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The feed-food competition for environmental and economic resources raises 

increasing concerns about the production and supply of protein for the global 

livestock sector. Risks to food-security and approaching deadlines for global 

sustainable development, means exploring alternative protein feed ingredients 

is imperative. This Review discusses the potential for soilless, local and circular 

protein feed sources to provide solutions for key sustainability and food-security 

threats to the global livestock sector, through their partial incorporation in future 

livestock feeds and feeding systems. In doing so, it offers a holistic insight into the 

potential opportunities, but also risks associated with such alternatives. Through 

this analysis, a four-point strategic plan is synthesized to facilitate higher-level 

policy making that may enable implementation of these alternative ingredients 

at commercial scales, building toward a more sustainable and resilient livestock 

industry.
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1. Introduction

Animal-sourced foods, including livestock products are generally considered protein-rich 

and essential for human nutrition due to their enhanced bioavailability of many beneficial 

nutrients and superior protein quality (Leroy et al., 2022). Sustainable livestock systems are 

essential to human and planetary existence, helping secure full human growth especially in areas 

where fortification and/or supplementation is not feasible, as well as ensuring management of 

lands and conservation of agricultural biodiversity (Robinson et al., 2011).

However, significant concerns have been raised regarding the efficiency of resource use and 

environmental impacts of conventional livestock production systems, particularly considering 

the feed-food competition for land and energy resources (Ertl et al., 2016). For this reason, the 

future of livestock feeds is of major concern to all stakeholders of the agri-food system, including 

policy makers, industry, regulatory authorities, and consumers (Makkar, 2018; Gurgel et al., 

2021). The conversations around the feed-food competition for resources have become 

particularly relevant in recent years, considering planet limited biophysical capacity and 

uncertainties associated with macroeconomic, geopolitical, and socioeconomic developments 

that threaten feed availability and food-security; such uncertainties include the on-going 

Ukraine-Russia conflict, Brexit, disparity in household incomes experienced globally, inflation, 

and energy shortages (van Hal et al., 2019). Emphasis has been given on soy production, which 

constitutes one of the major sources of protein for livestock. Governmental authorities, 

non-governmental organizations and policy makers globally acknowledge the potentially 
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damaging effects of soy production on endangered ecosystems (e.g., 

the Cerrado) and local rural communities (Cabezas et  al., 2019; 

Kusumaningtyas and van Gelder, 2019). Such impacts may become 

relevant for other conventional protein crops too that are widely used 

as livestock feed protein sources and take up to 15% of the animal diet 

compositions, such as oilseed crops (e.g., sunflower seed, rapeseed), 

particularly considering the global demand for sustainable 

intensification of livestock production (Ben Hassen and El Bilali, 

2022). Furthermore, increases in adoption of plant-based diets by 

humans is expected to intensify land-related feed-food competition 

and unintended negative sustainability impacts associated with 

protein crops even in countries with established boundaries for arable 

land (e.g., USA) (de Visser et  al., 2014; US Soybean Export 

Council, 2018).

In this Review, we call for a focused discussion regarding the 

diversification of protein sources in livestock feeds as imperative to 

reducing the production of unsustainable production of protein crops. 

We propose the exploration of a partial substitution of soy in feeds by 

soilless, local and circular alternatives, that could cover livestock 

nutritional needs while addressing key sustainability issues and 

securing food safety. To facilitate future discussions regarding their 

implementation and because it is not always possible to discuss in too 

much detail the potential differences between variations of alternatives 

(e.g., comparing between the effectiveness of different microalgae 

species), we classify the alternatives in a systematic way that aligns 

with literature and represents the four protein production systems that 

have been investigated in most depth:

Alternative plant-based sources and crop growing methods: 

representing genetically modified/edited crops (GM/GE), local/home-

grown crops (e.g., legumes), hydroponics, and seaweed farming:

 i. Cellular agriculture: representing protein extraction at a 

microscopic level from bacterial, fungal and micro-

algal organisms.

 ii. Circular agriculture: representing protein sourcing from 

processed food wastes (e.g., restaurants, hotels, retailers), 

former foods (e.g., bakery and confectionery) and by-products 

of other industries (e.g., brewing, biofuel).

 iii. Animal by-products: representing the sourcing of Processed 

Animal Proteins (PAPs) from swine, poultry and ruminant 

by-products or from insect farming.

This Review provides a lens into the opportunities that such 

alternatives present to relieve pressures of the feed-food competition 

across the three sustainability pillars, as defined in the global 

sustainable development goals of the United Nations (UN) and the 

Food and Agriculture Organization (FAO) (Food and Agriculture 

Organization, 2014; United Nations Department of Economic and 

Social Affairs Sustainable Development, 2022). We address economic 

and social implications separately and not as socio-economic, while 

acknowledging the significance of their interrelations throughout. 

Furthermore, we address issues of animal health and welfare within 

the social pillar of sustainability, as proposed by recent research and 

policies regarding sustainability of livestock production systems 

(European Commission, 2017; Tallentire et  al., 2019). Finally, 

we  present emerging threats and risks associated with the 

implementation of alternative protein sources to synthesize pragmatic 

recommendations for a guided conversation and actions toward 

sustainable livestock diets. While this Review briefly discusses issues 

of scalability, it is our position that the potential sustainability 

implications and trade-offs of alternative protein feeds need to 

be  resolved through future research that overcomes significant 

primary data limitations, prior to discussions regarding their 

implementation at large scales.

