
This is a repository copy of The Effect of System Timescale on Virtual Node Connectivity 
within Delay-Feedback Reservoirs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/205167/

Version: Accepted Version

Proceedings Paper:
McDonnell, Alexander C and Trefzer, Martin A orcid.org/0000-0002-6196-6832 (2023) The 
Effect of System Timescale on Virtual Node Connectivity within Delay-Feedback 
Reservoirs. In: 2023 International Joint Conference on Neural Networks (IJCNN). 
International Joint Conference on Neural Networks, 18 Jun 2023 Proceedings of the 
International Joint Conference on Neural Networks . IEEE , AUS 

https://doi.org/10.1109/IJCNN54540.2023.10191492

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The Effect of System Timescale on Virtual Node

Connectivity within Delay-Feedback Reservoirs

Alexander C. McDonnell

School of Physics, Engineering and Technology

University of York

York, United Kingdom

alexander.mcdonnell@york.ac.uk

Martin A. Trefzer

School of Physics, Engineering and Technology

University of York

York, United Kingdom

martin.trefzer@york.ac.uk

Abstract—The delay-feedback reservoir is a branch of reser-
voir computing that has allowed for a more hardware friendly
implementation by reducing the typically large number of inputs
and outputs within neural networks to a single physical input and
output. This is achieved by using a single non-linear node and
time-multiplexing the input signal with a masking signal, to create
many “virtual neurons” within a reservoir; emulating a larger
spatial neural network. While the relationship of the number
of virtual nodes, masking frequency, and overall delay length is
well known, the effect that the timescale has on computational
performance is not widely investigated or understood; usually
because working with specific substrates implies the reservoir
is confined to its inherent timescales. Hence, there is currently
no general methodology for tuning delay-feedback reservoir sys-
tems to specific applications. Here, we create a parameterisable
hardware-realistic computational model in order to simulate a
delay-feedback reservoir operating at different timescales, and
explore the effect this has on the connectivity between the virtual
nodes and the computational performance of the system. Our
results show that the timescale has indeed a significant effect on
computational tasks with a long-term dependency on previous
input stimuli. We then show that it is possible to emulate larger
virtual node networks within smaller ones with little loss in
performance and an increase in efficiency. This is an essential
step towards understanding the function of the timescale within a
delay-feedback reservoir, and a methodology to enable systematic
tailoring of delay-feedback reservoirs to specific computational
tasks across different timescales.

Index Terms—Unconventional Computing, Reservoir Comput-
ing, Delay-Feedback Reservoir Computing, System Modelling,
System Timescales.

I. INTRODUCTION

In the search to meet the everlasting computational demand

of modern systems, a biological approach has been applied

to traditional computing paradigms. A particularly powerful

brain-inspired computing paradigm, named Reservoir Comput-

ing, exploits the rich dynamical behaviours within a substrate

to perform computation.

The Reservoir Computing framework is a machine learn-

ing paradigm inspired from the world of neurobiology. The

foundation of the reservoir computing framework comes from

complex neural networks, specifically Recurrent Neural Net-

works, that exhibit interesting dynamical behaviours [1], [2].

Theoretically, this framework can be applied to any type

of dynamical system that exhibits high-dimensionality, non-

linearity, and fading memory. The reservoir computing frame-

work has already been successfully demonstrated on a wide

range of traditional hardware, such as FPGA and analogue

circuitry [3], [4], to more unconventional systems, such as

memristors and even a bucket of water [5], [6].

Many types of reservoir computing require a large amount

of randomly connected recurrent neurons, which often requires

significant space within hardware due to interconnect and IO

requirements [7]. As an alternative, Appeltant et al. introduced

a type of reservoir computing based upon delay systems theory

called a Delay-Feedback Reservoir [8]. The advantage of a

delay-feedback reservoir is that it only requires a single non-

linear neuron and a time delay to emulate many “virtual

neurons” to effectively emulate a much larger spatial recurrent

neural network [9], allowing for a more compact and efficient

use of hardware resources. Several interesting physical imple-

mentations of a delay-feedback reservoir have been realised

with both commercial components, such as FPGAs and op-

amps [4], [10], and more bespoke designs using photonic and

optoelectronic techniques [11], [12]; both types of designs

show promising results in performing time series prediction

and other temporal tasks.

