm
i ,p

m
i ) : R

m
i ∈ SO(3),pm

i ∈ R
3}Ki=1.

In this study, we aim to design a controller for shaping a

soft object, making the following assumptions:

• The soft object is modelled as a continuous and isotropic

material.

• The kinematics of the robots and the camera-robot and

robot-robot relationships are known and calibrated. The

robots are controlled in their joint spaces, with velocities

and movements limited to their workspace.

• The robotic grippers have a firm grasp on the soft object,

and the robots are rigid in their physical interaction.

• The captured surface is represented as a point cloud, with

some points potentially missing due to poor reconstruc-

tion or occlusion.

p
g
i

RGBD Camera

pm
1 pm

2

ϵ

x

ωi

ri

Camera Frame

Grid Points P

Empty Points

Soft Object O

Robot R2Robot R1

Surface S

(a)

Initial Alignment

OBB

H = {R, t}

p
g
i

ni

αini

S

Target T

pm
i

δpm
i

S′

(b)

Fig. 2. (a) Illustration of 3D surface feedback in soft object manipulation.
The red dashed circle defines the area around a grid point. Grey dots
represent unregistered points in the point cloud. (b) Concept of displacement
field computation. The current and target surfaces are shown in sectional
views, aligned with the oriented bounding box (OBB). After applying the
displacement field, the grey curve is the deformed surface S. The red arrows
indicate the movement of the robots.

• The target shape is planned before manipulation, based

on the initial configuration of the soft object.

Remark 1: To simplify the description, all positions and

rotations mentioned in the subsequent sections are referenced

to the camera coordinate system, as depicted in Fig. 2(a).

Problem Statement: Given a desired (constant and physi-

cally reachable) shape in T , develop a controller for a vision-

guided multi-arm robotic system to manipulate a soft object

O with the instant deformed surface S , and finally minimise

the difference between S and T , without knowledge of the

object’s mechanical properties.
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III. METHODS

A. Deformation Model

Eq. (2) can be numerically solved with WRM estimation.

We assume the existence of a displacement field u (x) : R3 →
R

3 such that the modified surface S ′ = {u (p)+p : ∀p ∈ S}
is similar to the target surface T . Here, u is defined discretely

by assigning per-frame displacement vector ui to the point i.
The displacement of any position x in spatial coordinate is

[31]

u (x) =

N
∑

i=1

ϕi (x)ui (4)

where the scalar shape function ϕi (x) : R
3 → R, defined as

ϕi (x) = l (x)
⊺
(M (x))

−1
ωi (x) l (xi) . (5)

ϕi (x) is constructed using moving least squares (MLS) with

a complete linear basis l(x) = [1 x⊺]
⊺

: R
3 → R

4, to

guarantee first-order consistency. The scale factor ωi (x) =
max

(

0,
(

1− ∥x− xi∥2
/

r2i )
3
)

: R
3 → R is related to the

distance between the points. It ensures that only points within

the ball at the centre of x with the radius ri will be adopted

for approximation. The moment matrix M (x) ∈ R
3×3 is

M (x) =

N
∑

i=1

ωil (xi) l (xi)
⊺
. (6)

To avoid the singularity of M, at least four non-planar grid

points must surround the evaluation point x. Please refer to

Appendix A for the proof and solution for ill-conditioning.

The computational cost is proportional to the number of

nodes. In this algorithm, as shown in Fig. 2(a), not all the

points in the cloud are considered as nodes. Instead, a voxel-

grid-based down-sampling of S with the spacing ϵ is employed

to obtain G grid points for approximation. The position of the

grid points is denoted as P = {pg
i ∈ R

3}Gi=1. To simplify

the deformation model, the radius ri is set to be 3ϵ, with

which the M can be guaranteed to nonsingular if the surface

is complete. Regarding the incomplete surface caused by poor

reconstruction or occlusion, the radius ri should be increased

until a sufficient number of grid points are included.

Therefore, according to Eq. (4), the relationship between

the displacements of grid points and the manipulated points is

δpm
i =

N
∑

j=1

ϕj (p
m
i )δp

g
j (7)

where δpm
i , i ∈ {1, 2, . . . ,K} is the movement of the i-th

manipulated point. To simplify the notation, the matrices

δpm = [δpm
1 δpm

2 . . . δpm
K ]

⊺ ∈ R
K×3 and δpg =

[δpg
1 δpg

2 . . . δpg
G]

⊺ ∈ R
G×3 are introduced. The re-

lationship between the displacement field of grid points and

manipulation points is

δpm = Φδpg (8)

where Φ is an K ×G matrix whose element in i-th row j-th

column is ϕj (p
m
i ). Our method uses this principle to generate

the trajectories of the manipulators and is named the grid-

point-based weighted residual method (GP-WRM).

Remark 2: Eq. (8) maps a higher dimensional field to a lower

dimensional one, indicating the matrix Φ has a non-trivial null

space. Therefore, in this model, some grid points may not be

directly affected by the movement of the manipulation points.

The displacement field of the grid points, after the movement

of the manipulation points is applied, is assumed to be

δpg (δpm) = Φ†δpm : RM×3 → R
G×3 (9)

where Φ† is the pseudo-inverse of Φ.