1.1. The problem of unsustainable protein 
sourcing in livestock feeds

The majority of global livestock production systems rely heavily 

on unsustainable, plant-based sources to cover the needs for protein 

in livestock nutrition, the most common of which is soybean meals 

(Food and Agriculture Organization, 2018). The production of 

conventional protein crops and soy in particular is directly linked to 

negative environmental impacts including land degradation and 

deforestation, fossil fuel depletion, atmospheric pollution and global 

warming, acidification and eutrophication, and negative impacts to 

biodiversity (Semper-Pascual et al., 2019; Andretta et al., 2021; Song 

et al., 2021). Moreover, the production of protein crops at large scales 

requires large financial investments mainly associated with synthetic 

and chemical inputs (e.g., fertilizers, pesticides, herbicides), labor, 

fossil fuel, and land (e.g., rent) (Food and Agriculture Organization, 

2016). Until now, these agri-environmental issues were associated 

primarily with the production of soy, however an uncontrolled 

intensification of other types of oilseed crop production to meet global 

livestock sector and human food requirements may raise similar 

concerns (Henchion et al., 2017). Therefore, the current and emerging 

sustainability related issues discussed in this Review should not 

be  viewed as specific to soy production, but rather as potential 

implications related to conventional protein crop production 

more broadly.

From an economic perspective, importing and transporting 

protein feeds over long distances, for example importing soy from 

South-America to support European livestock production, incurs 

significant costs and risks especially considering the instabilities in 

global trading dynamics and volatility of fossil fuel prices (Taghizadeh-

Hesary et al., 2019). Considering the social domain, production of 

conventional protein crops for livestock feed threatens availability of 

land for food and water resources suitable for human consumption, 

reduces quality of ecosystem services, and often threatens food safety 

through accumulation of hazardous chemical contaminants 

(Figure 1A).

2. Opportunities for sustainability 
enhancement

2.1. Environmental

Shifting from conventional soy production to local, home-grown 

protein crops can help reduce land-related environmental pressures 

in high-risk regions of the global South (i.e., Latin America, Central 

Africa, Indonesia and Southeast Asia) by up to 11 times (Sasu-Boakye 

et al., 2014; Stévant et al., 2017). For example, fava beans, peas or 

lucerne (alfalfa) grown in Western Europe could substitute quantities 

of imported soy from South-America. Using well-established 
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FIGURE 1

Sustainability implications of protein crop production for livestock feeds under different protein sourcing scenarios. (A) Conventional crop protein 

production with associated emissions to atmosphere, soil and aquatic ecosystems and socioeconomic impacts. (B) Potential opportunities for 

sustainability enhancement associated with the incorporation of alternative protein ingredients in livestock feeds at commercial scales, such as protein 

from insects reared on waste substrates and from farmed seaweed. (C) Potential risks to sustainability, such as biological and chemical threats to feed 

and food safety and threats to biodiversity.
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databases, we compared through life cycle analysis the production and 

transportation of 1 ton of soy imported in a French livestock system 

from Brazil, against the production of 1 ton of lucerne produced and 

used within France (Agribalyse, 2022). The results showed that lucerne 

feed was associated with up to 95% lower impact potential for global 

warming, 63% for land-use, 97% for freshwater eutrophication and 

98% for acidification (for methodological details, see 

Supplementary material; Agribalyse, 2022). Climate change scenarios 

project that even major soy producers of the North may suffer yield 

reductions in the future (e.g., U.S soy 86–92% reduction by 2050), 

further highlighting a need to diversify protein sources with other 

local crops (Cordeiro et al., 2019; Yu et al., 2021). Local protein crop 

production can also help mitigate environmental impacts associated 

with packaging and transportation of feeds over long distances (e.g., 

cross-Atlantic), reducing approximately 10% of feed production’s total 

environmental footprint (Figure 1B; Taelman et al., 2015; Herrero 

et al., 2016).

In addition to shifting to alternative protein crops, incorporating 

GM/GE climate-resilient variants of soy or other oilseed crops may 

help improve resource efficiency in protein feed production (28% less 

fossil fuel and renewable energy) and reduce negative impacts, 

including global warming potential by up to 28% and freshwater 

toxicity and eutrophication by 72 and 51%, respectively (Alig and 

Ahearn, 2017; Eriksson et al., 2018; Paiva et al., 2020).

Protein production from alternative cultivation methods, such as 

seaweed (macroalgae) farming and hydroponics, may have close-to-

zero requirements regarding land and water (Parsons et al., 2019; 

Koesling et al., 2021) and require 74–100% less fossil-fuel compared 

to conventional soy production (Stévant et al., 2017). Such alternatives 

also make minimal use of synthetic and chemical fertilizers, the 

production and use of which accounts for up to 95% of the 

environmental footprint of conventional crop production for impacts 

including aquatic acidification and eutrophication, and land 

transformation (Niero et al., 2015; Paul et al., 2018; Chen et al., 2020).

Cellular agriculture within the livestock feed production context, 

is defined by the use of cell-culturing biotechnologies to produce 

protein feeds from bacterial, fungal, or micro-algal cellular organisms. 

Widely used examples of cellular protein sources include yeast protein 

(Saccharomyces cerevisiae), protein from filamentous fungi (Fusarium 

graminearum), and protein from methane eating bacterial 

(Methylophilus methylotrophus). It requires facilities that occupy 

primarily urban land (e.g., laboratories, vertical farms) and therefore 

can help free-up large areas of arable land depending on the amounts 

of soy or other oilseed crops that cellular protein substitutes, while 

largely minimizing impacts associated with transportation of protein 

feeds, since they can be  located close to feed manufacturers and 

transport hubs. Protein extraction from yeast, for example, is 

associated with 71% lower land-use related impacts, 34% lower global 

warming potential, and 67% lower eutrophication potential 

(Agribalyse, 2022). Furthermore, cellular-protein extraction facilities 

use electricity for their operations, which can be  sourced more 

sustainably than fossil fuel used for conventional soy production. With 

advancements in the renewable energy sector, the environmental 

impacts of cellular agriculture can be  minimized further, since 

currently the production of electricity accounts for 83–94% of global 

warming potential, freshwater eutrophication and terrestrial 

acidification associated with its implementation at large scales 

(Kobayashi et al., 2022).