One of the most powerful features of using a delay-feedback

reservoir is that they can be highly configurable. There are

many parameters within the system that can be changed and

will affect its computational ability, allowing for a robust solu-

tion to solving a variety of computational problems. However,

its high configurability also means that designing a delay-

feedback reservoir is often complex, as each parameter must

be chosen carefully to maximise the potential computational

performance of the system. Although previous research has

investigated the effect that the node size [8], delay length [13],

and masking procedure [14] have on a delay-feedback reser-

voir; the effects of the additional parameters are not well

known. To better understand the function and configurability

of a delay-feedback reservoir, we create a parameterisable

hardware-realistic computational model that can be configured

to operate at different timescales and configurations. We then

determine how the connectivity between virtual nodes changes

by altering the timescale of the system, this relationship is later

defined ρ. The computational performance is then evaluated

on two computational benchmark tasks as the connectivity

between virtual nodes is changed. Here we chose two temporal



Fig. 1. The typical structure of a reservoir computer. It consists of three
layers: an input layer which is randomly connected to the reservoir layer
with random fixed connections; a reservoir layer which contains randomly
connected recurrent neurons with randomly generated weighted connections;
an output layer which is randomly connected to the reservoir layer but has
weights which are trainable.

computational benchmarks, NARMA-10 and Santa Fe, as they

require vastly different and opposite reservoir characteristics

for optimal computational performance [15], [16]. This allows

us to gain insight into which reservoir characteristics change

as the timescale is altered within the reservoir system.

II. RESERVOIR COMPUTING

A. The Reservoir Computing Framework

The reservoir computing framework has become a popu-

lar method of training input-driven dynamical systems, such

as those derived from recurrent neural networks. The term

reservoir comes from a randomly connected set of recurrent

neurons, which are connected by fixed random weights, and

observed as a dynamical black box; this is known as the reser-

voir layer. Inputs are then fed into the reservoir layer using

an input layer, which is randomly connected to the reservoir

layer with fixed random weighted connections. Outputs are

observed from an output layer, which are connected randomly

to the reservoir, but connections have trainable weights that

can be calculated using training algorithms based on linear

regression, e.g., Ridge regression or Moore-Penrose pseudo

inverse, making the readout training simple; figure 1 depicts

the typical structure of a reservoir computing system.

B. Delay-Feedback Reservoir Computing

The delay-feedback reservoir is fundamentally different to

other types of reservoir computing. While other types of

reservoir computing rely on a reservoir layer that consists

of randomly connected recurrent neurons, the reservoir layer

within the delay-feedback reservoir only consists of a sin-

gle non-linear neuron and a time delay to emulate a much

larger recurrent neural network [8]. Originally demonstrated

by Appeltant in 2011, delay-feedback reservoirs have become

a popular method of solving temporal computational tasks due

to having a more hardware-friendly design, and being more

compact than other traditional reservoir computing systems.

Much like other traditional reservoir computing systems,

the delay-feedback reservoir contains three layers. The input

layer, where the input signal is time-multiplexed with a much

Fig. 2. The typical structure of a delay-feedback reservoir. A single non-
linear neuron (dark blue) is used with a time delay to create a network of
connected virtual nodes (light blue). The total time delay is notated as τ ,
which is often the same as the time period of the input signal. The time
period of the masking signal, notated as θ, defines the spacing between the

virtual nodes. The number of virtual nodes, N , can be calculated by
τ

θ
.

faster masking signal (often notated to have a time period of

θ); this is known as the masking process. The reservoir layer,

which contains a single non-linear neuron and a time delay

(notated as τ ). Finally, the output layer collates the states

of the reservoir through linear combination, typically every

θ, which is then used to train the network using weighted

connections [8]. The number of virtual nodes within the

system, N , is calculated by:

N =
τ

θ
(1)

The greater the number of nodes within a reservoir, the greater

its potential memory capacity will be. Figure 2 shows the

typical structure of a delay-feedback reservoir network.

C. Virtual Node Connectivity

As with any neural computing paradigm, the connectivity

between neurons can greatly affect the computational perfor-

mance of the system. As a form of neural system, information

within a reservoir computing network is processed by applying

a stimulus to its input, thus creating transient activity patterns

within the internal neurons [17]. The time in which these

transients exist can be called the timescale of the system;

where a system with a large timescale generates transients that

are longer in time than a system with a small timescale. As

previously discussed, the delay-feedback reservoir creates vir-

tual neurons from a single non-linear neuron via the masking

procedure. The topology of these virtual nodes is dependent

upon the period of the masking signal and the timescale of

the non-linear node, often denoted as T .

