
This is a repository copy of Combining Multiple Inputs to a Delay-line Reservoir
Computer:Control of a Forced Van der Pol Oscillator System.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/205166/

Version: Accepted Version

Proceedings Paper:
Gan, Tian, Stepney, Susan orcid.org/0000-0003-3146-5401 and Trefzer, Martin A
orcid.org/0000-0002-6196-6832 (2023) Combining Multiple Inputs to a Delay-line
Reservoir Computer:Control of a Forced Van der Pol Oscillator System. In: 2023
International Joint Conference on Neural Networks (IJCNN). International Joint
Conference on Neural Networks, 18 Jun 2023 Proceedings of the International Joint
Conference on Neural Networks . IEEE , AUS

https://doi.org/10.1109/IJCNN54540.2023.10191630

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Combining Multiple Inputs to a Delay-line

Reservoir Computer: Control of a Forced

Van der Pol Oscillator System

Tian Gan

School of Physics, Engineering,

and Technology

University of York

York, United Kingdom

tian.gan@york.ac.uk

Susan Stepney

Department of Computer Science

University of York

York, United Kingdom

susan.stepney@york.ac.uk

Martin A. Trefzer

School of Physics, Engineering,

and Technology

University of York

York, United Kingdom

martin.trefzer@york.ac.uk

Abstract—The Reservoir Computing (RC) paradigm is a
supervised machine learning approach that makes use of the
inherent processing capacity of dynamical systems. Using the
system’s transient response to an external input, delayed chaotic
systems offer rich dynamics for information processing, and have
therefore been recognised as ideal systems for reservoir comput-
ing. A distinctive feature of delay-line reservoirs is their single-
input/single-output structure, which makes them efficient for
physical implementation. However, this also presents a significant
limitation to multi-input tasks, as the sequence of information
in the time-multiplexed input stream is not obvious. Here, we
propose enhancing the input masking process used in delay-
feedback RCs to mix multiple inputs in the time domain. We
investigate two approaches: ‘interleaved’ and ‘sequential’, of
injecting multi-input signals into a delay-line reservoir without
modifying its topology. Further, we propose a novel task for
RC, which inherently requires multiple inputs, to evaluate our
approach: the control of a forced Van der Pol oscillator system.
We use the trained reservoir as a controller to regulate the
nonlinear dynamics of the Van der Pol system by constraining its
trajectory to a circle. We find that, with careful choice of model
parameters and offset masking scheme, the ‘sequential’ method
outperforms the ‘interleaved’ method on this task.

Index Terms—Unconventional computing, Delay-line Reser-
voir, Van der Pol, Mackey-Glass

I. INTRODUCTION

Neuro-biological principles serve as a source of motivation

for reservoir computing (RC) designs. Neural systems process

information through the generation of transient activity pat-

terns generated by sensory input signals [1]. Consequently, RC

has been regarded as an effective machine learning paradigm

for temporal-sequential processing [2]. As an inherent property

of physical systems, deterministic chaos has garnered a great

deal of attention in the study of nonlinear dynamical systems,

including the neuro-biological and machine learning fields [3]–

[6].

Any dynamical system with particular qualities—high di-

mensional state, non-linearity, and fading memory (i.e. short

term memory)—might in theory serve as a reservoir computing

substrate. Numerous devices having such properties have been

successfully proven, including water bucket systems, memris-

tors, and FPGAs [7], [8].

Appeltant et al [9] propose the computational framework for

delay-feedback reservoirs. This is a useful method for reducing

the complexity of hardware implementation, since the system

comprises of only a single nonlinear element and a delay

line. Instead of a huge network of discrete units, a number of

‘virtual nodes’ are created using time-multiplexing, masking,

and a delay line to form a high-dimensional phase in time in

the reservoir layer. In order to perform time-multiplexing, each

input signal is converted into a sequence of masked signals for

processing. The sample frequency usually rises as the number

of virtual nodes grows, in order to ensure sufficient resolution

in the masking steps. Several investigations have proven the

viability of both optoelectronic and optical delay-feedback

reservoir computing [10]–[12].

II. CONCEPTS

A. Reservoir Computing

Reservoir computing is a bio-inspired machine learning

paradigm that aims to use the inherent computational capacity

of dynamical systems. In 1943, McCulloch and Pitts [13] pre-

sented the very first neural network model by using electrical

circuits to simulate brain neurology. With several successful

demonstrations over the last decade, reservoir computing has

been recognised as a cutting-edge network for sequential data

processing. Even for computationally difficult tasks like voice

recognition and chaotic time series prediction, good results

have been achieved [14], [15].