Proposition 1. Given a desired displacement field of grid

point δpg
des ∈ R

G×3, the Euclidean distance between desired

and actual displacement field can be minimised by applying

the movement of the manipulation points solved from Eq. (8).

Proof. To minimise the Euclidean distance between the de-

sired and actual displacement field, the objective function is

δpm∗ = argmin
δpm

∥δpg (δpm)− δpg
des∥2. (10)

The optimal solution is δpm∗ = Φδpg
des. ■

The normal of the surface at point p
g
i , denoted as ni, can

be estimated from the neighbouring points on S by principal

component analysis (PCA) [32] where the searching radius is

set as ϵ.
To compute the desired displacement field from S to T , as

shown in Fig. 2(b), we first apply an initial rigid alignment

H = {R ∈ SO(3), t ∈ R
3} on S , then we assume that

the grid points move along the normal of surface ni ∈ R
3.

The initial alignment could be based on the OBB of a non-

planar point cloud since the deformation is not very large.

Thus, the local updated position of i-th grid point is p
g′
i =

R (pg
i + αini) + t (αi is the distance of the movement along

the normal ni) and its normal is n′
i = Rni. The soft object

would be applied a rigid transformation and then deformed

locally. For every grid point p
g
i , a constraint exists that

u (pg
i ) =

G,j ̸=i
∑

j=1

ϕj (p
g
i )uj . (11)

Therefore, the constraints of all the grid points’ movements

can be expressed as

N diag (α)Φc = 0 (12)

where N = [n1 n2 · · · ni] ∈ R
3×G, α ∈ R

G is the list

of the scalar αi, and

Φc =















−1 ϕ12 ϕ13 . . . ϕ1G

ϕ21 −1 ϕ21 . . . ϕ2G

ϕ31 ϕ31 −1 . . . ϕ3G

...
...

...
. . .

...

ϕG1 ϕG2 ϕG3 . . . −1















∈ RG×G. (13)

The element in Φc is ϕij := ϕj(p
m
i ). ϕj(p

m
i ) can be

computed from Eq. (5), but the moment matrix is M (x) =
∑G,k ̸=j

k ωkl (xk) l (xk)
⊺
.

In this deformation model, the deformation gradient at

position x on S is J (x) = ∇u (x) + I3 : R3 → R
3×3. After

the deformation, the normal n (x) is estimated to be [33]

n̂ (x) = det (J (x))
(

(J (x))
−1
)⊺

n (x) . (14)
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The updated normal n̂ ∈ R
3 from Eq. (14) needs to be

normalised. In this study, the updated unit normal vectors of

the grid point are unnecessary to be calculated. But for every

manipulator point pm
i , its updated surface normal, denoted as

n̂m
i := n̂ (pm

i ), will be calculated for rotation, as elaborated

in the Section III-C1.

Remark 3: J is invertible because the determinant of the

deformation gradient tensor is always positive (since a negative

mass density is not physically possible).

B. Target Surface

The target shape can be divided into a plane and a surface

(or two-dimensional manifold).

1) Plane: In many cases, the soft object is desired to be

flattened, such as for contact scanning or cloth folding. The

idea is to minimise the sum of the distances of the grid points

in the tangent plane of their neighbours:

EP =
1

G

G
∑

i=1

G
∑

j=1

ωj

(

p
g′
i

)

(

(

p
g′
i − p

g′
j

)⊺

n′
i

)2

. (15)

In Eq. (15), we make an approximation of the updated normal

as the original normal, and the scalar factor ωj (p
′
i) =

ωj (pi) := ωij , leading to a quadratic objective function:

α∗ = argmin
α

∥Gα−K∥22 + λ∥N diag (α)Φc∥22 (16)

where α∗ = [α∗
1 α∗

2 . . . α∗
G]

⊺ ∈ R
G is the optimum, and

the scalar element in i-th row and j-th column of G ∈ R
G×G

is

gij =

{

∑G,k ̸=j
k=1 ωik i = j

−ωijn
⊺

i nj i ̸= j
, (17)

and the i-th scalar element in vector K ∈ R
N is

−∑G
j=1 ωij

(

p
g
i − p

g
j

)⊺

n′
i.

The function in Eq. (16) can be minimised by setting it’s

derivative with respect to α to zero:

G⊺ (Gα−K) + λN⊺N diag (z)α = 0 (18)

where the i-th element in z is the sum of the i-th column in

Φc, and the λ is the scalar parameter. The optimal solution is

α∗ = (G⊺G+ λN⊺N diag (z))
−1

G⊺K (19)

To prevent regional smoothing, The weighting function ω
should have a larger radius (5ϵ ∼ 6ϵ) in Eq. (15) compared to

the deformation model.

If the target plane is given, defined as a normal vector nt ∈
R

3 with centre point ct ∈ R
3, the matrix R can be updated by

computing the rotation between the current normal estimated

from the updated grid points via PCA and nt using minimal

Riemannian distance (details in Appendix B). The translational

part, t, is the direction from the centre of the updated grid

point to ct.

If the desired plane is not specified, meaning it is flattened

locally, some parts of the soft object may not be free to move,

resulting in failure of the specified plane. Some specified target

planes may not be physically reachable because of external

fixtures. But with that closed-loop controller, the shape can be

flattened and estimated at the fixed position. In the updated

model, the matrix R is set to be identity and vector t is

[0 0 0]
⊺

.

