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Abstract
OpenAI's ChatGPT (GPT‐4) ushers in a superior mode of computer interaction through
natural language dialogues. Notably, it generates not only engaging dialogues but also
codes aligned to queries and requirements. The potential of ChatGPT in hardware
implementation via natural language is implemented and a strategy for “asking the right
questions” is outlined. The versatility of ChatGPT is demonstrated through three
mainstream hardware designs – systolic array, ResNet and MobileNet accelerators –
comparing these with hand‐coded designs. The evaluation metrics include design quality,
design efforts, and limitations of code generated by ChatGPT/GPT‐4/Cursor against
prevalent High‐Level Synthesis or hand‐coded HDL designs. Consequently, a novel
design workflow is proposed and the constraints of using GPT, particularly in AI ac-
celerators, are highlighted.
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1 | INTRODUCTION

Modern algorithms or applications usually require a huge
amount of computing power to maintain real‐time perfor-
mance [1]. With this requirement, modern hardware tries to
keep up with the demanding computing power from the al-
gorithm and many academics and industries have developed
new hardware architectures, for example, the NVidia A100/
H100 GPU, FPGA‐based accelerator and Google TPUs [2, 3].
These hardwares are usually designed using Hardware
Description Language (HDL), which requires designers to have
rich hardware knowledge, and only well‐experienced hardware
engineers can produce high‐quality hardware designs. How-
ever, the modern hardware design is tightly combined with the
requirements from the algorithms and application side, which
means the design philosophy has shifted from hardware‐
oriented to applications‐oriented. Hence, it is necessary to
include algorithm/application developers as the designers of
the hardware.

There are quite a lot of efforts that have been made to
lower the bar of doing hardware design by generating HDL

from High‐Level Languages (HLL), which is the High‐Level
Synthesis (HLS) [4]. The HLS tools can take HLLs as input,
for example, Vivado HLS (C/Cþþ), MyHDL (Python), Lab-
VIEW FPGA (LabVIEW) or HDL Coder (MatLab) [4–7].
These HLS tools significantly reduce the design effort by
hiding some of the hardware complexity from the users and
allowing users to use the HLL syntax for implementing the
design. With HLS tools involved, the design level is moved
from the RTL level to the HLL level.

If we look at the hardware design from the design‐level
perspective, we can clearly see that it has been moved from
the switch level to the HLL level over the last several decades.
The design level moves along with the available resources,
fabrication of the hardware, and the design complexity. Let us
take FPGA as an example. FPGA stands for Field Program-
mable Gate Array, which is a type of programmable logic that
allows users to build hardware on it with limited resources. In
the first stage (the age of invention) of FPGA (1984–1991) [8],
there were very few logic resources, thus, the automatic syn-
thesis, and place & route functions were not necessary on the
design tool chain as users usually tried to reduce the resource
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consumption by manually drawing schematic on the tool [9].
At this stage, some designs require multiple FPGAs, such as
[10]. Thus, an automated tool for multi‐FPGA partitioning was
an important part of the tool. In the second stage (1992–1999),
there were more available resources because of Moore's Law,
optimal resource utilisation was less necessary, and helpful
features for the design process became essential. It became
possible to trade‐off areas for performance and ease of use.
The resulting devices were less silicon‐efficient. In terms of
design automation, FPGAs were becoming too large for
manual design. In 1992, the flagship Xilinx XC4010 had 10,000
gates. By 1999, the number had risen to 1,000,000 in the Virtex
XCV1000. Until then, automatic place and route were
preferred, but not entirely trusted [8]. By the end of the 1990s,
automated synthesis [11] and place and route [12] were
required steps in the design flow. The low‐level hardware
design became more automatic than manual, and vendors tried
to find abstractions for designing hardware on FPGAs since
the design effort was gradually becoming more difficult. As
FPGAs became more popular, Electronic Design Automation
(EDA) companies became more interested in providing tools
for them. In the third stage (2000–2007), FPGAs were com-
mon components of digital systems. The available resources
and the complexity of designs both increased significantly [8].
At this stage, FPGAs often had more available resources than
the application needed. Venders produced libraries of intel-
lectual property cores (IP cores) for important functions. A
valuable IP core was the soft processor (Xilinx MicroBlaze and
Altera Nios) [13, 14]. The characteristics of designs changed in
the 2000s. Large FPGAs enabled large designs that were
complete subsystems. A significant change in this stage was the
design level moving up to the RTL and behaviour level and
away from the gate level. FPGA users were no longer working
simply on implementing logic. Usually, FPGA designs primarily
focused on communication standards for signals and protocols
either to interface with an external system or to communicate
among internal blocks. From 2008 to the present, FPGAs are
no longer thought of as arrays of gates, but as collections of
larger‐scale functional blocks, integrated using programmable
logic. They are still programmable but are not restricted to
Program Logic (PL) and sometimes come equipped with an
on‐chip ARM processor (e.g., Xilinx Zynq series and Intel SoC
series). When implementing an image processing system on
FPGAs, the design effort and risks are emerging as critical
project requirements. Very large image processing systems are
difficult to design efficiently and require very detailed hardware
knowledge to achieve high efficiency. To address this challenge,
vendors have released their High‐Level Synthesis (HLS) tools
to shorten the design time. HLS tools have enabled the syntax
of designs in this stage to move up from VHDL/Verilog to the
C/Cþþ level. Applications are becoming more complex, given
the available resources.

