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NON-INTRUSIVE SPEECH INTELLIGIBILITY PREDICTION FOR HEARING IMPAIRED

INDIVIDUALS USING SELF-SUPERVISED SPEECH REPRESENTATIONS

George Close, Thomas Hain, Stefan Goetze

Speech and Hearing Group, Department of Computer Science, University of Sheffield, United Kingdom

ABSTRACT

Self-supervised speech representations (SSSRs) have been

successfully applied to a number of speech-processing tasks,

e.g. as feature extractor for speech quality (SQ) predic-

tion, which is, in turn, relevant for assessment and training

speech enhancement systems for users with normal or im-

paired hearing. However, exact knowledge of why and how

quality-related information is encoded well in such represen-

tations remains poorly understood. In this work, techniques

for non-intrusive prediction of SQ ratings are extended to the

prediction of intelligibility for hearing-impaired users. It is

found that self-supervised representations are useful as input

features to non-intrusive prediction models, achieving com-

petitive performance to more complex systems. A detailed

analysis of the performance depending on Clarity Prediction

Challenge 1 listeners and enhancement systems indicates

that more data might be needed to allow generalisation to

unknown systems and (hearing-impaired) individuals.

Index Terms: hearing loss, metric prediction, neural net-

works, self-supervised speech representations

1. INTRODUCTION

Age-related hearing loss (HL) is an increasingly prevalent

problem in countries with ageing populations worldwide. In

the United Kingdom, for example, approximately 12 million

people suffer from HL of greater than 25 decibels hearing

level (dBHL); by 2035 this is predicted to increase to 14.2
million [1]. Hearing loss can often impede an individual’s

ability to participate in a spoken conversation, especially

in noisy environments, as parts of the speech can become

unintelligible [2]. As such, the development of methods to

increase speech intelligibility (SI) in assistive listening de-

vices to alleviate this is of paramount importance [3]. While

there have been large improvements in speech enhancement

technology thanks to neural network-based approaches [4–6]

these can often be challenging to implement in small form
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factor hearing aid (HA) hardware. Furthermore, given that

the exact severity and nature of hearing loss differs greatly be-

tween individuals, a ’one size fits all’ approach is not viable.

The Clarity Project [7] aims to improve the design of hearing

aids via two alternating challenges and related datasets [8],

the Clarity Enhancement Challenge (CEC) and the Clarity

Prediction Challenge (CPC). The CEC is concerned with the

design of the actual enhancement algorithm, while the CPC

involves the prediction of the intelligibility of the enhanced

speech for hearing-impaired listeners. The overall aim of

the CPC is to produce systems that mimic the behaviour of

hearing-impaired listeners, reducing the need for expensive

and time-consuming human assessment by listening tests,

while also providing a training target or metric for enhance-

ment systems.

Self-supervised speech representations (SSSRs) have been

found to be useful either as pretrained layers or feature trans-

formations in many speech-related applications [9–11]. It

is understood that SSSRs are able to encode and predict the

context of the speech content in the input audio, and thus

model the patterns of spoken language. Recent work [12–16]

has found that in addition to speech content, SSSRs are also

able to capture information on potentially corrupting noise

and distortion in the input audio.

In this work, SSSRs are used as a feature transformation

for non-intrusive neural speech intelligibility prediction net-

works, trained on the CPC1 challenge dataset. Non-intrusive

metric prediction networks using SSSRs are proposed to

serve as feature extractors and analysed for different latent or

output SSSR layers to predict SI for hearing-impaired users.

The remainder of the paper is structured as follows. In Sec-

tion 2, the SSSRs used in this work are briefly introduced

and Section 3 reviews the use of SSSRs in related tasks.

Section 4 introduces the dataset as used in this work and in

Section 5 the relationships between this dataset and SSSR

distance measures are examined. Finally, in Sections 6 and 7,

experiments involving the use of SSSR as feature represen-

tations in non-intrusive intelligibility prediction networks are

described, and the results analysed.
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2. SELF SUPERVISED SPEECH REPRESENTATIONS

Generally, SSSRs are neural networks that, given a waveform

representation of speech audio s[n], produce a final output

which expresses the context of that input speech audio. As

the name suggests, they are trained in a self-supervised way,

typically by masking some segment of the input audio rep-

resentation and tasking the network in training to recreate the

masked segment [9]. Structurally, the networks consist of two

distinct stages as shown in Fig. 1.

