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|dentifying the Hazard Boundary of
ML-enabled Autonomous Systems Using
Cooperative Co-Evolutionary Search

Sepehr Sharifi , Donghwan Shin , Member, IEEE, Lionel C. Briand , Fellow, IEEE, and Nathan Aschbacher

Abstract—In Machine Learning (ML)-enabled autonomous systems (MLASSs), it is essential to identify the hazard boundary of ML
Components (MLCs) in the MLAS under analysis. Given that such boundary captures the conditions in terms of MLC behavior and
system context that can lead to hazards, it can then be used to, for example, build a safety monitor that can take any predefined
fallback mechanisms at runtime when reaching the hazard boundary. However, determining such hazard boundary for an ML
component is challenging. This is due to the problem space combining system contexts (i.e., scenarios) and MLC behaviors (i.e.,
inputs and outputs) being far too large for exhaustive exploration and even to handle using conventional metaheuristics, such as
genetic algorithms. Additionally, the high computational cost of simulations required to determine any MLAS safety violations makes
the problem even more challenging. Furthermore, it is unrealistic to consider a region in the problem space deterministically safe or
unsafe due to the uncontrollable parameters in simulations and the non-linear behaviors of ML models (e.g., deep neural networks) in
the MLAS under analysis. To address the challenges, we propose MLCSHE (ML Component Safety Hazard Envelope), a novel method
based on a Cooperative Co-Evolutionary Algorithm (CCEA), which aims to tackle a high-dimensional problem by decomposing it into
two lower-dimensional search subproblems. Moreover, we take a probabilistic view of safe and unsafe regions and define a novel
fitness function to measure the distance from the probabilistic hazard boundary and thus drive the search effectively. We evaluate the
effectiveness and efficiency of MLCSHE on a complex Autonomous Vehicle (AV) case study. Our evaluation results show that MLCSHE
is significantly more effective and efficient compared to a standard genetic algorithm and random search.

Index Terms—ML-enabled Autonomous System, Hazard Boundary, System Safety Monitoring, Cooperative Co-Evolutionary Search.

1 INTRODUCTION

UTONOMOUS systems are increasingly empowered by

being embedded with ML components (MLCs) for
various tasks, such as perception, localization, prediction,
planning and control. These components are inherently
different from conventional software components and pose
new challenges and safety risks that are not manageable by
traditional software engineering practices. The main reason
for this difference is that these components’ logic is not
captured by source code or specifications but their behavior
is rather determined by training. ML-enabled autonomous
systems (MLASs) have already led to fatalities in the case
of Autonomous Vehicles (AVs) [1]. This cannot be allowed
to continue, especially when human life or very expensive
equipment are involved.

Recent efforts have focused on making ML components
more reliable, robust and accurate through novel testing
methods [2, 3]. However, even a system with reliable com-
ponents can still lead to accidents [4]. For example, some
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accidents are caused as a result of unsafe component inter-
actions [4, 5]. Thus, the impact of ML components on safety
can only be studied in the context of the system they are
integrated into and in a specific operational context [4, 6].
The inherent specificity of ML components favors the
use of safety monitors (also known as Run Time Assurance
or RTA mechanisms) [7]. Safety monitors, at run time, check
the inputs and outputs of a component that cannot be fully
trusted, e.g., an ML component, and will block its outputs
from being propagated to the rest of the system if they are
potentially hazardous. In such cases, systems usually fall
back on a trustworthy but less efficient component [8], or
take any other pre-designed fallback mechanisms, such as
stopping the AV on the shoulder of the road. To do this,
safety monitors have to observe the current state of the
system and compare it with its Operational Design Domain
(ODD) [9], to determine its deviation from ODD bounds
since it might lead to hazards. For instance, it is hazardous
to rely on the self-driving feature of an AV on a rainy night
if its ODD is characterized by normal dry operations during
daylight. Additionally, safety monitors have to know the
context of the system to determine whether the component
might contribute to a hazard. For example, misclassification
of an AV’s object detection component might not lead to any
hazards under a certain system context (henceforth called a
scenario), e.g., when an AV misidentifies an animal crossing
the road as a pedestrian and stops. Thus, identifying the
combinations of system contexts (i.e., scenarios) and ML
component’s behaviors (i.e., inputs and outputs) that will



transition the system to a hazard state is an essential step in
developing safety monitors to be able to ensure the safety of
the ML-enabled system.

However, there are several challenges involved with
identifying the hazard boundary. First, the problem space
of scenarios and ML component behaviors is very large
and high-dimensional and is thus a challenge for more con-
ventional search metaheuristics such as Genetic Algorithms
(GA). Second, the violation of a given safety requirement
can only be determined if the system is executed within its
operational environment, which involves computationally
intensive simulations. The high computational cost, in addi-
tion to the large problem space, renders the problem even
more challenging. Last but not least, while safety can only be
evaluated by executing the system within an environment,
there are many environmental parameters that cannot be
controlled even via a high-fidelity simulator; for example,
the trajectory of pedestrians in CARLA [10], a well-known
AV simulator, is random. Furthermore, two similar MLAS
inputs may generate largely different outputs due to the
non-linear behavior of ML models, such as Deep Neural
Networks (DNNs). Therefore, we cannot assume that all
combinations of scenarios and ML component behaviors
within a region of the problem space have a uniform safety
outcome, i.e., the region is deterministically safe or unsafe.
Consequently, it is difficult to define hard boundaries be-
tween safe and unsafe regions.

To address the aforementioned challenges, we pro-
pose MLCSHE (ML Component Safety Hazard Envelope),
a novel Cooperative Co-Evolutionary Algorithm (CCEA)-
based approach that efficiently searches the problem space
by decomposing it into two sub-spaces (one for scenarios
and one for ML component behaviors) and parallelizing
the search of sub-spaces while taking the joint contribution
of both scenarios and ML component behaviors to the
autonomous system safety into account. Moreover, instead
of naively assuming that the hazard boundary is a clear
line that exists between the safe and unsafe regions, we
take a probabilistic view of the problem domain, ie., at
any point within the scenario and ML component behavior
space, there is a probability of being safe. Based on this
probabilistic lens, we present a novel fitness function that
effectively guides the search towards the “probabilistic”
hazard boundary based on the probability of finding safe
scenario-behavior pairs within a given region.

Contributions. The contributions of this work are summa-
rized as follows:

« MLCSHE, a dedicated and tailored cooperative coevo-
lutionary search approach to approximate the hazard
boundary of an ML component, in a probabilistic way,
taking into account the combination of scenarios and
MLC behaviors.

« An application of MLCSHE to a complex Autonomous
Vehicle (AV) case study involving an industry-strength
simulator and an Autonomous Driving System with
deep learning components. Our implementation of
MLCSHE as well as other case study artefacts are
provided in our replication package (see Section 6.5).

+ An empirical evaluation of the effectiveness and ef-
ficiency of MLCSHE through large scale experiments
using CARLA, a high-fidelity open-source driving sim-
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ulator, and Pylot, a high-performance open-source AV
composed of multiple components.

« A comparison of MLCSHE against baseline methods
namely random search (RS) and vanilla genetic algo-
rithm (GA).

Key Findings. The key findings of our empirical evalua-

tion are summarized as follows:

« For reasonable boundary closeness thresholds given a
search budget, MLCSHE is significantly more effective
than RS and GA at detecting distinct boundary regions.
This implies that a cooperative co-evolutionary algo-
rithm makes the search for distinct boundary regions
more effective than GA and RS.

« For reasonable boundary closeness thresholds given a
search budget, MLCSHE finds significantly more di-
verse regions that overlap with the hazard boundary
at a faster rate than GA and RS.

Paper Structure. The rest of the paper is structured as
follows. Section 2 provides background materials on CCEA.
Section 3 defines the problem of MLC hazard boundary
identification and details its challenges. Section 4 discusses
related work. Section 5 presents MLCSHE in detail. Section 6
provides the empirical evaluation of MLCSHE and dis-
cusses the results. Section 7 concludes and suggests future
directions for research and improvement.

2 BACKGROUND

In this section, an overview of Evolutionary Algorithms
(EAs) is provided. Then we focus on a specific family of EAs,
Cooperative Co-Evolutionary Algorithms (CCEAs), which
happens to be particularly useful in our context. Finally, the
key decision points involved in designing a CCEA, namely
collaborator selection and individual fitness assessment are
discussed.

EAs are a family of algorithms designed based on the
principles of evolutionary computation [11]. EAs are in-
spired by the concepts related to biological evolution and
have been applied to various optimization problems for
which standard mathematical optimization is not applica-
ble [11]. EAs use concepts such as individual, population,
fitness, selection and mutation to formalize an optimization
problem. Individuals usually represent solutions to the tar-
geted problem and are members of a population whose
fitness is evaluated (usually by a fitness function). Desirable
individuals, i.e., those with the highest fitness values, are
more likely to be selected to act as the parents of the
next generation. Using methods such as crossover (replacing
some parts of an individual with another one) and mutation
(adding randomness to some parts of an individual), indi-
viduals of the next generation population, i.e., next iteration
of the search, are created.