It is easy to observe from history that the design level has
been continually pushed up from the gate level to the RTL
level, then the behaviour level to the HLL level. Thus, given
the current development of ChatGPT/GPT‐4, it is now
possible to push the design level from the HLL to natural

languages through generative AI [15–17]. In this paper, we
focus on analysing the possibility of using the natural language
as the design entry for hardware design through generative AIs
like ChatGPT/GPT‐4.

The main contributions of this work are as follows:

(1) We propose a new way of doing hardware design using
generative AI and choose ChatGPT/GPT‐4 as an example
to show the feasibility of this design entry.

(2) We analyse and evaluate the design quality of the hardware
by generative AI by comparing them with existing hard-
ware designs in terms of area consumption, performance
and design efforts. Then, we come up with a strategy for
asking the “right questions” to GPT‐4 to generate a valid
design.

(3) We provide 3 case studies that include a Systolic array and
two AI accelerators to demonstrate the functionality of our
strategy.

(4) We point out the challenges and future directions in using
generative AI for designing hardware.

The rest of the paper is organised as follows: In Section 2,
we introduce how the generative AI (GPT‐4) can help us with
the designing of the hardware and the detailed reasons why we
need to push the design level urgently. In Section 3, we
demonstrate our strategy of “asking the right question” to
GPT‐4 and discuss the design limitations and challenges of
using GPT‐4 to design and optimise hardware. In Section 4, we
present the case studies: the Systolic Array and two AI accel-
erators for ResNet and MobileNet, comparing GPT‐4 imple-
mentation with existing results using HLS or hand‐coded
HDL. Finally, we draw our conclusions in Section 5.

2 | AVAILABLE GPTS AND THEIR
CAPACITY

2.1 | Available GPTs – ChatGPT, GPT‐4 and
others

ChatGPT [15] is an advanced language model developed by
OpenAI. GPT stands for “Generative Pre‐trained Trans-
former,” which describes the structure and nature of the
model. ChatGPT is designed to understand and generate
human‐like text based on the input it receives, making it
capable of engaging in conversation, answering questions, and
providing information on a wide range of topics.

The underlying technology of ChatGPT is based on deep
learning, specifically using a type of neural network architecture
called transformers. These networks are adept at handling
sequential data and understanding the context of words and
phrases within a sentence. ChatGPT is pre‐trained on a large
dataset of text from various sources, allowing it to have a wide
knowledge base up until its cut‐off date.

ChatGPT (GPT‐3.5) is not specifically designed for pro-
gramming tasks. However, it can provide guidance, sugges-
tions, and explanations on various programming languages,
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concepts, and best practices. According to itself, while it may
not be able to write complex code or debug sophisticated
programs, it can still assist users with general programming
inquiries and help beginners understand key concepts.

GPT‐4 [16], the fourth instalment in OpenAI's “GPT‐n”
series of generative pre‐trained transformer models, is a highly
advanced, multimodal language model. It was launched on
March 14, 2023, and is available to the public in a restricted
manner throughChatGPTPlus, a premium edition of ChatGPT.

Built on the transformer architecture, GPT‐4 is pre‐trained
to predict subsequent tokens using a combination of publicly
available data and data acquired through licensing agreements
with third‐party providers. The model undergoes fine‐tuning
through reinforcement learning, incorporating both human
and AI feedback to ensure alignment with human values and
adherence to policy guidelines.