SSSR

SOLs[n]
CNN

GFE

Transformers

GOL

SFE

Fig. 1. Representations extracted from SSSR model with

time-domain input signal s[n]. Feature channels are sorted

[17] and values normalised for clarity.

The input waveform s[n] with discrete time index n is first

processed by a number of 1-D convolutional layers, resulting

in a two-dimensional feature encoding representation. In the

second stage, this representation is processed by a number

of Transformer [18] layers, to give the final two-dimensional

output. In both stages, one of the dimensions represents time,

while the other represents features. For a time domain signal

s[n], the output of the initial convolutional neural network

(CNN) encoder stage GFE of a SSSR is

SFE = GFE(s[n]), (1)

where operator GFE denotes the 1-D convolutional layers en-

compassing the encoder. The subsequent processing by the

Transformer based stage can be defined by an additional op-

erator GOL denoting the Transformer layers encompassing the

final output stage, i.e.

SOL = GOL(GFE(s[n])). (2)

Both signal representations SFE and SOL have two dimen-

sions: time T , depending on the length of the input audio in

block time, and feature dimension F .

The Cross-Lingual Speech Representation (XLSR) [19]

is one of the SSSR representations used in this work. It

is a variant of the Wav2Vec2 [9] structure. It is trained on

436, 000 hours of audio data from a number of languages, in-

cluding the BABEL dataset which contains potentially noisy

telephone conversation recordings. Its network is structured

in the way described above, with the outputs of GFE having a

feature dimension of 512 and the final (transformer) outputs

of GOL having a feature dimension of 1024. In this work, the

smallest version of XLSR sourced from the HuggingFace1 is

used.

Hidden Unit Bidirectional Encoder Representations from

Transformers (HuBERT) [10] differ w.r.t. the general training

of a SSSR described above in that the training target is a

cluster of masked frames similar to BERT [20] rather than the

masked frame itself. However, its network structure follows

the same pattern, with the outputs of GFE having a feature

dimension of 512 and the final output representation a feature

dimension of 768. In this work, we use the HuBERT Large

model trained on 960 hours of clean English speech sourced

from the LibriSpeech [21] dataset, from the Fairseq GitHub

repository2.

3. SSSRS FOR METRIC PREDICTION

SSSRs have been applied to metric prediction tasks, typically

to quality prediction [22, 23]. In [13], XLSR representations

are used as feature extraction in a non-intrusive human MOS

prediction network. Similarly, in [24] SSSRs are used for the

same quality prediction task, but they are fine-tuned with a

mean pooling layer rather than being used simply as feature

extraction. SSSRs were also applied to the CPC1 challenge

in [25], where they were used as feature extractors alongside

spectrograms and learnable filter banks.

In all these cases, only the final SSSR output GOL was consid-

ered. However, findings in [12] suggest that the output of the

initial encoding stage GFE better captures quality-related in-

formation. As such, in this work, both representations stages

are considered and compared as feature transformations for

speech intelligibility prediction.

4. CLARITY CHALLENGE 1 DATA

The dataset for the first Clarity Prediction Challenge 1

(CPC1) [26] as used in this work can be expressed as a

series of sequences: (̂s[n], {al,ar}, i), which is generated as

visualised in Fig. 2. ŝ[n] represents the output of a hearing aid

system for some noisy speech input x[n], containing some

clean speech s[n]. {al,ar} are the left and right audiogram

representations of a particular listener’s hearing loss. Blue

and red box plots in Fig. 2 illustrate the HL distribution in

the CPC1 dataset from which the individual audiograms are

sampled. Finally, i represents the intelligibility of the audio

ŝ[n] for that listener, defined as the percentage of words they

were able to reproduce by speaking aloud immediately after

hearing the audio, compared to a ground truth transcription

of the speech also denoted as the correctness of the listener’s

response. Additionally, audio ŝ′[n] is defined as the output of

the baseline Cambridge MSBG hearing loss simulator (HLS),

1https://huggingface.co/facebook/

wav2vec2-xls-r-300m
2https://github.com/facebookresearch/fairseq



Speech in noise (SPIN)

generator

Listener information

(audiogram)