For many problems, the search space is high-
dimensional such that a conventional EA would not be able
to solve it within a reasonable timeframe [12]. To address
this, Cooperative Coevolutionary Algorithms (CCEAs),
originally proposed by Potter and De Jong [13] in 1994,
decompose the original problem into lower-dimensional
subproblems, each of which can be solved in a separately
evolving population as in conventional EAs described pre-
viously. Since individuals from each subproblem population
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Fig. 1: An abstract coevolutionary algorithm (CCEA).

must join together to form a complete solution to the original
problem, the fitness of an individual can only be evaluated
based on the joint fitness of the complete solution created
by joining the individual with representative individuals,
called collaborators, from other populations. By carefully
selecting collaborators and assessing individuals’ fitness,
CCEAs are known to be effective at solving even non-
separable problems [14, 15] where the fitness of an individual
of a subproblem population depends on the fitness of indi-
viduals of other populations. Furthermore, the decomposi-
tion of the original problem naturally allows parallelism to
increase search performance [12].

Figure 1 depicts the process of an abstract CCEA. Each
population is initialized, either with randomly selected or
guessed values (usually provided by domain experts). Indi-
viduals of each population collaborate with individuals of
the other population(s) to form complete solutions. Then,
these complete solutions are evaluated via joint fitness as-
sessment functions. The joint assessments are then aggre-
gated to provide evaluations of individual fitness values.
If the stopping_condition is reached (true), then the fittest
individuals are returned. Otherwise, the individuals go
through breeding (selection, crossover and mutation) to
create the next generation of the populations and go through
evaluations again.

Designing a CCEA includes two important decisions
in the following aspects: collaborator selection and individual
fitness assessment.

Collaborator Selection. One of the most important factors
affecting the performance of a CCEA is its collaborator se-
lection strategy. To assess the fitness of the individual, the
algorithm has to form one or multiple complete solutions
with different collaborators. However, ideally, to get closer
to the global optimum, all individuals of all other popula-
tions should be used as collaborators [16], which is usually
infeasible due to resource constraints. Therefore, a strategy
to efficiently select collaborators is required. Various strate-
gies have been proposed in the literature, such as single best,
tournament-based, and random [12]. These strategies affect the
algorithm via controlling the selection pressure and the pool
size of the collaborators.

Some studies have proposed archive-based collaborator
selection to effectively reduce the number of collaborators to
join in individual fitness assessments while maintaining the
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amount of information contained in the populations [12].
The idea is to carefully select a population archive which is
a subset of a population to be used as collaborators. For
example, Panait et al. [15], have proposed iCCEA, which
aims to minimize the size of the population archives by
considering only the collaborators that are informative and
distinct. A collaborator in an archive is informative if adding
it to the archive changes the fitness ranking of the popula-
tion’s individuals. If there are multiple collaborators that can
change the ranking of the same individuals, the collaborator
that changes the ranking the most will be kept in the archive.
A collaborator in an archive is distinct if its (Euclidean)
distance from other collaborators in the archive is higher
than a pre-defined threshold. As a result, a population
archive keeps only a minimum number of collaborators
while attempting not to lose information in terms of collab-
orations between subproblem solutions. However, though
the population archive selected by iCCEA is minimal in
size, the algorithm proposed by the authors to update
the population archive in each generation has a high time
complexity (O (n®) where n in the number of individuals in
the archive) and this severely impacts the performance of
the algorithm. Thus, simpler population archive selection
methods, e.g., elitist, random and best+random, that are much
faster, are also widely used in practice.

Individual Fitness Assessment. The collaborator selection
strategy of a CCEA affects its individual fitness assessment
strategies as well. The only objective fitness assessment that
can be done on the individuals is based on their joint fitness
assessments with collaborators. Thus, all algorithms per-
form some form of aggregation on joint fitness assessments
related to an individual to determine its fitness value. Best,
worst or average joint fitness values are usually used for
individual fitness assessments.

3 PROBLEM AND CHALLENGES

In this section, we provide a precise problem definition
regarding the identification of the boundaries of hazard
envelopes, focusing on the behavior of a Machine Learning
Component (MLC). While we use an AV as an example,
it can be easily generalised to any ML-based Autonomous
System (MLAS).

3.1 Problem Definition

Consider an AV as an ML-enabled Autonomous System
(MLAS) including an ML component (MLC), namely an
image-based object detection component using DNNs. The
AV continuously observes its surrounding environments—
such as roads, traffic signs, buildings, and other moving
vehicles via sensors (e.g., camera) and generates driving
commands (e.g., steer left and decrease speed) to best satisfy
given functional and safety requirements (e.g., reach a given
destination point without colliding with other vehicles).
During testing of the AV, the environment is often simulated
by a high-fidelity driving simulator due to the high cost
and risk of real-world testing. Inside of the AV, whenever
new sensor data (e.g., an image taken from the camera) is
collected, it passes through the object detection component
to identify the positions of surrounding objects, if any, from
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Fig. 2: An illustration of safe and unsafe regions and the
corresponding hazard boundary.

the (fused) sensor data (e.g., in the form of bounding boxes
in the given image), which will then be used to determine
proper driving commands. Under a certain driving scenario,
the AV might violate requirements such as “the AV shall
keep a minimum distance of 1.5m from any vehicle in front.”
In such cases, the MLC could internally contribute to the vi-
olation. Therefore, identifying the boundaries of the hazard
envelopes of the AV in terms of the combination of driving
scenarios and MLC behaviors is important. Figure 2 pro-
vides a simplified illustration of an ML component’s hazard
envelope, defined in terms of scenarios and ML component
behaviors, where a safe region leading to no violations is
surrounded by an unsafe region leading to violations. The
goal is to identify, as precisely and completely as possible,
the boundaries between safe and unsafe regions, illustrated
by the dashed line in Figure 2.

More specifically, let s be the AV including the MLC m
for image-based object detection, operating in a simulated
driving environment. For a given scenario u, which consists
of all the static and dynamic entities of the environment
such as road shape, weather, and other vehicles, the simu-
lation result for s and m, denoted by I, ., is a sequence

(e1,e2,...,er) where T is the duration of the execution and
e; fort =1,...,T is the snapshot (state) of the environment
at time step ¢. For each time 7 € {1,...,T}, s takes an image

ins,; taken from the camera by observing ¢; and generates
a pre-processed (e.g., gray-scaled) image in,,, for m. Then,
m produces the object information out,,, (in the form of
bounding boxes) by processing in,, ; and s produces driving
commands out,; by processing outm,tl. The environment
snapshot e;.1 for the next time step 7+1 is updated based on
outs,, and the whole process repeats until t reaches 7. The
behavior of m, denoted by B,,, is defined as the sequence
of input/output pairs such that, for an input/output pair
(inm, out,,) € By, outy, is the output produced by m by pro-
cessing in,,. For a safety requirement r (e.g., do not collide
with other vehicles), we can measure the degree of the safety

1. Note that there can be other components in s that interact with
m. For example, out,,, ; can be one of the (possibly many) factors that
determine out, ;. We only assume that m is one of the (possibly many)
components required for s to operate; specifically, ing ; can affect in,, ;
and out,, , can affect outs ;.
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violation (e.g., the distance to the other vehicles) of s for u
and B,, in terms of 7, denoted by f(r,II, s m), by analyzing
I, s,m = (e1,e2,...,er) against r. If f(r,I,,,) > € for a
small threshold e predefined for r, we say that r for s is
violated by (the combination of) u and B,,. This means that
we can decide the violation of r (with €) given u and B,,.

Given the above context, let (u,B,,) be a point in a
space referred to as the input space, that is defined by (the
combination of) possible scenarios and MLC behaviors. For
each point (u,B,,) in the input space, we can decide its
output (i.e., unsafe or safe) by checking whether it leads to
the violation of r or not. The identification of the boundaries
of hazard envelopes attempts to find as many (u, B,,) points
as possible that are close to the boundaries between safe
and unsafe regions in the space. Notice that we intentionally
left the precise definition of safe and unsafe regions unclear
since it is one of the challenges we address next.

3.2 Challenges

The problem of hazard boundary identification for an MLC
in the MLAS under analysis, entails multiple major chal-
lenges.

As discussed in Section 3.1, both a scenario # and an
MLC behavior B,, collaboratively determine the violation
or satisfaction of a safety requirement r. As a result, there
are too many possible scenarios and MLC behaviors for the
input space to be exhaustively explored without resorting
to limiting assumptions that can bias the results [17]. One
might argue that unsafe regions of the input space could
be analytically identified using methods based on expert
knowledge, such as FTA [18] and HAZOP [19], to provide
clear insights into how hazards can occur. However, such
methods are not sufficient to address all possible ways haz-
ards can arise due to complex interactions between MLAS
components and the opacity of ML components.

