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Abstract

With increased service lines and stations in large urban rail networks, there are invariably large passenger

flows that involve transfers between lines, and the passenger demand can vary significantly between stations

and over time of the day. Carefully coordinating train timetables of different operating lines can help reduce

transfer delays, which in turn reduces station crowding and improves overall service quality. Separately, skip-

stop strategies are often deployed during the train operations in order to balance the train capacity according

to passenger demand distribution. This paper explores the joint optimization problem timetable coordination

and skip-stop strategies in the timetable design that aims to minimize the passenger waiting, transfer time

and station crowding. The combined problem is formulated as a mixed integer nonlinear programming

model. To effectively address the complexity of our model, a decomposition and approximate dynamic

programming approach is designed to reformulate the original network-level problem into many small-scale

subproblems, one for each operating line, to be solved quickly in a distributed manner. The effectiveness and

practicability of the model and method are demonstrated on two case networks: a simple synthetic network

of three metro lines and a real network based on Beijing Subway. The computational results illustrate that

our proposed joint timetable coordination with skip-stop strategies method can effectively reduce passenger

waiting time and station crowing, our proposed decomposition and approximate dynamic programming

approach is also shown to perform more efficiently than traditional centralized heuristic algorithms, such as

genetic algorithm and simulated annealing algorithm, especially for larger-scale networks.

Keywords: Urban metro networks; Timetable coordination optimization; Skip-stop pattern; Approximate

dynamic programming

1. Introduction

Rail-based urban metro transit has become an efficient and sustainable form of urban public transport

due to its large capacity, high speed, and low energy consumption (Mannino and Mascis, 2009; Cadarso and

Maŕın, 2012; Lamorgese and Mannino, 2015; Xu and Ng, 2020). As metro networks expand, and more lines

and stations are added to the system, so are growing transfer demands where passengers have to change

lines to reach their destination stations. Coordinating arrival times of trains from different lines at transfer

stations can greatly enhance the transfer experience and improve the service level (Dessouky et al., 2003;
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Fonseca et al., 2018). Reducing passengers waiting time for the transfer, also helps reduce station and

platform crowding, which is a common problem in many large metro systems. Therefore, how to design

an optimized timetable to ensure good coordination of transfers is essential for metro systems to improve

operation efficiency and service quality.

Separately, as the number of lines and stations increase, so will be the variability in passenger demand

distributions, in that the passenger flows between origin-destination stations are not evenly distributed

across the network and lines. The traditional all-stop strategy, widely adopted by the majority of metro

operators, is shown to be ineffective to meet the requirements of such variable demand (Wang et al., 2014;

Jamili and Aghaee, 2015a). For instance, when a train arrives at a station with high passenger demand,

some passengers may not be able to get on because of train capacity constraints, and have to wait for the

next train. This happens regularly in large metro networks, such as Beijing Subway, especially during rush

hours. The skip-stop strategy that allows trains to selectively skip some stations has been shown to be able

to balance the capacity resources of trains and passenger demand (Freyss et al., 2013; Jamili and Aghaee,

2015a). Typically, the train would skip stations with relatively low passenger demand, in order to retain its

capacity to accommodate passengers gathering at busy stations, therefore balance the distribution of waiting

passengers and alleviate the overcrowding of those busy stations. There is scope, therefore, to incorporate

skip-stop strategies into the train timetable coordination in order to further improve the level of service,

safety and reliability of metro systems.

Joint optimization of transfer coordination and skip-stop strategies in metro networks is challenging, not

only owing to the complex coupling interaction among transfer passengers, non-transfer passengers, and train

capacities, but also the high computational complexity in dealing with realistic large-scale metro networks.

Focusing on these challenges, this paper investigates the timetable coordination optimization with skip-stop

strategies of metro networks, and develops a decomposition and approximate dynamic programming (ADP)

approach for the purpose of efficiently obtaining reasonable train timetables and skip-stop strategies for

multiple connected operating lines.

1.1. Literature review

Coordinating the arrival times of trains from different lines at a transfer station would reduce passenger

transfer waiting time and improve the overall service level of a metro network. Given the predetermined

number of transfer passengers, Wong et al. (2008) constructed a mixed-integer programming model for

the timetable synchronization problem for rail transit networks to minimize the transfer waiting time.

Similarly, Hu et al. (2022) also considered the predetermined transfer passengers to study the timetable

coordination problem, and formulated a mixed-integer quadratic programming problem. To improve the

worst transfers, Wu et al. (2015) studied the equity-based scheduling synchronization problem to reduce

transfer waiting. The train scheduling problem for transitional periods was investigated by Guo et al. (2017)

to increase the number of synchronization events. Li et al. (2018a) incorporated the transfer coordination

constraints into their network-level train regulation model to improve the passenger transfer services. The

above studies explored network-level train scheduling problems to improve the transfer performances, with

unlimited train capacity and pre-given transfer demands in formulations. To adapt to a wider range of

application scenarios, the interactions between passengers and the train capacity have been considered in

the literature. Considering the train capacity, Wang et al. (2020) constructed timetable synchronization

optimization problems, where their objectives are minimizing the waiting time and numbers of those failing

in transferring. Similarly, the train capacity limitation and the dynamicity of passenger flows were also
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considered by Yin et al. (2021). They studied train timetable coordination problems to minimize station

crowding. Han et al. (2021) additionally took into account the uncertainty of passenger demands, and

constructed multi-scenario scheduling models from the network perspective.

As the metro networks expand and the number of lines and stations increase, the passenger demand

distributions across the network become increasingly varied. To address the such imbalanced spatial distri-

bution of passenger flows, train scheduling considering skip-stop patterns has been widely studied. However,

most of the studies focus on single lines, and ignore the wider network impact of skip-stop on individual

lines. With predetermined skip-stop strategies for metro lines, Niu et al. (2015) formulated a quadratic

integer programming model to explore train timetable optimization issues for a metro line, with the ob-

jective of minimizing passenger waiting time. Considering flexible skip-stop patterns, Wang et al. (2014)

constructed a mixed-integer nonlinear programming model to provide the optimized train timetables and

skip-stop strategies for a metro loop line, aiming to simultaneously reduce passenger travel time and energy

consumption. Focusing on congested railway double-track line, a integer linear programming model was

formulated by Jiang et al. (2017) to address the collaborative optimization of train scheduling and skip-stop

patterns, aiming to increase scheduled trains. Shang et al. (2018) investigated the equity-oriented skip-stop

strategies to ensure that passengers have identical shares of train capacity for the oversaturated urban rail

transit system. By combining the passenger flow control with skip-stopping strategies, Jiang et al. (2019)

developed a mixed-integer nonlinear programming model to reduce the penalty value of stranded passengers

for a congested metro line. Zhu and Goverde (2020) considered flexible skip-stop patterns and short-turning

strategies for train rescheduling problems. Focusing on improving the service quality during a quick recovery

of trains from disturbances, Chen et al. (2022) investigated the real-time skip-stop strategy to reduce the

number of stranded passengers.

Compared to optimization problems for single lines, models developed to address large-scale network

problems are usually highly complex, involving multiple lines and the interaction between them. The

existing studies on network-level problems tend to adopt centralized approaches (Corman et al., 2012; Wu

et al., 2015; Kang et al., 2015; Li et al., 2016; Han et al., 2021; Hu et al., 2022), which inevitably bring heavy

computational burden. To reduce the computational complexity, decomposed and distributed approaches

have been designed. For timetable coordination optimization problems, a decomposition based algorithm

was shown in studies of Yin et al. (2021), performing well in realistic numerical examples. Based on a

dual decomposition, Li et al. (2018b) designed a distributed approach for network-level train regulation

problems. Besides, some effective methods are also used in other large-scale systems. Frey et al. (2017)

designed a novel decomposition approach with column generation to deal with the planning of outbound

baggage handling. Liu et al. (2020) adopted the Lagrangian decomposition approach for collaborative train

scheduling optimization problems. Lamorgese and Mannino (2015) designed an exact decomposition method

to realize the efficient dispatch of trains. Taherkhani et al. (2020) applied Benders decomposition approach

to solve the capacitated hub location problems. To cope with the systems with complex characteristics,

some ADP-based methods were adopted to quickly obtain high-quality solutions. Liu et al. (2018) utilized

ADP method to generate energy-efficient train scheduling strategies. Papageorgiou et al. (2015) coped with

maritime inventory routing problems. He et al. (2022) applied multi-stage look-ahead strategies to bus

holding control problems.
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1.2. The proposed approach

Table 1 summarizes the above relevant studies, and highlights the distinctive contributions of the pro-

posed approach.

Table 1: Summary of different publications on train timetable optimization.