Hearing

Aid (HA)

Hearing Loss

Simulator

v[n]
noise

speech

x{l,r}[n]

ŝ[n]

ŝ′[n]

S

a{l,r}

s[n]

Fig. 2. Signal generation for Clarity Prediction Challenge.

denoted here by operator S , cf. [27] for additional details on

the clarity system.

ŝ′[n] = S (̂s[n], {al,ar}) (3)

The signal ŝ′[n] is an approximation of the audio that is per-

ceived by the hearing-impaired listener. This can be thought

of as encoding the hearing characteristics of the specific lis-

tener (audiogram) within the signal. Note that all signals in

the dataset are binaural i.e. consist of left and right channels,

denoted by l and r, respectively.

The upper plot in Fig. 3 shows the distribution of correctness

i in the CPC1 training set. From this, it can be observed

that in the majority of cases, the listener was able to fully

reproduce the speech in the audio they heard, i.e. i = 100
for ≈ 50% of the assessed files. The next largest class is

where i = 0, meaning that the listener was not able to re-

produce any words in the audio. This distribution is due to

the more realistic in-the-wild SI measurement strategy for

the Clarity dataset [26] which is in contrast to lab-based SI

matrix tests [28]. The lower panel of Fig. 3 shows the average

correctness i for each listener in the CPC1 training set. With

the exception of listener L0227, all of the listeners achieve

similar performance.

5. ANALYSING RELATIONSHIPS BETWEEN SSSRS

AND HUMAN SPEECH INTELLIGIBILITY

In order to express the relationship between SSSRs and cor-

rectness i in the dataset, two distance measures are defined in

Fig. 3. Histogram showing the distribution of ground truth

correctness i in CPC1 training set (top) and a bar chart show-

ing average correctness i per listener in the CPC1 training set

(bottom). Dotted lines are respective overall average values.

a mean squared error (MSE) sense:

dFE =
1

TF

T∑

t

F∑

f

(SFE[t, f ]−PFE[t, f ])
2 (4)

dOL =
1

TF

T∑

t

F∑

f

(SOL[t, f ]−POL[t, f ])
2 (5)

The distance dFE in (4) expresses the MSE distance between

the SSSR feature encoding layer representations SFE[t, f ]
of the clean reference audio s[n] and the representations

PFE[t, f ] of the test signal p[n], while (5) expresses the

MSE distance between the SSSR output layer representa-

tions SOL[t, f ] and POL[t, f ], with t and f denoting block

time and feature index, respectively. Note that p[n] and is a

placeholder for either the speech signal after HA enhance-

ment ŝ[n] or this signal after HLS processing ŝ′[n] as shown

in Fig. 2. Distances in (4), (5) are designed to express the

distortion captured by the SSSR due to the transformations

which have been applied to s[n] to produce e.g. ŝ′[n], i.e. the

artificial distortion/reverb added to create x[n], enhancement

by the hearing aid system (in ŝ[n]) and finally the HLS. In

addition to distances (4) and (5) the MSE distance between

spectrogram representations of s[n] and p[n],

dSG =
1

TFHz

T∑

t

FHz∑

fHz

(SSG[t, fHz]−PSG[t, fHz])
2
, (6)

will be analysed, with fHz and FHz denoting the technical

frequency and the highest frequency analysed, respectively.

In the following, the left (first) channel of the audio is used to

compute the distance measures (4), (5) and (6).