2) Surface: When the target is a surface, the current surface

P is registered to the desired surface. In a practical case,

the target surface can be a mesh, a non-uniform rational B-

spline (NURBS) surface [34] or a point cloud. But in this

method, considering the current surface S is simplified with

the grid points and their normal vectors, the target surface

T is represented by the implicit MLS surface [35] as well.

This method uses MLS surface representation due to its

ability to approximate weighted averaging of all point-wise

signed distance functions, which closely resembles the signed

distance to the surface under uniform sampling conditions

[35]:

Ts (x) =
∑M

i=1 θi (x)v
⊺

i (x−mi)
∑M

i=1 θi (x)
(20)

where Ts (x) : R3 → R is the signed distance to T , vi ∈ R
3 is

the normal vector of surface on node mi ∈ R
3, the Gaussian

function θi (x) = exp
(

−∥x−mi∥/r2i
)

: R3 → R is set as

the weight function with control radius ri. M is the number

of nodes. The implicit function of surface T is defined by the

zero level set of Eq. (20), that is Ts (x) = 0. Regarding the

selection of the points and normal vectors, the higher number

of nodes can make the implicit MLS function in Eq. (20) closer

to the original surface. The nodes are uniformly sampled from

meshes, NURBS surfaces or point clouds. In this scenario, T
should be sampled with a higher resolution 1

k
ϵ(k > 1) before

the manipulation, and the Gaussian function’s control radius

is r = kϵ.
The objective function for computing the displacement of

grid points on the surface S to minimise the squared distance

to the target T in each iteration is defined as follows:

E2
S =

1

G

G
∑

i=1

Ts
(

p
g′
i

)2
. (21)

To find the optimum of this non-linear objective function, the

estimated vector of displacement α̂ is updated according to

the rule

δα̂ = −γ ∂E
2
S

∂α
− γλN⊺N diag (z)α (22)

for γ > 0 as a tuning gain. The α̂ is initialised with a zero

vector. The i-th element in the gradient of the Eq. (21) is

∂E2
S

∂αi

=
2

G
Rn

⊺

i Ts
(

p
g′
i

)

∇Ts
(

p
g′
i

)

(23)

Due to the continuity of Eq. (20), the gradient ∇Ts (x) can

be analytically solved, see its expression in the Appendix C.

It can also be approximated as

∇Ts (x) =
∑M

i=1 θi (x)vi
∑M

i=1 θi (x)
, (24)

to reduce the computational cost if there are many control

points in T . To enhance the robustness to outliers, we truncate

the Ts (x) to a constant value at a distance of 3ϵ if some grid

points are farther than 3ϵ.
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The gradient descent estimator aims to determine α∗ and

then calculate the displacement field. Finding the true optimum

of the objective function is unnecessary, as the controller

will repeat the process several times until the target shape

is achieved. The implementation of the update rule is outlined

in Algorithm 1.

Algorithm 1 Find optimal displacement to target surface

Require: T , S , P, n

Ensure: α∗

Initialization:

1: R, t← InitialAlignment (S, T )
2: α∗ ← 0N , ∥δα̂∥2 ← +∞

LOOP Process:

3: while ∥δα̂∥ not small enough do

4: δα̂← Eq. (22)

5: α∗ ← α∗ + δα̂
6: Update p

g′
i

7: end while

8: return α∗

C. Surface-Servo Controller

1) 6-DoF Optimal Trajectory: We design a closed-loop

controller to actively deform the surface of the soft object,

as illustrated in Fig. 3. In each iteration, the grid points P

with normal n are down-sampled from the S . Then a new

deformation model for S to T is computed according to

the target shape. The desired end pose of the robots can be

determined before being sent to the low-level controller. The

soft object deforms as the robots move. The iteration continues

until the difference between S and T (that is, the energy EP

or ES) is smaller than a threshold.

Let the estimated end-effector Cartesian rotation of i-th
robot in each iteration be R̂i. The rotation should be updated

as the normal of the grid point changes, according to Eq. (14).

Therefore, there is a relation:

R̂iRR
⊺

i n
m
i = n̂m

i (25)

where nm
i := n (pm

i ) ∈ R
3 is the normal vector of the

i-th manipulation point. The manipulation points may not

belong to the group P, but nm
i can still be estimated by

the surrounding point cloud. To minimise the rotation in

Riemannian distance, the objective function is as follows:

d =
1√
2

∥

∥

∥
log
(

R̂iRR
⊺

i

)∥

∥

∥

2
(26)

where log(·) : SO(3) → so (3) is the logarithmic map

from Lie group (3D rotation group) to Lie algebra. The

minimised dmin = | arccos (n̂m⊺

i nm
i ) |, see proof in Appendix

B. Therefore, the rotation in each iteration is

R̂i = exp (dminv)RiR
⊺ (27)

where exp(·) : so (3) → SO(3) is the exponential map, and

v = nm
i × n̂m

i is a normalised vector.

Therefore, the 6-DoF movement of K robots in each

iteration is δR =
{(

R̂m
i R

m⊺

i , δpm
i

)}K

i=1
.