Publication Infrastructure
Stop

strategy
Train capacity

limitation
Objective function Methodology Solution way

Wang et al. (2014) Single line Skip-stop Yes
Passenger travel time,
energy consumption

Bilevel approach Centralized

Niu et al. (2015) Single line Skip-stop Yes Total waiting time GAMS Centralized
Jiang et al. (2019) Single line Skip-stop Yes Passengers being stranded Q-learning algorithm Centralized

Wong et al. (2008) Network All stop No Transfer waiting time
Optimization-based
heuristic approach

Centralized

Yin et al. (2019) Network All stop No Waiting passengers CPLEX Centralized
Hu et al. (2022) Network All stop No Transfer waiting time Benders decomposition Centralized

Wang et al. (2020) Network All stop Yes
Waiting time,

passengers failing to transfer
GA & GWO Centralized

Yin et al. (2021) Network All stop Yes Crowdedness of stations CPLEX/VLNS Decomposed

Han et al. (2021) Network All stop Yes
Train service cost,

waiting time,
final stranded penalty

Genetic algorithm Centralized

This paper Network Skip-stop Yes
Total waiting time,
station crowding

Decomposition and
ADP approach

Distributed

This paper makes a meaningful investigation into the complicated issue concerning a distributed approach

to timetable coordination for an entire metro network with skip-stop strategies. Specifically, two-fold con-

tributions are highlighted:

(1) At present, existing studies on train timetable coordination problems for networks focus mainly

on all-stop patterns (Wang et al., 2020; Yin et al., 2021; Han et al., 2021; Hu et al., 2022), and research

on skip-stop strategies have only been solved as line-level problems (Wang et al., 2014; Niu et al., 2015;

Jiang et al., 2019). Studies that jointly optimize skip-stop strategies and transfer coordination at a network

level are found to be scarce. Besides, to avoid addressing the complex interaction between passengers and

train capacity, existing network-level studies tend to adopt idealized assumptions, e.g., the train capacity

is infinite and the number of transfer passengers is predetermined (Wong et al., 2008; Guo et al., 2017; Hu

et al., 2022), which limits their practical applications. As a novel approach, this paper proposes a nonlinear

programming formulation for train timetable coordination optimization problems with skip-stop strategies

of metro networks, characterizing coupling interactions among transfer passengers, non-transfer passengers

and train capacity.

(2) In existing research, the timetable optimization problem for networks is usually solved by centralized

approaches (Yin et al., 2019; Wang et al., 2020; Han et al., 2021; Hu et al., 2022) with high computational

complexity. In this study, a decomposition and ADP algorithm is designed to address this problem. Specifi-

cally, under a distributed coordinate descent scheme, the original complex nonconvex and nonlinear problem

can be transformed into many small-scale line-level subproblems and solved using dynamic programming

(DP) to achieve efficient solutions. In this way, not only parallelization can be realized, the subproblems are

also equipped with desirable properties suitable to apply ADP methods to obtain efficient and high-quality

solutions. Overall, we show that our proposed algorithm can address large-scale network-level timetable and

operational optimization problems.

The remainder of our paper is organized as follows. Section 2 formulates a timetable coordination

optimization model for metro networks. Section 3 presents the decomposition and ADP algorithm. Section
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4 illustrates two sets of numerical experiments to show the effectiveness of our approaches. Then conclusions

are given in Section 5.

2. Problem Description

We consider a metro network consisting of f uni-directional lines represented by the set L = { l| l = 1, 2, ..., f}.

There are ml stations represented by the set U l = {1, 2, ...,ml}, and nl operating trains denoted by the

set Ql = {q = 1, 2, ..., nl} on line l. We focus on the timetable coordination optimization problem with

skip-stop strategies for the metro network, and take into account explicitly the following characteristics

typical of large metro networks: (1) capacity constraints on the trains and at stations (and platforms),

and the interactions between passenger demand and train services; (2) coordinating the arrival times and

departure times of trains from different lines, so as to reduce passenger transfer delay and station crowding;

(3) network-wide skip-stop strategies to balance the demand with capacity; and (4) balancing the needs

of transfer and non-transfer passengers to maximize travel experience to all passengers. The focus is on

a short-term during-the-operation scheduling strategy, devising dynamic train dispatching applications (on

departure/arrival times at stations, and stopping patterns) over a horizon of one or two hours ahead, that

adapts to predicted passenger demands in this time horizon. Such a dynamic operation optimization allows

the metro operators to best respond to short-term changes due for example to emergency situations or to

unusually weather conditions, whereby a computationally efficient solution is crucial.

To facilitate the analysis, some assumptions are listed as follows.

Assumption 2.1. A train is not allowed to skip two adjacent stations, and a station is not skipped by two

adjacent trains. Terminus and transfer stations are not to be skipped.

Assumption 2.2. Transfer walking times between different lines are known and fixed.

Assumption 2.3. The two directions of a physical line are considered as independent, where trains on the

two lines are considered to be operating separately.

Assumption 2.1 sets some certain constraints to the skip-stop pattern to ensure that the metro service

will not be impacted too much, which has been also considered by Jiang et al. (2019). Assumption 2.2 is a

widely used assumption for network-level train scheduling problems, and similarly to the existing researches

(Wong et al., 2008; Wang et al., 2020), transfer walking times between lines could be obtained from the

history data. Finally, for simplicity, the process of turnarounds for trains is not considered as Assumption

2.3, which also appears in studies of (Li et al., 2018b; Wang et al., 2020).

2.1. Notations and parameters

Some symbols and parameters in formulating the problem are given in Table 2.

2.2. Mathematical Formulations

2.2.1. Modelling the skip-stop strategies

In this paper, we design the skip-stop strategy dynamically and in cooperation with timetable optimiza-

tion to serve a set of optimization objectives described in Section 2.2.4. We first introduce a binary variable

xl,q
u to describe whether train q skips station u of line l, i.e.,

xl,q
u =







0 if train q stops at station u on line l

1 if train q skips station u on line l
, ∀l ∈ L, u ∈ U l, q ∈ Ql
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Table 2: Main symbols and parameters used in the model.

Notations Definition

Sets

L the set of lines, L = {1, 2, ..., f};
Ql the set of trains of line l, Ql = {1, 2, ..., nl};
U l the set of stations of line l, U l = {1, 2, ...,ml};
Kl the set of transfer stations of line l;
Xl,u the set of connecting lines with line l at station u;
System parameters

plu (t) the number of passengers arriving at station u at time interval t on line l;

el
′

l the average walking time of transferring from line l′ to line l;
Cl the capacity of trains of line l;
Rl,q

u the running time of train q from station u to (u+ 1) of line l;
H l

min the predetermined minimum value of headway on line l;
Sl
min, S

l
max the lower and upper limit to dwell times of line l;

βl′,l
u the proportion of the number of passengers who will transfer to line l, among

the total number of those alighting from line l′ at transfer station u;
System variables

Al,q
u the arrival time of train q at station u of line l;

Dl,q
u the departure time of train q from station u of line l;

Sl,q
u the dwell time of train q at station u of line l;

xl,q
u the binary variable, if train q skip station u, xl,q

u = 1; otherwise, it is 0;
ol,qu the remaining capacity of train q at station u of line l;
nwt
l,u,q the number of passengers waiting for train q at station u of line l;

nbt
l,u,q the number of passengers actually getting on train q at station u of line l;

nal
l,u,q the number of alighting passengers from train q at station u of line l;

nst
l,u,q the number of stranded passengers at station u after departure of train q on

line l;

gl
′,l
u the number of passengers transferring from line l′ to l at transfer station u;

θ
l′,q′

l,u,q the binary variable, if train q of line l and train q′ of line l′ constitute a possible

connection at transfer station u, θl
′,q′

l,u,q = 1; otherwise, it is 0.
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Following Assumption 1, the following limits are set to the skip-stop strategy.

xl,q
u + x

l,q
u+1 ≤ 1, ∀l ∈ L, u ∈ U l, q ∈ Ql (1)

xl,q
u + xl,q+1

u ≤ 1, ∀l ∈ L, u ∈ U l, q ∈ Ql (2)

x
l,q
1 + xl,q

ml
+

∑

u∈Kl

xl,q
u = 0, ∀l ∈ L, q ∈ Ql (3)

Constraint (1) claims that a train is not allowed to skip two adjacent stations, while constraint (2)

indicates that a station will not be skipped by two adjacent trains. In addition, constraint (3) suggests

that terminals and transfer stations are considered not to be skipped generally owing to the high passenger

density.

2.2.2. Modelling the train traffic dynamics

Trains travel at a fixed speed (and with fixed travel time) between stations. Their dwell time is influenced

by skip-stop strategies. If a station is skipped, the corresponding dwell time equals zero; otherwise, the dwell

time is viewed as a dynamic decision variable constrained within a given range, which shall not be too long

due to the operation efficiency, nor too short to ensure the safety of passengers getting on and off. Besides,

the train departure headways are also constrained between a minimum and maximum range for the line

owing to service and safety requirements. Constraints (4)-(7) illustrate the train traffic dynamics with

skip-stop strategies.

Dl,q
u = Al,q

u + Sl,q
u

(

1− xl,q
u

)

, ∀l ∈ L, u ∈ U l, q ∈ Ql (4)

Al,q
u = D

l,q
u−1 +R

l,q
u−1, ∀l ∈ L, u ∈ U l, q ∈ Ql (5)

Dl,q
u −Dl,q−1

u ≥ H l
min, ∀l ∈ L, u ∈ U l, q ∈ Ql (6)

Sl
min≤Sl,q

u ≤Sl
max, ∀l ∈ L, u ∈ U l, q ∈ Ql (7)

Equation (4) defines the departure time Dl,q
u of train q at station u of line l, where Sl,q

u means the dwell

time. Equation (5) formulates the dynamic transition equation of the arrival time, where Rl,q
u presents

the running time of train q from station u to (u + 1). Constraints (6) and (7) provide bound limitation

to departure headway and dwell time for operational safety and service requirements, where H l
min is the

predetermined minimum headway, and Sl
min and Sl

max are the minimum and maximum dwell times of line l.