Table 1 shows the Spearman and Pearson correlations of the

MSE distances (4)-(6) with the correctness values i for the

CPC1 training set. Absolute correlations are low, but this



Table 1. Spearman and Pearson correlations between dis-

tance measures and correctness values i in the CPC1 training

set, strongest correlations in bold.
Representation, Distance p[n] Spearman Pearson

SPEC, dSG, (6) ŝ[n] −0.10 −0.18
SPEC, dSG, (6) ŝ′[n] −0.09 −0.07
XLSR, dFE, (4) ŝ[n] −0.13 −0.16
XLSR, dFE, (4) ŝ′[n] −0.24 −0.28
XLSR, dOL, (5) ŝ[n] −0.26 −0.27
XLSR, dOL, (5) ŝ′[n] −0.24 −0.24
HuBERT, dFE, (4) ŝ[n] −0.38 −0.47
HuBERT, dFE, (4) ŝ′[n] −0.23 −0.29
HuBERT, dOL, (5) ŝ[n] −0.10 −0.17
HuBERT, dOL, (5) ŝ′[n] −0.28 −0.32

is expected for the Clarity dataset (cf. [26] and Section 4).

Comparing the distances between the feature representations

in (4)-(6) and the intelligibility scores i allows for an expres-

sion of how distortion in the signal, which might affect intel-

ligibility, is captured by that feature representation. Interest-

ingly, applying the hearing loss simulation S in (3) does not

uniformly improve the correlation with i across all distances

in Table 1; only for the XLSR encoder output representation

distance dFE and the HuBERT final output representation dis-

tance dOL does using ŝ′[n] lead to higher correlation than us-

ing ŝ[n].

6. SSSR-BASED INTELLIGIBILITY PREDICTION

This section proposes the use of SSSRs as features in non-

intrusive neural intelligibility prediction networks. Following

the findings from Table 1, both the hearing aid output signal

ŝ[n] and that signal processed by the hearing loss simulation

ŝ′[n] are used as the input audio to the models, as no conclu-

sive best representation is indicated by these results.

6.1. Dataset

Models are trained on both the open and closed training and

test sets detailed in the CPC1 description [8]. The closed set

has the same listeners and systems for both train and testsets,

while the open set has 5 unseen listeners and 1 unseen sys-

tem in its testset. For more detail as to how these sets are

differentiated, see [8]. A validation set is created using 10%
of the available training data. As we are interested in non-

intrusive predictors, either the hearing aid output signal ŝ[n]
or the hearing loss simulated audio signal ŝ′[n] are used to

predict the Correctness label i. For the closed set, the training

set contains 4376 utterances, the validation set 487 and the

test set 2421. The training set contains 3222 utterances for

the open set, 358 for the validation set, and 632 for the test

set.

6.2. Model Structure and Experiment Setup

A model structure inspired by [13] is chosen for the SI pre-

diction network. Five feature extraction methods are used;

outputs of GFE and GOL for both, HuBERT and XLSR rep-

resentations, as well as a spectrogram representation denoted

as SPEC. After the feature extraction, the resultant rep-

resentation is processed by 2 bidirectional long short-term

memory (BLSTM) layers with an input size equal to the fea-

ture dimension F of the input and a hidden layer size of F/2.

The final layer is an attention pooling feed-forward layer,

similar to that in NISQA [22] with a single output neuron

and a sigmoid activation to output the predicted correctness

î (normalised between 0 and 1). Note that due to different

dimensions F of different feature representations, the num-

ber of parameters in each network varies from 923, 906 for

the models using spectrogram representations to as many as

14, 701, 570 for the models using the XLSR output layer,

i.e. GOL.

The two input audio representations ŝ[n] or ŝ′[n] are used,

i.e. the output of the hearing aid systems and the enhanced

audio processed by the hearing loss simulation, as in (3). As

these audio representations have two channels, each channel

is processed by the model separately; during training, the

loss for each channel is computed and then summed before

being back-propagated to the model. During validation and

testing, the maximum value between each channel is taken as

an approximation of the better ear effect [29].

The spectrogram representation is created by a short time

Fourier transform (STFT) with a window length of 20 ms, a

hop length of 10 ms and an FFT size of 1024. All audio is

re-sampled to 16 kHz such that it can be used as inputs to the

SSSR models.