There are also some other approaches to generate HDL
coding using LLM, for example, Cursor [17], CoT [18],
ChipGPT [19], and RTLLM [20]. All these approaches are
based on ChatGPT and have some modifications to the orig-
inal ChatGPT LLM.

Reference [17] is an AI‐powered integrated development
environment (IDE) that incorporates ChatGPT‐style natural
language processing capabilities with traditional programming
tools. It aims to create a more interactive and intuitive coding
experience by leveraging AI‐assisted features. Cursor uses
GPT‐3.5 or GPT‐4 to help developers with various pro-
gramming tasks, making the development process more effi-
cient and accessible. Some of its key features include:

(1) Coding Assistance: The cursor generates 10–150 lines of
code using an AI that is more advanced than Copilot,
providing intelligent code suggestions and completion.

(2) Check Diffs: Developers can ask the AI to edit a block of
code and review the proposed changes, allowing them to
assess and accept or reject modifications more efficiently.

(3) One‐click Import: Cursor is a fork of VSCode and
bringing over your extensions, settings, and keybindings is
a breeze [17].

CoT [18], an LLM HDL automatic generation especially
for Communication System applications on the FPGA, is
applying ChatGPT to generate a simple FFT function. How-
ever, although this method is approachable, it still requires
deep knowledge of hardware to solve the timing error during
the design. Meanwhile, more and more AI architectures are
being applied in the communication system to enhance its
performance; therefore, it is necessary to have AI architectures,
such as RES‐18, mobile net, and Systolic structures, which are
done in this work as example applications of a communication
System. Only the FFT function is not sufficient.

ChipGPT [19] is an approach established on the ChatGPT,
which could provide designers better performance and
performance‐power efficiency compared with other ap-
proaches like pure GPT or HLS, etc. However, it widens the
gap between the non‐hardware engineers and hardware realm

as it requires users to give detailed hardware specifications and
descriptions like I/O pair and interface information. It runs in
opposite directions of ChatGPT. Moreover, ChatGPT is a
continuously developing LLM, which will provide users with
HDL coding with less and less hardware knowledge required.
Therefore, ChipGPT could only be regarded as a transitional
HDL code generation approach.

RTLLM [20] has similar characteristics as ChipGPT. Un-
fortunately, RTLLM is even worse than ChipGPT when it is
used by non‐hardware engineers. It requires users to input a
designed RTL file (.v), a testbench file (.v), and a function
description file. This approach is more suitable for hardware
design optimisation rather than new hardware code generation.
When non‐hardware engineers chose this approach to generate
HDL coding, they did not have an example of HDL coding.
Furthermore, from the comparison table provided in the pa-
per, ChatGPT‐family‐generated coding accounts for 16 better
aspects, whereas RTLLM‐generated coding only counts 9. This
has proved that RTLLM is less powerful and has a wider gap
between hardware and non‐hardware engineers compared with
pure ChatGPT. Also, same as ChipGPT, this RTLLM will only
be a transitional HDL code generation approach as ChatGPT
develops further.

In a word to sum up, all these approaches will be gradually
disused as the ChatGPT develops. At this stage, these ap-
proaches are usable, but they require users to have adequate
hardware knowledge still. It is the opposite direction compared
with ChatGPT, which they are based on. Moreover, not all of
them could provide a much better design than the pure‐
ChatGPT. Therefore, it is more suitable to use pure
ChatGPT as an HDL code generation tool in the aspect of
performance and future prospect.

2.2 | Design capacity of GPTs

We evaluate the design capacity of GPTs by the following
factors: design speed, supporting languages, testing, continuous
development and processing records.

(1) Speed: GPTs operate at a speed that is significantly faster
than human researchers, particularly those who are just
starting out.

(2) Language Diversity: GPTs support a variety of hardware
description languages, including Verilog, VHDL, and
High‐Level Synthesis (HLS).

(3) Testbench Generation: GPTs are capable of generating a
testbench directly based on the module provided by the
user. This enables quick and easy testing of the design.

(4) Continuous Development: GPTs are continually devel-
oping and learning from user input as well as gathering
information from the Internet. This leads to a constantly
improving performance and knowledge base.