The computational model (Fig. 1) for reservoirs is based

on a recurrent neural network (RNN). It is composed of

three layers: the input layer, the reservoir layer, and the

output layer, with only the reservoir layer exhibiting dynamic

behaviour. Signals are sent from the input layer to the reservoir

layer through fixed randomly weighted connections. Only the

weights between the reservoir layer and the output layer are

taught, and these may be trained using simple techniques, such

as linear regression [2]. Consequently, the reservoir layer may

Win

Input Layer

Reservoir Layer

Output Layer

Wout

Random, fixed weights and connections

Wres

Trained Wout

Fig. 1. Topology of Reservoir Computing.

be seen as a ‘black box’, enabling reservoir computing to be

implemented in a broad range of physical systems with the

necessary dynamics.

An RC substrate may be a physical device or material, a

simulated network, or a set of equations. The characteristics

of a reservoir computer rely on the underlying dynamics of

the substrate a reservoir system is created with [16], [17]. The

essential characteristics that physical reservoirs must possess

in order to correctly perform various functions are:

1) High-dimensionality and non-linearity. This is depend-

ing on the quantity of distinct signals retrieved from the

reservoir. If the reservoir includes a significant number

of nonlinear nodes, the projection of the input data onto

the reservoir is functionally equal to a mapping into a

high-dimensional space. Hence, the nonlinear mapping

transforms non-separable inputs into separable ones.

2) Fading memory. This attribute is critical for processing

sequential data, since the state of a reservoir is reliant

on the recent past signal but independent of the distant

past, i.e. its response is dependent on relevant input, but

does not become noise over time [9].

B. Delay-feedback Reservoir Computing

Appeltant et al [9] demonstrates that even basic nonlinear

systems with delayed feedback may effectively process infor-

mation. They propose a design for a nonlinear circuit with a

digital delay line.

Typically, delay-differential equations are utilised to model

such systems (DDEs). As the phenomenon of time delay oc-

curs naturally in a variety of physical systems and the hardware

implementation of delay-based reservoir computing requires

only a single nonlinear node and a delayed feedback loop,

this has resulted in numerous implementations in electronics,

optoelectronics, and optics. Previous research indicates that

delay differential equations are helpful for effective reservoir

computation, and that masking plays a crucial role in delay-

feedback reservoir computing since it defines the virtual nodes

along the delay line [9], [10], [12], [18], [19].

Kuriki et al [20] investigates the influence of different input

masking strategies on photonic reservoir computing using

semiconductor lasers, utilising the Santa Fe time-series pre-

diction problem as a benchmark. The effectiveness of masking

may vary between different tasks.

Masking
Procedure

Delay-line Reservoir Network

Wout

NL
τ

Linear Combination

Output

θ

Input

RWM

BWM

Fig. 2. Topology of Delay-feedback Reservoir Computing.

Fig. 2 shows a schematic delayed feedback reservoir. The

input signal is masked, and then injected into the nonlinear

node; it travels along the delay line for time interval tau, and

is then re-injected into the loop, so forming a delay-feedback

reservoir.

The mask is used to designate N effective virtual nodes

along the delay line. The time delay between each of the

virtual nodes is θ = τ/N . Masking mixes the input signal

with several sets of scaling factors to elicit a dynamically rich

response from the reservoir. Typically, the masking method

utilizes either a Real Weight Mask or a Binary Weight Mask.

We have previously investigated the effectiveness of these two

input mask types under different scenarios for the NARMA-10

benchmark task [21], and we are using Binary Weight Mask

here.

III. MODELS AND BENCHMARKS

A. Mackey-Glass Model

The Mackey-Glass model [22] was established in the con-

text of respiratory and haematological disorders, where time

delay plays a crucial role [23]–[25]. The model is a first-order

nonlinear delay differential equation

Ṗ =
βθnPτ

θn + Pn
τ

− γPt, Pτ ≡ P (t− τ) (1)

where the conditional variable Pt is the homogenous density

of mature blood cells in a population at time t; τ is the period

between the beginning of blood cell synthesis and the release

of mature blood cells; β, θ, and n are related to the production

rate; and γ defines the decay rate of the cells [22].