The purpose of the masking signal is to perturb the non-

linear neuron in a way that it remains within its transient

stage [18]. If the timescale of the non-linear neuron (T ) is

much smaller than the time period of the masking signal (θ),

then the transient response will happen so quickly, relative

to the period of the masking signal, that there will be no

bleed-over of the transients to its neighbouring virtual nodes;

this creates a network topology where no virtual nodes are

connected. Alternatively, if the non-linear node has a timescale

much greater than the time period of the masking signal, then

the transient response will persist for multiple masking signal

periods; creating a virtual node topology where each virtual

node depends on the response of its previous neighbours. In a



Fig. 3. The effect of the topology of virtual nodes within a delay-feedback
reservoir when the timescale of the non-linear neuron (T ) and the period of
the masking signal (θ) changes.

typical application, the virtual nodes within a delay-feedback

reservoir are in a ring topology, where information only passes

between adjacent virtual nodes; in this case the timescale

would be less than the period of the masking signal. This

effect is shown in figure 3.

As the timescale of the non-linear node increases, more

information is passed on to the next virtual node, thus creating

a stronger connection between virtual nodes. This effect is so

prominent, we introduce a new parameter, ρ, which allows for

a quick indication of how strong the connection is between

each virtual node. It is defined by how long the transient

response of the non-linear node exists within a single masking

signal period. It is calculated by:

ρ =
T

θ
(2)

The effect of the timescale and masking period of a first-order

non-linear node, with its corresponding ρ value, can be seen

within figure 4.

III. SYSTEM EVALUATION

A. Benchmarks

In order to evaluate the performance of a reservoir com-

puting system, computational benchmarks can be used to test

how capable a system is and allows a comparison between

systems. There are many types of computational benchmarks,

and here we select two temporal benchmarks: the NARMA-

10 benchmark, which requires a large memory capacity and

little non-linearity and dimensionality; and the Santa Fe Laser

dataset which is the opposite, requiring a small memory ca-

pacity and a large non-linearity and dimensionality. Choosing

two benchmarks that require opposite reservoir characteristics

allows us to gain insight into how changing the timescale

effects the reservoirs characteristics in the extreme cases,

without having to perform extensive system metric sweeps.

NARMA-10. The non-linear autoregressive moving average

task, or NARMA, is an imitation computational benchmark

that utilises a weak non-linearity and a long-term dependency

on previous input stimuli that can be used to evaluate a

reservoirs dynamical capability. NARMA-10 in particular is

of the 10th order, meaning it relies on inputs from a lag of 10

time steps. The equation for the discrete NARMA-10 sequence

is:

yn+1 = 0.3yn + 0.05yn

(

9
∑

i=0

yn−i

)

+1.5unun−9 + 0.1 (3)

When applying the NARMA-10 benchmark to a reservoir

computing system, the goal is to attempt to train the reservoir

system to recreate the dynamics of the NARMA-10 signal

when supplied with the same input stimuli; the trained output

sequence and NARMA-10 equation output are then both

compared so that the system performance can be evaluated.

Santa Fe Laser Dataset. The Santa Fe Laser dataset, also

known as just Santa Fe or Laser, is a predictive highly non-

linear computational benchmark derived from observing a far-

infrared laser in a chaotic state [15]. The aim of the Santa

Fe benchmark is to attempt to train the reservoir system

the dynamics of the dataset so that the next n number

of observations can be predicted. Typically, only the next

observation is predicted, greatly reducing the dependency of

previous input stimuli. This results in the Santa Fe benchmark

requiring a reservoir system to have a stronger non-linear high-

dimensionality rather than fading memory.

B. Training a Delay-Feedback Reservoir System

In order to be able to compare the performance of the

reservoir between different experimental runs and benchmark

tasks, a measurable quantity of how well the reservoir has

performed needs to be established. Here we calculate the

error between the trained reservoir output and its target, then

normalise it against some statistical attribute. This is known

as the normalised root mean square error (NRMSE), which is

a common measurement of calculating the testing and training

error. The NRMSE is expressed as:

NRMSE =

√

1

m

∑

m

k=1
(ŷk − yk)2

σ2(yk)
(4)

Where, m is the number of data samples within the experi-

ment, ŷk is the trained reservoir output, yk is the desired target

function, and σ is the standard deviation.