2) Velocity Controller: The robots are controlled by ve-

locity in joint space. Since the robots’ movements in initial

iterations are largely due to the significant shape difference

between current and target surfaces, a velocity cap is set for

safety reasons. Thus the velocity Ṙ ∈ R
6 in Cartesian space

is as

Ṙ = U

(

1

∆T

[

δpm
i

log
(

R̂m
i R

m⊺

i

)

])

(28)

where ∆T is the time interval of iteration. The cap function

is U (x) = [U1(x1) U2(x2) . . . U6(x6)]
⊺ : R6 → R

6,

where the scalar function

Ui(x) =

{

x, |x| < mi

mi sgn(x), |x| ≥ mi.
(29)

The positive scalars mi determine the maximum velocities

during manipulations. The velocity in joint space q̇ is as

q̇ =

(

∂R
∂q

)−1

Ṙ (30)

where ∂R/∂q is the Jacobian matrix.

D. Convergence and Stability Analysis

Assuming the target is physically reachable, the energy

function (EP or ES) is asymptotically minimised.

Proposition 2. The movements of the manipulators will

asymptotically converge to zero if the target shape is physically

reachable.

Proof. Both the EP and ES are µ-strong convex and differ-

entiable. Here, we define a unified energy function E (P) :
R

3N → R. Let the δP∗ ∈ argminα E (P), for any P:

E (P)− E (P∗) ≥ µ

2
∥P−P∗∥22 (31)

where µ > 0. When E (P) − E (P∗) → 0, thus P → P∗,

which means
∑N

i ∥δp
g
i ∥2 → 0.

According to Eq.(8), the 2-norm of the displacements on

the manipulation points is

∥δpm
i ∥2 =

∥

∥

∥

∥

∥

N
∑

i

ϕi (p
m
i ) δp

g
i

∥

∥

∥

∥

∥

2

≤
N
∑

i

|ϕi (p
m
i ) |∥δpg

i ∥2
(32)

Because
∑N

i ∥δp
g
i ∥2 → 0, δpm

i → 0. This proves the

asymptotic convergence of the movements of robots. ■

To analyse the stability of the control law, Eq. (28) shows

that it is not a dynamic system; therefore, this high-level

control system is stable.

IV. SIMULATION VALIDATION

Simulation experiments were conducted using the SOFA

simulator [36], as shown in Fig. 4 and the accompanying video

1. The performance of the adaptive Jacobian-based method

for soft object manipulation [11] and the data-driven method

(Fast Online Gaussian Process Regression, FO-GPR) [22]

were evaluated on a 3D liver model. The physical model was a

triangular FEM model with a Poisson ratio of 0.3 and Young’s
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k+1
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Fig. 3. Schematic representation of the proposed controller. Ok and Ok+1 are the configurations of the soft object in k-th and (k + 1)-th iterations,
respectively.

(a)

(b)

(c)

(d)

Target T

Robots R

Point Cloud P

Fig. 4. Simulated robotic manipulation of a soft object. On the left is the
initial setup, and on the right is the final result in each sub-figure. The green
dots represent the point cloud from the stereo camera. The yellow surfaces
are the targets in (b) and (d).

modulus of 500 Nm−2. Three or four manipulation points

with applied friction were used to simulate grasping force. The

point cloud consisted of the vertices on the mesh model facing

the camera. In the simulation, five vertices on the mesh model

were selected as feature points and used in Jacobian-based

and FO-GPR methods. The position and shape terms were

calculated using these feature points, and the surface variation

was computed using the point cloud around the feature points.

In the SOFA simulation environment, all vertices’ positions

and normal vectors can be obtained directly.

Fig. 5 demonstrates a decrease in shape errors for all

three controllers. The shape error is defined as the mean grid

error in all three methods. While grid points are unnecessary

for Jacobian-based and FO-GPR, grid points at the exact

down-sampling resolution as ours are still used in these two

methods to measure the mean grid errors. Table I summarises

simulation results with different configurations. In Task 1 and

2, the target surface is defined as a plane, while in Task 3

and 4, it is a curved surface. Each task was implemented 5
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0

5

10

15
start

reach reach
reach

Time (s)

M
ea

n
G

ri
d

E
rr

o
r
E

S
(m

m
)

GP-WRM

FO-GPR

Jacobian

Fig. 5. Mean grid errors ES of the manipulation experiments (Task 4) with
different methods: FO-GPR [18] and Jacobian-based [11].

times with various targets. The number of manipulation points

(K) was varied between 3 in Task 1 and 3, and 4 in Task 2

and 4 to examine its effect. The mean grid error and time

were recorded for each method. The controller with more

manipulation points was observed to perform better, achieving

the target shape more easily. These findings are consistent with

the results shown in Fig. 5.

The Jacobian-based method is less accurate by 45.6% com-

pared to ours because it uses only a limited number of points

as the states to track the deformation during manipulations.

The shape error of FO-GPR initially increases during the

random exploration to learning the model parameters and

finally reaches a minimal value of 15.9% higher than our

method. Regarding the manipulation time, the Jacobian-based

controller uses the adaptive deformation model to linearise

the system, while the non-linear methods (GP-WRM and FO-

GPR) establish a non-linear relationship between the state and

action space, resulting in faster convergence of shape error.