Environmental benefits of circular agriculture approaches may 

hold even more potential than cellular protein. Generating protein 

feeds from food waste, former foods and industry by-products not 

only bypasses the need for arable land, but also reduces land 

requirements for waste disposal. For example, sourcing 1 ton of bread 

or biscuit meal from food waste does not involve land-use (zero 

impact). Moreover, depending on the treatment method of waste 

streams, these alternatives can generate up to 99% less global warming 

and acidification related emissions, and have up to 83% lower 

eutrophication potential compared to soy (Agribalyse, 2022). On a 

system level, incorporating food waste in feeds for European pork 

production could reduce its overall land footprint by approximately 

21% and the greenhouse gases associated with relevant protein feed 

production by almost 12 times (Zu Ermgassen et  al., 2016; Dou 

et al., 2018).

PAPs from insects present another environmentally sustainable 

alternative compared to conventional protein sources. Currently, the 

production and use of seven insect species (Musca domestica, 

Alphitobius diaperinus, Hermetia illucens, Gryllodes sigillatus, Gryllus 

assimilis, Tenebrio molitor, and Acheta domesticus) has been explored 

in-depth and legally enabled in the EU for commercial exploitation in 

farmed fish feeds and pet feeds (Madau et al., 2020). However, the 

commercial implementation of insect meals at much larger scales to 

support global livestock production requires further research to 

optimize mass rearing processes (Madau et al., 2020). Insect farming 

relies almost exclusively on energy that can be sourced renewably (i.e., 

electricity as opposed to diesel), therefore significantly reducing the 

energy footprint of livestock protein feeds (Asdrubali et al., 2015; 

Madau et  al., 2020). Furthermore, it can reduce land-use related 

impacts by 98% and GHG emissions by 60% when compared to soy 

and other conventional protein meals (Figure 1B; van Zanten et al., 

2015; van Huis and Oonincx, 2017; Smetana et al., 2021). Using waste 

streams (e.g., manure) to rear insects mitigates unintended impacts 

from waste disposal systems, further reducing eutrophication and 

acidification of ecosystems, and impacts on biodiversity (Zheng et al., 

2019; Gao et  al., 2021). Such strategies can reduce total nitrogen 

related emissions from livestock systems by up to 62% (Figure 1B; 

Elahi et al., 2022).

PAPs from swine and poultry by-products can achieve comparable 

environmental performance with insect meals (Parker, 2018). An 

important factor that may affect the environmental benefits of such 

alternatives is whether they are obtained from the slaughterhouse (as 

animal by-products) or retailers (e.g., market’s butcher, as food waste), 

due to packaging and transportation related emissions. For example, 

animal fat meals at the retailer are associated with up to 82% lower 

global warming potential compared to soy, whereas obtaining them at 

slaughterhouse can achieve up to 95% lower impact (Agribalyse, 2022).

2.2. Economic

Circular and local protein sourcing can significantly drive 

production and lower supply costs. Large reductions can be achieved 

immediately by minimizing the use of costly inputs used in 

conventional protein crops, such as fertilizers, irrigation water, 

pesticides/herbicides and fossil fuel (Kumar et al., 2020). Localizing 

and diversifying protein can help reduce transportation costs if more 

protein feeds are produced closer to the receiving markets or to 
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transportation hubs (Lo et al., 2021). Because circular and soilless 

alternatives are less affected by the volatility of fossil fuel and synthetic 

input prices, they may offer relative stability for the global livestock 

feed market and help secure availability of feed worldwide (Lioutas 

and Charatsari, 2021).

Coupling local protein production with local energy sources may 

allow governmental authorities to gain better control over the input 

requirements for production and market needs of the livestock feed 

sector. Shifting from imported fossil fuel to local renewable energy for 

protein production may present a viable and more resilient future 

pathway for future feeds (Punzi, 2019). Furthermore, diversifying 

protein sources may also help avoid incidents where feed producers 

shift to more profitable alternatives for their land (e.g., energy crops 

for biofuel) in times of crises, therefore leading to a more robust 

livestock sector overall (United States Department of Agriculture, 

Foreign Agricultural Service, 2022). All these are important 

opportunities for economic viability of the industry, especially 

considering the uncertainties in on-going global trading dynamics 

(e.g., Brexit) and geopolitical developments (e.g., Ukraine-Russia 

conflict) (Taghizadeh-Hesary et al., 2019; Choi et al., 2021; Yao et al., 

2021; Schiffling and Valantasis Kanellos, 2022).

While current literature identifies large gaps and uncertainties 

regarding the economic inputs and outputs associated with alternative 

protein feed production (e.g., economies of scale in mass insect 

rearing of different species, recycled food waste streams), some 

evidence points toward their economic viability and profitability 

(Shurson, 2020; Niyonsaba et  al., 2021; Rzymski et  al., 2021). A 

number of studies also suggests that future advancements in 

biotechnology may further increase cost-effectiveness through 

synergies between waste streams of industries that can be used as 

resources for protein production (e.g., food waste from restaurants, 

former foods from bakery, manure from livestock) (Ritala et al., 2017; 

Jones et al., 2020).

Furthermore, the Covid-19 pandemic has raised awareness about 

the investment in developing automation technologies and has driven 

advancements in treatment practices that eliminate the risks of 

pathogen and disease dispersal, which may drive growth, increasing 

acceptance and popularity of circular alternatives (Henry, 2020).

2.3. Social

Social sustainability in the context of sustainable livestock 

production commonly refers to potential issues associated with 

impacts on human health and safety related to livestock farming 

activities, human rights, working conditions, and social development 

as reflected through customers and local communities’ perspectives. 