A NRMSE result of 0 implies a perfect match between

the trained reservoir output and the target function, whereas

a result of 1 indicates the trained reservoir is approximating

the mean value of the target output. Generally, the lower

the NRMSE is, the better the reservoir is at the executed

computational task.

IV. EXPERIMENTAL METHODOLOGY

A. Delay-Feedback Reservoir Evaluation

In order to create a hardware-realistic model, several exist-

ing implementations of delay-feedback reservoir systems were

evaluated so that the fundamental building blocks could be

established [4], [11], [19]. We found that there are two key

components that a typical non-linear neuron has: a chaotic

attractor, and an integrator.



Fig. 4. The effect of the timescale and masking period of a first-order non-linear node within a delay-feedback reservoir for three timescales, 0.1 s, 0.5 s, and
2 s, with their calculated ρ values. The blue line represents the masked input signal, while the orange line represents the response of a first-order non-linear
node.

Fig. 5. The block diagram of the Mackey-Glass Non-Linear Time Delay
Differential Equation.

The chaotic attractor serves two purposes within a delay-

feedback reservoir system. First, it constrains values within

the feedback loop within a specific range, and second, it

adds a non-linear transform to the system. In theory, any

type of chaotic attractor will work, but as we are focusing

on a hardware-realistic model, we consider a chaotic attractor

that has been shown to have a realistic hardware implementa-

tion [4].

Here we use the Mackey-Glass non-linear time delay dif-

ferential equation, initially used to model the variation of

mature blood cells [20], as it is a common chaotic attractor

within the literature and is used in Appeltant’s delay-feedback

reservoir [8], [14]. The Mackey-Glass equation is expressed

as:

ẋ =
β
(

x(t− τ) + δIt

)

1 +
(

x(t− τ) + δIt

)n − γx(t− τ) (5)

This can also be expressed as a block diagram, as shown in

figure 5:

Where, β is the coupling gain between the chaotic attractor

and integration stage, τ is the length of the delay within the

delay feedback loop, x(t− τ) is the output of the feedback

loop after the delay τ , It is the external input to the feedback

loop, δ is the input scaling factor, γ is the feedback gain within

the leaky integrator, and n is the value of the Mackey-Glass

exponent.

The integrator within a non-linear neuron is typically re-

alised by a leaky integrator. However, as we are interested in

creating a model which is highly parameterisable, we chose to

set the leaky integrator feedback gain (γ) to unity and close

the loop around the leaky integrator. This gives a first-order

system that can be realised by an op-amp or a simple resistor-

capacitor circuit; this is expressed within the Laplace domain

as the following transfer function:

T (S) =
β

T imescale.S + 1
(6)

Where T imescale is the time constant of the system in

seconds, and β is the coupling gain in between the chaotic

attractor and transfer function.

Not only is the first-order system approach easier to im-

plement within hardware, but it also allows the system to

have a tuneable time constant. This allows us to configure the

time constant of the reservoir to match any physical substrate,

which not only produces a more realistic hardware model

(giving us greater insight into the dynamics of the behaviour

of the system), but is the first steps in having a configurable

timescale that can be adjusted to optimise the performance of

a particular computational task. An adjustable coupling gain is

also included between the chaotic attractor and leaky integrator

to model any losses between these stages.

B. Experimental Model

With the chaotic attractor and integration stages chosen,

the delay-feedback reservoir model is constructed within

Simulink, a MathWorks simulation tool (version 10.5 within

MATLAB 2022a), allowing for a near physical system model

to be created. The model is created using the block diagram

in figure 5 as reference, the completed model is shown in

figure 6:

As previously discussed in section IV-A, the Mackey-Glass

chaotic attractor is used, which is built from the Simulink

model blocks, and the integration stage is realised by the

proposed first-order system; the delay is implemented using

the Simulink “Transport Delay” block. Everything within

the blue dotted line is part of the Mackey-Glass chaotic



Fig. 6. A schematic of a delay-feedback reservoir, using the Mackey-Glass chaotic attractor and a first-order system as the integration stage, created within
Simulink 10.5.

Name Symbol Default Value

Timescale T Variable
Coupling Gain β Variable

Input Scaling Factor δ Variable
Time Delay τ Variable

Mackey-Glass Exponent n 9

TABLE I
A LIST OF MODEL PARAMETERS WHICH ARE SET WITHIN THE

DELAY-FEEDBACK RESERVOIR SIMULINK MODEL.

attractor and will remain constant throughout experimentation.