Compared to the linear method, our method saves 55.2%
of manipulation time. However, the data-driven method (FO-

GPR) requires additional online exploration to gather sufficient

data to learn the parameters in the non-linear model, which

can take an extra approximately 2s in our experiments. The

manipulation time for the data-driven approach is around

25.7% longer than in our method.

V. EXPERIMENTAL VALIDATION

In this section, we validate the proposed method through

real-world experiments.

A. Setup

The experimental setup is shown in Fig. 6. It involves

using the da Vinci Surgical System (Intuitive Surgical, USA)
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TABLE I
THE PERFORMANCE OF THREE METHODS IN SHAPE CONTROL

Task Target K Methods Mean Error(mm) Time(s)

1 Plane 3
GP-WRM 1.23± 0.32 3.39± 0.25
Jacobian 1.83± 0.52 5.21± 0.68
FO-GPR 1.53± 0.67 5.81± 0.77

2 Plane 4
GP-WRM 0.93± 0.22 3.18± 0.53
Jacobian 1.61± 0.43 5.02± 0.41
FO-GPR 1.43± 0.30 5.58± 0.49

3 Surface 3
GP-WRM 1.63± 0.61 4.98± 0.49
Jacobian 2.33± 0.73 7.57± 0.61
FO-GPR 1.87± 0.29 8.81± 0.39

4 Surface 4
GP-WRM 1.39± 0.46 4.67± 1.03
Jacobian 1.98± 0.87 7.25± 1.07
FO-GPR 1.53± 0.57 8.16± 0.94

pm
i

Gripper

PSM1

Soft Object O

Stereo Camera

PSM2

Fig. 6. The setup of the experiment using the da Vinci Surgical System (only
two PSMs were used), a stereo camera and a soft object (Phantom colon).

equipped with two 7-DOF patient-side manipulators (PSM)

for validation. The surgical instruments with wristed dexterity

can grip soft objects. The hardware controller is the da Vinci

Research Kit (dVRK) [37]. An RGBD 3D camera (RealSense

D435i, Intel, USA) was utilised to obtain a high-precision

point cloud. Robotics control was facilitated by the Robot

Operating System (ROS), while the Point Cloud Library (PCL)

[38] was used to filter the point cloud, compute the surface

normal vector field, and down-sample.

B. Shape Control with Various Materials

Three soft materials (fabric, paper, and silicone elastomer

sheet) with a size of 10cm×5cm were chosen to evaluate

the performance of the controller with objects of different

stiffness. They were grasped by the two PSMs at similar

positions, as shown in Fig. 7. The experiments were divided

into six groups, three with target shapes as planes and three

with curved surfaces. Each group used the same target shapes

for different soft objects. The target planes are defined with

the ct and nt directly. The target surfaces are illustrated in the

images. The tuning gain was set as γ = 500. The down-sample

resolution was ϵ = 15mm, resulting in the grid point size of

N = 50 ± 10 (N varies during deformation). The maximum

linear speed in Eq. (29) was set to 10mm/s, and angular speed

was set to 0.5rad/s. The frequency of the iteration was 20Hz.

Fig. 7. Robotic manipulation experiments were conducted on fabric, paper,
and silicone elastomer sheets. The first three rows show trials with planar
target shapes, while the last three rows depict trials with surface target shapes.
Each column showcases the frames in a time sequence from the initial to the
final shape. The yellow surfaces in each trial represent the targets.

Fig. 7 displays the initial, intermediate, and final images

captured from the RGB channel of the stereo camera during

a single trial with a specific material. The target surfaces are

superimposed on the RGB images. These figures demonstrate

that the proposed method can synchronously deform soft

objects and modify their poses. The objects remain unstretched

during the manipulation process, while both manipulators

move simultaneously. The accompanying video 2 displays all

the groups of experiments.

Fig. 8 shows the mean grid error (EP and ES) of each

trial in Fig. 7. The approach effectively reduces errors during

manipulation, showing it can deform soft objects of differ-

ent materials into target shapes. The error minimisation is

attributed to the noise in the point cloud and the unevenness

of the soft object. The initial mean error differences arise from

varying initial shapes among groups. These sources of error

also result in slight variations in the final Cartesian poses of

the same end-effectors in the camera frame for experiments

with identical shape configurations. The duration of robotic

manipulations is similar when the initial and target shapes are

the same across different groups.

Our proposed method demonstrates the successful robotic

manipulation of soft objects to reach planar targets. However,

additional challenges arise when it comes to non-planar tar-

gets, especially with soft objects made of fabric or paper. The

limitations of using only two manipulators become evident

as gravity, compliance, and stretchability affect the object’s

behaviour. The controller described in Eq. (8), which maps

a higher-dimensional space to a lower-dimensional one, has
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Fig. 8. Errors of the manipulation experiments for various materials. Top:
the mean error EP of the experiment in Fig. 7. Bottom: the mean error ES

of experiment in Fig. 7.

a non-trivial null space. This implies that the movements

of the manipulation points may not directly impact certain

grid points’ motions. Additionally, the method does not con-

sider physical forces, such as gravity, which may impact the

movement of areas distant from the manipulation points. The

compliance and stretchability of the material may also impede

the desired movement from being realised. One way to address

these challenges is by using more manipulation points, which

would allow for greater control over the movement of the

material, as illustrated in the simulation experiments.