(5) Processing Records: Users can readily access records of
previous development processes. This can be valuable for
reference, further development, and learning.
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2.3 | What we need versus what GPTs
provide

The FPGA design involves designs for different parts as
modern FPGAs are usually associated with an ARM processor.
The initial point of FPGA design is usually the Hardware
Description Language (HDL), such as VHDL, Verilog, and
System Verilog. Then, according to the processor attached to
the FPGA programmable logic, there might be a need to use
C/Cþþ to implement the software part. Functional simula-
tions are then performed to verify the design corrections.
Further, the design is synthesised into a gate‐level represen-
tation and optimised for performance and resource utilisation.
Also, the design is placed and routed to the FPGA device,
following which a static timing analysis is performed to ensure
that timing constraints are satisfied.

GPTs can help us generate hardware description languages
with defined design requirements and specifications [21]. They
can also help resolve timing conflicts and optimise perfor-
mance as well as resource utilisation. However, the hardware
description languages they generate contain occasional inac-
curacies. For instance, there may be instances of inappropriate
use of the for‐loop construct in the code. Furthermore, GPTs
have limited efficacy in optimising performance and resource
utilisation. They can only execute all the given functions if the
instructions provided are sufficiently clear and detailed or
through many patient and detailed instructions. Based on the
design requirements for modern FPGA‐based systems, GPT
cannot generate the software part as it relies on the massive
information that comes from the hardware, including the
address, driver, specialised header files (e.g. xparameters.h) and
non‐standard functions (e.g. xil_printf instead of printf) [22].

2.4 | Design‐level evolution – natural
language entry

FPGA hardware design has undergone a remarkable evolution,
beginning with manual design, transitioning to HDL and HLS,
and now venturing into the realm of natural language interfaces
[23, 24].

In the early stages, before the HDL, developers usually use
manual design and manual place and route for FPGA designs,
because the resources were limited and precious [23]. In
addition, the available resources are usually several hundreds of
logic blocks and it is possible to manually implement FPGA‐

based systems.
The introduction of hardware description languages

(HDLs) like VHDL or Verilog was a step forward in making
FPGA design more manageable and somewhat more abstract
[24]. Even though it supports the behaviour‐level design, users
still have to think in terms of the hardware.

Over time, high‐level synthesis (HLS) tools have the rev-
olutionised FPGA design. These tools allow for hardware
designs to be described in high‐level languages, such as C or
Cþþ, making the process more accessible and significantly
reducing the length of code [25]. By abstracting from the

hardware's intricacies, designers can work faster, manage
complexity better, and operate in an environment closer to
HLL, enhancing both productivity and approachability in the
field.

The most recent progression in the FPGA hardware design
involves natural language entry interfaces, enabled by advanced
AI models like ChatGPT. These systems translate natural
language commands into the functional hardware design code,
eliminating the need for specific coding knowledge and
detailed hardware knowledge [26]. This innovative approach
democratises hardware design further, making it accessible to a
broader user base [26]. Users can now “converse" with the
system, detailing what they want the design to accomplish, and
the AI model generates the corresponding code. This not only
simplifies the design process but also opens up the field of
FPGA hardware design to individuals who may have creative
ideas but lack the necessary technical expertise.

3 | GENERATE VALID CODE USING
GPTS

3.1 | The strategy of “asking the right
questions”

Through the extensive interaction and systematic experimen-
tation with GPT, our team has distilled a strategic methodology
that elucidates how to frame precise enquiries to GPT,
enabling it to formulate comprehensive hardware designs
effectively.

(1) Elucidating the Desired HDL Code Type:

Prior to initiating an interaction, it is imperative to metic-
ulously specify the type of HDL code that one desires to
generate. A clear delineation of whether the required code is in
Verilog, VHDL, or another HDLs is crucial to aligning the
subsequent output with the intended design objectives.

(2) Unveiling the Structure of the Envisioned Module:

A concise yet comprehensive introduction of the envisaged
module's structure is paramount. The delineation of the
structural elements, including the interface definitions, internal
states, and variable declarations, provides a foundational
framework upon which GPT can construct the detailed code
segments.

(3) Detailing Distinct Module Functions:

It is equally vital to methodically introduce the functions of
the module, addressing each one individually. For each func-
tion, one should furnish sufficient detail, elucidating the role,
the expected input and output, and any intricate logic or
computations involved. By decomposing the module into its
constituent functions and detailing their intricacies, users can
guide GPT in crafting nuanced and accurate functional blocks.
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(4) Adhering to Specific Formatting Conventions:

In circumstances where the generated code must conform
to formatting conventions or styles, users are advised to
incorporate adequate explanatory notes and illustrations. Pre-
senting contextual examples, accompanied by succinct expla-
nations, facilitates a clearer understanding for GPT, allowing it
to generate codes that are congruent with the specified
formatting and stylistic norms.