A commonly-used average non-linearity is chosen, as the

Mackey-Glass exponent (n) is set to 9, because some non-

linearity is required in the benchmarks chosen.

The input signal is generated in MATLAB and is injected

into the reservoir using a “From Workspace” block, named

“Simu_InputSequence” within figure 6. The states of the

reservoir are taken using a “To Workspace” block, named

“out.DFR_Out” within figure 6, at a sample rate of θ;

allowing the states of each virtual node to be sampled at the

correct time. These states are then sent back into the MATLAB

workspace, so that the training and system evaluation can take

place.

Table I contains a list of the parameters, and their values,

within the Simulink model.

C. Experimental Procedure

With the experimental model completed, the effect of the

connectivity between virtual nodes is to be investigated. Two

reservoir systems will be tested (a 20-node and a 200-node

system with a τ of 80 s) at four different timescales (10ms,

100ms, 200ms, and 400ms). This allows a comparison between

a smaller and larger virtual node system, while allowing for

larger values of ρ. It was decided that, in order to keep the

processing speed of each reservoir the same, the time delay

(τ ) will remain constant while the timescale of the first-order

system (as defined by the transfer function 6) and the period

of the masking signal will be modified. The ρ values of the

two systems and their timescales are shown in table II.

System Timescale 20-Node (ρ) 200-Node (ρ)

10ms 0.0025 0.025
100ms 0.025 0.25
200ms 0.05 0.5
400ms 0.1 1

TABLE II
THE VALUES OF ρ FOR TWO DELAY-FEEDBACK RESERVOIR SIMULINK

MODELS WITH DIFFERENT VIRTUAL NODES, WHEN TESTED AT FOUR

DIFFERENT TIMESCALES.

Name Symbol Value (20-Node) Value (200-Node)

Coupling Gain β 0-2 0-2
Input Scaling Factor δ 0-2 0-2

Time Delay τ 80 80
Masking Signal Period θ 4 0.4

TABLE III
PARAMETER VALUES OF THE DELAY-FEEDBACK RESERVOIR SIMULINK

MODEL DURING THE INPUT SCALING AND COUPLING GAIN PARAMETER

SWEEP.

As the performance of the reservoir is highly dependant

upon the input scaling and coupling gain, a coarse parameter

sweep is performed on both the 20- and 200-node reservoir

systems and timescale setting, for both the NARMA-10 and

Santa Fe benchmarks, in order to find the best performing

parameters. Table III shows the parameter values and ranges

for the proposed parameter sweep.

The procedure for generating the input sequences of both

the NARMA-10 and Santa Fe benchmarks within MATLAB

are the same. A sequence of 6000 data points, either generated

from the NARMA-10 equation or copied from the Santa Fe

dataset, is time-multiplexed by a random-weighted no-offset

mask. A washout period (consisting of 100 data points) is

used, with the training and test datasets being split 80/20

respectively.

V. EXPERIMENTAL RESULTS

Following the experimental procedure outlined in sec-

tion IV-C, the parameter sweeps are performed. Each param-

eter sweep is evaluated by calculating the training and testing



NRMSE at each parameter interval, and is ranked in order of

best testing NRMSE.

A. NARMA-10 Benchmark

Table IV shows the best performing sweep parameters, in

terms of testing NRMSE, for the NARMA-10 benchmark.

Within both the 20- and 200-node reservoirs, it is clear that as

ρ increases, the test NRMSE decreases. This is to be expected

as when ρ increases, more information is being passed on

to the next virtual node, increasing the computational per-

formance of the reservoir. However, the performance of the

reservoirs are particularly poor, with the highest test NRMSE

being 0.494; this is likely due to the lack of memory capacity

within the system.

As discussed in section III-A, the NARMA-10 benchmark

relies heavily on the long-term dependency of previous input

stimuli in order to fully recreate the dynamics of the NARMA-

10 signal; specifically, a lag of 10 time steps for the NARMA-

10 benchmark. The maximum long-term memory capacity

of a reservoir system is equal to the maximum number of

nodes within the reservoir [21], although typically the actual

memory capacity is much less than this. This would imply

that there is insufficient memory capacity within the 20-

node reservoir to provide the required long-term dependency,

thus greatly reducing the computational performance of the

reservoir. This is evident when comparing the 20- and 200-

node reservoir systems together, as there is an improvement

within the computational performance, with the highest test

NRMSE being 0.308.