C. Shape Control in RAMIS

Our method was tested on cadaveric intestine specimens

to evaluate its performance in RAMIS procedures. The in-

testine is frequently manipulated during colorectal RAMIS

procedures, such as during laparoscopic repair of small bowel

obstructions or laparoscopic sigmoidectomy for colon cancer

removal [7]. In these scenarios, the surgeon must handle the

colon to explore or perform scans with additional diagnostic

devices (e.g. ultrasound probes). Both phantom and cadaveric

colons were used in the experiments. To imitate a clinical

setting, part of the phantom colon was fixed to the table to

simulate its attachment to the abdomen via the mesenteries.

During intracorporeal diagnostic scanning in RAMIS [39],

the colon is typically grasped, and its surface is flattened to

facilitate ultrasound probe scanning, as depicted in Fig. 9(a).

The target plane is not predefined, and the tissue is expected

to deform locally. However, folds on the tissue could result in

an unclear surface representation, especially when using low-

resolution grid points. To quantify the disparity between the

target and actual shapes, the actual shape error is defined as:

E2
a =

1

N

N
∑

i=1

T 2 (pi) (33)

where T (·) : R3 → R is the distance to the target surface.

From Fig. 10, we can observe that the actual shape error

varies as the resolution changes in each manipulation, even

though they start with a similar initial shape configuration

O. To investigate the effect of down-sampling, we tested

different values for the resolution ϵ, varying from 8 mm to 29
mm. Fig. 10 illustrates that a higher resolution in the down-

sampled point cloud can achieve a better surface match, as it

retains more surface shape information. The downside is an

increased computational cost. Therefore, a balance must be

struck between surface matching quality and the time to plan

the robot’s pose.

In laparoscopic explorations, the intention is to manipulate

and deform the intestine into different shapes to reveal visu-

ally obstructed regions below the tissue. In this experiment,

considering the tube-like nature of the colon, we only used

a cylinder and bent tube as target surfaces. The intestinal

segment between two grippers is required to deform, as

shown in Fig. 9(a). The point cloud of the other part was

filtered. With a resolution of ϵ = 20mm, the errors of these

manipulations are presented in Fig. 9(b). The accompanying

video 3 showcases the performance of the proposed approach

with several different shapes.

D. Shape Control with Occlusion

In RAMIS procedures, the surface of the soft tissue may

be occluded by the surgical instruments, and there may be

missing parts due to imperfect 3D point cloud reconstruction.

To evaluate the robustness of the proposed method in the

presence of occlusions or poor reconstructions, several trials

with simulated removal of partial point cloud on phantom

colon were carried out, as shown in Fig. 11(b). The grid

points in the intact point cloud are approximately 180 in each

iteration.

We introduced virtual occlusions in the form of box-cropped

point clouds. The boxes with the size of 10mm×10mm were

fixed in the camera frame during each operation, as shown

in Fig. 11(a). We evaluated the occlusion’s scatter and area.

For each robot, 100 boxes were used with a position on

the projection plane based on an independent 2D normal

distribution N (µ,Σ), as shown in Fig. 11(b). The mean was

µ =

[

µ0 + x
µ0 + y

]

, where x and y are the horizontal and vertical

coordinate of the pm
i , and the variance was Σ =

[

σ2
0 0
0 σ2

0

]

.

The distance between the occlusion centre and the manipula-

tion point was
√
2|µ0|. The occluded area percentage, denoted

as R, was calculated by considering the scatter and area of the

occlusions. If some boxes overlap, the total area decreases. A

positive correlation exists between the variance σ and R, as

further explained in Appendix D.

From Fig. 11(c), we can find that when |µ0| decreases,

indicating that the occlusion is closer to the manipulation

points, the controllers are more likely to fail, particularly

in the case of continuous and larger occlusions. The failure

occurs because when surrounding grid points are missing,

the radius r must be increased to include enough points for

displacement approximation. Conversely, a higher variance σ2
0



IEEE TRANSACTIONS ON ROBOTICS, VOL. , NO. , NOVEMBER 2023 10

(a)

1 2 3 4 5 6 7 8
0

20

40

60

Times (s)

M
ea

n
E

rr
o

r
E

a
(m

m
) Flatten

Cylinder

SC U-Shape

MC U-Shape

LC U-Shape

S-Shape

1 2 3 4 5 6 7 8
0

14

28

42

Time (s)

M
ea

n
E

rr
o

r
E

a
(m

m
) Flatten

Cylinder

SC U-Shape

MC U-Shape

LC U-Shape

S-Shape

(b)

Fig. 9. (a) Results of the phantom (left) and cadaveric (right) experiments on intestine manipulation. Each column includes the frames in time sequence from
initial to final shape. The target is flattening the segment between two PSMs in the first row, highlighted in the figures. The target plane is not specified.
A part of the phantom is fixed to the table. In both trials, the down-sampling resolution is ϵ = 10 mm. In the second row, the target surface is part of a
cylinder. From the third to fifth rows, the target surface is part of a bent tube with different curvatures (LC: large curvature, MC: middle curvature, SC: small
curvature). In the sixth row, the target surface is part of a S-shape tube. The yellow surfaces represent the targets in the second to sixth rows. (b) Errors of
shape control on phantom (left) and cadaveric (right) colon.

leads to better performance. Even if small parts of the point

cloud are missing, the grid points can still effectively represent

the 3D surface of the soft object.