In this Review, we  follow the suggestion of recent literature, and 

additionally consider the potential impacts of protein feed ingredients 

choices on animal health and welfare, on animal growth and 

performance, and in relation to the acceptability and digestibility of 

alternative feeds (Tallentire et al., 2019). These latter implications are 

discussed primarily through the scope of nutritional suitability 

because they are mainly associated with the presence of anti-

nutritional factors and metabolites in alternative protein feeds.

From a nutritional perspective, the alternative protein sources 

presented here can provide animals with protein that is comparable to 

conventional soy (Table 1). Furthermore, they can introduce to their 

diets important bioactive compounds that can improve gut health, 

such as antimicrobial peptides, chitin, and lauric acid (Gasco et al., 

2018). Algae in poultry diets can improve growth performance, laying 

rates and product quality (Coudert et al., 2020). GM/GE protein crops 

often improve feed nutrient profiles without compromising animal 

and human health (Buzoianu et al., 2013; Naegeli et al., 2020). Food 

waste can also be a good source of amino acids, minerals, fatty acids, 

and vitamins essential for animal growth, however there is no clear 

evidence that it can significantly improve animal performance. 

Literature suggests that food waste does not affect meat quality, while 

some studies propose it may even improve it (Dou et al., 2018).

Local protein solutions can also stimulate economic and social 

growth in local rural communities mitigating the negative impacts of 

urbanization. By diversifying protein production, local producers and 

smallholders may acquire a more central role in the agricultural sector 

(Swain and Teufel, 2017). The potential synergies to funnel waste 

streams from various industries as resources for livestock feeds can 

promote cross-sectoral knowledge sharing and collaborations, and 

opportunities for education as the demand for more specialized 

on-farm labor may increase (Marinoudi et al., 2019). On-farm work 

safety can be reduced significantly through production methods that 

minimize the use of hazardous agrochemicals (e.g., pesticides, 

herbicides, chemical fertilizers) and that rely on automated 

technologies as opposed to conventional crop production (Elahi et al., 

2019). Furthermore, the potential to preserve ecosystem services and 

avoid negative environmental impacts contributes to improved 

human wellbeing and quality of life (Rukundo et  al., 2018; Flach 

et al., 2021).

2.3.1. Food safety
Damages or decay of grains and seeds due to poor conditions of 

transportation and storage can largely increase the potential risks for 

biological contaminations of humans through the food chain, such as 

outbreaks of mycotoxins or viral diseases that can cause severe human 

health impairments. Climate change (increased ambient temperatures 

and humidity in particular) and instabilities in global trading of 

feeds (e.g., significant delays in transportation of feeds due to Brexit 

or the Ukraine-Russia conflict) have further increased such risks, 

especially in the absence of state-of-the-art storage and 

transportation technologies.

Diversifying protein sources in livestock feeds through local, 

circular, and soilless alternatives could help reduce reliance on 

imported protein feeds (i.e., grains, seeds), thus reducing food and 

feed safety risks associated with international transportation and long 

duration storage, as the ones discussed above. For example, UK 

livestock production systems importing sunflower seeds from 

Ukraine, a major producer worldwide, have experienced significant 

disruptions in the past 2 years and have often received severely 

damaged and contaminated grains due to the deteriorated storage 

conditions in Ukraine and extremely long delays at the customs 

during transportation (unintended consequences of the conflict and 

relevant trading deals post-Brexit). Therefore, in such cases 

supplementing livestock diets with protein feeds sourced within the 

UK (e.g., fava beans, peas, protein through circular streams) could 

enhance livestock system resilience while largely mitigating risks to 

human health (Figure 1B; Becton et al., 2022).

Incorporating several of the alternative ingredients discussed here 

in livestock feeds, could also potentially increase human health risks 
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through exposure to allergens and additives. For example, food waste 

from households, restaurants, retailers, and former foods from bakery 

and confectionery often contains small quantities of the majority of all 

14 known allergens, such as traces of nuts, and various artificial 

sweeteners (e.g., sucralose) and artificial coloring agents (e.g., 

tartrazine). These substances can reach humans through 

bioaccumulation in livestock tissues, and can cause allergic reactions 

manifested through various symptoms ranging from skin rashes to 

gastrointestinal issues. However, there are also several advantages to 

using alternative feeds in this aspect. For example, GM/GE variants 

may suppress the expression of potential allergenic proteins in plant 

development, therefore enhancing their acceptability (Dubois 

et al., 2015).

3. Risks to sustainability

3.1. Environmental

Incorporating alternative protein sources at large scales may 

present opportunities for sustainable development; however, they may 

also give rise to potential unintended consequences (Table 2). In some 

cases, and while home-grown crops like fava beans and peas can 

relieve land-use related impacts in vulnerable ecosystems of the global 

South, their total land footprint can be higher by up to 7.6% and their 

marine eutrophication potential by up to 43% compared to 

conventional soy (Agribalyse, 2022). Furthermore, shifting protein 

crop production rapidly may cause a displacement of local crops and 

TABLE 1 Examples of potential alternative proteins used in livestock feeds that could substitute conventional protein crop production as more 

sustainable protein sources.