Despite the 200-node reservoir having a greater potential

for maximum memory capacity, the performance appears to

be dominated by the connectivity between the virtual nodes,

implying that there is a connection between the connectivity

and the memory capacity. This would make sense as ρ is

defined as the time the transient response of the non-linear

node exists within a single masking signal period, and the

greater ρ is, the more of the previous input passes on to the

next virtual node.

A further observation can be made when the value of ρ

equals 0.025 within both the 20- and 200-node reservoirs. The

20-node reservoir has a minimum testing NRMSE of 0.608,

while the 200-node reservoir has a minimum testing NRMSE

of 0.586. This would indicate that the full dynamics of the

200-node system is not being utilised, as the 20-node system

performs almost as well, suggesting a 200-node reservoir could

be emulated within a 20-node reservoir providing they have

the same value of ρ. This can not be said with confidence

as each parameter sweep consists of only one run. Therefore,

further statistical analysis must be performed to confirm this

hypothesis.

B. Santa-Fe Benchmark

Table V shows the best performing sweep parameters, in

terms of testing NRMSE, for the Santa Fe benchmark. One of

the first things to note is that the computational performance of

the reservoir running the Santa Fe benchmark is much better

than the NARMA-10 alternative, with the lowest test NRMSE

being 0.098. This suggests that the current model configuration

is better suited to low-memory, high-dimensional benchmark

tasks.

Although there is a relationship between the computational

performance of the reservoir and the value of ρ, it is not as

prominent as it is within the NARMA-10 benchmark. Within

the 20-node reservoir, a gradual decrease occurs within the

testing NRMSE, implying the dominant factor within the

reservoir performance is the connectivity between the virtual

nodes. However, within the 200-node reservoir, there is a

large decrease in testing NRMSE from the 10ms and 100ms

reservoir, but as ρ increases, there is only a minor effect on the

computational performance when ρ is greater than 0.25. This

would imply that other dynamics, such as the non-linearity

of the reservoir, dominate the value of ρ within the 200-node

reservoir. This would make sense as the Santa Fe benchmark

requires only minimal memory capacity, as it only has 1 lag

dependency on previous input stimuli, but requires strong non-

linear high-dimensionality.

During the evaluation of the NARMA-10 benchmark, it was

noticed that the 100ms 20-node reservoir and the 10ms 200-

node reservoir performed almost the same. It was hypothesised

that for the NARMA-10 benchmark, the value of ρ was more

important as the NARMA-10 benchmark could not utilise the

full dynamics of the 200-node reservoir, indicating that a 200-

node reservoir may be able to be emulated within a 20-node

reservoir. For the Santa Fe benchmark, the testing NRMSE

value for the 100ms 20-node reservoir is 0.416 and for the

10ms 200-node reservoir it is 0.374. It is not clear whether

the dynamics of the reservoir are the dominating factor, or

whether it is the value of ρ. To determine if a reservoir running

the Santa Fe benchmark can be emulated, a full statistical

evaluation will need to be performed in future work.

VI. SYSTEM EMULATION

Within section V, it was hypothesised that a computational

task within a 200-node system could be emulated within

a 20-node system by only changing the value of ρ with

no performance decrease. It was found that when running

the NARMA-10 benchmark, the 100ms 20-node system and

the 10ms 200-node system had similar performance, having

a testing NRMSE difference of only 0.022; implying that

the NARMA-10 benchmark could be emulated. Conversely,

during the Santa Fe benchmark run, the 100ms 20-node system

and the 10ms 200-node system had a testing NRMSE value

of 0.416 and 0.374 respectively, making it unclear if the Santa

Fe benchmark could be emulated.

To check the validity of this hypothesis, the best performing

input scaling and coupling gain parameters that were deter-

mined, from the parameter sweeps within section V, were

simulated 100 times so that a statistical analysis could be

performed. Each set of 100 simulations has the same input

scaling, coupling gain, and value of ρ, but has a different

randomly generated random-weighted no-offset mask; the

NARMA-10 benchmark also has different randomly generated



Timescale 10ms 100ms 200ms 400ms

20-Node

ρ 0.0025 0.025 0.05 0.1
NRMSE 0.655 0.608 0.548 0.494

Input Scaling 0.1 0.05 0.45 0.3
Coupling Gain 0.9 1.05 0.35 0.35

200-Node

ρ 0.025 0.25 0.5 1.0
NRMSE 0.586 0.411 0.340 0.308

Input Scaling 0.05 0.25 0.15 0.15
Coupling Gain 1.05 0.4 0.45 0.8

TABLE IV
TABLE OF THE BEST PERFORMING SWEEP PARAMETERS FOR THE NARMA-10 BENCHMARK, FOLLOWING THE METHODOLOGY OUTLINED IN

SECTION IV-C.