The equation exhibits a variety of aperiodic and chaotic

behaviours, dependent on parameter values. Due to its robust

dynamics and ability to be implemented in hardware, the

model is appropriate for delay-line reservoir computing [23],

[26], [27].

In the context of delay-line reservoir computation, Appeltant

et al [9] explore the time-normalized equation with state

variable xt, and add an external input It to the delayed

feedback value, xτ → xτ + δIt, where δ is an input scaling

parameter:

ẋ =
β(xτ + δIt)

1 + (xτ + δIt)n
− γxt, xτ ≡ x(t− τ) (2)

Here, xt represents the normalised voltage at physical time t;
τ is the physical time delay in the feedback loop; β, n and γ
are the same as previously.

PID Controller VDP
Target

Trajectory

xt , x
’
t

xo , x’
o

Δx = xt - xo
Δx’ = x’

t - x
’
o

outputinput

Fig. 3. PID Control topology.

B. Van der Pol Oscillator Benchmark Task

Consider the following non-linear differential equation:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = F (t) (3)

When the forcing term F (t) = 0, this is the Van der Pol

oscillator. The Van der Pol oscillator is a non-conservative

dynamical system that exhibits limit cycle behavior, that is, it

oscillates between two or more states in a repeating pattern.

It was first described by the Dutch physicist Balthazar

van der Pol in the 1920s [28]. It is particularly useful

for modeling systems that exhibit non-linear behavior, such

as relaxation oscillations and self-sustained oscillations. The

equation demonstrates oscillatory activity, but its amplitude is

not constant; it represents an invariant set known as a ‘limit

cycle’. Regardless of the initial conditions, all system paths

converge to this invariant.

We seek to control the VDP system so that it produces a

fixed-amplitude oscillation, i.e. a circle as shown in Fig. 4,

through defining a suitable control function for the external

force F (t) in Eq. 3. Cooper et al reveal the difficulties in

controlling the VDP Oscillator’s nonlinear dynamics with a

PID controller [29].

Our approach starts with the explanation of the intrinsic

dynamics and the effects of various initial conditions. Eq. 3

with F (t) = 0 is simulated in SIMULINK Tool, in which the

nonlinear Van der Pol equation is propagated forward in time

with different initial conditions, and as shown in Fig. 4a.

To achieve a controlled circular trajectory, we use a PID

controller designed for optimal performance under a com-

manded trajectory of amplitude of 2. To compare the forced

trajectory with this target trajectory, the phase plots are shown

in Fig. 4.

The task is to train the reservoir to imitate the output control

signal of the PID controller as closely as possible using the

same input, and ultimately to replace the PID and drive the

forced Van der Pol system with the trained reservoir as the

controller.

When training the reservoir to imitate the PID controller,

we use the normalised root mean square error (NRMSE) to

assess and compare the performance of different experimental

techniques:

NRMSE =

√

1

m

∑m

k=1(ŷk − yk)2

σ2(yk)
(4)

where y is the target function, ŷ is the reservoir output, m is

the number of data samples in the run, and σ is the standard

deviation. An NRMSE of 0 indicates that the system output

and target output are in perfect agreement; an NRMSE of 1

indicates that the system output is equal to the mean target

output.

IV. EXPERIMENTAL METHODS

A. System Implementation

1) Masking.: Masking plays a crucial role in delay-

feedback reservoir computing since it defines the virtual nodes

along the delay line. In this paper, we use Binary Weight

Mask (a random sequence of −1 and +1 values) with different

configurations:

a) Mask-multiplexing with offset by u:

I(t) = I0(t)(M(t) + 1) (5)

b) Mask-multiplexing with no offset:

I(t) = I0(t)M(t) (6)

2) Simulation environment: We define the reservoir using

Simulink. This model, shown in Fig. 5, is an intermediate step

between the mathematical DDE model and a physical circuit.

In accordance with the variables in Eq. 2, appropriate

function blocks are chosen for implementation and linked

accordingly to implement the different terms. MATLAB is

used to produce the input signal, which is then fed into the

system. A subsystem transmitting information to MATLAB

collects the state matrix of virtual nodes for reservoir training

and assessment.