7. RESULTS

In addition to the intrusive (reference-signal-based) challenge

baseline, the best-performing non-intrusive entries to the

challenge are reported in this section as additional baselines,

as the proposed system is also non intrusive. Challenge entry

E23 [30] makes use of contrastive predictive coding and vec-

tor quantisation features. E06 [31] is similar to the proposed

system, denoted by SPEC in the following, but uses a CNN

based network structure. E33 [25] also utilises SSSRs as

feature extraction, but spectrogram and learnable filterbank

features are also used as model inputs. E29 [32] makes use

of an information-theory-inspired approach, wherein the dif-

ference between internal representations in neural automatic

speech recognition (ASR) systems is used to approximate

human intelligibility, and was the overall best non-intrusive

challenge entry.



Table 2. Non-Intrusive Prediction Performance on the CPC1

closed set. Best performances for baselines and proposed

methods in boldface font.
Model Name RMSE Var Spearman Pearson

CPC1 Baseline 28.50 – 0.62 –

E23 [30] 41.50 – 0.07 –

E06 [31] 32.00 – 0.43 –

E33 [25] 24.10 – 0.75 –

E29 [32] 23.30 – 0.77 –

SPEC ŜSPEC 25.45 0.52 0.59 0.72

SPEC Ŝ′
SPEC

25.45 0.52 0.58 0.72

HuBERT ŜFE 30.82 0.61 0.44 0.56

HuBERT Ŝ′
FE

26.64 0.53 0.56 0.70

HuBERT ŜOL 24.76 0.50 0.59 0.74

HuBERT Ŝ′
OL

24.82 0.50 0.61 0.74

XLSR ŜFE 25.01 0.50 0.60 0.74

XLSR Ŝ′
FE

25.33 0.51 0.60 0.72

XLSR ŜOL 28.42 0.58 0.47 0.66

XLSR Ŝ′
OL

30.20 0.61 0.52 0.64

7.1. Results on CPC1 Closed set

Table 2 shows the performance of the proposed systems for

the CPC1 closed set. All proposed systems show compara-

ble performance with the best-performing challenge entries,

although, none of the proposed systems outperforms system

E29. It should be noted, however, that the computation over-

head to implement system E29 is significantly greater than

any of the proposed systems here, as several state-of-the-art

ASR systems must be trained and fine-tuned for E29. Of the

proposed systems trained on the outputs of the hearing loss

simulation ŝ′[n], the best performing is the model which uses

HuBERT output representations Ŝ′
OL

as features. This is con-

sistent with the findings in Table 1 which shows that the dis-

tance measure using this representation had the highest cor-

relation with i of those distances computed using ŝ′[n]. Of

those trained using the hearing aid outputs ŝ[n], HuBERT’s

output ŜOL is also the best performing achieving near identi-

cal performance to the ŝ′[n] model. In terms of the difference

in performance between using earlier SSSR representations

GFE or output representations GOL as features, this seems to

depend on the SSSR used; for HuBERT the output layers per-

form best, while for XLSR the feature encoder layers show

better performance.

7.2. Results of CPC1 Open set

Table 3 shows the performance of the proposed systems on

the more challenging CPC1 open set (cf. Section 4). Perfor-

mance of the proposed systems is significantly worse than that

of the closed set for all systems, with a much larger variance

in MSE in all cases, but all proposed systems still outperform

the baseline. The poorer performance might be due to over-

Table 3. Non Intrusive Prediction Performance on the CPC1

open set.

Model Name RMSE Var Spearman Pearson

CPC 1 Baseline 36.50 – 0.53 –

E23 [30] 43.70 – 0.05 –

E33 [25] 28.9 – 0.65 –

E29 [32] 24.60 – 0.73 –

SPEC ŜSPEC 32.84 1.29 0.35 0.50

SPEC Ŝ′
SPEC

29.16 1.15 0.57 0.60

HuBERT ŜFE 33.69 1.30 0.27 0.45

HuBERT Ŝ′
FE

35.31 1.40 0.19 0.24

HuBERT ŜOL 32.43 1.22 0.47 0.54

HuBERT Ŝ′
OL

29.66 1.14 0.60 0.61

XLSR ŜFE 31.83 1.26 0.49 0.52

XLSR Ŝ′
FE

30.86 1.19 0.56 0.56

XLSR Ŝ′
OL

31.85 1.25 0.42 0.49

XLSR Ŝ′
OL

34.54 1.36 0.26 0.37

fitting of the models to the training data, (in particular to the

enhancement systems in the training set) as the test data con-

tains unseen enhancement systems and listeners. All of the

models here perform similarly poorly.