Second, the satisfaction or violation of r can only be
determined if the system is operated within its surrounding
environment. During testing, in addition to the first chal-
lenge above, this requires running a high-fidelity simulator
which is generally very resource-intensive. The high cost of
simulation highlights the need for an efficient and effective
method to search as much of the input space as possible
while focusing on the regions close to the boundary.

Lastly, recall it is unrealistic to consider a region 100%
safe or unsafe. This is explained by two main reasons. First,
simulators do not often enable full control of all relevant
parameters in the environment, thus randomly configuring
some of them. For example, the movement of pedestrians
is random in CARLA [20], a high-fidelity simulator. Second,
two inputs that are close in the input space may generate
different MLC outputs that are handled differently by the
rest of the system, e.g., due to the non-linear behavior of
other DNNs using the MLC outputs as their input, resulting
in different safety results (i.e., safe or unsafe). As a result,
we cannot assume a uniform and consistent safety outcome
for a region, making it difficult to define hard boundaries
between safe and unsafe regions. Rather, hazard envelope
boundaries (i.e., the dashed line in Figure 2) should be prob-
abilistic as they encompass regions with a given probability
threshold of violating a selected requirement.



To address the above challenges, we propose a novel
method using Cooperative Co-Evolutionary Algorithm
(CCEA) that efficiently address our objectives as an opti-
mization problem, within a large input space, by decom-
posing such problem into lower-dimensional subproblems.
Further, to recast our problem into a coevolutionary search
problem, we define a special fitness function that can assess
how far a candidate solution (i.e., a combination of u and
B,) is from the boundary of a “probabilistic” unsafe region.
See Section 5 for details of our method.

4 RELATED WORK

This section discusses existing studies related to the problem
of hazard envelope boundary identification. Depending on
the methods used, we found three categories: search-based
methods, sampling-based methods, and formal methods.

4.1 Search-based Methods

Search-based methods employ metaheuristics (search algo-
rithms) and convert the boundary identification problem
into a search problem guided by a fitness function that
evaluates how close a system input (e.g., test scenario)
is from the boundary. Fitness assessment for individual
system inputs often involves simulation executions to check
whether safety requirements are violated.

Although there are many search-based methods for test-
ing MLCs [3, 21], the problem of boundary identification
has received very little attention. Only recently, Riccio and
Tonella [22] proposed DeepJanus, the first search-based
method to identify the frontier of behavior (frontier) of MLCs,
i.e., a set of similar input pairs that trigger different behav-
iors (e.g., safe and unsafe) of the system. The discovered
frontier can allow developers to approximate a safe oper-
ating envelope for the MLC (by interpolating the pairs).
Also, the overlap of the estimated safe operating envelope
with the validity domain of the MLC, which is the domain
where the MLC is expected to behave according to its re-
quirement(s) [22], can facilitate the evaluation of the MLC’s
quality. Therefore, for example, DeepJanus can be useful in
distinguishing between the performance of two MLCs that
perform the same task. However, it cannot solve the issue
of identifying the hazard boundary, as the impact of MLCs
on safety can only be assessed when evaluating the entire
system in a given environmental context. Furthermore, as
illustrated in Figure 3, the interpolated frontier of behavior
and the hazard boundary of an MLC are not necessarily
the same. More precisely, a member of the frontier (ie., a
pair of safe and unsafe inputs) does not necessarily lie in
proximity to the hazard boundary since the violations can
occur in probabilistic safe regions (i.e., regions where the
proportion of safe inputs is above a certain threshold) as
argued in Section 3.2. Therefore, we need a novel method to
identify the hazard boundary of an MLC within a system,
considering the probabilistic nature of (un)safe inputs.

4.2 Sampling-based Methods

Unlike search-based methods, which are guided by fitness
functions, sampling-based methods use repeated random
samplings (e.g., Monte Carlo methods) or statistical metrics
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Fig. 3: A possible application of DeepJanus to the systemic
hazard boundary detection problem. Connected dots are a
safe and unsafe pair.

to identify certain system inputs that lead to safety vio-
lations. For example, Meltz and Guterman [23] proposed
SmARTest, which uses Monte Carlo methods to identify a
scenario domain (i.e., set of system inputs) that lead to safety
requirement violations determined by measuring Perfor-
mance Assessment Functions (PAFs) defined based on the re-
quirements’ Key Performance Indicators (KPIs). Sinha et al.
[24] proposed Neural Bridge Sampling (NBS), a method to
measure the probability of rare events, such as accidents,
using Monte Carlo methods. NBS decomposes the proba-
bility of a rare event into chained conditional probabilities,
which are tractable to compute using standard Monte Carlo
methods. This provides a better estimate than the naive
Monte Carlo or Adaptive Multi-Splitting (AMS) methods.
Sampling-based methods can efficiently identify safe
and unsafe inputs from the system’s input space. However,
they only consider system inputs (i.e., scenarios) and not
the effect of different MLC behaviors for the same scenario.
As discussed in Section 3.2, both the scenario and the
MLC behavior must be taken into account to determine the
conditions when MLC behavior leads to safety violations.

4.3 Formal Methods

Formal methods rely on formal representations of the input
space, the system (including the MLC), and the output
space. Examples of such representations include hybrid
system or dynamical system formalisms [25]. Tools like
SMT solvers [26] and Mixed Integer Linear Programming
(MILP) [27] can be used to analyze whether the system
containing the MLC can reach an unsafe region given
its input space [2]. This is known as reachability analysis.
Reachability analysis is used to identify the MLC’s barrier
certificate, which is an invariant function that constrains the
state space of the system and ensures the satisfaction of
a safety property [28] while considering the closed-loop
behavior of the system. Barrier certificates can be seen as
an over-approximation of the hazard boundary of the MLC.

Ivanov et al. [29] proposed Verisig, which can be ap-
plied to Cyber-Physical Systems (CPSs) with DNN-based
feed-forward controllers with ReLU activation functions.



Verisig transforms the ReLU DNN into a hybrid system
representation and combines it with the rest of the system.
This recasts the problem as a hybrid system verification
problem. Given a set of system inputs, the outputs can be
approximated using Flow* [30], a nonlinear system reacha-
bility analyzer. Tuncali et al. [31] proposed another method
to identify barrier certificates of DNN-based, feed-forward
controllers, which is not limited to architectures with ReLU
activation functions. This method first identifies candidate
barrier certificates using simulations, then evaluates their
suitability using the dReal [32], an SMT solver for nonlinear
formulas in real numbers. Tran et al. [33] proposed NNV, a
method to perform closed-loop reachability analysis of con-
trol systems with Deep Reinforcement Learning (DRL) con-
trollers. These controllers have a feed-forward architecture
with ReLU/Saturation activation functions. NNV calculates
a low-error over-approximation of the output region, which
are reached by the system given its inputs.

Although the aforementioned methods provide guaran-
tees for the hazard boundary and cover all possible tra-
jectories of the system, they suffer from practicality and
scalability issues. For example, over-approximation of the
hazard boundary might incorrectly reduce (or even remove
in the worst case) the safe operating envelope of the system
by incorrectly considering some safe behaviors unsafe, thus
limiting the practicality of the methods [34]. Furthermore,
reachability analysis can only be applied to feed-forward
controllers with specific activation functions. Thus, it cannot
be used for practical MLCs that perform perception, obstacle
tracking, or prediction tasks with different DNN architec-
tures (e.g., recurrent neural networks). Also, reachability
analysis has not yet been applied to closed-loop, industrial
Cyber-Physical Systems (CPS) with feedback DNN con-
trollers [29, 31, 33]. In such a context, scalability is very likely
to become an acute problem.

4.4 Remark on Differences in Objectives

A common goal underlying all the above-mentioned meth-
ods is to identify the hazard boundary of a given MLC
embedded within its containing system (MLAS). It could be
useful when the MLC under test is fixed, but as soon as the
MLC changes (e.g., via retraining), the previously identified
hazard boundary would be invalid, and the whole safety
verification exercise would have to be repeated. On the other
hand, in our research, we aim to identify the combinations
of conditions and MLC behaviors, without referring to a
specific MLC implementation, that could potentially lead
to hazards. Once characterized, such situations could then,
independently of a specific MLC implementation, be used
to monitor the operation of the system and MLC and warn
the user in case it is operating near to the hazard boundary.

In the following section, we propose a novel method that
addresses the challenges discussed in Section 3.2, and is
applicable to various types of MLCs, such as perception,
planning, and control, without making any assumptions
about their architecture.

5 OUR APPROACH

In this section, we provide a solution to the problem de-
scribed in Section 3, i.e., the hazard boundary identification
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of an MLC in the MLAS under analysis. Our key idea
is to recast the problem as a cooperative co-evolutionary
search problem where scenarios and MLC behaviors co-
evolve as two separate populations but contribute together
to find complete solutions (i.e., the combinations of scenar-
ios and MLC behaviors) close to the boundary. Then, we use
CCEAs, the algorithms that are well known to be effective
at solving search problems such as the one described in
Section 2.