Compared to the occlusion removing algorithm proposed

by Hu et al. [22], which utilises a deep neural network for

vision reconstruction, our method achieves the desired shape

without requiring surface reconstruction. In [25], selecting

sample points or contours becomes necessary when occlusions

occur. Instead, we adjust the deformation model’s radius and

the down-sampling filter’s resolution to overcome occlusions.

The cadaveric experiment reached the target surface even

with approximately 30% occlusion caused by one of the

manipulators, as shown in Fig. 12(a) and the accompanying

video 3. Fig. 12(b) shows the errors of these manipulations.

VI. DISCUSSION AND CONCLUSION

In this study, we propose a novel approach for shape control

of soft objects with 3D feedback. Our method includes a
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Fig. 10. Flattening phantom colon with different resolution ϵ. The curves
represent the mean error EP, and the dashed curves are for the mean actual
shape error Ea.

WRM-based deformation model for estimating gripper move-

ments using the displacement field of surrounding points. We

explain the computation of the displacement field for two types

of shapes. Additionally, the approach includes a 6-DoF optimal

trajectory and velocity controller. The method’s effectiveness

is demonstrated through simulation and experimental results.

As demonstrated in the results of our simulated experiments,

this approach offers a universal solution without selecting

latent representations, detecting explicit features, or creating

a physical deformation model. The method reduces the com-

putational cost by representing the real-time surface with grid

points and not requiring demonstration data or mechanical

properties before manipulation [10], [14], [15]. It optimises

the displacement field of grid points to estimate the movement

of robotic manipulators, with the computation burden mainly

arising from constructing and inverting matrices M. While

the gradient descent method for surface shape control may

require some time, the computational cost is still lower than

that of other methods. The most significant reason for the

improvement in efficiency may be attributed to the fact that,

in the mapping from shape differences to robot movements,

the Jacobian-based methods [12], [11], [20], [25] generate

a roughly approximated linearization, necessitating iterative

optimisations to estimate the Jacobian matrix. The learning-

based methods [22], [17] requires online or offline exploration

to update the parameters in the non-linear mapping model.

The physics-based methods, such as FEM, necessitates the 3D

modelling, discretisation, and the determination of the stiffness

matrix of the soft object before manipulation. Additionally,

they require force estimation and solving balancing functions

during the manipulation process, incurring high computational

costs or addition exploration to simulate a high-fidelity physi-

cal model [14]. In contrast, our method employs the WRM

to establish a direct non-linear mapping based on surface

geometric consistency. In terms of accuracy, the grid-point-

based representation is closer to the real surface than the

feature-based approach [11] or implicit [22] representation.
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µ0

µ0

S

pm
i

Projection Plane

Robot

(a)

µ0 = 10mm, σ = 4.0mm µ0 = 20mm, σ = 6.0mm

(b)

0 10 20 30 40 50

2

4

6

8

10

Mean |µ0| (mm)

S
ta

n
d

ar
d

D
ev

ia
ti

o
n
σ
0

(m
m

)

1.5

2

2.5

3

ES(mm)

(c)

Fig. 11. (a) The illustration of different occlusion distributions. Black squares
on the projection plane represent virtual boxes; red curves represent 2D normal
distributions of these boxes; the grey area on surface S indicates occluded
areas removed from the point cloud, and blue dashes are projection lines
from camera to manipulation points. (b) Two examples of blocked surfaces.
Green dots are grid points; grey regions indicate occlusions. (c) Results of
our method with various occlusions. Data marked with cross symbols indicate
targets that could not be achieved.

Therefore, the difference between the current and the target

surface, which is aimed to be reduced, may be more precise

in our method.

The experiments involving different materials and RAMIS

showcase our method’s capability to achieve shape control on

various soft objects with different mechanical properties. The

success in reaching different target shapes during the RAMIS

experiments demonstrates the suitability of our method for

these surgical subtasks. Some failed cases demonstrate that

external forces, compliance, and stretchability may influence

the performance of our method. The limited number of ma-

nipulators also leads to situations where certain target surfaces

cannot be reached. The simulated experiments reveal that
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Fig. 12. (a) Results of phantom (left) and cadaveric (right) experiments on intestine manipulation with partial occlusion by the surgical instrument. Each
column displays frames in a time sequence from the initial to the final shape. The yellow surfaces represent the targets. In the first row, the target surface
is part of a cylinder. From the second to fourth rows, the target surface is part of a bent tube with different curvatures (LC: large curvature, MC: middle
curvature, SC: small curvature). In the fifth row, the target surface is part of an S-shaped tube. (b) Errors of shape control on phantom (left) and cadaveric
(left) colon with occlusion.

the 4-arm system exhibits higher controllability over the soft

object than the 3-arm system. Our method is also robust

against occlusions, as an accurate surface representation using

grid points can be ensured by appropriately adjusting the

down-sampling resolution, which can be easily achieved by

adjusting the down-sample radius. Furthermore, our controller

has the added benefit of producing 6-DoF Cartesian posture or

velocity of the end-effector, while other works mainly focus

on 3-DoF position control. This method has limitations, such

as potential failure with excessive deformation or improper

resolution in the down-sampling filter. It is also unsuitable for

tasks where points or lines represent the target surface.