2.2.3. Modelling the passenger behaviours

In metro networks, passenger behaviours include arriving, waiting, boarding and alighting, where trans-

ferring is embodied in the process of alighting and arriving. Specifically, passengers begin to wait for trains

after arriving at the station from the outside. If the train remaining capacity is sufficient, waiting passengers

can board the train when it departures; otherwise, some of them have to be stranded and continue to wait

for the next. For passengers on the train, they will alight when the train arrive at their destinations on

the line. Among those alighting passengers, non-transfer passengers will leave the station, while transfer

passengers will walk to the platform of connecting lines to wait again as the arriving passenger flow and

continue to participate in the interaction with trains. Equations (8)-(12) describe the relationship between
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passengers and trains for metro networks.

nwt
l,u,q =

∑

t∈[Dl,q−1

u ,D
l,q
u ]

plu (t) +
∑

l′∈Xl,u,q′∈Ql′

g
l′,q′

l,u,q + nst
l,u,q−1, ∀l ∈ L, u ∈ U l, q ∈ Ql (8)

nbt
l,u,q = min

{(

1− xl,q
u

)

nwt
l,u,q, o

l,q
u

}

, ∀l ∈ L, u ∈ U l, q ∈ Ql (9)

nst
l,u,q = nwt

l,u,q − nbt
l,u,q, ∀l ∈ L, u ∈ Sl, q ∈ Ql (10)

ol,qu = o
l,q
u−1 + nal

l,u,q − nbt
l,u−1,q, ∀l ∈ L, u ∈ U l, q ∈ Ql (11)

nal
l,u,q = αl,q

u

(

1− xl,q
u

) (

Cl − ol,qu + nbt
l,u,q

)

, ∀l ∈ L, u ∈ U l, q ∈ Ql (12)

Equation (8) defines the number of waiting passengers. For non-transfer stations, nwt
l,u,q includes the

passengers arriving at stations from the outside during the two consecutive departures of trains, and the

stranded passengers left by the previous trains. For transfer stations, nwt
l,u,q also comprises the passengers

transferring from other lines. In this equation, plu (t) indicates the number of the arriving passengers at

station u at time interval t from the outside. Xl,u denotes the set of connecting lines with line l at station u.

If station u do not provide transfer services, Xl,u = ∅. g
l′,q′

l,u,q is the number of passengers transferring from

train q′ of line l′ to train q of l at transfer station u, which is defined in (16). Equation (9) calculates the

number of passengers nbt
l,u,q actually boarding train q at station u, which depends on the number of waiting

passengers, whether the train skips the station, and the train remaining capacity. Equation (10) formulates

the number of stranded passengers, which is equal to the number of waiting passengers minus the number

of those getting on the train. Equation (11) specifies the dynamic transition of the remaining capacity ol,qu

for train q at station u. ol,qu equals ol,qu−1 plus the alighting passengers at station u, and minus the boarding

passengers at station u − 1. To ensure the integrity of the formulation, we set ol,q1 = Cl, for l ∈ L, q ∈ Ql.

The number of alighting passengers nal
l,u,q from train q at station u, is expressed in Equation (12), where

αl,q
u denotes the alighting ratio.

In the metro network, the transfer passenger flows depend on the transfer coordination between trains

of connecting lines. Constraints (13)-(16) stipulate the train coordination and transfer passenger flows.

Dl,q
u −

(

Al′,q′

u + el
′

l

)

> M
(

θ
l′,q′

l,u,q − 1
)

, ∀l ∈ L, u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′ (13)

Dl,q
u −

(

Al′,q′

u + el
′

l

)

≤ Mθ
l′,q′

l,u,q, ∀l ∈ L, u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′ (14)

y
l′,q′

l,u,q = θ
l′,q′

l,u,q − θ
l′,q′

l,u,q−1
, ∀l ∈ L, u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q

′ ∈ Ql′ (15)

g
l′,q′

l,u,q = βl,q
u y

l′,q′

l,u,qn
al
l′,u,q′ , ∀l ∈ L, u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q

′ ∈ Ql′ (16)

Constraints (13) and (14) define a binary variable θ
l′,q′

l,u,q to indicate possible connections. M is a large

positive number. If the departure time Dl,q
u is later than the transfer passengers’ entering time (i.e., Al′,q′

u +

el
′

l ), these passengers from train q′ of line l′ will have opportunities to get on train q of line l, and thus the

two trains constitute a possible connection. For transfer passengers, they will want to board the coming train

nearest their entering time among all the connecting trains with possible connections with the train they

get off. Equation (15) introduces yl
′,q′

l,u,q to indicate whether train q′ and q constitute an effective connection,

namely whether train q is the first train those transfer passengers alighting from train q′ wait for. Based

on the transfer connection relationships between trains of connecting lines, equation (16) is formulated to

represent the number of passengers transferring from line l′ to l at transfer station u, where βl,q
u denotes the
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transfer ratio.

2.2.4. Objective functions

Concerning both the efficiency and safety of metro operations, our objectives consist of three aspects:

minimizing passenger waiting time, alleviating station crowding, and meanwhile reducing the penalty of

skipping operations.

Time

Train     skip station    

Cumulative waiting numbers at station     of line

Stop

Time

(a) Total waiting time at station (b) Cumulative arrival passengers

Cumulative arrival numbers at station     of line

Figure 1: Illustration of the computation for the passenger waiting time for non-transfer stations.

Firstly, the passenger waiting time includes three parts: the waiting time for the new arrivals before the

arrival of trains, the transfer waiting time if the station provides transfer services, and the waiting time for

those who are left by previous trains and have to wait for the next.

Figure 1 (a) illustrates the two parts of the passenger waiting time at non-transfer stations, i.e., the

waiting time Twt for the new arrivals and the waiting time Tst for those passengers who failed to get on an

previous train. Figure 1 (b) illustrates the cumulative number of those entering station u, through which,

the cumulative number of the new arrivals at time interval t (t ∈
[

Dl,q−1
u , Dl,q

u

]

) can be presented by

ylu (t) =
∑

t′∈[Dl,q−1

u ,t]

pl,u (t
′), ∀l ∈ L, u ∈ U l, t ∈

[

Dl,q−1
u , Dl,q

u

]

(17)

Thus, the passenger waiting time of the new arrivals for train q at station u of line l can be formulated

by

wl,q
u =

∑

t∈[Dl,q−1

u ,D
l,q
u ]

δylu (t) , ∀l ∈ L, u ∈ U l, q ∈ Ql (18)

where δ denotes the length of the time interval t. Then the total waiting time Twt for the new arrivals can

be formulated as

Twt =
∑

l∈L,u∈U l,q∈Ql

wl,q
u (19)
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The waiting time Tst for those stranded at stations due to train capacity limitation or the train skipping

operation is formulated as

Tst =
∑

l∈L,u∈U l,q∈Ql

nst
l,u,q

(

Dl,q+1
u −Dl,q

u

)

(20)

For transfer stations, the transfer waiting time is expressed as

Ttf =
∑

l∈L,u∈Kl,q∈Ql

∑

l′∈Xl,u,q′∈Ql′

g
l′,q′

l,u,q

(

Dl,q
u −Al′,q′

u − el
′

l

)

(21)

Notably, if trains q′ of line l′ and q of line l do not constitute an effective transfer connection, Ttf will be

enforced to be zeros, since g
l′,q′

l,u,q = 0, according to the definition of the number of transfer passengers gl
′,q′

l,u,q

in equation (16). Besides, transfer passengers might fail to board the first coming train after they enter the

transfer platform, due to the limited capacity of trains. In this case, they will be a part of nst
l,u,q. Hence,

the total transfer passenger waiting time can be comprised in the calculation of Ttf and Tst.

Secondly, waiting for 1 minute at a highly crowded station equals 1.7–2.5 minutes under medium-crowding

conditions (Li and Hensher, 2011), and with the increase of station crowding, the probability of stampede

or other accidents will increase rapidly (Jiang et al., 2019). Therefore, minimizing the station crowding is

considered, which is expressed by the number of passengers F under crowding conditions, i.e.,

F =
∑

l∈L,u∈U l,q∈Ql

zl,u,qn
wt
l,u,q (22)

where zl,u,q is the passenger accumulation risk value. Specifically, when the passenger accumulation is small

and the station is in a safe state, zl,u,q should be zeros. When the state of the station becomes unsafe or even

dangerous with the increase in passenger accumulation, the value of zl,u,q should be intensified to strengthen

the penalty for passenger accumulation. A set {1, 2, ..., ϕ} comprising different passenger accumulation levels

is introduced to represent zl,u,q. The value of zl,u,q increases as the level increases, which can be determined

by

zl,u,q =







































0, if 0 6 nwt
l,u,q 6 µ1

ρ1, if µ1 < nwt
l,u,q 6 µ2

..., ...

ρϕ−1, if µϕ−1 < nwt
l,u,q 6 µϕ

ρϕ, if nwt
l,u,q > µϕ

, ∀ l ∈ L, u ∈ U l, q ∈ Ql (23)

where ρ1 ∼ ρϕ denote the passenger accumulation risk values corresponding to accumulation levels 1 ∼ ϕ,

and µ1 ∼ µϕ are the critical boundaries of the number of accumulated waiting passengers between two

accumulation levels.