In the following subsections, we first describe how
scenarios and MLC behaviors can be represented as two
separate populations in a search problem (Section 5.1). We
then define a novel fitness function of the search problem to
assess how close a complete solution is from the boundary
(Section 5.2). Finally, we present our novel method based
on CCEAs using the representation and the fitness function
(Section 5.3).

5.1 Representations

We consider two populations, one for scenarios and another
one for MLC behaviors. This is to consider all possible MLC
behaviors that can lead to the boundary regions when com-
bined with certain scenarios. Note that MLCSHE does not
aim to test a particular MLC in the system under analysis,
but rather to monitor the behavior of current and future
implementations of the MLC using the resulting bound-
ary information. Therefore, it is important to manipulate
MLC behaviors and scenarios to find all boundary regions.
However, the individuals of the MLC population, subjected
to evolutionary operators, are only represented as MLC-
outputs (outy,). This is due to the initial MLC-input (in,,)
being (indirectly) determined by the scenario, whereas the
next MLC-inputs are affected by previous MLC-outputs.
Therefore, in,, is recorded in an archive of complete solutions
(i.e., Ac in Algorithm 1; see Section 5.3 for details) but
not included in the representation of the behavior of the
MLC that can be manipulated by the search. Recording the
in,, and out, sequences, along with their corresponding
scenarios (u), is indeed crucial as it records unsafe behaviors
of an MLC (its input and output sequences) given a set
of environmental conditions (its scenarios). This information
enables the design of safety monitors that will prevent the
MLC from contributing to a systemic hazard via leveraging
the recorded information.

5.1.1 MLC behaviors

One of the two populations considered for the search is
the set of MLC behaviors. The behavior of an MLC can
be expressed as a sequence of input and output tuples.
However, as discussed above, the inputs of an MLC are
indirectly controlled by the environmental input to the
system (i.e., scenario parameters) and the components of the
system that process that input before it is passed on to the
MLC. Thus, the parameters that we can directly manipulate
during the search are the outputs of the MLC. We represent
an individual in the population of the MLC behaviors as
a sequence of MLC outputs where the t-th element of the
sequence denotes an MLC output at time step ¢.

The output of an MLC depends on the task performed
by the MLC. For instance, in the case of a steering angle



estimator, the output is a single real value. Whereas, in
the case of an object classifier, the output is a vector of
probabilities (real values between 0 and 1), where each ele-
ment corresponds to a label. Finally, similar to our running
example, in the case of obstacle detection, the outputs in
an ML component (MLC) are detected obstacles, i.e., their
bounding box?, their label (such as pedestrian, vehicle, lamp
post, etc.), and their timestamp. Therefore, an mlco (MLC
Output) for a simulation duration T can be defined as a
sequence of the trajectories of detected obstacles during 7' in
the case of obstacle detection.

Specifically, given the maximum number of detectable
objects n and the simulation duration 7, an mico can be
defined as a sequence of n trajectories (trj;,...,trj,) where
trj; represents the trajectory of the i-th object (in terms of the
bounding boxes) for T. By allowing the search algorithm to
manipulate individual trajectories, an arbitrary mlco can be
generated for obstacle detection.

However, allowing the search algorithm to generate all
the bounding boxes for individual time steps will likely
yield an unrealistic trajectory randomly moving around
without a consistent direction, which we observed during
our initial trials. Therefore, it is better to allow the search
algorithm to generate only the start and end bounding
boxes, and then generate the remaining bounding boxes for
intermediate time steps using linear interpolation between
the start and end boxes. Specifically, trj, can be defined as a
triple (class;, start;, end;) where class; is the class of the i-th
object (e.g., car, bicycle, pedestrian), start; is the position and
the size of the bounding box of the i-th object at time step
t = tsart, and end; is the position and the size of the bounding
box of the i-th object at time step ¢ = f,,4. For example,
start or end can be defined as a quintuple (¢, Xmin, Xmax,
Ymin, Ymax), Which are time and bounding box parameters
for the beginning or the end of the trajectory, respectively.
Then, for a given trajectory trj = (class, start,end), we can
easily generate the positions and sizes of bounding boxes
for intermediate time steps (i.e,, 1 < t < T) based on start
and end (using linear interpolation) whenever needed for a
simulation.

We want to note that MLCSHE does not aim to test a
given MLC implementation in the system under analysis,
but to monitor the behavior of any current or future imple-
mentation of the MLC using the resulting boundary infor-
mation (see Sections 1 and 3.1). For a given implementation,
there may indeed be “unfeasible-in-practice” MLC behavior
for a given scenario, which is, however, hard to determine
beforehand. But then this is part of the problem space that
will never be reached at run-time and is not an issue.

5.1.2 Scenarios

A scenario can be represented as a heterogeneous vector of
real and integer values. For the case of an AV, a scenario
consists of the vehicle itself, the weather, the road and other
static (e.g., lamp posts and other obstacles) and dynamic
objects (e.g., pedestrians and other cars) [35]. Each of them
have many attributes of various types, namely float (e.g.,

2. A bounding box specifies the area on the image processed by the
obstacle detector that contains the detected obstacle. It can be expressed
as (Xmin, Xmax, Ymin, Ymax) corresponding to a specific 2D box.
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speed) and enumerated types (e.g., line pattern) which can
be encoded as integer values.

The size of a scenario individual is determined by the
simulator. Furthermore, a finer-grained level of simulation
control implies a larger scenario size as more parameters
have to be manipulated by the search algorithm. For in-
stance, one can manipulate all weather-related parameters
separately (10 parameters in the case of CARLA [20]) or
manipulate them using the weather preset parameter (1
parameter) which sets the value of all granular weather
parameters according to high-level modalities, e.g., rainy
sunset, clear noon.

Figure 4 is the scenario domain model for our running
example. A Scenario consists of one or more Vehicles (in-
cluding the ego vehicle), zero or more Pedestrians and,
Mission and Weather. The attributes of the domain model
that act as the parameters for a scenario representation are
written in bold font in Figure 4. Therefore, a scenario can
be defined by the time_of_day, weather preset, map of the
town, start_point of the ego vehicle, its target_destination
and target_velocity, the number of Pedestrians, and the
number and position of other Vehicles with respect to the
ego vehicle (e.g., in front, on the opposite lane).

Operational Design Domain (ODD). The Operational De-
sign Domain or ODD defines an operational envelope of the
AV, ie., a set of bounds on the environmental parameters
of the system. For instance, highway driving is an ODD
for AVs which determines the type of the road, the average
speed of the surrounding vehicles, and the (lack of) pedes-
trians in the vicinity [9]. However, within an ODD, many
scenarios can still be defined, e.g., weather, the number of
cars, the length and shape of the road. Therefore, a search
can be done within an ODD, which sets the values or the
bounds of some parameters, such as the target speed of the
ego vehicle. The parameter bounds or values set by the ODD
will remain static for the duration of the search, e.g., a target
speed of 90kph in a highway driving ODD, or the angle of
the sunlight during a daytime driving ODD.

5.2 Fitness Function

This section presents our proposed fitness function in detail.
Our aim is to design a fitness function that can effectively
guide the search towards the boundary of unsafe regions.
However, as mentioned in Section 3, we cannot assume that
a region is either 100% unsafe or safe. To address this, we
first define the notion of safe and unsafe inputs, followed by
probabilistic unsafe regions.

Definition 1 (Safe and Unsafe Inputs). An input is unsafe if
and only if it leads to the violation of a given requirement.
Otherwise, the input is safe.

Recall that an input is a combination of a scenario and
an MLC behavior in our context.

Definition 2 (Probabilistic Unsafe Region). Let X be a set
of all possible inputs, representing the input space. Given a
threshold probability py,, a region G C X is py,-unsafe when
the proportion of unsafe inputs in G is higher than py,.

For example, if we randomly draw an input from a 5%-
unsafe region, we have more than 5% chance of leading to a



<<enumeration>>
Mission WeatherPreset
Clear
+ map: Ma
P P Cloudy
+ start_point: Waypoint Wet
N . WetCloudy
+ t: t tination: W t .
arget_destination: Waypoin SoftRain
+ target_velocity: Float MidRainy
| HardRain
Weather
Scenario ) + preset: WeatherPreset
+ time_of_day: TimeOfDay
0..% 1.*
Pedestrian Vehicle <<enumeration>>
TimeOfDa;
+ id: Integer + id: Integer J
Noon
+ position: Position + drive_control: VehicleControl Sunset
+ control: WalkerControl + position: Position Night

Fig. 4: The scenario domain model for the running example. The model is based on the concepts provided in the Carla
World domain model [10, 20]. The scenario parameters are shown on the figure in bold font, i.e., the weather preset, the
attributes of Mission and the number of actors such as Vehicles and Pedestrians.

safety violation. The value of py, should be determined by a
domain expert within a specific application context.