Protein source Examples Implementation as 
livestock feed

Crude protein 
content

References

Conventional protein crop Brazilian soy Commercial worldwide 20–55% Sauvant et al. (2004)

Alternative plant-based sources and crop growing methods

GM/GE protein crops Soybean Mon87701 Commercial worldwide 48–63% Edwards et al. (2000) and 

Giraldo et al. (2019)

Homegrown legumes Fava beans, lupins, peas Small worldwide 21–31% Sońta et al. (2021)

Duckweed Lemna spp. Small worldwide 20–45% Sońta et al. (2019)

Seaweed Porphyra sp., Palmaria 

palmata

Small worldwide 3–47% Morais et al. (2020)

Cellular agriculture

Fungal protein Saccharomyces cerevisiae Commercial worldwide 33–47% Glencross et al. (2020)

Bacterial protein Arthrospira plantensis Commercial worldwide 51–81% Glencross et al. (2020)

Micro-algae Chlorella vulgaris, Tetraselmis 

suecica

Small worldwide 7–59% Pignolet et al. (2013) and 

Roques et al. (2022)

Circular agriculture

Food waste Hotel and restaurant food 

waste

Small EU, US, Southeast Asia 3–33% Kamal et al. (2021)

Former foods Bakery and confectionery Small EU, US, Southeast Asia 11–84% Pilarska et al. (2018)

By-products of agroforestry Crop residues, fruits, 

vegetables

Small worldwide 1–41% del Mar Contreras et al. (2019)

By-products of biorefinery Canola, palm, wheat Small EU, US, Southeast Asia 14–62% del Mar Contreras et al. (2019) 

and Khoshnevisan et al. (2020)

By-products of brewing 

industry

Barley, distillers grain, rice Small EU, US, Southeast Asia 2–62% del Mar Contreras et al. (2019)

Animal by-products

Insect PAPs Musca domestica, Tenebrio 

molitor

Small worldwide 35–82% Asdrubali et al. (2015) and 

European Fat Processors and 

Renderers (2022)

Swine PAPs Fats, greaves, blood, bone 

meals

Commercial in EU 42–61% DiGiacomo and Leury (2019)

Poultry PAPs Fats, greaves, blood, bone 

meals

Commercial in EU 53–93% DiGiacomo and Leury (2019)

Ruminant PAPs Strictly only collagen, 

gelatine, milk

Commercial in EU 90–99% DiGiacomo and Leury (2019)

GM, genetically modified; GE, genetically edited, PAPs, processed animal proteins.
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TABLE 2 Summary of key opportunities and risks to sustainability and food safety associated with the implementation of alternative protein feed 

ingredients.

Alternative protein sources Environmental opportunities Environmental risks

Alternative plant-based sources and crop 

growing methods

Lucerne up to 63% lower land-use related impacts; 

healthier/more stable soils; lower GWP by 86–95%; 

lower FEP by 52–97%; lower AP by 62–97%; lucerne 

lower MEP by 56%

Poor management of former arable areas, leading to abandoned and 

deserted land; some local crops have higher MEP by 40–150%; 

invasiveness/weediness of genetically modified/edited crops; edited 

gene flow threatening wild genotypes and biodiversity

Cellular agriculture Alternatives relying more on electricity than fossil 

fuel; protein from yeast up to 62% lower land-use 

related impacts; lower GWP by 19%; lower FEP by 

up to 57%

Lack of electricity from renewable sources leading to higher energy and 

carbon footprint up to 163%; higher AP by 2–17%

Circular agriculture Reduced chemical inputs improving conditions for 

terrestrial and aquatic life; reduced habitat 

fragmentation; lower land-use impacts by 55–100%; 

lower GWP by 64–100%; lower FEP by 43–100%; 

lower AP by 97–99%; lower MEP by 2–72%

Toxicity related impacts may be significantly increased due to 

bioaccumulation of biological and chemical contaminants; threats to 

biodiversity

Animal by-products Lower land-use related impacts by 84–99%; lower 

GWP by 66–95%; lower EP by 82–99%; lower AP by 

16–93%; lower MEP by 75–100%

Poor protein utilization from alternatives leading to higher N 

concentrations in animal manure; uptake of heavy metals due to 

wastewater as substrate; more effective use of wastewater in other 

industries

Economic opportunities Economic risks

Alternative plant-based sources and crop 

growing methods

Reduced costs for transportation, fossil fuel, chemical 

inputs; automated/efficient production and supply

High capital/start-up costs at larger scales; high processing costs; 

additional processing to inactivate anti-nutritional factors

Cellular agriculture Improved and uninterrupted supply of feeds from 

diverse sources; resilience to global trading dynamics

Renewable energy prices remain high; reduced availability of novel 

technologies required for commercialization

Circular agriculture Reduced costs associated with waste disposal; 

reduced labor requirements; wastes and by-products 

acquire economic value

Increased costs for hygienic processing of wastes and industry by-

products; additional processing to inactivate anti-nutritional factors

Animal by-products Animal by-products acquire economic value; 

reduced labor requirements

Cross-feeding strategies may incur additional costs at livestock 

production

Social opportunities Social risks

Alternative plant-based sources and crop 

growing methods

Good sources of protein, fats, and bioactive 

compounds that promote animal gut health and 

growth

Disease outbreaks; feed fraud; bioaccumulation of biological (e.g., 

mycotoxins) and chemical (e.g., pesticides) contaminants; anti-

nutritional factors

Cellular agriculture Growth of local rural communities; reduced heavy-

duty on-farm labor; innovation in production/supply 

chains

Consumer acceptance when cell protein is produced using waste 

substrates or GM/GE—bioengineering techniques; anti-nutritional 

factors

Circular agriculture Sustainable alternatives promote a “Feel good” factor Cultural barriers; consumer acceptance—“Disgust” factor; 

misinformation through media; anti-nutritional factors

Animal by-products Enhanced bioavailability of protein and nutrients 

compared to plant-based sources

Disease outbreaks; bioaccumulation of biological and chemical 

contaminants, especially when insects are reared on wastes

Food safety opportunities Food safety risks

Alternative plant-based sources and crop 

growing methods

GM/GE variants can reduce the expression of 

proteins with potential allergenic action

GM/GE genome of protein feed variants has not yet been fully mapped, 

therefore uncertainty about GM/GE effects on long term human health

Cellular agriculture Potential biological contamination (e.g., mycotoxins) and chemical 

contamination (e.g., nanoplastics) when wastewater is used to rear 

cultivations

Circular agriculture Potential biological contamination (e.g., mycotoxins) and chemical 

contamination (e.g., nanoplastics) due to poor hygienic processing of 

wastes and industry by-products

Animal by-products Viral outbreaks (e.g., BSE/TSEs); insects as disease or heavy metal 