Finally, considering that the skipping operations inevitably bring the dissatisfaction of passengers that

want to alight at a certain station but the train decides to skip it, it is necessary to introduce the corre-

sponding penalty term to minimize the skipped stations. The penalty term is formulated as

P =
∑

l∈L,u∈U l,q∈Ql

xl,q
u (24)
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Therefore, the objective function is expressed as

J = ξ1(Twt + Ttf + Tst) + ξ2F + ξ3P (25)

where ξ1, ξ2, and ξ3 are positive weights of total waiting time, station crowding, and the penalty of skipped

stations respectively.

2.2.5. The optimization model

According to the above descriptions, the timetable coordination optimization problem with skip-stop

strategies of metro networks will be modelled as

min J = ξ1(Twt + Ttf + Tst) + ξ2F + ξ3P

s.t.















(1)− (6), (8)− (24)

xl,q
u ∈ {0, 1} , ∀l ∈ L, u ∈ U l, q ∈ Ql

S
l,u,q
min

≤Sl,q
u ≤Sl,u,q

max , ∀l ∈ L, u ∈ U l, q ∈ Ql

(26)

The above model is in fact a nonlinear and nonconvex programming model, aiming to reduce the passen-

ger waiting time and alleviate station crowding. Constraints (1)-(3) illustrate skip-stop patterns. Constraints

(4)-(6) describe the train operations. Constraints (8)-(16) model the passenger behaviours. Constraints (17)-

(24) define the total passenger waiting time, station crowding, and the penalty values of skipping operations

of trains for the metro network. The complexity of our formulation is analyzed in Table 3 and specific scales

of our realistic numerical cases are also given.

Table 3: Numbers of significant variables and constraints.

Variables or constraints Total number at most Realistic cases

Binary variable xl,q
u

∑

l∈L

ml · nl 2040

Binary variable θ
l′,q′

l,u,q

∑

l∈L,u∈Kl

∑

l′∈Xl,u

nl · nl′ 4600

Integer variable Al,q
u

∑

l∈L

ml · nl 2040

Integer variable Sl,q
u

∑

l∈L

ml · nl 2040

Train skip-stop constraints (1)-(3) 3 ·
∑

l∈L

ml · nl 6120

Train operation constraints (4), (7) 3 ·
∑

l∈L

ml · nl 10920

Train operation constraints (5)
∑

l∈L

(ml − 1) · nl 1940

Train operation constraints (6)
∑

l∈L

ml · (nl − 1) 1836

Passenger interaction constraints (8)-(12) 5 ·
∑

l∈L

ml · nl 10200

Transfer coordination constraints (13)-(16) 4 ·
∑

l∈L,u∈Kl

∑

l′∈Xl,u

nl · nl′ 18400
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3. Algorithm design

The formulation (26) is a large-scale complex mixed integer nonlinear programming model, involving the

coupling constraints between different lines and between skipped and not-skipped stations, and the complex

interactive process of passengers and trains. It constitutes a high-dimensional nonlinear and nonconvex

optimization problem, and is hard to solve quickly, especially when the network scale is large. In this

paper, a novel decomposition and ADP approach is proposed. Under a tailored parallel coordinate descent

scheme, our original complex network-level problem is transformed into line-level subproblems with DP

formulations, suitable for the efficient ADP method. The overall approach can be considered decentralized,

computationally inexpensive and highly desirable in practical applications.

3.1. Model decomposition in a distributed manner

For our formulation, the coupling relationship between connecting lines exists in (13), (14) and (16). For

the system, e.g., metro networks, with necessary communication among subsystems, the idea of decompo-

sition and parallel implementation is well worth considering to address the obstacle of high computational

complexity to efficient solutions. However, many common processing methods, such as dual decomposition,

are difficult to utilize owing to the nonconvexity of subproblems.

Based on the above considerations, a tailored parallel coordinate descent scheme is introduced, the idea of

which is widely adopted in dealing with large-scale problems with high computational complexity (Necoara

and Clipici, 2013; Wright, 2015; Richtárik and Takáč, 2016; Wu et al., 2018). Specifically, all the variables

in problem (26) are partitioned according to operating lines. For each l ∈ L, the passenger waiting time

and station crowding can be optimized by solving the l-th line-level subproblem (27) as below, where the

variables concerning other lines in coupling constraints, i.e., nal
l′,u,q′ and Al′,q′

u , for u ∈ Kl, l′ ∈ Xl,u, q
′ ∈ Ql′ ,

are considered as fixed, which are denoted as n̂al
l′,u,q′ and Âl′,q′

u . Note that in each iteration, all subproblems

are solved simultaneously, and the fixed values in each subproblem are derived from the update in the

previous iteration to ensure the independence of each subproblem and realize parallelism.

min J l = ξ1(T
l
wt + T l

pf + T l
st) + ξ2F

l + ξ3P
l
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s.t.































































































































































(1)− (6), (8)− (12), (15), (17), (18)

T l
wt =

∑

u∈U l,q∈Ql

wl,q
u,v

T l
st =

∑

u∈U l,q∈Ql

nst
l,u,q

(

Dl,q+1
u −Dl,q

u

)

T l
tf =

∑

u∈Kl,q∈Ql

∑

l′∈Xl,u,q′∈Ql′

g
l′,q′

l,u,q

(

Dl,q
u − Âl′,q′

u − el
′

l

)

F l =
∑

u∈U l,q∈Ql

zl,u,qn
wt
l,u,q

P l =
∑

u∈U l,q∈Ql

xl,q
u

Dl,q
u −

(

Âl′,q′

u + el
′

l

)

> M
(

θ
l′,q′

l,u,q − 1
)

, ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′

Dl,q
u −

(

Âl′,q′

u + el
′

l

)

≤ Mθ
l′,q′

l,u,q, ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′

g
l′,q′

l,u,q = βl,q
u y

l′,q′

l,u,qn̂
al
l′,u,q′ , ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q

′ ∈ Ql′

xl,q
u ∈ {0, 1} , ∀u ∈ U l, q ∈ Ql

S
l,u,q
min

≤Sl,q
u ≤Sl,u,q

max , ∀u ∈ U l, q ∈ Ql

(27)

The line-level subproblem (27) obtained through our decomposition technique is a nonlinear dynamic

programming (DP) problem, which can not only greatly reduce the scale of the original network-level

problem, but also adapt to the application of approximate dynamic programming algorithm to obtain

effective solutions. Specifically, under the DP framework, the skip-stop strategies xl,q
u and dwell times Sl,q

u

are decision variables, the arrival times Al,q
u and the remaining capacity ol,qu of trains are the state variables,

and the corresponding state transition equations can be deduced through equations (4), (5) and (11).

It is noteworthy that, to realize the parallelism of line-level subproblems (27), the variables involving

other connecting lines in coupling constraints are fixed, and the fixed values are derived from the previous

iteration. In this case, the values of state variables and objectives in each line-level subproblem are local,

and slightly biased from the perspective of the whole metro network. Specifically, constraints (13),(14) and

equation (16) in the original problem (26) are reformulated and decomposed in subproblem (27) with the

fixed values n̂al
l′,u,q′ and Âl′,q′

u , for u ∈ Kl, l′ ∈ Xl,u, q
′ ∈ Ql′ , which results in the infeasibility of solutions with

contradictions among the values of timetabling variables, connection variables and passenger flow variables.

Accordingly, we design an event-based algorithm to present procedures of feasibility recovery. Note that

(1)-(7) keep intact in subproblems owing to their independence for each line, so the timetables obtained by

solving all subproblems are feasible for train operations in metro networks. Therefore, we utilize this special

property to readjust the values of connection and passenger flow variables with the fixed feasible timetables.

Hence, the fixed values and objectives globally update with the timetables obtained after the completion of

all subproblems in each iteration, as shown in Algorithm 1.

In Algorithm 1, for each iteration of our parallel scheme, the values of dwell times Sl,q
u and skip-stop

strategies xl,q
u from solving subproblems (27) are set as inputs, the updated values of objective function J ,

and the fixed values n̂l,q
u , Âl,q

u are outputs, for l ∈ L, u ∈ U l, q ∈ Ql. In the process, the study horizon

is divided into multiple intervals based on transfer arrival events. During each interval, the corresponding

target train operation events are determined, the passenger behaviours are recalculated, and the number
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Algorithm 1 Feasibility recovery in the tailored parallel coordinate descent scheme.

Step 1: Initialize the number of alighting passengers n̂al
l′,u,q′ = 0 at transfer stations, for l ∈ L,

u ∈ Kl, q ∈ Ql.
Step 2: Divide the study horizon T into multiple intervals, i.e., T = [1, 2, ..., cmax], according to

transfer arrival events (Al,q
u + el

′

l , ∀l ∈ L, u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u ) determined from solutions of
subproblems (27).
Step 3: Determine the sets of target lines Lc, target stations Uc,l and target trains Qc,l,u at each
interval based on departure times determined from solving subproblems (27). Specifically, if the
departure time Dl,q

u is between two transfer arrival events, the line-station-train sequence l-u-q
is considered to be located in the corresponding interval.
Step 4: Do for interval c = 1, ..., cmax.

Step 4a: Do for each target train q ∈ Qc,l,u at station u ∈ Uc,l of line l ∈ Lc in interval c.

Step 4b: Calculate transfer connection relationship θ
l′,q′

l,u,q, for l
′ ∈ Xl,u, q

′ ∈ Ql′ , using constraints

(13) and (14).