Notice that the shape of a probabilistic unsafe region
is unknown, as is its boundary. Nevertheless, we can ap-
proximate how far an arbitrary input is from the boundary
by sampling its neighborhood. Specifically, for an input
x € X, let p, be the proportion of unsafe inputs in the
neighborhood of x. If p, < py,, it implies that x is not likely
to be located in a py,-unsafe region. Otherwise, if p, > py,
it implies that x is likely in a py,-unsafe region. Therefore, if
Dx is close to py,, it implies that x is close to the boundary
of a py-unsafe region. To leverage this idea, we define the
notion of neighborhood as follows:

Definition 3 (Neighborhood). For an input x € X and a
non-negative real number 6§ € R*, a neighborhood of x with
the radius of §, denoted by N(x, 6), is defined as follows:

N(x,0) = {x’ € X| dist(x,x") < 6} (1)
where dist(x, x’) indicates the distance between x and x’.

Notice that various distance functions dist can be
adopted depending on the nature of complete solutions.
For example, if a complete solution can be represented as
a heterogeneous vector composed of numerical, ordinal,
and categorical values, heterogeneous distance metrics [36]
are good candidates to measure the distance between two
complete solutions. In Figure 2, a neighborhood with a
radius of ¢ is visualised as a circle between safe and unsafe
regions.

Based on Definition 3, let p, s be the proportion of
unsafe inputs in N(x,d). Then, as discussed above, we can
use the difference between p, s and py, to approximate the
distance between x and the boundary of a py,-unsafe region.
However, we cannot compute the exact value of p, s since

N(x,6) has too many complete solutions to exhaustively
evaluate. Nevertheless, we can compute an estimate of py s,
denoted by p, s, and its confidence interval since the con-
secutive trials of checking whether an input x’ € N(x, )
is safe or not are assumed to be independent and can be
treated as Bernoulli Experiments.

Specifically, the probability distribution of p, s can be
modelled as a Binomial distribution, and we can compute
Px.s as follows:

R unsafe(N(x, 6))

Px,6 = 2

evaluated(N (x, 6))

where evaluated(N(x, 6)) is the number of inputs evaluated
(sampled) in N(x,d) and unsafe(N(x,d)) is the number of
unsafe inputs among those evaluated. Furthermore, using
the Wilson Confidence Intervals [37], we can compute the
confidence interval of p, s, denoted by CI(py,s), as follows:

1 Y
I =— (P e
Cl(px,s) 1+7(Px,6+2)
" " ©)
L2 Px,6(1 = Px.s) . Y
" 1+y \ evaluated(N(x,6)) 4 X evaluated(N(x, 5))
where y = iRy and z is determined by the stan-

dard normal distribution for a given confidence level (e.g.,
for a 95% confidence level, z = 1.96).

Based on Cl(py,s), we can assess the maximum differ-
ence® between p, s and py, as follows:

diff (px,s. pm) = max (|UL(px,s) — puls ILL(px,s) — pl) (4)

where UL(py,s) and LL(py, s) are the upper and lower limits
of Cl(px,s), respectively. Using diff (px,s, pm), we define our
fitness function as follows.

3. We consider the maximum difference to be conservative.



Definition 4 (Boundary-Seeking Fitness Function). For an
input x, a neighborhood radius ¢, and a threshold proba-
bility py, the fitness value of x given § and py,, denoted by
fitness(x, 8, py,), is defined as follows:

dlff(px,é’pth)
max(pg, (1 = pa))

fitness(x, &, py,) = )
where the denominator is a normalisation factor, making the
range of the fitness value between 0 and 1.

In other words, we compute the fitness value of an input
x using the difference between p, s (i.e., the proportion of
unsafe inputs in the neighborhood of x with the radius of 6)
and py, (i.e., the probability threshold).

Note that the fitness function is meant to be mini-
mized and decreases as the difference between py and
px.s decreases. The fitness function also takes the number
of observations (i.e., evaluated inputs) within N(x,§) into
account, as the size of CI(py,s) (i.e., the confidence interval
of px.s) decreases when the number of observations in the
neighborhood increases, thereby also decreasing the value
of the fitness function. A sparsely populated neighborhood
therefore tends to yield high fitness values, which is what
we would expect as p,, s in such neighborhoods comes with
much uncertainty.

To better illustrate how the boundary-seeking fitness
function distinguishes between inputs based on their prox-
imity to the boundary, let us consider an input space X and
two inputs x; € X and x» € X where CI(py,,s) = 0.1 £0.05
and CI(py,,s) = 0.5+ 0.1 for a small 6. This means that the
proportions of unsafe inputs around x; and x, are estimated
as 0.1 £ 0.05 and 0.5 + 0.1, respectively. If we consider the
boundary of a 5%-unsafe region (i.e., py, = 0.05), we can say
that x; is closer to the boundary than x, since the proportion
of unsafe inputs around x; is up to 15% while that around
xp is up to 60%. This is exactly captured by the fitness
function since diff (px,,5,0.05) = 0.1 and diff (px,,s5,0.05) =
0.55, thus yielding fitness(x1,6,0.05) = % = 0.105 and
fitness(xz,6,0.05) = 0.5~ (.579, showing that x; is closer

0.95
to the boundary than x;.

5.3 MLC Systemic Hazard Envelope (MLCSHE) Algo-
rithm

Based on the representations of scenarios and MLC behav-
iors described in Section 5.1 and the boundary-seeking fit-
ness function described in Section 5.2, this section proposes
a novel algorithm, MLC Systemic Hazard Envelope (MLCSHE)
[/milf/], based on CCEA as described at the beginning of
Section 5.

Algorithm 1 shows the pseudocode of MLCSHE. It takes
as input a population size n, a minimum number of joint
fitness assessments per individual k, a threshold probability
pm to define a probabilistic unsafe region, a threshold dis-
tance d, to ensure the diversity of individuals and complete
solutions in archives, a maximum population archive size [,
a distance threshold dy, to filter the complete solutions that
are distinct enough, and a boundary fitness threshold 7, to
filter complete solutions close enough to the boundary; it
returns an archive A, of distinct complete solutions, with
the pairwise distance of more than dy,, whose fitness values
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are less than 7, (i.e., close to the boundary of a py,-unsafe re-
gion), while k and [ are parameters to control the algorithm’s
search behavior (detailed below). MLCSHE in essence is a
CCEA that uses population archives as described in Sec-
tion 2. However, it is different from other similar methods
as its goal is to return a set of complete solutions satisfying
certain properties (i.e., close to the boundary) rather than
returning a single-best complete solution.

Algorithm 1: MLC Hazard Envelope Search algorithm
(MLCSHE)

Input : Population Size n
Minimum Number of Fitness Assessments per
Individual k&
Threshold Probability py,
Distance Threshold for Population Archives d,
Maximum Size of Population Archive /
Distance Threshold for Post-processing dy,
Boundary Fitness Threshold for
Post-processing #;,
Output: Archive of Distinct Boundary Complete
Solutions Ap,

1 Population of MLC Output Sequences Pp «—
initPopulation(n)

Population of Scenarios Ps « initPopulation(n)
Archive of MLC Output Sequences Ap < Po
Archive of Scenarios Ag < Pg
Archive of Complete Solutions A, « 0
while not(stopping_condition) do

Po, Ps, A —

assessFitness(Po, Ps, Ao, As, k, Ac, pin)

Ao « updatePopulationArchive(Po,!,d,)
9 As «— updatePopulationArchive(Ps, 1, d,)
10 Po « Breed(Pp) U Ap
11 Ps « Breed(Ps) U Ag

12 Archive of Complete Solutions
Ap < postProcess(Ac, dy, tp)
13 return A,

NS Ul R W N

®

The algorithm first randomly initializes the population
of MLC Output sequences Po (line 1), the population of
scenarios Ps (line 2), and their population archives, Ao
(line 3) and As (line 4), respectively. The algorithm also
initializes the archive of complete solutions A. as an empty
set (line 5). The algorithm then co-evolves Pp and Ps using
Ao and Ag, until the stopping_condition is met (line 6), such
that it guides them towards the complete solutions that are
close to the boundary of a py-unsafe region (lines 6-11).
During the co-evolution, the algorithm repeats the following
three steps: 1) assess the fitness values of individuals in both
Po and Ps and update A. to include complete solutions
with their joint fitness values evaluated by the simulator
(using function assessFitness at line 7, described in detail in
Algorithm 2); 2) update Ap and Ag based on the individual
fitness values, d, and [ (using function updatePopulation-
Archive at lines 8-9, described in detail in Algorithm 3); and
3) evolve Pp and Ps (using the function breed detailed at
the end of Section 5.3), and merging them with Ap and Ag,
respectively, to make up the next generation of Pp and Pg
(lines 10-11). After the co-evolution, the algorithm creates a
set of complete solutions A, from A. such that the distance
between two arbitrary, complete solutions in A is at least
dy, and the fitness value of every complete solution in A,



is less than #; (using function postProcess at line 12). The
algorithm ends by returning A, (line 13).