By adhering to this nuanced strategy, users can significantly
enhance the precision and relevance of the generated hardware
design, thereby achieving a more harmonious synergy between
human intent and machine‐generated output. This refined
approach ensures that GPT understands the requisites and
nuances of the task at hand, culminating in outputs that are
coherent, logically sound, and well‐aligned with the user's
design objectives.

3.2 | Design limits of GPT

The first limitation of using GPT to generate a hardware
design is the limited domain‐specific knowledge. For some
algorithms, GPT will generate incorrect codes, which need
more detailed descriptions and orders. Since GPT is a gener-
ative AI tool, it could only pop out based on training data.
Therefore, in some specific fields where the information is
limited in its training process, GPT sometimes could generate
codes with syntax errors and users have to point it out to
prevent GPT from continuously generating code with syntax
errors.

The second limitation is that the GPT does not understand
the coding style of hardware design and the philosophy of
hardware design. For example, for the For Loop, GPT nor-
mally could not generate the correct For Loop until the user
gives an order. It requires really detailed instructions like “use
always and counter to replace For Loop. As mentioned before,
GPT's outputs are more based on its training data”. Verilog
coding is totally different from the software because it focuses
on how the hardware is built and organised. Therefore, it is not
available to generate correct Verilog coding by purely
mimicking software codings. For example, GPT prefers to
generate software‐style For Loop in Verilog coding even if it is
given the order to stop using it. For Loop sometimes could
lead to iterative hardware and large resource consumption in
hardware designs. Moreover, GPT has no idea on how to
proceed with parallel computing in Verilog. Researchers at least
can read Verilog code to revise codes manually or give in-
structions in detail.

The third limitation of GPT is that it may sometimes
generate code with syntax errors. This issue sometimes aligns
with the software‐style coding, for example, the declaration of
variables inside a look or an always block or using some
functions in software only. GPT prefers to declare reg or wire
only before the line where they need to be used rather than do
it at the beginning. This could lead to a syntax error of
“declaration inside should be out of unnamed block”.

Moreover, GPT sometimes uses the System Verilog code
format for Verilog array definition. GPT‐generated array‐
containing codes always lead to syntax errors or define
wrongly into a memory type. Although System Verilog and
Verilog have been merged since 2018, some FPGA design
tools still do not support this and this will lead to a syntax
error.

The fourth limitation of GPT is the synthesis errors it may
bring to the code. For example, it may generate code over the
limitation of 1000000 input or output or an empty design.
There are some limitations in Verilog such as input/output
number limitation required by Xilinx Vivado. For a large
module like the convolution layer, the number of inputs or
outputs always exceed the limits of 1000000, which leads to a
synthesis error. Furthermore, GPT sometimes will define reg
or wire randomly, which could lead to synthesis errors.

The fifth limitation of GPT is that the GPT does not
understand logic and hardware. When GPT receives in-
structions specifically based on hardware, sometimes it could
not fully understand it and generates codes differently from the
expectations. There are still knowledge gaps between the in-
structions and GPT; therefore, some keywords and patterns
need to be summarised.

The sixth limitation of GPS is the confusion of the code
formats. GPT‐generated code sometimes ignores the code
formats of Verilog and SystemVerilog. This causes the gener-
ated Verilog code to be more formatted closer to the system
Verilog format. However, the code generated by GPT has
randomness. Thus, this statement is not absolute.

The last limitation of GPT is forgetfulness. GPT cannot
remember all the details in a conversion task. If users do not
emphasise the previous content, GPT might forget some
important details, such as ports size and module's name, in the
code generated later. Therefore, when you need GPT to
modify the code, it is recommended to ask questions in the
form of the code with the modified content.

3.3 | Challenges of using GPT as the design
entry

The first challenge of using GPT to generate hardware design
is large resource consumption. Compared with the hand‐coded
hardware design, the first GPT‐generated design always con-
sumes more resources and power consumption. Therefore,
GPT‐generated codes need domain‐specific knowledge to
optimise either by giving GPT instructions or manually.