B. Multiple Inputs

In order to circumvent the limitation of single-input delay-

feedback reservoirs, in this paper, we introduce two techniques

of injecting multiple inputs into the system:

1) Interleave. The interleave technique schematic, shown in

Fig. 6a, is a method that places masked dual- or multi-

inputs in an alternating manner. For example, when

two input streams undergo time-multiplexing procedure,

they are completely mixed before injecting into the

system, i.e. ‘x1,ẋ1,x2,ẋ2,. . . ’ shown in the illustration

with inputs being ‘x and ẋ’.

2) Sequential. In contrast, the sequential approach leaves

the inputs in sequence and concatenates them before

undergoing the masking procedure(shown in Fig. 6b),

i.e. ‘x1,x2,x3,. . . , ẋ1,ẋ2,ẋ3,. . . ’. The length of each

input value’s concatenation depends on the number of

virtual nodes along the delay line. In this instance, each

input value is concatenated to length of 15, as 30 virtual

nodes are defined in the reservoir.

C. Parameter Setting

The experimental parameter settings are shown in Table 7.

State values are always positive in this model (they represent

blood cell concentrations). Here, state values are voltages that

are modified by inputs; state value plus input term xτ + δIt

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6
d

x
(t

)/
d

t

(a) No PID control

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t
(b) Target radius = 1

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t

(c) Target radius = 2

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t

(d) Target radius = 3

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t

(e) Target radius = 4

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t
(f) Target radius = 5

Fig. 4. Forced VDP oscillator trajectories (blue solid line) and forced target trajectories (red dashed line) are shown. (a) Initial baseline trajectory without PID
controller (unforced Van der Pol trajectory). (b–f) Comparisons between desired forced trajectory and actual trajectory with amplitudes of 1–5 respectively.
The single PID controller is optimized for an amplitude of 2.

Mao

Fig. 5. Simulink circuit schematic of the Mackey-Glass delay-feedback
system.

may turn negative with certain masking processes. According

to our findings in previous work [21], we select the hyper

parameters in Fig. 7 and limit n to integer values to prevent

difficulties with raising negative values to fractional powers.

The Van der Pol oscillator is run to produce a sequence

length of L = 5000, which is subsequently split into training

and testing datasets, Ltrain = 2280, Ltest = 1140, Lunseen =
380, and a washout of Lwashout = 1200 with the first Lwashout

samples discarded.

D. Training

A training algorithm assigns an output weight wi to each

virtual node in order to compute the overall system output:

ŷk =

N
∑

i=1

wi · x
(

kτ −
τ

N
(N − i)

)

(7)

The target output y is used to produce an [M × L] dimen-

sional target matrix, where M = 1 is the dimension of the

target output y. We refer this [M × k] dimensional matrix as

Y (k = Ltrain indicates the length of the training sequence).

In order to determine the optimum output weights W , it is

necessary to minimise the mean square error ∥WS − Y ∥2.

Ridge regression is applied to avoid problems with multi-

collinearity in matrices through the following formula:

Wopt = Y ST (SST − λI)−1 (8)

where T is matrix transpose, λ is the regression parameter,

and I is the identity matrix of dimensions N × N . (This

solution may also be reached by using the Moore–Penrose

NL
τ

θ

Linear Combination

x1Mask

multi-inputs
Interleave Method

x2x3 x’1x’2…

(a)

NL
τ

θ

Linear Combination

x1…x15x’1…x’15Mask

multi-inputs
Sequential Method

(b)

Fig. 6. Interleave (a) and Sequential (b) masking methods are shown.

parameter value description

β 2 coupling factor

γ 1 decay rate

τ 1.8 (sec) delay in feedback loop

n 1, 2, . . . , 9 nonlinearity

δ 0.25 input weighting

N 30 number of virtual nodes

Fig. 7. Parameter values for the Mackey–Glass delay-line reservoir experi-
ment. The Mackey–Glass system parameter values are from [30]; n is required
to be an integer (see Section.IV-C for details).

pseudo-inverse: Wopt = Y S+, where ‘+’ denotes the pseudo-

inverse function [15], although there may be instability issues

manifesting as large weight values.) The trained system output

ŷ(t) is provided by

ŷ(t) = Woptx(t) (9)

After training, the computational performance of the system

is assessed by injecting the test set of input signals into the

reservoir and calculating the NRMSE based on the overall

system output using these trained output weights, and the

target output.