5.3.1 Fitness Assessment

The function assessFitness is to first calculate the joint
fitness values of complete solutions, generated by joining
the individuals in Pp and Ps (with higher priorities to
the individuals in Ap and Ag, respectively) such that each
individual is joined at least k times, using the simulator. In
other words, the fitness of each individual is assessed based
on at least k collaborators to avoid inaccurately estimating
the individual fitness (see Section 2 for more details about
collaborators). To reduce the number of computationally in-
tensive simulations, complete solutions that are the same as
the ones in Ac (i.e., generated in the previous generations)
are not simulated again. Then, the function assesses the
fitness value of each individual using the joint fitness values
of the complete solutions that contain the individual.

Specifically, Algorithm 2 shows the pseudocode of as-
sessFitness. It takes as input the population of MLC output
sequences Po, the population of scenarios Pg, the popula-
tion archive of MLC output sequences Ao, the population
archive of scenarios Ag, the minimum number of fitness
assessments per individual k, the archive of previously
evaluated complete solutions Ac, the neighborhood radius
6, and the threshold probability py,; it then returns Po and
Ps updated to include individual fitness values, and Ac
updated to include newly generated complete solutions and
their joint fitness values.

Algorithm 2: assessFitness

Input : Population of MLC Output Sequences Po
Population of Scenarios Pg
Archive of MLC Output Sequences Ao
Archive of Scenarios Ag
Minimum Number of Fitness Assessments per
Individual k&
Archive of Complete Solutions A,
Complete Solutions Pairwise Distance Matrix
D,
Neighborhood Radius §
Threshold Probability py,
Output: Updated Population of MLC Output
Sequences Po
Updated Population of Scenarios Ps
Updated Archive of Complete Solutions A,

Set of Populations PS < {Po, Ps}
Set of Complete Solutions

C « collaborate(Po, Ps, Ao, As, k)
3 foreach Complete Solution c € C do
4 if c ¢ A, then
5 c.isUnsafe «— simulate(c)
6 L A. — A U {c}

N o=

7 foreach Complete Solution ¢ € A. do
8 L c fitness « computeBoundaryFitness(c, Ac, 6, py,)

9 foreach Population P € PS do
10 foreach Individual i € P do
L i.fitness « assessIndividualFitness(i, A.)

12 return Po, Ps, Ac

The algorithm begins by initializing a set of populations
PS as {Ps,Po} (line 1). It also initializes a set of complete
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solutions C by selecting and collaborating individuals from
Ps and Po using the collaborate function (line 2). This func-
tion first makes every individual of Ps and Po collaborate
with every individual of Ap and Ag, respectively, and if the
number of collaborations for each individual is less than
k (i.e., when the size of Ap and Ag are less than k, where
k > 1), randomly selected individuals of Pp \ Ap and Ps\ As
are used in addition to Ap and Ag, respectively, to ensure a
minimum of k collaborations for each individual . Then, for
each complete solution ¢ € C (line 3), if ¢ ¢ Ac, i.e., c has not
been previously evaluated (line 4), the algorithm evaluates
¢ using the high-fidelity simulator to identify if ¢ is unsafe
(line 5) and adds ¢ with its evaluated result into A, (line 6).
Once A, is updated using C, for each complete solution
c € A; (line 7), the algorithm computes its joint fitness value
(i.e., the boundary-seeking fitness value) using A., 6, and py,
by calculating the proportion of unsafe complete solutions
in the neighborhood of ¢ and its difference from the thresh-
old probability as described in Section 5.2 (line 8). Although
computing the neighborhood of ¢ requires many distance
computations, we can significantly reduce the computations
by reusing the distances among the complete solutions
that were originally in the input A.. For each individual
P € PS and for each i € P (lines 9-10), the algorithm
sets the minimum (i.e., the best since we aim to minimize
fitness values) joint fitness value of the complete solutions
involving i as the individual fitness of i (line 11). An elitist
individual fitness assessment strategy (i.e., selecting the
best fitness value), is consistent with reported experimental
studies [11, 12] as well as our preliminary evaluation results
on a widely used benchmark problem known as the MTQ
(Maximum of Two Quadratics) [38]. The algorithm ends by
returning the updated Po, Ps, and A, (line 12).

5.3.2 Update Population Archive

The function updatePopulationArchive updates the popu-
lation archives Ap and Ag, for the next generation. They
play a key role in guiding the search algorithm since every
other individual has to form a complete solution with them,
whose joint fitness will be assessed afterwards.

There are many ways to update the population archive
such as the ones proposed in iCCEA and pCCEA [12].
However, as mentioned in Section 2, they can be inefficient
due to additional fitness evaluations for updating popu-
lation archives, making them impractical for our problem
involving computationally expensive simulations for fitness
evaluation. Instead, we can consider more efficient archive
update strategies as follows: selecting individuals with the
best fitness values (Best), selecting the best individual plus
random individuals (Best+Random), or randomly selecting
individuals (Random) [12]. Our preliminary evaluation re-
sults on the MTQ problem showed that both Best and
Best+Random work similarly well for updating population
archives in MLCSHE. To ensure the diversity of individuals
in each population archive and maximize exploration, we
choose Best+Random with a similarity threshold (i.e., the
distance threshold dy,) that filters out individuals deemed

4. Note that a high value of k might add significant computational
cost to the search since it tends to exponentially increase the number of
joint fitness evaluations per individual.



too similar to be included in a population archive. The
pseudocode for updating a population archive is provided
in Algorithm 3.

The algorithm takes as input a target population P, a
maximum size of a population archive /, and a threshold
distance (i.e., the minimum distance between two arbitrary
individuals in a population archive) dy; it returns a popu-
lation archive Ap of P such that |Ap| < [ and d(i,j) > dy,
based on the distance function d as described in Section 5.2,
foralli,j e Apifi#j.

Algorithm 3: updatePopulationArchive

Input :Population P
Maximum Size of Population Archive /
Threshold Distance dy,
Output: Population Archive Ap
1 Archive Ap « {popBestFitnessIndividual(P)}
2 while |Ap| <[ and |P| > 0 do
3 Individual i « randomPop(P)
4 if isDistinct(i, Ap, dy,) then
5 L A P < A pU {l }

6 return Ap

The algorithm starts by initializing a population archive
Ap for P using the individual with the best fitness value
among all the individuals in P (using function popBestFit-
nessIndividual at line 1). While |Ap| < [ or |P| > 0, the
algorithm iteratively pops a random individual i from P
(line 3) and add i into Ap (line 5) if i is distinct from all
individuals in Ap based on the distance threshold of dy,
(line 4). The algorithm ends by returning Ap (line 6).

5.3.3 Evolution

As illustrated in Algorithm 1, after updating Ap and As, Po
and Pg undergo evolution to generate their next generation
using a breed operation, which entails three main steps:

1) Selection. MLCSHE selects the candidate individuals
for breeding via the standard fournament selection tech-
nique, i.e., the most widely used selection technique for
evolutionary algorithms [39]. It is simple yet effective
since it only requires the rank ordering of individuals
in terms of their fitness values.

2) Crossover. Selected individuals of each population act as
parents to create offspring individuals using a crossover
operation [39]. For our problem, the widely used uni-
form crossover technique [11, 39] is used, since there is no
preference for specific points in individuals as crossover
points.

3) Mutation. Finally, offspring individuals are mutated
via the introduction of stochastic noise [39]. Since the
individuals are heterogeneous vectors with both float
and integer values, the standard Gaussian and integer
randomization mutation techniques are applied to indi-
vidual elements, respectively [11]. Through these mu-
tations, all valid individuals can be considered during
the search, making it possible to find the global opti-
mum. There is a chance a mutated individual might be
invalid. For example, the x-coordinates (x,;» and Xx;qx)
of a bounding box used to define a detected obstacle
can be out of the camera frame width bounds (from
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0 to 800 pixels). Such invalid cases are handled by a
simple repair function in our implementation, which is
available in the replication package (see Section 6.5).

We want to note that there are hyperparameter values for
selection, crossover, and mutation (e.g., the tournament size,
crossover and mutation rates) that could affect breeding
performance. More details on tuning hyperparameter values
in our evaluation is provided in Section 6.2.1.

6 EVALUATION

In this section, we report on the empirical evaluation of

MLCSHE when applied to an open-source MLAS. Specifi-

cally, we provide answers for the following research ques-

tions:

RQ1 (Effectiveness) How effectively can MLCSHE find the
MLAS hazard envelop boundary compared to baseline
boundary search approaches?

RQ?2 (Efficiency) How efficiently can MLCSHE find the
MLAS hazard envelop boundary compared to baseline
boundary search approaches?