Step 4c: calculate the number of transfer passengers gl
′,q′

l,u,q using equation (16) with θ
l′,q′

l,u,q from

Step 4b, and the number of alighting passengers n̂al
l′,u,q′ from the previous intervals, for l′ ∈ Xl,u,

q′ ∈ Ql′ .
Step 4d: Calculate passenger behaviours using (8)-(12), and pass updated values of the number
of alighting passengers at transfer stations to the next interval.

Step 5: Update the objective value J using (17)-(25). Set Âl,q
u = Al,q

u , for l ∈ L, u ∈ Kl, q ∈ Ql.

Step 6: Output the updated objective value J and the updated fixed values Âl,q
u and n̂al

l′,u,q′ for

l ∈ L, u ∈ Kl, q ∈ Ql.

of alighting passengers at transfer stations are passed to the next interval to participate in the calculation

of the number transfer passengers. Note that the generation of transfer flows occurs at the bound of two

intervals, namely the event used for dividing horizons. Hence, it will not affect the target train events and

corresponding passenger behaviours belonging to the previous intervals, ensuring the accuracy of transfer

flows for the overall metro network in the process.

Note that through our tailored parallel scheme, the network-level complex problem is converted into

line-level subproblems (27) with desirable DP property. Although the subproblem still maintains the high

computational challenge of nonconvexity and nonlinearity, it is suitable for an ADP approach to realize fast

solution.

3.2. ADP approach to subproblems

Approximate dynamic programming (ADP) is a useful method to deal with problems of maximizing or

minimizing rewards through learning strategies in the process of interaction between agents and environ-

ments, which effectively avoids the curse of dimensionality of traditional DP (Papageorgiou et al., 2015; Liu

et al., 2018; He et al., 2022). For our subproblem (27), the corresponding framework and solution method

are introduced as follows.

3.2.1. ADP framework.

To apply the ADP method, our subproblem (27) is transformed into a multi-stage decision optimization

problem. Decisions (i.e., dwell times and skip-stop strategies) made at a certain stage (i.e., for a station) have

impacts on future results (i.e., train arrival times, remaining capacity of trains, and the waiting passengers).

The basic elements of ADP, i.e., the action, state, and reward function, are described as follows.
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Firstly, for our line-level timetabling subproblem, the action vector alu,q ∈ A
l
u,q is specified as the dwell

times, and whether trains skip stations. Al
u,q is the set of possible actions for train q at station u of line l. At

each stage, i.e., each station, the train will take actions according to the current state, i.e., alu,q = [Sl,q
u , xl,q

u ],

∀u ∈ U l, q ∈ Ql.

Secondly, in the interaction between trains and passengers, the arrival times of trains will influence the

distribution of waiting and loading passengers, and meanwhile, the passenger behaviours will also affect ad-

justments of the arrival time through optimizing the objective function. Therefore, we define the state vector

zlu,q ∈ Z
l
u,q as the arrival time, train remaining capacity and waiting passengers, i.e., zlu,q = [Al,q

u , ol,qu , nwt′

l,u,q]

, ∀u ∈ U l, q ∈ Ql where Zl
u,q is the set of possible states for train q at station u of line l. nwt′

l,u,q is the number

of waiting passengers when train q arrives.

When train q arrives at station u of line l at state zlu,q, it makes decisions alu,q = A
π
(

zlu,q
)

with policy

π to determine the skip-stop strategies and dwell times, where policy π is a mapping from the state to the

action. Actually, with a policy, a unique decision will be determined at a state. Then the train leaves for

station (u + 1) at state zlu+1,q, which is derived from the state transition functions. Specifically, the state

transition of the remaining capacity o
l,q
u+1 of trains can be expressed as equation (11). Based on (4) and (5),

the state transition of the arrival time A
l,q
u+1 is formulated as

Al,q
u = A

l,q
u−1 +R

l,q
u−1 + S

l,q
u−1

(

1− xl,q
u

)

, ∀u ∈ U l, q ∈ Ql (28)

The number of waiting passengers nwt′

l,u,q, when train q arrives, is calculated by

nwt′

l,u,q =
∑

t∈[Dl,q−1

u ,A
l,q
u ]

plu (t) +
∑

l′∈Xl,u,q′∈Ql′

g′
l′,q′

l,u,q + nst
l,u,q−1, ∀u ∈ U l, q ∈ Ql (29)

where g′
l′,q′

l,u,q represents the number of waiting transfer passengers when train q arrives. Based on the idea

of replacing Dl,q
u in constraints (13) and (14) with Al,q

u , g′
l′,q′

l,u,q can be calculated by

Al,q
u −

(

Al′,q′

u + el
′

l

)

> M
(

θ′
l′,q′

l,u,q − 1
)

, ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′ (30)

Al,q
u −

(

Al′,q′

u + el
′

l

)

≤ Mθ′
l′,q′

l,u,q, ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′ (31)

y′
l′,q′

l,u,q = max
{

0, θ′
l′,q′

l,u,q − θ
l′,q′

l,u,q−1

}

, ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q
′ ∈ Ql′ (32)

g′
l′,q′

l,u,q = βl,q
u y′

l′,q′

l,u,qn̂
al
l′,u,q′ , ∀u ∈ Kl, q ∈ Ql, l′ ∈ Xl,u, q

′ ∈ Ql′ (33)

Based on the objective function (25), we can decompose it to construct the reward function for each

train q ∈ Ql, at each station u ∈ U l, as:

Γ
(

zlu,q, a
l
u,q

)

=Γ
(

Al,q
u , ol,qu , nwt′

l,u,q, S
l,q
u , xl,q

u

)

=ξ1
[

wl,q
u,v + nst

l,u,q

(

Dl,q+1
u −Dl,q

u

)]

+ ξ2zl,u,qn
wt
l,u,q + ξ3x

l,q
u , ∀zlu,q ∈ Z

l
u,q, a

l
u,q ∈ A

l
u,q (34)

where the first term denotes the passenger waiting time for the train q at station u of line l, the second term

means the corresponding station crowding, the third term involves the penalty of train q skipping station u.

Hence, our goal is converted into finding a policy π minimizing the total rewards for all trains at all stages,

i.e., min
π

∑

q∈Ql

∑

u∈U l Γ
(

zlu,q,A
π
(

zlu,q
))

.
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3.2.2. Solution method.

Based on the ADP framework, an efficient method for line-level subproblems based on lookahead policy

and approximation value iteration is introduced to quickly obtain an approximate optimal solution. For the

train timetable optimization problem, we need to determine the dwell times and whether to skip stations

for each train. In this process, the idea of the lookahead policy is adopted to combine an approximation

of future information with future actions (Powell, 2007), and the approximate optimal timetables will be

attained by considering the influence of actions on subsequent stages. The goal of our line-level problem can

be represented as an optimal policy given by

A
∗
(

zlu,q
)

= argmin
al
u,q∈Al

u,q







Γ
(

zlu,q, a
l
u,q

)

+min
π

E





∑

q∈Ql

ml
∑

u′=u+1

Γ
(

zlu′,q,A
π
(

zlu′,q

))

|zlu,q











(35)

which shows that the impacts of subsequent stages are considered in the decision process of train timetables.

Besides, the Bellman’s equation is derived since (35) is usually difficult to solve directly, i.e.,

V l
u,q

(

zlu,q
)

= min
al
u,q∈Al

u,q

{

Γ
(

zlu,q, a
l
u,q

)

+ γE
[

V l
u+1,q (z

′) |zlu,q
]}

, ∀zlu,q ∈ Z
l
u,q, a

l
u,q ∈ A

l
u,q, q ∈ Ql, u ∈ U l

(36)

where V l
u,q

(

zlu,q
)

means the value of state zlu,q, γ denotes the discount factor and γ ∈ (0, 1], while z′ denotes

all the possible states at state zlu,q with action alu,q. Hence, the lookahead policy at state zlu,q can be realized

using

alu,q = arg min
al
u,q∈Al

u,q

{

Γ
(

zlu,q, a
l
u,q

)

+ γE
[

V l
u+1,q (z

′) |zlu,q
]}

, ∀zlu,q ∈ Z
l
u,q, a

l
u,q ∈ A

l
u,q, q ∈ Ql, u ∈ U l (37)

In our approach, the value function approximation is realized by the lookup table strategy, and the key

point of the approach is how to choose actions, i.e., dwell times of train Sl,q
u and skip-stop strategies xl,q

u ,

where the adopted function is

v̂l,ωu,q = min
al
u,q∈Al

u,q

[

Γ
(

Al,q
u , ol,qu , nwt′

l,u,q, S
l,q
u , xl,q

u

)

+ γV̄
l,ω−1

u+1,q

(

A
l,q
u+1, o

l,q
u+1, n

wt′

l,u+1,q

)]

(38)

where ω represents the number of iterations, the action alu,q = [Sl,q
u , xl,q

u ], V̄ l,ω
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

denotes the

value approximation of V l
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

at state [Al,q
u , ol,qu , nwt′

l,u,q] in the ω-th iteration, which is de-

rived from recurrence equation (39). In the decision-making process, the actions concerning dwell times and

skip-stop strategies are obtained from the above minimization problem. Actually, solving the minimization

problem can be realized by calculating the value of v̂l,ωu,q using each discrete action. This process is indepen-

dent for each action, thus supporting a parallel implementation, which contributes to the acceleration of the

algorithm. Meanwhile, v̂l,ωu,q is used to realize the update of value function approximation, using

V̄ l,ω
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

= (1− ηω−1) V̄
l,ω−1
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

+ ηω−1v̂
l,ω
u,q (39)

where ηω ∈ (0, 1]. Furthermore, we adopt the time-varying ǫ−greedy strategy in our decision-making phase,

which can endure more “exploration” during earlier periods and more “exploitation” during later periods

by defining ǫ as a function decreasing with iteration, so as to improve the final solution quality. Algorithm
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2 illustrates the process of solving subproblems, where for each iteration of our parallel scheme, the value of

action alu,q concerning timetabling variables are outputs of solving the l-th subproblem, for u ∈ U l, q ∈ Ql.