V. EXPERIMENTS AND RESULTS

A. Imitation of PID Control Behaviour

1) Experiments.: We systematically compare the computa-

tional performance of two multi-input techniques: ‘Interleave’

and ‘Sequential’, with no-offset (Eq. 6) and offset (Eq. 5)

under different nonlinearity parameters (see Section III-A):

n = 1 to n = 9. In this experiment, the PID controller is

optimized for a radius of 2 and these settings stay the same

for all target radii used here, ranging from 1 to 5. Note that,

therefore, the target sequences generated by the PID controller

for radii of 1, 3, 4, 5 are not optimal control solutions. This is

deliberate, so that the capability to generalise over a range of

radii ̸= 2 can be evaluated independently for PID and reservoir

controller.

2) Results.: Fig. 9 shows the results of these different

experimental settings.

1) Interleave v Sequential. The Sequential technique dis-

plays better performance than Interleave, in the no-offset

and offset arrangements, with lowest NRMSE of 0.090

and 0.069 (n = 3, targetradius = 4) respectively.

PID Controller

Reservoir

VDP
Target

Trajectory

Fig. 8. Reservoir replacing the PID controller.

2) No-offset v Offset. In this task, offset mask gives bet-

ter results. Since we are using Mackey-Glass equation

(Eq. 2) as the non-linear component of the reservoir, the

negative input value may cause the denominator term

crushed with worse NRMSE results = 1.000 (indicated

yellow in Fig. 9a and Fig. 9c).

B. Reservoir control Van der Pol Oscillator

1) Experiment: Since the ultimate goal of this benchmark

task is to use a reservoir as a controller to drive the trajectory

of a Van der Pol system (see Fig. 8), we first use the test data

set of best trained reservoir from the previous experiment, with

n=2, to drive the Van der Pol Oscillator.

2) Result: Fig. 10 shows the comparison between the target

circular trajectory (red dashed line) representing the baseline,

the trajectory commanded by the PID controller optimised for

radius 2 (orange dotted line), and the trajectory controlled by

the reservoir trained on the PID output from radius 2 (blue

solid line). Note that here, the reservoir is trained using a PID

controller tuned for a radius of 2 in all three cases. Since

we are not seeking perfection but rather intend to demonstrate

and compare the sensitivity of the PID and reservoir controller,

optimised for radius 2 respectively, when applied to larger or

smaller radii.

VI. CONCLUSION AND FUTURE WORK

Delay-feedback reservoirs have input constrains which are

not apparent in commonly used benchmark tasks such as, e.g.,

NARMA-10, Santa Fe Laser task, etc.. This is because only a

single input is required. However, there is a need to consider

tasks which require multiple inputs to perform the intended

function successfully. Therefore, we propose a control systems

benchmark task here, with the objective of employing a trained

reservoir as a controller and using its output as a driving force

imposing a circular trajectory on the Van der Pol oscillator

1 2 3 4 5

Target radius

1

2

3

4

5

6

7

8

9

N
o

n
lin

e
a

ri
ty

0.510

0.511

0.512

0.517

0.512

0.527

0.542

0.562

0.562

1.000

0.368

0.393

0.535

0.685

0.396

0.455

0.589

0.640

0.981

0.320

0.410

0.423

1.000

0.683

1.000

0.318

0.351

1.000

0.526

1.000

0.762

1.000

0.191

0.231

0.261

0.261

0.108

0.209

0.219

0.258

0.124

0.117

0.103

0.124

0.133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Interleave with no-offset masking.

1 2 3 4 5

Target radius

1

2

3

4

5

6

7

8

9

N
o

n
lin

e
a

ri
ty

0.451

0.451

0.452

0.461

0.461

0.499

0.523

0.523

0.536

0.295

0.374

0.441

0.610

0.338

0.419

0.529

0.604

0.661

0.410

0.423

0.615

0.620

0.742

0.308

0.466

0.571

0.693

0.721

0.808

0.192

0.164

0.188

0.195

0.215

0.108

0.152

0.161

0.208

0.114

0.103

0.090

0.210

0.101

0.095

0.188

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Interleave with offset masking.

1 2 3 4 5

Target radius

1

2

3

4

5

6

7

8

9

N
o

n
lin

e
a

ri
ty

0.481

0.491

0.492

0.492

0.492

0.491

0.507

0.512

0.517

1.000

0.412

0.283

0.357

0.710

0.274

0.297

0.356

1.000

0.392

1.000

0.448

1.000

0.333

1.000

0.470

1.000

0.161

0.161

0.161

0.162

0.164

0.171

0.183

0.139

0.116

0.112

0.164

0.206

0.236

0.115

0.089

0.158

0.193

0.051

0.273

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Sequential with no-offset masking.