To answer RQ1, we investigate how many complete solu-
tions (i.e., combinations of scenarios and MLC behaviors)
that are close to the boundaries are found by different
boundary search approaches, including MLCSHE, given
a same time budget. To answer RQ2, we investigate how
quickly complete solutions that are close to the boundaries
are found by different boundary search approaches. The re-
sults of RQ1 and RQ2 may depend on the distance threshold
between complete solutions and the boundaries® (dy, and #,
in algorithm 1). Thus, we also consider the effects of the
distance thresholds while answering RQ1 and RQ2.

6.1 Evaluation Subjects

We use Pylot [40], one of the highest ranking component-
based AV on the CARLA Autonomous Driving Leader-
board [41], at the time of the evaluation. The leaderboard
evaluates AV according to 11 metrics that are designed to
assess safe driving performance such as collision, red light
infractions and route completion. Pylot’s high performance
on the leaderboard makes it a good candidate to consider
as an evaluation case study. Furthermore, Pylot is one of
the only high-ranking AV that is open-source, has been
deployed on a real-life vehicle [40].

We also use CARLA [10], a high-fidelity open-source
AV simulator. CARLA allows us to control various static
and dynamic elements in driving environments. Based on
the controllable elements, following a previous study using
CARLA [42], we consider the following seven scenario ele-
ments: road curve and length, start and end points on maps,
the density of pedestrians, time of day, and weather condi-
tion. The detailed explanation for the scenario elements and
their values (ranges) are available in the supporting material
(see Section 6.5).

For the ML component under test in Pylot, we tar-
get a DNN-based obstacle detection module. The obstacle

5. Recall that the fitness of a complete solution is defined based on
its distance from the hazard boundary. Throughout the rest of the
section boundary distance threshold and fitness threshold are used
interchangeably.



detection module takes digital images of the front-facing
camera and detects obstacles in the images in terms of their
location and size (captured as a bounding box), their type,
and the uncertainty associated with the predicted label. The
output of the obstacle detection module is then used by
an obstacle prediction module that predicts the trajectories
of the detected obstacles for future timestamps, followed
by planning and control modules that generate driving
commands considering the obstacles” predicted trajectories.
Thus, we let the boundary search methods manipulate the
parameters that define the output sequence of the target
MLC (i.e., the object detection module) during the execution
of a simulation. Specifically, for each obstacle, there are 11
parameters: the label of the detected obstacles (pedestrian or
vehicle), the start and end time the obstacles are detected,
and the 2D coordinates (i.e., Xmin, Xmax, Ymin anNd yax) that
define the start and end bounding boxes of the trajecto-
ries on the input image. Additional details regarding the
scenario and MLC output are available in the supporting
material (see Section 6.5).

The above-mentioned categorical (e.g.,, road curve,
weather condition, and obstacle’s label) and numeric (e.g.,
obstacle’s position) parameters defining scenarios and MLC
outputs are used to define a distance function dist which
measures the distance between two complete solutions as
discussed in Section 5.2. Given that these parameters are
heterogeneous, we use a heterogeneous distance metric. Specif-
ically, dist is defined as the average of the normalized Ham-
ming distance [43] of categorical values and the normalized
City Block distance [43] of numeric values, where the latter
are normalized by their maximum range of values that
each parameter can take. For instance, the y-coordinates of
the MLC outputs range from 0 to 600 due to the height
of the camera frame, and thus they are divided by 600
to be normalized. As we have many pairwise distance
calculations during the search, we opted for these distance
metrics since they are computationally efficient compared to
alternatives. Given its definition above, dist ranges between
0 and 1. If dist = 1 between two complete solutions, it means
all the categorical values of the two are different, and the
differences in all the numeric values of the two are the
maximum.

Among various AV safety requirements used in the
literature [35, 44, 45], considering the capability of CARLA
and the major functionality of our target MLC (ie., the
object detection module), we focus on the following safety
requirement: “AV should have a distance no less than d,y;, from
the vehicle in front.” To detect safety violations, if any, during
the simulation of a complete solution (i.e., the combina-
tion of a scenario and an MLC behavior), we measure the
distance between the ego vehicle and the vehicle in front
for each simulation time step. If the distance is less than
dmin at any time, the violation is detected and the complete
solution is marked as unsafe. Since our driving scenarios
often involve junctions with traffic lights where the vehicles
should completely stop for a while, d,;, should be small
enough to avoid false alarms (i.e., incorrectly triggering
safety violations) even when the vehicles completely stop.
Based on the rule-of-thumb that the driver should be able
to see the rear tire of the vehicle in front and a small part of
the asphalt when stopping behind a stopped vehicle, we set
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dpin to 1.5m.

Due to the execution time of individual simulations in
CARLA, which is around five minutes on average, the
total computing time for the evaluation is more than 1800
hours (75 days). To address this issue, we conduct our
evaluation on two machines, M1 and M2. Machine M1 is
a desktop computer with 2.6 GHz Intel i7-10750H CPU,
NVidia GeForce RTX 2070 with Max-Q Design GPU (with
8 GB memory), and 32 GB RAM, running Ubuntu 20.04.
Machine M2 is a g4dn.2xlarge node configured as NVIDIA
GPU-Optimized AMI (version 22.06.0) in Amazon Elastic
Cloud (EC2) with eight virtual cores, NVIDIA T4 GPU
(with 16GB memory), and 32 GB RAM, running Ubuntu
20.04. Specifically, we use M1 for Random Search (RS) and
standard Genetic Algorithm (GA), while MLCSHE is run on
M2. Note that since we keep the number of simulations,
as opposed to the execution time, constant over all the
experiments, the experiments on M1 and M2 are comparable
(see Section 6.2.1 for details).

6.2 RQ1: Effectiveness
6.2.1 Methodology

To answer RQ1, we execute MLCSHE and other comparable
methods to generate sets of complete solutions that are
close to the boundary and measure their boundary search
effectiveness in terms of Distinct Boundary Solutions (DBS)
capturing the number of distinct complete solutions close to
the boundary. Specifically, given a distinctiveness (distance)
threshold dy, (for the distinctiveness of complete solutions)
and a boundary closeness (fitness) threshold #, (for the
closeness to the boundary), let Cy be the set of complete
solutions generated by a boundary-seeking method V, sat-
isfying the following conditions®: (1) the pairwise distance
between two arbitrary complete solutions in Cy is more than
dy, and (2) the fitness value of every complete solution in Cy
is less than 7. Then, DBS of V is defined as DBS(V) = |Cy/|
(i.e., the size of Cy). Recall that both distance and fitness
values are normalized (dy,, t, € [0, 1]).

To better understand how DBS varies depending on dif-
ferent dy, and 1, thresholds, we vary dy, and #;,. Specifically,
we set dy, to 0.1, 0.2, and 0.3 because it is unrealistic to think
that two arbitrary complete solutions are distinctive only if
their pairwise distances are more than 30% of the maximum
possible distance’. We set 1, to 0.01, 0.03, 0.5, 0.1, 0.15,
and 0.2 because we are not interested in complete solutions
with fitness values above 0.2 (i.e., far from the boundary,
such that the normalized difference between the probability
threshold py, and the proportion of unsafe inputs near the
complete solutions is above 0.2).

For the other methods to compare with MLCSHE, as
discussed in section 4, we could not find any other work
that has been proposed to address the problem targeted
by this paper. Note that DeepJanus is incomparable to
MLCSHE, as discussed in Section 4, because: 1) its goal is
to study an MLC’s safety under various conditions, which

6. Cy is computed via the post-processing function postProcess shown
in Algorithm 1.

7. We actually confirmed that, when dy, > 0.3, even MLCSHE yields
insufficient DBS for safety monitoring. The results for dy, > 0.3 are also
included in our replication package [46].



is different than the goal of this research effort, i.e., finding
the conditions under which an MLC’s behavior can impact
the safety of the system; 2) the boundary identified by
DeepJanus consists of safe-unsafe pairs that can exist in
probabilistic safe or unsafe regions. Thus, we compare MLC-
SHE against two baseline methods, namely Random Search
(RS) and standard Genetic Algorithm (GA) [11]. RS randomly
generates complete solutions, and GA evolves complete
solutions without considering two separate populations of
scenarios and MLC behaviors. In all the methods (including
MLCSHE), the fitness function is the same as defined in
Section 5.2. The results of RS will show how difficult the
search problem is. Furthermore, the comparison between
MLCSHE and GA will show how effective our CCEA-based
method is compared to a standard search method.