Algorithm 2 Procedure of ADP approach for solving the l-th subproblem (27).

Step 1: Initialization.

Step 1a: Initialize the value approximation V̄ l,0
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

.

Step 1b: Initialize the states, i.e., the arrival time TA
l,q
1 , the train remaining capacity o

l,q
1 and

waiting passengers nwt′

l,1,q at the first station.

Step 1b: Initialize the policy A
π
(

Al,q
u , ol,qu , nwt′

l,u,q

)

used for determining train timetables.

Step 1c: Set iteration number ω = 1.
Step 2: Do for q = 1, 2, ..., nl.

Step 2a: Do for u = 1, 2, ...,ml − 1.
Step 2b: Determine the timetabling action alu,q = [Sl,q

u , xl,q
u ], namely the dwell times and skip-stop

strategies at the ω-th iteration using [Sl,q
u , xl,q

u ] = A
π
(

Al,q
u , ol,qu , nwt′

l,u,q

)

at the (ω − 1)-th iteration.

Step 2c: Update the subsequent state zlu+1,q = [Al,q
u+1, o

l,q
u+1, n

wt′

l,u+1,q]. Specifically, calculate the arrival

time A
l,q
u+1 using (28), the remaining capacity o

l,q
u+1 using (11), and the waiting passengers nwt′

l,u+1,q using

(29), at station (u+ 1), with Al,q
u , ol,qu , nwt′

l,u,q and timetabling action alu,q at station u from Step 2b.

Step 3: Update value function approximation using

V̄ l,ω
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

= (1− ηω−1) V̄
l,ω−1
u,q

(

Al,q
u , ol,qu , nwt′

l,u,q

)

+ ηω−1v̂
l,ω
u,q

Step 4: Update the policy using

A
π
(

Al,q
u , ol,qu , nwt′

l,u,q

)

=















Choose an action alu,q = [Al,q
1 , Sl,q

u , xl,q
u ] randomly from the set Al

u,q, if P l
u,q 6 ǫ

arg min
al
u,q∈Al

u,q







Γ
(

Al,q
u , ol,qu , nwt′

l,u,q, S
l,q
u , xl,q

u

)

γV̄
l,ω
u+1,q

(

A
l,q
u+1, o

l,q
u+1, n

wt′

l,u+1,q

)







, otherwise

where P l
u,q 6 ǫ means that the timetabling action alu,q = [Al,q

1 , Sl,q
u , xl,q

u ] will be randomly chosen from
A

l
u,q with probability ǫ.

Step 5: Increment ω. If ω < ωmax, go to Step 2.
Step 6: Output the final timetabling action alu,q = [Sl,q

u , xl,q
u ] , for u ∈ U l, q ∈ Ql.

According to literatures (Mohri et al., 2018; Powell, 2007), for Algorithm 2, the approximate value

function sequence is convergent, which is presented as the following proposition:

Proposition 3.1. For Algorithm 2, given by the update rule (39), the approximate value function sequence
{

V̄ l,ω
u,q

}

converges to the optimal value V l
u,q as ω → ∞, i.e., each state-action pair is visited infinitely many

times, for l ∈ L, u ∈ U l, q ∈ Ql.

According to Proposition 3.1, when all state-action pairs are visited infinitely often, ADP algorithm

will converges to the optimal value V l
u,q. Based on this, in our impure exploitation algorithms, we use the

best action that appears so far to provide high-quality train timetables. Concerning the stopping condition,

reaching the maximum iteration ωmax marks the completion of the ADP method to the l-th subproblem.

3.3. Overall procedure of decomposition and ADP algorithm

Overall, with the tailored parallel coordinate descent scheme and approximate dynamic programming

approach, we design an efficient decomposition and ADP approach to provide the network-level train

timetabling strategies. In our approach, the original complex problem is converted into many line-level
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subproblems. It ensures parallelism and DP characteristics of subproblms suitable for ADP method to

quickly solve, so as to lighten the computation burden. The complete solution procedure of decomposition

and ADP algorithm is summarized in Algorithm 3, and illustrated as flowchart in Figure 2.

Algorithm 3 Procedure of decomposition and ADP algorithm

Step 1: Initialization.

Step 1a: Initialize the values of arrival times of trains Âl,q
u (0), and the number of alighting passengers

n̂al
l,u,q(0), for l ∈ L, u ∈ Kl, q ∈ Ql.

Step 1b: Set iteration number τ = 1.
Step 2: Solve subproblems in parallel using Algorithm 2 to obtain actions concerning train timetables
Aτ =

{

Sl,q
u , xl,q

u

∣

∣l ∈ L, u ∈ U l, q ∈ Ql
}

at the τ -th iteration, with the fixed values of arrival times

Âl′,q′

u (τ − 1) of trains and the number of alighting passengers n̂al
l,u,q(τ − 1) at the (τ − 1)-th iteration.

Step 3: Update the value of objective Jτ , the fix values of Âl′,q′

u (τ) and n̂al
l,u,q(τ), for l ∈ L, u ∈ U l, q ∈ Ql,

using Algorithm 1 at the τ -th iteration.

Step 4: Update the timetabling action sequence by Aτ =

{

Aτ , if Jτ 6 Jτ−1

Aτ−1, otherwise
, and the objective value

by Jτ = min
{

Jτ , Jτ−1
}

at the τ -th iteration.
Step 5: Increment the iteration number τ . If τ < τmax, go to Step 2, where τmax denotes the maximum
iterations.
Step 6: Output the final timetabling action sequence Aτ and the final objective value Jτ .

The proposed approach effectively lightens the computation burden to obtain high-quality solutions

quickly. Besides, compared with centralized implementation, the parallel structure allows higher reliability

and flexibility. The non-increasing property of Algorithm 3 is given as the following theorem:

Theorem 3.1. For Algorithm 3, let Jτ and Aτ be obtained by our distributed coordinated descent scheme.

Then, for τ = 1, 2, ..., the iterative objective value sequence {Jτ} is a monotonically non-increasing and

convergent sequence.

Proof. For Algorithm 3, the objective value is updated by Jτ = min
{

Jτ , Jτ−1
}

6 Jτ−1 We can conclude

that {Jτ} is monotonically non-increasing. Since {Aτ} is the sequence of feasible solutions of (26), the

values of Jτ for τ = 1, 2, ... are bounded below by the optimal value J∗ of (26). Hence, the below-bounded

non-increasing sequence {Jτ} for τ = 1, 2, ... can be proved as a convergent sequence.
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Figure 2: Illustration of decomposition and ADP approach for timetable coordination optimization.

Based on the above, the original large-scale network-level problem is decomposed into multiple line-level

subproblems to compute in parallel in Algorithm 3. It effectively lightens the computation burden to obtain

high-quality solutions quickly. Compared with centralized implementation, the distributed structure allows

higher reliability, fault tolerance and flexibility. When new metro lines are introduced to the study network,

only those lines connecting with them are affected in the algorithm. Besides, according to Theorem 1, the

non-increasing property of Algorithm 3 is proved, {Jτ} is a convergent sequence for τ = 1, 2, .... It ensures

to a certain extent that a high-quality approximate optimal solution can be found after a certain number

of iterations, which can provide reliable and feasible train timetables for metro networks when the stopping

condition is satisfied. Concerning the stopping condition, we can consider the number of iterations, the best

objective value remaining unchanged for several consecutive steps, and so on. The actual performance of

our algorithm is tested in Section 4.
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4. Numerical Examples

The performance of our optimization model and solution algorithm are tested in two metro networks: a

simplified network with three metro lines, and a real-world metro network based on Beijing Subway. Both

are implemented by by MATLAB R2021a with Gurobi 9.1.2 on the Windows 10 PC (Core i5-8400 CPU, 16

GB RAM).

4.1. Experiment 1: a simple network

In this experiment, a small-scale network consisting of three operating lines is considered, as shown in

Figure 3. There are seven stations on each line. Station 3 of line 1 and station 4 of line 2 are the same

physical station providing transfer services, while Station 5 of line 1 and station 4 of line 3 are the same

physical transfer station. For this case network, a total of 15 trains are considered. The lower and upper

limits to dwell time are 30 s and 60 s. The minimum headways are 200, 240, 200, for line 1, 2, 3, respectively.

The running times between stations are considered given and fixed, which are set as [100 s, 120 s, 110 s,

120 s, 115 s, 110 s], [115 s, 105 s, 120 s, 125 s, 120 s, 115 s], [105 s, 115 s, 120 s, 100 s, 115 s, 120 s].