Timescale 10ms 100ms 200ms 400ms

20-Node

ρ 0.0025 0.025 0.05 0.1
NRMSE 0.516 0.416 0.381 0.297

Input Scaling 0.05 0.25 0.30 0.15
Coupling Gain 1.1 1.1 1.1 1.05

200-Node

ρ 0.025 0.25 0.5 1.0
NRMSE 0.374 0.138 0.112 0.098

Input Scaling 0.25 0.30 0.65 0.25
Coupling Gain 1.1 1.1 1.15 1.1

TABLE V
TABLE OF THE BEST PERFORMING SWEEP PARAMETERS FOR THE SANTA-FE BENCHMARK, FOLLOWING THE METHODOLOGY OUTLINED IN

SECTION IV-C.

input. The testing NRMSE values were calculated from the

resulting simulations and plotted as a box-plot; this is shown

in figure 7.

The NARMA-10 results shown in figure 7 show that the

value of ρ is the dominating factor when it comes to the

performance of the systems, and is independent of the number

of virtual nodes within the reservoir. The 20- and 200-node

systems (which share a ρ value of 0.025) have almost the

same performance, with the 200-node reservoir having a

slight advantage. This is what we would expect, because the

NARMA-10 benchmark heavily relies on the dependency of

the previous input stimuli and a low reliance on the non-

linearity and dimensionality of the reservoir.

The Santa Fe results, once again shown in figure 7, shows

that the number of virtual nodes within the reservoir is the

dominating factor in terms of the performance of the systems.

However, unlike the NARMA-10 benchmark, the value of ρ

has an effect on the 20-node Santa Fe benchmark, with the

interquartile ranges increasing as ρ increases. This is likely

because the chosen input scaling and coupling gain were

already on the edge of stability, meaning the random deviations

within the random mask could have forced the reservoir to

perform worse. The effect is much more prominent within the

20-node reservoir as the 200-node reservoir is more robust.

These results confirm the hypothesis that if a computational

task has a large dependency on previous input stimuli and is

being run on a many-node system, it is possible to emulate the

same performance within a smaller-node system providing that

the new system has a value of ρ equal to that of the previous

system. The limiting factor of how small the new system can

be, is that the new system must exhibit the minimum non-

linearity and dimensionality required to run the computational

task.

VII. CONCLUSION AND FURTHER WORK

The delay-feedback reservoir is a highly configurable and

versatile method of performing temporal computational tasks.

It is highly configurable in the sense that there are many

parameters that can be changed with relative ease, both with

the reservoir and pre-processing stage, that have a large effect

on the performance of the system.

Within this paper, we created a parameterisable realistic

hardware model of a delay-feedback reservoir that is able

to emulate both simulated and physical systems in order to

further the understanding of the parameters and functionality

of the system. We have shown the importance of the virtual

node connectivity and how it can affect the computational

performance of two computational benchmarks with opposite

operating requirements; a high-memory, low-dimensionality

benchmark task (NARMA-10) and a low-memory, high-

dimensionality benchmark task (Santa Fe). To focus the scope

of this paper, we have not significantly varied or explored

parameters within the non-linear neuron, although this is an

avenue for future research. We found that it was possible

to emulate larger virtual node networks within smaller ones,

providing that the computational task has a large dependency

on previous input stimuli and low-dimensionality, with little

performance loss. This allows the period of the masking signal

to be larger, which reduces the frequency of the masked input

stimuli, allowing for the input data to be applied at a higher

frequency.