vectors when reared on waste

For the environmental opportunities and risks, the table presents the relative difference (%) in environmental impacts associated with the production of 1,000 kg dry matter of alternative 

protein feeds, against 1,000 kg soybean meal produced in Brazil. The comparisons are based on the ReCiPe Midpoint (H) impact calculation method, 1,000 Monte Carlo iterations for 

uncertainty propagation, and data sourced from literature and the Agribalyse v3.1 database (for methodological details, see Supplementary material; Agribalyse, 2022). GWP, global warming 

potential; FEP, freshwater eutrophication potential; MEP, marine eutrophication potential; AP, acidification potential.
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wildlife, and have potential knock-on effects on land-use (Eriksson 

et  al., 2018). Therefore, local solutions should not be  viewed as a 

panacea, and it is critical choosing specific home-grown crop feeds is 

done considering also regional vulnerabilities, for example the 

existence of Nitrogen Vulnerable Zones, as well as the capacity, 

potential, and needs of different regions for production and trading of 

livestock feeds and other agricultural produce that requires similar 

resources (e.g., crops for human food). Future research should try to 

provide answers to what the land-use implications in the global North 

would be, if the majority of livestock producers made the switch to 

home-grown protein, and what the production limit would be before 

this resulted to new, local land-related impacts.

It is important to consider that circular and soilless alternatives, 

such as insect farming or food waste for feed, may also have 

unintended impacts on land-use change especially as the scale and size 

of production systems increase (Shah and Wu, 2019; Doi and Mulia, 

2021). Soilless systems require a robust management plan to avoid the 

abandonment of crop land, which in combination with effects of 

climate change in the South, including increasing temperatures and 

frequencies of extreme droughts, can exert pressures on soil organic 

carbon and biodiversity (Pacheco et al., 2018; Olsson et al., 2019; 

Winkler et al., 2021).

In the aquatic ecosystems, seaweed farming can also create 

competition for light and nutrients between cultivated and wild 

species (e.g., planktonic communities), pollution from artificial 

material as farming infrastructure, noise disturbances to animals due 

to increased vessel activity in the area and may significantly alter the 

geomorphology of coastal ecosystems (Figure  1C; Campbell 

et al., 2019).

Finally, while there is a strong case for the GHG emission 

reductions that alternative protein feeds can achieve, there may 

be unintended increases in N and P concentrations in the manure and 

urea of livestock animals if they are fed alternatives that provide more 

imbalanced protein compared to soy and other conventional feeds 

(Trabue et al., 2021).

To date, hydroponics appear to be less energy efficient than other 

conventional crop production methods. For example, the production 

of 1 ton of hydroponic fodder requires approximately 60% more 

energy (mainly due to electricity consumption) than 1 ton of soy 

(Agribalyse, 2022). However, advancements in renewable energy 

sourcing open up far more opportunities for improvement of energy 

efficiency for hydroponics than conventional crop production, since 

the latter relies much more on fossil fuel.

3.2. Economic

Much of literature is conflicted about the economic viability of 

local, circular and soilless alternatives implemented at large scales. For 

example, seaweed farming, insect farming and cellular alternatives 

may be  a good solution when implemented in less-developed 

countries especially as post-harvest processing technologies and 

biotechnologies become better and more affordable (Duarte et al., 

2021), but not a cost-effective industry in the North due to the higher 

labor and energy related costs (van den Burg et al., 2016; Emblemsvåg 

et al., 2020). Such economic constraints may present challenges for 

their marketability as commercial feeds due to the low prices of 

competing conventional protein sources (Arru et al., 2019).

A critical condition for circular agriculture alternatives to 

be viable and cost-effective is the proper treatment of waste streams 

prior to their use as feed or feedstock, to minimize the risks of 

pathogen and disease outbreaks that may result to severe economic 

consequences through impaired animal performance (Dou et  al., 

2018). Ensuring high hygiene standards through timely collection of 

the waste, thermal treatment, appropriate transportation and handling 

practices incurs costs that need to be accounted for when evaluating 

the feasibility of such feeding strategies (Figure 1C; Pinotti et al., 2021; 

Rajeh et al., 2021).

3.3. Social

While alternative protein sources may not necessarily jeopardize 

animal growth, there is a risk in achieving a comparable crude protein 

utilization with conventional protein sources that may affect optimal 

animal performance (e.g., carcass composition), especially compared 

to what the more balanced protein sources can offer (e.g., soy) (Gasco 

et al., 2019; Luciano et al., 2020). It can also be difficult to persuade 

livestock animals to consume the quantities of alternative protein 

sources required to achieve optimal growth (Mainardes and DeVries, 

2016). Even when palatability is not a critical issue for animal welfare, 

the inclusion levels of alternative protein sources should be carefully 

considered due to anti-nutritional factors that can be toxic beyond 

certain concentrations. For example, leguminous feeds contain 

mimosine and its metabolites, which can be toxic for most livestock 

species at high concentrations (Lakshmi et  al., 2020). While the 

development of sweet varieties of lupins have mitigated issues of 

toxicity caused by high levels of alkaloids, other anti-nutritional 

factors like non-starch polysaccharides may impair animal 

performance and are therefore a limiting factor for use at large scales 

(Olkowski, 2018). Food waste with plant components can contain 

high concentrations of enzyme inhibitors like tannins and alkaloids, 

which reduce feed intake and nutrient utilization (Georganas et al., 

2020). Food wastes and former foods also may contain secondary 

metabolites and toxins that can be  harmful to animals, such as 

chocolate residues that are high in theobromine (Makinde et al., 2019; 

Klein et al., 2021).