1 2 3 4 5

Target radius

1

2

3

4

5

6

7

8

9

N
o

n
lin

e
a

ri
ty

0.412

0.412

0.412

0.413

0.414

0.449

0.479

0.505

0.517

0.285

0.301

0.316

0.390

0.332

0.353

0.388

0.444

0.741

0.121

0.123

0.127

0.127

0.128

0.129

0.142

0.156

0.208

0.133

0.129

0.126

0.135

0.167

0.183

0.193

0.251

0.272

0.102

0.070

0.069

0.248

0.254

0.183

0.093

0.073

0.271

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Sequential with offset masking.

Fig. 9. Simulation results for controlling benchmark task with two multi-input methodologies: Interleave (fig.9a and fig.9b) and Sequential (fig.9c and fig.9d)
based on different masking schemes (Eq. 5 and Eq. 6).

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t

(a) Target radius = 2.

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t

(b) Target radius = 3.

-6 -4 -2 0 2 4 6

x(t)

-6

-4

-2

0

2

4

6

d
x
(t

)/
d

t

(c) Target radius = 4.

Fig. 10. Simulation results for Van der Pol nonlinear system driven by the trained reservoir. Comparisons between target circle (red dashed line), trajectory
commanded by PID controller (orange dotted line), and trajectory controlled by reservoir computing (blue solid line).

system. Control tasks are relatively new to the field of RC,

and we aim to begin establishing suitable benchmarks from

the control problem domain by introducing this benchmark.

Our experiments have investigated the ‘Interleave’ and ‘Se-

quential’ techniques for injecting multiple inputs into a delay-

feedback reservoir without altering its topology. Considering

the effectiveness of masking and time-multiplexing functions,

we compared the configurations between ‘Interleave’, ‘Se-

quential’ and ‘No-offset’, ‘Offset’ masks. We have trained

the reservoir to imitate the output signal of the original PID

controller (optimised for radius 2). Among all configurations

‘Sequential’ with ‘Offset’ features the best performance when

solving the newly proposed forced Van der Pol oscillator

control task. This is encouraging since these techniques might

easily tackle the multi-input challenge.

Our second experiment has demonstrated using a suitably-

trained reservoir to control Van der Pol Oscillator. With the

same experimental implementation and parameters, we have

compared the computational performance of PID controller

and reservoir controller. The results show that, trained on an

optised PID controller, the reservoir itself has a potential to

replace the PID controller and drive the Van der Pol oscillator’s

initial trajectory and command forced trajectories (a desired

circular trajectory in this case). This result encourages further

investigation of using reservoirs as controllers, and to devise

more suitable benchmarks in this domain (see Fig.8).

In future work we intend to investigate training the reser-

voirs on improved (further and more specifically optimised,

e.g., for various radii) PID controllers to achieve a better

performance for the nonlinear dynamics controlling task. For

comparison purposes, it would be a sensible move to train

reservoirs on different controllers, such as Predictive Func-

tional Control (PFC) and Proportional position loop Integral

and proportional Velocity loop (PIV). We will also investigate

hybrid schemes, combining features of both ‘Interleaved’ and

‘Sequential’ schemes with repetitions of experiments.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Phys-

ical Sciences Research Council under the MARCH project

[EP/V006029/1].

REFERENCES

[1] W. Maass, T. Natschlager, and H. Markram, “Real-time computing
without stable states: a new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[2] M. Lukosevicius and H. Jaeger, “Survey: Reservoir computing ap-
proaches to recurrent neural network training,” Computer Science Re-

view, vol. 3, no. 3, pp. 127–149, 2009.
[3] W. J. Freeman, “Tutorial on neurobiology: from single neurons to brain

chaos,” International Journal of Bifurcation and Chaos, vol. 2, no. 03,
pp. 451–482, 1992.

[4] K. Aihara, “Chaos in neural response and dynamical neural network
models: toward a new generation of analog computing,” in Towards the

Harnessing of Chaos, M. Yamaguchi, Ed. Elsevier, 1994, pp. 83–98.
[5] W. Singer, “Striving for coherence,” Nature, vol. 397, no. 6718, pp.