7.3. System and Listener-wise Analysis

Fig. 4. System (top) and listener-wise (bottom) correctness

prediction î (l./green) vs. true i (r./brown) using HuBERT out-

put for ŜOL model on CPC1 closed set.

For further analysis, Figs. 4 and 5 show ground truth and pre-

dicted correctness across the hearing aid systems and across

the listeners in the CPC1 open testset for the HuBERT ŜOL

and HuBERT Ŝ′
OL

models, respectively. Both models show

similar performance across the different hearing aid systems,

both successfully assigning low scores to the audio enhanced

by the E005 hearing aid system. This indicates that the mod-

els are able (at some level) to detect the distortions introduced



Fig. 5. System (top) and listener-wise (bottom) correctness

prediction î (l./green) vs. true i (r./brown) using HuBERT out-

pur for Ŝ′
OL

model on CPC1 closed set.

Fig. 6. System (top) and listener-wise (bottom) correctness

prediction î (l./green) vs. true i (r./brown) using HuBERT out-

put for ŜOL model on CPC1 open set. Listeners and Systems

unseen during training are bold.

by this enhancement. Similarly, there is little difference in

performance across the subset of listeners for the two models;

this suggests that the listener-specific hearing loss informa-

tion which the Ŝ′
OL

model has access to (encoded in the au-

dio) does not aid in the intelligibility prediction performance.

It should be noted that already the enhancement system (hear-

ing aid) has (implicitly) access to the hearing loss informa-

tion and is expected to process its input signal accordingly

(cf. Fig. 2). Interestingly, both models overestimate the intel-

ligibility ratings of speaker L0227 who performs worse than

average at the intelligibility task (cf. Fig. 3). This suggests

that L0227’s lower performance is not due to their hearing

loss but rather other unknown factor(s); audiogram informa-

tion for this listener does not show that they have particularly

severe hearing loss.

Fig. 7. System (top) and listener-wise (bottom) correctness

prediction î (l./green) vs. true i (r./brown) using HuBERT out-

put for Ŝ′
OL

model on CPC1 open set. Listeners and Systems

unseen during training are bold.

Figs. 7 and 6 show ground truth and predicted correctness

across the hearing aid systems and across the listeners for the

more challenging CPC1 closed testset for the HuBERT output

for ŜOL and HuBERT output for Ŝ′
OL

models, respectively.

Systems and listeners which are unseen during the training of

the models are highlighted by bold-font. Here, the overfit-

ting of the proposed system to the hearing aid systems dur-

ing training can be observed by the poor performance on the

unseen hearing aid system in the testset, E018. The overall

lower performance of the proposed systems on the closed set

is shown by the listener-wise plots, with both systems signif-

icantly overestimating the correctness versus the true value;

however the encoding of the hearing loss information in Ŝ′
OL

does appear to have some positive effect here.

8. CONCLUSION

This work explores the use of SSSR models as feature ex-

traction for non-intrusive speech intelligibility prediction net-

works in comparison to traditional, spectrogram-based input.

Both, the final SSSR representation and the intermediate out-

put of the SSSR feature encoder are compared for the first

time for an SI prediction task for hearing-impaired users. Re-

sults indicate that encoding the hearing loss of a particular

listener via (an additional) hearing loss simulation does not

typically improve performance. Additionally, models tend to

overfit to specific hearing aid systems, as demonstrated by

the results on the open set which might be alleviated by larger

datasets released in the future. The upcoming CPC2 chal-

lenge data, which includes twice the number of enhancement

systems, could mitigate this issue.
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