Consumer perception and acceptance has always been a big 

concern and a barrier to the adoption of alternative proteins for 

livestock feed (Figure 1C). Although meat consumers and livestock 

farmers seem to be positive about alternatives such as insects, algae, 

and lab-grown feeds used in livestock production there is still much 

to be  explored regarding how to maximize marketability and 

acceptance of livestock fed with protein alternatives (Verbeke et al., 

2015; Onwezen et al., 2019). Such opposing attitudes and cultural 

biases (e.g., disgust factor) are often being developed and 

maintained through misinformation by media (Altmann et  al., 

2022; Khaemba et al., 2022). Livestock producers may attempt to 

overcome such issues of marketability by withholding relevant 

information, which consists of feed and food fraud and mislabeling 

violations, and can be often noticed when such alternatives as GM/

GE crops, animal by-products, and insect meals are used 

(Montgomery et  al., 2020). Such incidents not only threaten 

customer trust and acceptance, but also food security since they 

may often exclude vital information about potential sources of 

fungal, bacterial, or chemical contamination.
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3.3.1. Food safety
A major food safety concern associated with alternatives that 

upgrade waste streams to protein is that of the bioaccumulation of 

biological and chemical contaminants (Figure 1C). The EU and US have 

very strict regulations that require food waste, former foods and 

wastewater to be thoroughly treated (e.g., hydrothermal treatment at 

110°C for an hour) for viral and bacterial contaminants, and require the 

precise detection and treatment of chemical contaminants including 

toxic heavy metals, traces of pesticides and nanoplastics (Dou et al., 

2018; Pinotti et al., 2019). This is a critical condition that currently limits 

the use of such alternatives as livestock feeds in wide scales in those 

regions (EU and US), or even as substrates for insect farming, seaweed 

farming and cellular protein production (Dou et al., 2018; Pinotti et al., 

2019). Other regions, like countries of Southeast Asia (e.g., South Korea) 

also have started implementing precise protocols for the systematic 

regulation of food waste hygienic processing to enable their commercial 

incorporation in livestock feeds (Dou et al., 2018).

Sourcing protein from seaweed that is grown in coastal waters also 

has been associated with human food safety issues due to the heavy 

metal accumulation such as arsenic, cadmium and copper (Tirado 

et  al., 2010). Such contaminants can travel from protein feeds to 

livestock animals and then reach humans where they can cause severe 

immediate effects like inflammatory responses, disruption on gut 

microbiota and effects on nutrient absorption, and chronic 

inflammation that increases the risks for cancer (Smith et al., 2018; 

Magnoli et al., 2019; Prata et al., 2020).

Another critical biosecurity concern is associated with the 

re-introduction of PAPs in the EU from swine and poultry. This 

should be done following strict protocols of cross-species feeding to 

avoid disease outbreaks similar to the BSE/TSE epidemic of the 1980s 

that occurred in the UK (Woodgate and Wilkinson, 2021). As a 

consequence of such past incidents ruminant PAPs are still prohibited 

in the EU, with the exception of collagen, gelatine, and milk, that 

should strictly be fed to non-ruminant species. In the US, only a very 

small number of pig production farms currently uses food waste that 

contains animal parts as feed, following thorough thermal processing 

at licensed facilities (Dou et al., 2018).

Insect meals can also be disease vectors or carry harmful heavy 

metals. The potential for such threats to be realized is largely increased 

when wastewater and/or waste substrates are used for their rearing, 

particularly in the absence of precise treatment methods as 

mentioned above.

Finally, we highlight the importance to consider the introduction 

of novel allergens in the human as a potential biosecurity threat. 

Several of the alternatives discussed here contain the majority of all 

known food allergens (e.g., food waste, home-grown protein, former 

foods particularly nuts, animal by-products). These allergens may 

be transferred down the food chain causing severe human allergies 

and even death (Advisory Committee on Animal Feedingstuffs, 2009; 

Testa et al., 2017; Bingemann et al., 2019).

4. Discussion on emerging threats and 
future directions

Substituting conventional soy and other protein crops in livestock 

feeds with more sustainable alternatives should undoubtedly be a 

priority of the livestock and agri-food sector (Song et  al., 2021; 

European Parliamentary Research Service, 2022). As we expect to 

experience several environmental and socioeconomic threats to feed 

and food security in the next 2–10 years, building a resilient protein 

supply is critical. The Ukraine-Russia conflict has not only blocked the 

supply of sunflower meals from one of the largest producers globally 

(Ukraine), but has also frozen large European investments that aimed 

to support local Ukrainian soy production aiming to replace 

unsustainable imports from South America. Other geo-political 

developments including Brexit and disease outbreaks (African Swine 

Fever in Southeast Asia) have exacerbated feelings of insecurity of 

agricultural stakeholders due to uncertainty around future trading 

partners, impaired production, disrupted supply of labor, import/duty 

policies and limited support through subsidies. Climate-related 

impacts and extreme weather events may lead to impaired productivity 

and poorer nutrient profiles of conventional protein feeds and 

increased outbreaks of biological contaminants (Alava et al., 2017).

Alternative protein sources have already been used to substitute 

protein crops in small scales, as in pet feeds or feeds for fish 

(aquaculture). Among the most popular examples are insect meals, 

swine and poultry PAPs used in the feeds of domestic canines and 

felines. While to some extent, this example may be used to illustrate 

the potential for these alternatives to be used safely for livestock, there 

are still several obstacles—mainly socioeconomic—to be overcome 

prior to their being sustainably produced and integrated into livestock 

feeds at scale. There appears to be no “silver bullet, free from trade-

offs” livestock feed formulation that can guarantee global 

sustainability across all three pillars. Literature has identified 

stakeholder dialogue as imperative to evaluate the effectiveness of 

solutions for sustainable development through the understanding and 

assessment of potential trade-offs associated with their 

implementation (Hebinck et al., 2021). Through our analysis of the 

potential opportunities, risks, and trade-offs of solutions for improved 

livestock feed sustainability, we invite a dialogue between relevant 

stakeholders and the co-development of a set of livestock diet 

scenarios specific to the different livestock species. We propose that 

in the center of this approach needs to be  a shift toward more 

sustainable local, circular and soilless protein sources. Key 

sustainability trade-offs can then be  quantified for each scenario 

which will inform region-specific policies for sustainable livestock 

production. We synthesize four key strategic regional policy pathways 

to guide future livestock feed formulation in consideration of global 

sustainable development goals (Table 3; United Nations Department 

of Economic and Social Affairs Sustainable Development, 2022).