The average transfer walking time is 120 s. The passenger demand profiles for different stations of different

lines are shown in Figure 4. The train capacity is taken as 100 pax. Regarding the parameters of station

crowding, the accumulation risk values are set as 30 and 50, and the corresponding critical boundaries are

80 pax and 150 pax. The weights in the objective, ξ1, ξ2 and ξ3 are set as 1, 10 and 1000, respectively.

Concerning the specific values of parameters related to our algorithm, the discount factor γ = 0.98, η = 0.8;

the proportion ǫ = ω−0.5, changing with iteration ω; the maximum iteration for solving subproblems is 500,

and the maximum iteration in distributed scheme is set as 100.

Transfer station

Transfer station

Line 1

Line 3Line 2

Figure 3: Illustration of the simple metro network.
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Figure 4: Passenger demand profiles for the simple network.

Given the above parameters, the model applied to the simple network can be solved. The iterative

processes of our overall approach (Algorithm 3) and solving a subproblem (Algorithm 2) are given in Figure

5. It is clear that our approach converges after 34 iterations in 5 (a), and the best objective value of the

subproblem keeps relatively stable after 358 iterations in the internal process in 5 (b).
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Figure 5: The iterative processes of Algorithm 3 for the case.

4.1.1. Performance analysis.

In this section, we conduct experiments on the simple network with the following three timetable sce-

narios: Case 1: The timetable with fixed dwell times (the minimum dwell times). Case 2: The optimized

timetable with skip-stop strategies (no coordination). In this case, skip stopping is allowed while the train
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timetable of each line is determined independently by ADP algorithm. Case 3: The optimized timetable

with coordination between lines (no skip-stop strategy). In this case, skip stopping is not allowed while the

network-level train timetables are determined by decomposition and ADP algorithm. Case 4: The timetable

optimized for coordination and skip-stops, namely the proposed approach in this paper. We analyze the

performances of the three timetables on the passenger waiting time, station crowding, number of skipped

stops and the combined objectives. The computational results are presented in Table 4. We can conclude

that:

Table 4: Comparison of results under different strategies for the simple network.

Performance index Case 1 Case 2 Case 3 Case 4

Pssenger waiting time / 106 1.249 1.095 1.068 1.063
Station crowding / 104 13.494 7.964 7.190 5.464
Number of skipped stops 0 5 0 6

Objective function value / 106 2.598 1.896 1.787 1.615

The optimized timetables significantly reduce passenger waiting time and station crowding. Compared

with the non-optimized timetable (Case 1), the optimized timetables with different strategies (Case 2, 3,

4) make marked improvements in varying degrees. Specifically, by adjusting the dwell times and skip-

stop strategies, the passenger waiting time under three optimized timetables (Case 2, 3, 4) is reduced by

12.32%, 14.46%, and 14.91%, the station crowding is alleviated by 40.98, 46.72%, and 59.51%, while the

total objective value is improved by 27.01%, 31.21%, and 37.84%, respectively.

For the optimized timetable with skip-stop strategies but no coordination (Case 2), the performance of

it is the worst among the three optimized timetables. The total waiting time is up to 1.095 ·106, the station

crowding is 7.964 ·104, and the objective value is 1.896 ·106. This is mainly because such an independent

optimization without coordination fails to consider transfer flows during the decision process, resulting in

an inaccurate depiction of the interaction among passenger flows, trains and stations. Moreover, when the

dwell times and skip-stop strategies decided based on such inaccurate interactions, are loaded into a network

with a certain amount of transfer coupling, the performances lower than expected are obtained.

Under the optimized timetable with coordination between trains of different lines, but no skip-stop

strategy (Case 3), the passenger waiting and station crowding are reduced by 2.44% and 9.72% compared

with Case 2. The advantage of Case 3 over Case 2 is mainly since it can exactly capture the transfer demand,

which can ensure that the obtained decisions for trains are effective in improving the total objective value

of the whole metro network.

Our proposed approach (Case 4) coconsider coordination between lines and the skip-stop strategy, realize

a further improvement over Case 3. The passenger waiting, station crowding, and the combined objective

value are improved by 0.53%, 24.00% and 9.64% over Case 3, respectively. We note that with the skip-stop

strategy, the improvement mainly reflects in station crowding. The reason is that the skip-stop strategy

allows trains to selectively skip some stations to balance the capacity resources of trains plus stations,

and the dynamic and uneven passenger demand, thus relieving the pressure of crowded stations. On the

premise of accurately describing the transfer demand, the effective skip-stop strategy and dwell times of

trains are formulated to improve the passenger service quality and operational safety for metro networks,

thus achieving the best optimization effect among the three optimized timetables.

To further illustrate the effect of skip-stop strategies and coordination optimization. We now examine
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the optimized timetables in detail. Figure 6 presents the train timetables of line 1 with waiting passenger

distribution under 4 cases. In this figure, bars represent the number of waiting passengers on platforms, and

different colors (i.e., green, yellow, and red) indicate the different passenger accumulation levels of stations

(i.e., safe, not safe, and dangerous) divided according to the values of critical boundaries for passenger

accumulation. Specifically, the station is in a safe state, when the number of waiting passengers is less than

80 pax; an unsafe state, when it belonging to [80, 150] pax; a dangerous state, when it is greater than 150

pax. Lines describe the train trajectories, and red lines mean the train skipping operations.

From Figure 6, the passenger accumulation at transfer stations with high demand under Case 1 is the

most serious. Under Case 1, the dangerous state has occurred three times, and in the worst case (departure

of train 5 from station 5), there are more than 200 passengers waiting. This shows that it is difficult to

alleviate station crowding simply by minimizing dwell times to increase departure frequency, thus increasing

the risk of safety accidents on platforms. Under Case 2, two skipping operations are performed, i.e. train

4 skips station 4 and train 5 skips station 2, which helps to relieve the crowding of the downstream busy

stations, i.e. station 5. However, since Case 2 does not consider the transfer coordination between lines, the

dwell times and skip-stop patterns of trains are determined based on inaccurate passenger flows. As a result,

despite the asistance of skip operation, the station crowding is still serious, especially the transfer station 5

is always in an unsafe and dangerous state. For Case 3, the transfer coordination is taken into account, and

thus the crowding of busy transfer station 5 is alleviated, compared with Case 2 without coordination. Both

the number of unsafe states and the number of waiting passengers in dangerous states are reduced. However,

for lack of flexible skip-stop patterns, the improvements are limited. Regarding our proposed approach, i.e.,

Case 4, thanks to the combination of the skip-stop strategy and transfer coordination, the station crowding

is minimal among all cases. The number of safe states is the largest, and there is no dangerous state. A

total of three skipping operations are executed, i.e. train 1 skips station 4, train 3 skips station 2, and

train 5 skips station 2. We observe that there is a common regular pattern to such skip-stop operations,

namely if the previous train skipped the station, the number of waiting passengers increases when the next

train arrived since a certain number of passengers are stranded on platforms by the previous train. Note

that in our strategies, trains are more likely to skip stations with low passenger flow at that time, which

results in the waiting numbers on platforms still do not exceed the critical capacity in spite of obvious

increases when the next train arrives (i.e., train 2 at station 4 and train 4 at station 2). Meanwhile, the

effect of skipping operations for downstream stations is significant, especially for the transfer station with

high demand. Trains skipped upstream station 2 with relatively lower passenger demand to be equipped

with more space to accommodate the waiting passengers at downstream stations 3, 4, and 5, which brings

significant alleviation of the pressure of the crowding transfer station 5 compared with other cases. The

comparison of results in Table 4 also verifies the above observations, which is of significance to prevent or

reduce crowding at stations and then improve safety and reliability for the metro network.
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Figure 6: Illustration of the train timetables with the waiting passenger distribution.

4.1.2. Performance comparison with other algorithms.

For the purpose of verifying effectiveness of our decomposition and ADP algorithm (DADP), we compare

the optimized results with simulated annealing algorithm (SA) and genetic algorithm (GA), widely adopted

in solving train timetable optimization problems (Jamili and Aghaee, 2015b; Guo et al., 2017; Robenek

et al., 2018).

For the parameters of SA, the initial temperature is 100. A geometric cooling schedule with the cooling

rate 0.98 is adopted. The algorithm stops if the current temperature is smaller than 0.05. The number of

iterations at each temperature is 20. Concerning the neighborhood structure, a neighbor solution is obtained

by randomly selecting a few components of the current solution to be changed provided that the feasibility

is guaranteed. The number of components selected decreases as the temperature decreases. The setting

of parameters for GA is as follows. The population size is 40. The number of maximum generations is

predetermined as 1000. The algorithm stops if the maximum number of generations are obtained. The

crossover rate is 0.6, and the mutation rate is 0.4. Besides, in the process of selection, the roulette method

and elite retention strategy are used to maintain stability of population. In the process of crossover and

mutation, we adopt the multi-point crossover strategy. The number of points selected decreases as the

iteration increases. The search processes concerning the two algorithms and our DADP algorithm are shown
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in Figure 7. Obviously, with increase of iterations, all of them show improvements in decreasing the best

objective values, and the values maintain relatively stable during 1000 iterations.
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Figure 7: Trend of the objective value in GA, SA and ADP for the simple network.