The second challenge of GPT is the hardware knowledge
gap. Due to the limitation of training data, there are still some
gaps between GPT and hardware design. These gaps could lead
to synthesis errors, syntax errors and limitations for
optimisations.

The third challenge of GPT is misunderstanding caused by
the knowledge gap. As GPT lacks hardware domain‐specific
knowledge, sometimes it will generate Verilog codes, which
do not meet the given requirements. In other words, it will
misunderstand the instructions and use software philosophy to
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generate hardware codes. Therefore, researchers need to check
the functionality by Testbench (input‐output relationship
equation) or by their knowledge and experience.

4 | CASE STUDY

To evaluate the design capacity of GPT, we choose 3 case
studies, which are the current mainstream and benchmarking
designs, including the systolic array, accelerator for ResNet and
accelerator for MobileNet. The systolic array is the architecture
used in many AI chips, for example, DaVinci from Huawei,
TPU from Google and NVidia A100 architecture. ResNet and
MobileNet are the networks that are used as the benchmark to
evaluate the capacity of the hardware accelerator.

4.1 | Systolic array

The convolution occupied the main operation in the Convo-
lution Neural Networks (CNNs) [27]. Researchers have been
exploring the possible potential of systolic arrays by pipelined
parallel computing for hardware acceleration of convolutions.
In this work, we attempt to employ GPT‐4 to replicate the
fundamental systolic array architecture unit processed by Cao
et al. [28]. This attempt can achieve a similar function to the
original design.

Figure 1 illustrates the internal structure of the processing
element (PE) in the systolic array. It has a multiplier, an adder
and three registers to store the weight, feature map and partial
sum (PSUM). The PE consists of four mode constants:

1. INIT_MODE: achieve data initialisation
2. WEIGHT_TRANSFER_MODE: weight transmittance
3. CALC_MODE: multiplication and accumulation

operations
4. WAIT_MODE: waiting for operations

Figure 2 presents the 8 rows and 4 columns of systolic
arrays, consistent with the verification design by Cao et al. [28].
The feature would transfer along the row lines, and the weight
and PSUM would transfer along the column lines. The buffer

module operates three FIFO storages to reproduce the basic
function of dual FIFO storage structure as shown in Figure 3.
The FeatureMapFIFO and WeightFIFO control the feature
and weight input of PEs. The PartialSumFIFO stores the
calculation result of PEs.

We evaluated our design on the Xilinx Zedboard. Table 1
presents the hardware utilisation of our systolic array, which
uses 32 and 128 DSP operations. As the GPT cannot auto-
matically optimise the internal PE structure, achieving the
same DSP utilisation as Cao's design. We used matrix multi-
plication as verification. The data requirements were signifi-
cantly lower than those of LeNet‐5 as Cao's design. Thus, the
BRAM, LUT and FF are less applicable in this work.

The model was built based on 47 valid conversations with
GPT and partial manual modifications. Among them, the PE
module, Systolic Array module, FIFO‐related module, and
TOP module occupied 5, 5, 19, and 18 conversations sepa-
rately. In this process, interesting phenomena were observed,
generating preliminary insights.

(1) GPT can be used to generate simple and regular basic
building blocks with sufficient details and reasonable de-
scriptions. For instance, it can provide highly accurate

F I GURE 1 The internal structure of the processing element.

F I GURE 2 The structure of the systolic array.

F I GURE 3 The connection between the systolic array and FIFO
storage.

TABLE 1 FPGA resource utilisation.

[28] Ours (int_16) Ours (int_32)

FPGA Zedboard Zedboard Zedboard

DSP 64 32 128

BRAM 69 6 12

LUT 28861 2774 6710

FF 41828 3336 6408
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codes when given clear function and data flow rules with
PE and systolic array architectures.

(2) GPT can implement simple modifications of code. For
further optimisation, the optimal approach involves
providing an example of how to optimise the code.

(3) GPT might forget details of conversations that happened
long ago. For example, it forget the port size of the Sys-
tolicArray8 � 4 module, which had previously been
generated.

(4) GPT can solve the error statement from Quartus and
Vivado. However, GPT might be trapped in it and forget
the code's original purpose, when modifying the same
code many times. The optimal solution involves finding
the errors in the code manually and fixing them by
ourselves.

(5) GPT generates a random code style for Verilog. In this
work, the code style is biased towards System Verilog.
However, in another attempt, it can generate in the stan-
dard Verilog format code.