In future work, we will further explore the effect of the

timescale within the delay-feedback reservoir to create a



Fig. 7. A graph showing the training NRMSE results of 100 simulation runs for several values of ρ. Each box-plot is a reservoir configured with the best
performing input scaling and coupling gain parameters found in section V.

feature space of the system in terms of the system parameters,

allowing a view of their sensitivity. To better understand

the difference in performance between the NARMA-10 and

Santa Fe benchmark tasks we will also analyse the system

in terms of metrics (such as memory capacity, kernel quality,

and generalisation rank) and perform further computational

benchmarks that require less extreme reservoir characteristics

on the system. We will also investigate the performance of

the system with additional benchmarks that have a mixture

of memory capacity and dimensionality, not just the opposite

extremes. This will allow us to gain insight into why the

benchmark tasks perform differently, and hopefully allow

us to identify the key properties that are needed for good

performance.

ACKNOWLEDGMENT

Supported by the EPSRC studentship. Experiments were

carried out using the Viking Cluster, a compute cluster pro-

vided by the University of York.

REFERENCES

[1] M. Brin and G. Stuck, Introduction to dynamical systems. Cambridge
university press, 2002.

[2] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German

National Research Center for Information Technology GMD Technical

Report, vol. 148, no. 34, p. 13, 2001.

[3] P. Antonik, A. Smerieri, F. Duport, M. Haelterman, and S. Massar, “Fpga
implementation of reservoir computing with online learning,” in 24th

Belgian-Dutch Conference on Machine Learning, 2015.

[4] M. C. Soriano, S. Ortı́n, L. Keuninckx, L. Appeltant, J. Danckaert,
L. Pesquera, and G. Van der Sande, “Delay-based reservoir computing:
noise effects in a combined analog and digital implementation,” IEEE

transactions on neural networks and learning systems, vol. 26, no. 2,
pp. 388–393, 2014.

[5] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir
computing using dynamic memristors for temporal information process-
ing,” Nature communications, vol. 8, no. 1, pp. 1–10, 2017.

[6] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in
European conference on artificial life. Springer, 2003, pp. 588–597.

[7] M. Lukoševičius, “A practical guide to applying echo state networks,”
in Neural networks: Tricks of the trade. Springer, 2012, pp. 659–686.

[8] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar,
J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information
processing using a single dynamical node as complex system,” Nature

comms., vol. 2, no. 1, pp. 1–6, 2011.
[9] F. M. Atay, Complex time-delay systems: theory and applications.

Springer, 2010.
[10] M. L. Alomar, E. S. Skibinsky-Gitlin, C. F. Frasser, V. Canals, E. Isern,

M. Roca, and J. L. Rossello, “Efficient parallel implementation of
reservoir computing systems,” Neural Computing and Applications,
vol. 32, no. 7, pp. 2299–2313, 2020.

[11] D. Brunner, B. Penkovsky, B. A. Marquez, M. Jacquot, I. Fischer,
and L. Larger, “Tutorial: Photonic neural networks in delay systems,”
Journal of Applied Physics, vol. 124, no. 15, p. 152004, 2018.

[12] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Hael-
terman, and S. Massar, “Optoelectronic reservoir computing,” Scientific

reports, vol. 2, no. 1, pp. 1–6, 2012.
[13] T. Hülser, F. Köster, L. Jaurigue, and K. Lüdge, “Role of delay-times in

delay-based photonic reservoir computing,” Optical Materials Express,
vol. 12, no. 3, pp. 1214–1231, 2022.

[14] T. Gan, S. Stepney, and M. A. Trefzer, “Tradeoffs with physical delay
feedback reservoir computing,” in 2021 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE, 2021, pp. 1–8.
[15] A. S. Weigend, Time series prediction: forecasting the future and

understanding the past. Routledge, 2018.
[16] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Information processing

via physical soft body,” Scientific reports, vol. 5, no. 1, p. 10487, 2015.
[17] W. Maass, T. Natschläger, and H. Markram, “Real-time computing

without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[18] L. Appeltant, G. Van der Sande, J. Danckaert, and I. Fischer, “Con-
structing optimized binary masks for reservoir computing with delay
systems,” Scientific reports, vol. 4, no. 1, pp. 1–5, 2014.

[19] P. Kumar, M. Jin, T. Bu, S. Kumar, and Y.-P. Huang, “Efficient
reservoir computing using field programmable gate array and electro-
optic modulation,” OSA Continuum, vol. 4, no. 3, pp. 1086–1098, 2021.

[20] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.

[21] H. Jaeger, “Short term memory in echo state networks. gmd-
report 152,” in GMD-German National Research Inst. for

Comp. Science (2002), http://www. faculty. jacobs-university.

de/hjaeger/pubs/STMEchoStatesTechRep. pdf. Citeseer, 2002.