Table 5 gives the comparison among different algorithms for our problem. We first check the quality

of solutions. The final objective function values obtained by the three algorithms are close. The objective

function value of SA is the minimum, i.e., 1.603 ·106. The value of DADP is 1.615 ·106, slightly larger than

SA. GA obtains the worst solution and the objective function value is 1.625 ·106. Regarding the computation

time, among the three algorithms, GA, as a classical swarm intelligence-based method, the computation time

is the largest (181.107 s), since each iteration involves the operations of multiple solutions (i.e. a population).

SA, as a neighborhood-based method, presents higher computational efficiency in this small-scale case. The

computation time is 31.387 s. Our decomposition and ADP approach takes the minimum computation time,

i.e., 27.802 s. For the small-scale case, SA obtains the solution with the minimum objective function value,

our DADP algorithm generates a solution with the similar-quality solution with a shorter computation time.

The performance of GA is the worst, it takes a the longest time (149.729 s and 153.304 s longer than SA

and DADP) to get the worst solution (1.36% and 0.64% larger than SA and DADP). Totally, DADP and SA

behave similarly in this small-scale case, with slight advantages in computation time and solution quality

respectively. However the advantage of our DADP approach will be prominent in solving the problem

involving large-scale network.

Table 5: Comparison of optimization results of different algorithms for the simple network.

Algorithm
Passenger waiting

time / 105
Station

crowding / 104
Number of

skipped stops
Objective function

value / 106
Computation

time (s)

SA 9.535 6.440 6 1.603 31.378
GA 10.418 5.745 9 1.625 181.107

DADP 10.625 5.464 6 1.615 27.802

25



4.2. Experiment 2: a real-world network

In this part, we implement a set of examples in a large real-world metro network, so as to further test

the effectiveness of our model and approach. Part of Beijing Subway is shown in Figure 8. It consists of 10

operating lines, 205 service stations and 46 transfer service stations, and the considered operation directions

of lines are marked, where there are 32 stations on the longest operating line.
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Figure 8: Illustration of part of Beijing Subway network.

Concerning specific values of relevant parameters, a total of 100 trains is considered. The minimum and

maximum dwell time are 30 s and 60 s, the minimum headway and the number of stations of each line are

given in Table 6. The running time between stations is respectively set according to the actual length of

operating lines and the speed of trains. The train capacity is 1650 pax. Regarding the parameters of station

crowding, the accumulation risk values are set as 30 and 50, and the corresponding critical boundaries are

1000 pax and 1500 pax. The demand information is obtained from historical operating data of the AFC

systems. The average transfer walking time is 120 s. The weights of objectives are set as 1, 10 and 1000,

respectively. For parameters related to the algorithm, the discount factor γ = 0.98, η = 0.8, and the

proportion ǫ = ω−0.5, changing with iteration ω. The maximum iterations for solving subproblems and the

overall distributed scheme are 500 and 100.

Given the above parameters, the model applied to the real-world network can be solved. According to

the result, train timetables of 10 lines with skip-stop patterns can be obtained, in which all operating trains

conduct a total of 74 skipping operations. The passenger waiting time is 2.314 · 108, the penalty value of

station crowding is 6.754·107, and the objective function is 9.068·108. To assess the performance of our model
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Table 6: Parameters about operating lines of the real-world case.

Parameter Line 1 Line 2 Line 4 Line 5 Line 6

Number of stations 23 18 24 23 32
Minimum headways (s) 105 120 120 120 120

Parameter Line 7 Line 8 North Line 8 South Line 9 Line 15

Number of stations 21 19 12 13 20
Minimum headways (s) 180 120 300 120 190

and approach, the comparison of results between the common practical train timetables with fixed headways

and those of our proposed method is given in Table 7. Compared with the practical train timetables, the

objective function value of each line is improved with decreases between 6.828% and 48.473%. For the whole

metro network, the total objective function value is decreased by 19.564%, where the total waiting time

and station crowding are reduced by 21.418% and 18.917%, respectively. The above results present that,

formulating flexible dwell times and skip-stop strategies for trains with our method considering transfer

coordination, the capacity resources of trains plus stations, and the dynamic and uneven passenger flows

can be balanced, thus reducing the passenger waiting time and relieving the pressure of crowded stations,

which contributes to improving the passenger service quality and operational safety for the metro network.

Table 7: Comparison of results under different strategies for the real-world network.

Strategy Performance indicator Line 1 Line 2 Line 4 Line 5 Line 6

Common
practical
timetables

Passenger waiting time /106 15.662 12.660 16.234 57.209 70.808
Station crowding /106 3.713 2.106 1.694 21.088 24.830

Number of skipped stops 0 0 0 0 0
Objective value /106 52.791 33.725 33.169 268.090 319.105

The
proposed
approach

Passenger waiting time /106 11.840 9.599 13.516 45.105 52.747
Station crowding /106 2.198 1.397 1.073 18.214 20.393

Number of skipped stops 3 4 7 15 12
Objective value /106 33.826 23.570 24.251 227.257 256.693

Strategy Performance indicator Line 7 Line 8 North Line 8 South Line 9 Line 15

Common
practical
timetables

Passenger waiting time /106 46.999 36.339 4.043 10.528 23.931
Station crowding /106 10.002 12.434 0.000 1.909 5.523

Number of skipped stops 0 0 0 0 0
Objective value /106 147.022 160.675 4.043 29.617 79.164

The
proposed
approach

Passenger waiting time /106 38.261 29.539 3.762 7.697 19.290
Station crowding /106 8.615 10.406 0.000 0.756 4.490

Number of skipped stops 6 8 5 7 7
Objective value /106 124.413 133.603 3.767 15.261 64.197

Moreover, to further verify the effectiveness of our algorithm for large-scale network-level problems, we

compare the optimized result with that of GA and SA algorithm. For the parameters of SA, the number of

iterations at each temperature is 30. Other parameters and rules, i.e, the initial and stopping temperatures,

the cooling schedule, the stopping condition, and the rule of generating neighborhood solutions, are similar

to those in the small case. The number of components to change each time obtaining neighborhood solutions
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gets increased. For the parameters of GA, the population size is 30. The roulette method, elite retention

strategy, and multi-point crossover strategies are adopted. Other settings are similar to those in the small

case. The number of components in the processes if crossover and mutation is increased. The comparison

of results is given in Table 8. Clearly, for train timetable optimization problems in large-scale networks, the

advantage of decomposition and ADP algorithm is obvious.

Table 8: Comparison of results of different algorithms for the real-world network.

Algorithm
Passenger waiting

time / 108
Station

crowding / 107
Number of

skipped stops
Objective function

value / 109
Computation

time (s)

SA 2.766 7.689 92 1.046 2588.733
GA 2.859 8.000 87 1.086 5156.506

DADP 2.314 6.754 74 0.907 530.712

As shown in Table 8, GA requires maintaining a certain size of the population in each iteration, which

takes up a lot of computation time, especially when the scale of the problem expands to a relatively large

level. Moreover, for the train timetable coordination optimization issue involving the large-scale metro

network, GA fails to search for a good solution (the largest objective value 1.086 ·109) in spite of a long

computation time (i.e., 5156.506 s). SA can generate a better result in a relatively short time (i.e., 2588.733

s), but actually, its advantage of computation efficiency and solution quality in the small-scale case is not

shown in the large-scale case. Compared with the two centralized heuristic algorithms, the decomposition

and ADP algorithm performs best for the large-scale case, both the solution quality (with the minimum

objective value 0.907 ·109) and computation speed (with the minimum computation time 530.712 s) are

the best among the three algorithms. It takes less than 89.708% and 79.499% computation time for our

approach to get an objective value 16.494% and 13.269% better than GA and SA, respectively. In general,

for the train timetable coordination optimization problems in large-scale networks, it takes much a shorter

computation time to generate a solution with higher quality using decomposition and ADP approach.

5. Conclusions

As metro networks rapidly expand, the impact of transfer coordination and unbalanced temporal and

spatial demand distribution on the service level of metro systems is becoming increasingly significant. A

distributed optimization framework is presented in this paper for timetable coordination of metro networks,

providing insights of significance to the efficient generation of train timetables and skip-stop strategies

and bringing fundamental significance to the train operational management theory for metro networks.

Specifically, a nonlinear programming model is formulated to jointly optimize transfer coordination and

skip-stop strategies for metro networks. It aims to generate high-quality timetables for network-level trains,

contributing to service quality for passengers and operational safety at stations. Besides, to apply to the

large-scale nature of our problem, the computation efficiency is an important focus point. Actually, the

large-scale metro network involves complex coupling interaction among non-transfer and transfer passengers

and train capacity, which causes that the proposed model inevitably consists of many binary variables and

noncovex and nonlinear constraints with high computation complexity. Hence, a decomposition and ADP

approach is designed, converting the original large-scale problem into several line-level subproblems, which

can ensure parallelism and DP characteristics of subproblms suitable for ADP method to quickly solve, so

as to lighten the computation burden.
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To demonstrate the validity and practicability of our model and approach, we implement a series of

numerical experiments, consisting of a simple one and a complex realistic one on Beijing Subway. The results

show that our method efficiently contributes to the reduction of total waiting time and the alleviation of

station crowding, so that both service quality and operational safety can be enhanced for the overall metro

network. Besides, compared with traditional heuristic algorithms, our approach can obtain better solutions

with much less computation time for large-scale problems. Additionally, note that passenger behaviours are

affected by many uncertain factors. For these uncertain factors such as transfer walking time, train running

time, a robust optimal strategy will be meaningful in the future research.
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