4.2 | Accelerator for ResNet

ResNet is one of the most common‐used Deep Learning ar-
chitectures nowadays [29, 30]. The structure of a ResNet with
18 layers is shown in Figure 4. In Figure 4, the solid line in-
dicates the directly used identified shortcut calculation as
shown in Equation (1), whereas the dotted line indicates a non‐

matched dimension shortcut. In a non‐matched dimension
condition, we could choose either the extra 0s mapping
method or Equation (2) to proceed with the shortcut step [29].

Y¼ Fðx; fWigÞ þ x ð1Þ

Y¼ Fðx; fWigÞ þWsx ð2Þ

In Equations (1) and (2), F(x, {Wi}) indicates residual
mapping to be learned, while Ws indicates a linear projection.

Table 2 indicates the summary of layers used in ResNet 18.
A ResNet 18 architecture includes one 7 � 7 64‐channel (stride
2) convolution layer, one 3 � 3 max pool (stride 2) layer, one
average pool with 1000‐d fc layer, four 3 � 3 64‐channel
convolution layers (stride 1) and four 3 � 3 (3 for stride 1
and 1 for stride 2) with the channel numbers of 128, 256, and
512, respectively.

Through the Verilog codes generation process, GPT has
imposed the following problems:

(1) GPT prefers to use For Loop, which is not commonly
used in Verilog and could lead to unnecessary resource
consumption under some circumstances.

(2) GPT‐generated array definition will always disobey the
synthesis rules in Vivado.

(3) There is a limit to the input and output numbers in Vivado
synthesis, which GPT does not know. Therefore, for large
designs like the convolution layer, it will always exceed the
limit.

(4) GPT sometimes declares a register or wire in an unnamed
block, which could also lead to a synthesis error.

Codes generated by GPT‐4 are synthesised by Vivado
2019.2. The resource usage is shown in Table 3. Since Vivado
2019.2 has a limitation of 1,000,000 on the number of inputs
and output, for most convolution layers, only single‐channel
design is synthesisable. In Table 3, all the resource consump-
tion refers to single‐channel layers except Average Pool (input/
output number is still under the limitation).

Table 3 shows that the GPT‐4‐generated codes consume a
large quantity of LUT, especially for the convolution layer. For
a single channel 3� 3 convolution layer, the LUT usage is even
more than the whole ResNet design [30]. Also, for other re-
sources like FF usage in the FC layer, the consumption has
already reached the limitation of the implementation FPGA
board. If we calculate the resource usage among the whole
design, in which all the layers are multi‐channel, it will consume
multiple time resources more than Zedboard could provide.
Adding up the resources of the individual models, it is clear
that their resource consumption will far exceed that of the
same ResNet 18 design in ref. [30].

Compared with the ResNet 18 design in refs. [30, 31], we
could see that both refs. [30, 31] consume a lot of BRAM in
the design, whereas in the ChatGPT design, there is no BRAM
usage. Moreover, in the aspect of DSP usage, this work con-
sumes much less than in ref. [31]. On the contrary, our design
utilises a lot of LUT compared with refs. [30, 31] as a cost.

4.3 | Accelerator for MobileNet

MobileNet is a family of convolutional neural networks
(CNNs) developed by Google researchers for efficient execu-
tion on mobile and other low‐power devices [32]. The archi-
tecture of MobileNet is based on depthwise separable
convolutions, a form of factorised convolutions, which
significantly reduces the computational cost compared toF I GURE 4 Structure of a ResNet 18 architecture.
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standard convolutions while maintaining similar performance,
so they can provide good performance while keeping the
computational resources required as low as possible [32].

FPGA hardware accelerators also can greatly enhance the
performance of MobileNet by providing a platform for highly
parallel computation and by reducing the data transfer latency
that is often a bottleneck in GPU‐based acceleration. This al-
lows the low‐power, high‐performance characteristics of
MobileNet to be fully leveraged [32].

Figure 5 depicts the structural layout of the MobileNet‐V2
CNN. In this structure, the layers are classified into two types
of convolutional blocks (Conv_block), each characterised by
distinct stride values.

There are many research studies on MobileNet‐based
FPGA hardware acceleration designs, from which we chose
“Generating Efficient FPGA‐based CNN Accelerators from
High‐Level Descriptions" by Ali et al. [33], and reproduced it
via GPT‐4.