There are some limitations to our approach. First, in cases

where the deformation is significant, reaching the target shape

may not be possible, especially if the soft object needs to

be turned over. This is because the registration of the current

surface S to the target shape T may not be effective, as S
only represents the surface facing the camera and corresponds

to the same part of the object as T . Therefore, the desired

deformation should be interpolated into a series of sequential

target shapes in such cases. Another issue is that if the

resolution of the down-sampling filter is not appropriate, the

grid points may not represent the object’s actual shape exactly.

This can result in inaccuracies in the method’s performance,

especially when surface parts are occluded.

Our method has limitations regarding explicit feature ap-

plication as the limited number of feedback points may not

guarantee the singularity of the moment matrix. However,
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these features can still improve registration accuracy, as

demonstrated in [40], where geometric features were incor-

porated into the error function for more precise point cloud

registration.

In future directions, integrating force sensors on the grippers

is envisioned to enrich the system’s information. Furthermore,

a simultaneous shape-planning approach for handling complex

deformations by dividing them into a series of small target

shapes is being explored to achieve higher levels of autonomy.

Research on determining optimal manipulation points before

object grasping will also be pursued.

APPENDIX A

PROOF OF THE NON-SINGULARITY OF MOMENT MATRIX

Proposition 3. The matrix M is non-singular only when at

least four non-plane points exist.

Proof. Since the moment matrix M is composed of some

weighted projection matrices in four-dimension, it can be

expressed like

M (x) =
∑

i

λiβiβ
⊺

i (34)

where βi is a normalised vector of q (xi) in Eq. (6), λi =
ωi∥q (xi) ∥ is a coefficient. Given any vector γ ∈ R

4, Mγ is

the combination of weighted projected γ on different vectors

βi, hence there exists

Mγ =
∑

i

λibiβi (35)

where bi = β
⊺

i γ is the projected length. Thus, Mγ is the

linear combination of the vector space V : {βi}, as well as

the column space of M. If M is full-rank, the dimension of

the subspace of V is 4. Therefore, there are at least 4 bias

vectors.

In the deformation model, at least 4 non-plane points in the

surrounding ensure the non-singularity. ■

If the M is in an ill condition, the surface region is close

to flat. The displacement of that point can be estimated with

the weighted mean of surrounding displacements; that is, the

scalar shape function is as follows:

ϕi (x) = ωi (x) /
N
∑

j=1

ωj (x). (36)

APPENDIX B

PROOF OF THE MINIMAL ROTATION

Proposition 4. Given two 3D non-parallel unit vectors e1 and

e2, the rotation matrix can transfer e1 to e2 with minimal

Riemannian distance dmin = e
⊺

1e2 is exp (dmine1 × e2).

Proof. Riemannian distance d represents the arc length of

the shortest geodesic curve (great-circle arc), as well as

the angle of the rotation matrix in axis-angle representa-

tion. According to the definition of rotation angle, d =
arccos (e1 × e)

⊺
(e× e2), where e ∈ R

3 is the unit rotation

vector satisfying (e1−e2)
⊺e = 0. The rotation angle can also

be expressed as

d = arccos
(e1 − e

⊺

1ee)
⊺
(e2 − e

⊺

2ee)

∥e1 − e
⊺

1ee∥∥e2 − e
⊺

2ee∥

= arccos
e
⊺

1e2 − (e⊺1e)
2

1− (e⊺1e)
2

,

(37)

which is monotonically increasing since (e⊺1e)
2 ∈ [0, 1).

Therefore, the minimal Riemannian distance is dmin = e
⊺

1e2
when both e1 and e2 are vertical to the rotation vector, that

is e = e1 × e2. The rotation matrix is exp (dmine1 × e2),
converted from the axis-angle representation by Rodrigues’

formula. ■

APPENDIX C

THE EXPRESSION OF GRADIENT OF THE MLS SURFACE

∇Ts (x) =
(

M
∑

i=1

θi (x)

)−2

(

M
∑

i=1

θ′i (x)

M
∑

i=1

θi (x)v
⊺

i (x−mi)+

M
∑

i=1

θi (x)

M
∑

i=1

(θ′i (x)v
⊺

i (x−mi) + θi (x)vi))

(38)

where θ′i (x) = −2 (x−mi)
(

∥x−mi∥/r2i
)

θi (x).

APPENDIX D

THE EXPECTED VALUE OF THE OCCLUSION AREA

Since M boxes are independent of each other, the expected

value of the occlusion area is

S (σ) =

∫∫

R2

(

1− (PX + PY − PXPY )
M
)

dxdy (39)

where PX = P (X ≥ x+ b) + P (X ≤ x− b) and PY =
P (Y ≥ y + b)+P (Y ≤ y − b). P (X > x) is the probability

of the normal distribution N (µ, σ2), and b is the half side

length of the box. The PX and PY can be computed using the

normal cumulative distribution function: PX = 1−Φ
(

x+b
σ

)

+

Φ
(

x−b
σ

)

and PY = 1− Φ
(

y+b
σ

)

+Φ
(

y−b
σ

)

.

Here, we use a numerical method to estimate the relation-

ship between the area S and the variance σ2, as shown in Fig.

13.
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Fig. 13. The relation between the expected occlusion area and the standard
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