 • Decoupling protein production from fossil fuel by shifting to 

alternatives that rely almost exclusively on renewable energy (e.g., 

solar, wind, geothermal) will reduce the overall environmental 

footprint of livestock feeds. This needs to be supported by a strict 

regulation monitoring renewable energy price to ensure the 

economic viability of alternatives and feed market stability, as 

well as by further research that may enable uninterrupted and 

abundant supply of energy from such sources.

 • Developing economic strategies for alternative proteins at 

subnational level, as opposed to lateral measures and policies may 

facilitate adoption of these solutions at larger scales, especially 

considering the geographic variability in labor and direct input 

costs, taxes, and support through subsidies. We propose that 

future policies financially incentivize local protein production 
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and consumption to help the shift from the less expensive, 

unsustainable imported alternatives.

 • Understanding and addressing social biases against circular 

livestock feed solutions through efficient stakeholder engagement. 

This is critical to ensure marketability and overall economic 

viability of circular alternatives, and therefore facilitate their 

implementation at large scales. Further exploration of stakeholder 

concerns may help identify additional risks and unintended 

consequences of such alternatives, thus we  propose that the 

development of future livestock feed scenarios considers all 

stakeholders perspectives.

 • Further enhancing feed and food safety with improved protocols 

regarding the precise and early detection and monitoring of 

biological and chemical contaminants in alternative feeds. This is 

imperative for enabling the safe adoption of alternatives like 

cellular and insect protein reared on waste substrates, food waste 

and former foods as protein sources, and PAPs. Emerging feed 

and food security threats, like the impacts of climate change and 

storage/transportation conditions on biological contaminant 

blooms, should be  considered throughout future livestock 

feed scenarios.

Immediate action is required to reshape the global livestock feed 

market and enhance its future resilience to environmental, macro-

economic and geopolitical instabilities (e.g., climate change, Ukraine 

conflict, energy crisis). Future research should focus on the 

quantification of synergies and trade-offs between sustainable protein 

solutions and within and between sustainability pillars to enable 

accurate spatiotemporal comparisons of alternatives and facilitate 

regionalized decision making. Any discussion regarding sustainability 

trade-offs in livestock feed production must include a detailed analysis 

of who benefits when there are benefits, and who losses when there 

are losses. It is the position of this Review that such sustainability 

concerns should be fully addressed and resolved prior to efforts for 

implementation at larger scales. Research into alternative sources 

suggests that the converse, i.e., considering scalability as a priority, is 

likely to lead to problems of adoption (Marcellin et  al., 2022). 

Anticipatory policies should be  in place to compensate for losses 

through such trade-offs and to scope the future of the livestock sector 

beyond the time horizon suggested by the current sustainability 

agendas (e.g., 2030 as in UN SDGs). The relevant discussions should 

now also focus on how circularity and localization of protein feeds can 

fit and synergize with relevant sustainability policies about 

regenerative and transformative agricultural systems to form clear 

guidelines for a more sustainable agri-food sector.
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TABLE 3 Example of interactions between alternative protein sources for livestock feeds and global sustainable goals.

Sustainability goals Mechanism

Socio-economic resilience against climate-related, macroeconomic, and geo-political 

extreme events (SDG 1)

Decoupling protein feed production from fossil fuel and economically volatile energy 

sources; reduced reliance on imported protein and global trading partnerships

Increase food security and end hunger (SDG 2) Landless protein sources reducing feed-food competition; increasing protein feed 

availability and improving accessibility through local markets; reduced protein feed 

costs through the use of circular agriculture alternatives leading to less expensive/

accessible livestock products

Improve water quality and water-use efficiency, supporting the participation of local 

communities in water security (SDG 6)

Reduced reliance on groundwater resources for irrigation; reduced chemical 

pollution of water bodies by avoiding synthetic fertilizers/chemical inputs at crop 

production

Promote job creation, and safe and secure working environments (SDG 8) More diverse labor input requirements; reduced heavy-duty manual labor compared 

to conventional crop production

Resilience and adaptive capacity to climate-related hazards (SDG 13) and Carbon Net 

Zero emissions

Reduced reliance on fossil fuel, more land available for trees; healthier soil organic 

carbon stocks; reducing pressure on water cycle through reduced irrigation

Nitrogen (N) and Phosphorus (P) Vulnerable zones to reduce eutrophication 

pressures

Reduced use of synthetic N and P fertilizers reducing nutrient leaching; reduced 

organic material deposition in water bodies due to healthier/more stable soils

Minimize impacts of ocean acidification (SDG 14) Reduced nitrogen leaching from soils due to the use of synthetic fertilizer

Ensure the conservation and sustainable use of terrestrial and inland freshwater 

ecosystems and their services (SDG 15)

Healthier soil horizons; reduced potential for acidification of ecosystems; reduced 

impacts of habitat fragmentation and degradation for terrestrial and aquatic 

biodiversity

Combat desertification, land and soil degradation, deforestation (SDG 15) Reduced land requirements for protein crop production; reduced reliance on protein 

sources from environmental hotspots

Reducing food waste, carbon, and protecting critical water resources (Courtauld 

Commitment 2030)

Food waste used directly as feed or substrate; reduced fossil fuel use leading to 

reduced carbon emissions; landless alternatives using significantly less water
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