This article is validated using a new sample evaluation
CNN to produce an optimised accelerator. The evaluation
CNN, described in Figure 6, comprises six layers, which are:
3 � 3 and 5 � 5 2D convolution, 3 � 3 and 5 � 5 pooling and
2 fully connected layers [33]. For this architecture, we gener-
ated each module separately using GPT‐4 and tested its
hardware resource consumption.

During code generation using GPT‐4, the same problem
occurs as in the ResNet 18 case. Codes generated by GPT‐4
are synthesised by Vivado 2019.2 with Zedboard Zync 7000
configuration. The resource usage of conv1_5 � 5 and
pool1_3 � 3 modules is shown in Table 4.

With Table 4 for those two modules, GPT‐4 produces code
that is close to the results in [33]. This shows that GPT‐4 has an
advantage in generating modules with small numbers of code
lines. Combined with the problems mentioned above when
generating codes, the use of GPT for hardware project devel-
opment also requires manual adjustments and modifications.

TABLE 2 Layer summary of a ResNet
18 architecture.Layer Number of layers Output size

7 � 7, 64, stride 2 1 112 � 112

3 � 3 max pool, stride 2 1 (After Conv stride 1 layer) 56 � 56

Conv, 3 � 3, 64, stride 1 4

Conv, 3 � 3, 128, stride 2 1 (After Conv stride 1 layer) 28 � 28

Conv, 3 � 3, 128, stride 1 3

Conv, 3 � 3, 256, stride 2 1 (After Conv stride 1 layer) 14 � 14

Conv, 3 � 3, 256, stride 1 3

Conv, 3 � 3, 512, stride 2 1 (After Conv stride 1 layer) 7 � 7

Conv, 3 � 3, 512, stride 1 3

Average pool, 1000‐d fc, softmax 1 1 � 1

FLOPS 1.8 � 109

TABLE 3 Resource usage of ResNet 18.

Input size LUT FF DSP BRAM BUFG

FPGA board NA 53200 106400 220 280 32

Max pool 3 � 3/2 112 � 112 213265 25220 6 NA 1

8 bits

Conv 3 � 3 3072 1005265 23328 NA NA 1

8 bits

Average pool 512 channel 7 � 7 107773 8464 NA NA 1

16 bits

FC layer 512 139992 106400 NA NA 1

16 bits

ResNet 18 in [30] 224 � 224 596081 1175373 NA 30854 NA

ResNet 18 in [31] (HLS) 95% of 4‐bit weights and 5% of 8‐bit weights 180100 NA 2092 440.5 NA
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5 | CONCLUSION

In this study, we explored the feasibility and challenges of using
the large language model, GPT‐4, in generating hardware
description language codes for the development of FPGA
accelerators for deep learning networks. Through a detailed
analysis of its application in three case studies, we unveiled its
potential and limitations.

The results highlighted the capacity of GPT‐4 to produce
valid and functional Verilog code blocks that could be syn-
thesised using Xilinx's Vivado. It was found to be efficient in
generating simple, regular basic building blocks with sufficient
detail and reasonable descriptions when given clear functions
and data flow rules. This capability, however, was accompanied
by several challenges that necessitated manual intervention.

Among the problems encountered were the excessive us-
age of For Loops in Verilog code, non‐compliance with syn-
thesis rules in Vivado, exceeding the limit of input or output
number in Vivado synthesis, and erroneous placement of
registers or wires. Furthermore, GPT‐4 showed a tendency to
forget previous conversation details, a crucial aspect in the
generation of code blocks.

When dealing with large architectures, such as ResNet‐18
and MobileNet, it was noted that GPT‐4 generated codes led
to significant resource usage on the FPGA, often exceeding the
available resources. This limitation posed a significant chal-
lenge in the practical application of GPT‐4 for complex
hardware designs. However, GPT performs better when
writing modules with fewer lines of code.

In conclusion, despite the identified limitations, the results
of this study suggest that GPT‐4 holds promise as a tool for
hardware development. It can effectively generate simple, in-
dividual hardware description language codes, but struggles
with complex, large‐scale architectures, which may require
substantial manual adjustments and optimisation. Further
research is needed to improve the model's capability to un-
derstand and manage hardware resources and remember con-
versation details. This could potentially lead to the more
efficient use of GPT‐4 in hardware accelerator development,
thereby enabling an automated and streamlined hardware
design process for deep learning architectures.
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