391–393, 1999.
[6] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small, “Synchronization of

chaotic systems and their machine-learning models,” Physical Review

E, vol. 99, no. 4, p. 042203, 2019.

[7] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in 2003

European Conference on Artificial Life. Springer, 2003, pp. 588–597.
[8] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir

computing using dynamic memristors for temporal information process-
ing,” Nature Communications, vol. 8, no. 1, pp. 1–10, 2017.

[9] L. Appeltant, M. C. Soriano, G. V. Der Sande, J. Danckaert, S. Massar,
J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information
processing using a single dynamical node as complex system,” Nature

Communications, vol. 2, no. 1, pp. 468–468, 2011.
[10] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel

photonic information processing at gigabyte per second data rates using
transient states,” Nature Communications, vol. 4, no. 1, pp. 1364–1364,
2013.

[11] Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman,
M. Haelterman, and S. Massar, “High-performance photonic reservoir
computer based on a coherently driven passive cavity,” Optica, vol. 2,
no. 5, pp. 438–446, 2015.

[12] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Hael-
terman, and S. Massar, “Optoelectronic reservoir computing,” Scientific

Reports, vol. 2, no. 1, pp. 287–287, 2012.
[13] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imminent

in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, pp.
115–133, 1943.

[14] D. Verstraeten, B. Schrauwen, M. d’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural Net-

works, vol. 20, no. 3, pp. 391–403, 2007.
[15] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic

systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[16] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “Evolving
carbon nanotube reservoir computers,” in International Conference on

Unconventional Computation and Natural Computation. Springer,
2016, pp. 49–61.

[17] Z. Konkoli, S. Nichele, M. Dale, and S. Stepney, “Reservoir comput-
ing with computational matter,” in Computational Matter, S. Stepney,
S. Rasmussen, and M. Amos, Eds. Springer, 2018, pp. 269–293.

[18] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez,
L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information
processing beyond turing: an optoelectronic implementation of reservoir
computing,” Optics Express, vol. 20, no. 3, pp. 3241–3249, 2012.

[19] P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and
S. Massar, “Online training of an opto-electronic reservoir computer
applied to real-time channel equalization,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, no. 11, pp. 2686–2698, 2016.
[20] Y. Kuriki, J. Nakayama, K. Takano, and A. Uchida, “Impact of input

mask signals on delay-based photonic reservoir computing with semi-
conductor lasers,” Optics Express, vol. 26, no. 5, pp. 5777–5788, 2018.

[21] T. Gan, S. Stepney, and M. A. Trefzer, “Tradeoffs with physical delay
feedback reservoir computing,” in 2021 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE, 2021, pp. 1–8.
[22] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological

control systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.
[23] L. Junges and J. A. Gallas, “Intricate routes to chaos in the mackey–

glass delayed feedback system,” Physics Letters A, vol. 376, no. 30-31,
pp. 2109–2116, 2012.

[24] E. Shahverdiev, R. Nuriev, R. Hashimov, and K. Shore, “Chaos synchro-
nization between the mackey–glass systems with multiple time delays,”
Chaos, Solitons & Fractals, vol. 29, no. 4, pp. 854–861, 2006.

[25] S. Sano, A. Uchida, S. Yoshimori, and R. Roy, “Dual synchronization of
chaos in mackey-glass electronic circuits with time-delayed feedback,”
Physical Review E, vol. 75, no. 1, p. 016207, 2007.

[26] L. Berezansky and E. Braverman, “Mackey–Glass equation with variable
coefficients,” Computers & Mathematics with Applications, vol. 51,
no. 1, pp. 1–16, 2006.

[27] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “A substrate-
independent framework to characterize reservoir computers,” Proceed-

ings of the Royal Society A, vol. 475, no. 2226, p. 20180723, 2019.
[28] B. Van der Pol, “Over relaxatietrillingen,” Physica, vol. 6, no. 1926, pp.

154–157, 1926.
[29] M. Cooper, P. Heidlauf, and T. Sands, “Controlling chaos—forced Van

der Pol equation,” Mathematics, vol. 5, no. 4, p. 70, 2017.
[30] L. Glass and M. Mackey, “Mackey-Glass equation,” Scholarpedia, vol. 5,

no. 3, p. 6908, 2010, revision #186443; doi:10.4249/scholarpedia.6908.