For all methods, we set the total number of simulations
as the search budget to 1,300 (i.e., around 2.5 days to run
with two parallel simulations per run), which was a large
enough number to see the convergence of the effectiveness
metrics on our preliminary evaluation. Since most of the
execution cost is dedicated to running simulations, the com-
putation budget of the experiments is mainly determined by
the number of simulations. Thus, we use the total number
of simulations as the search budget. Note that, for MLCSHE
and GA, the actual number of simulations could be slightly
more than the predefined total number since population-
based method check if the search budget is exhausted only
after the completion of one generation. In addition to the
search budget, to ensure the comparability, we set the same
boundary threshold probability (i.e., p:n) and the same max-
imum number of obstacle trajectories per mlco to 0.1 and
2, respectively, for all the methods. This makes a complete
solution to have 7 (scenario) + 2x11 (mlco) = 29 dimensions.

MLCSHE and GA have additional hyperparameters. For
GA, we used recommended values in [47]; the population
size, the mutation rate, and the crossover rate are set to
60, 0.01, and 0.85, respectively. However, since there are no
suggested values for CCEAs, for which there is much less
experience, we decided to tune them on two benchmark
problems, namely MTQ and Onemax, that are widely used
in evaluating CCEAs [12]. As a result, we used the follow-
ing hyperparameters for MLCSHE: population size = 10,
maximum population archive size = 3, mutation rate = 1.0,
and crossover rate = 0.5. The reason for the high mutation
rate is to compensate for the individuals in the population
archives that are directly passed to the next generation with-
out mutation and crossover in CCEAs. Similarly, regarding
the distinctiveness threshold for population archives (d,)
in MLCSHE, we set it to 0.4 based on the two benchmark
results.

To account for the randomness of the search-based meth-
ods, we repeat the experiments for each method 10 times.
To evaluate the statistical significance of the difference in
effectiveness metrics of different search methods, we use
the Mann-Whitney U test [48]. To measure the effect size
of the differences, we measure Vargha and Delaney’s Aag,
where 0 < Aap < 1[49]. Typically, the value of A ap indicates
a small, medium, and large difference (effect size) between
populations A and B when it is higher than 0.56, 0.64, and
0.71, respectively.

13

6.2.2 Results

Table 1 reports the DBS achieved by MLCSHE, RS and GA
over 10 runs at various distinctiveness (distance) threshold
(dy,) and boundary closeness (fitness) threshold () values.

Overall, for all three boundary-seeking methods, DBS
values increase as boundary closeness threshold (¢;,) values
increase. This is expected since increasing the value of 1,
results in more boundary solutions to consider. Further, DBS
values drop rapidly as distinctiveness threshold (dy,) values
increase. This is also expected since identifying complete
solutions that are distinct enough with respect to higher dy,
values becomes quickly more challenging. However, when
tp = 0.01, the DBS equals to zero for all methods regardless
of dy,, meaning that none of the methods found complete
solutions closer to the boundary than 0.01. This is simply
because the provided search budget (1,300 simulations) is
not enough to decrease the fitness values of complete solu-
tions below 0.01 by reducing the size of confidence intervals
(i.e., Equation 3).

Fig. 5 depicts how the DBS values of the different meth-
ods vary with increasing dy, for different #;, values. In each
plot, the x-axis is dy, and the y-axis is the average DBS over
10 repeats. The DBS values for MLCSHE, GA, and RS are
marked with circles, triangles, and squares, respectively. The
95% confidence intervals for the average DBS values are also
shown as error bars.

First, RS achieves extremely low DBS values when com-
pared to the other two methods in all cases. This implies that
the problem of identifying MLAS boundaries is sufficiently
challenging for RS not to be able to satisfactorily address it.

Regarding MLCSHE and GA, we can see different pat-
terns depending on different 7, values. When #;, = 0.01, due
to the limited search budget provided as already discussed
above, DBS = 0 for all the methods, meaning that none
of the methods find distinct complete solutions near the
boundary. When #;, = 0.03, MLCSHE once again does not
find any complete solutions near the boundary, whereas GA
finds some (e.g., 12.0 + 6.1 for dy, = 0.1), which are likely
not applicable for safety monitoring as a very focused and
limited part of the hazard boundary is covered by these
solutions. However, when ¢, > 0.05, MLCSHE finds more
complete solutions near the boundary (e.g., 39.6 + 17.2 for
dy, = 0.1 and 7, = 0.05) than GA. Furthermore, for the
same dy, value, the gap between MLCSHE and GA increases
significantly as #; increases.

A plausible explanation for these results is that, al-
though GA is better than MLCSHE in terms of exploiting
a specific region, leading to higher DBS values when the
boundary closeness threshold is very low compared to the
provided simulation budget (i.e., when ¢, = 0.03), MLCSHE
successfully uses a cooperative co-evolutionary algorithm
which decomposes a high-dimensional problem into two
lower-dimensional sub-problems, making the search more
effective than GA in terms of identifying distinctive (di-
verse) complete solutions near the boundary for higher 1,
values. Furthermore, MLCSHE takes advantage of popula-
tion archives that not only carry information regarding the
highest-performing individuals but also enforce diversity
among archive members.

Our visual observations are supported by the results of
the statistical comparisons provided in Table 2. Columns
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TABLE 1: DBS values for different search methods at different values of 7, and dy,.
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Fig. 5: The relationship between dy, (distinctiveness threshold) and DBS (distinct boundary solutions) along with their
confidence intervals (shown as error bars) for MLCSHE, GA, and RS for different #;, (boundary closeness threshold) values.

TABLE 2: Statistical comparison of DBS values for different search methods at different values of ¢, and dy,. Comparisons
with no results are specified as N/A. Such cases happen when A or B have no samples to compare.
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A and B indicate the search methods being compared.
Columns p and Aup indicate statistical significance and
effect size, respectively, when comparing A and B in terms
of DBS at different #, and dy, values. Comparisons with no
results are denoted as N/A; it happens when A or B have
no boundary search results to compare. Given a significance
level of @ = 0.01, the differences between MLCSHE and
other methods are significant when ;, > 0.05, except when
tp = 0.05 and dy, = 0.1—that is when the very low threshold
makes it infeasible to find many complete solutions that are
both distinct enough from each other and close enough to the
hazard boundary—for which the average DBS of MLCSHE
is only slightly higher than that of GA. Moreover, A,p is
always greater than 0.71 when A = MLCSHE, indicating
that MLCSHE always has a large effect size when compared
to other search methods. Therefore, we conclude that, for 1,
values that require practical numbers of simulations to find
a sufficient number of distinct boundary solutions for safety
monitoring, MLCSHE yields better results than GA and RS.

For boundary closeness thresholds that require prac-
tical numbers of simulations to find a sufficient
number of distinct boundary solutions for safety
monitoring, MLCSHE is significantly more effective
than GA and RS with high effect size, meaning that
MLCSHE finds significantly more diverse regions
near the hazard boundary.

6.3 RQ2: Efficiency
6.3.1 Methodology

To answer RQ2, we follow the same methodology as for
RQ1, including the hyperparameters and 10 repeats for
each method, except for the search (simulation) budget.
Specifically, we measure DBS across different methods while
varying the simulation budget from 10% (130 simulations)
to 100% (1300 simulations) in steps of 10%. We then report
and analyze how the effectiveness values of different meth-
ods vary over time.

6.3.2 Results

Based on the data we collected in our experiment, we
analyzed how all different threshold values for dy, and 7,
affect the relationship between the percentage of simulation
budget consumed and the average DBS values for 10 runs
across MLCSHE, GA, and RS. In Fig. 6, we selected three 7,
values (0.03, 0.05, and 0.15) that, together, are representative
of the overall trends. The remaining plots® are available in
the supporting material (see Section 6.5).

On the one hand, Fig. 6a shows that only GA finds a
few boundary solutions when f;, = 0.03. Although GA does
not reach a plateau for dy, < 0.2, the numbers of distinct
boundary solutions found by GA are not enough for safety
monitoring as already discussed in Section 6.2.2. On the
other hand, Fig. 6b and Fig. 6c show that MLCSHE leads
to significantly higher DBS once the consumed budget is
above 10%, except when #;, = 0.05 and dy, = 0.1 for reasons
that we already discussed in Section 6.2.2.

8. The plots for #, = 0.1 and #;, = 0.2 are very similar to Fig. 6c.
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We suspect that the results during the first 10% of the
simulation budget can be explained by the initial overhead
of MLCSHE: since it simulates all possible complete solu-
tions that can be generated by joining the scenario and MLC
output populations in the first generation, it could complete
only one search generation while GA could complete two
or more generations. However, MLCSHE continues to find
new distinct complete solutions near the boundary as the
budget increases, whereas GA quickly starts to stagnate and
reach a plateau. As a result, after only spending 20% of
the total budget, MLCSHE always significantly outperforms
GA.

Note that, even though we had to set the maximum
simulation budget to 1,300 simulations due to the large size
of experiments and the unavoidable limitations in computa-
tional resources, the DBS values of MLCSHE keep increas-
ing until the budget is exhausted for practical boundary
closeness thresholds (¢, > 0.05). This suggests that MLCSHE
is able to find considerably more boundary solutions with
more simulation budget, when available.

MLCSHE is significantly more efficient than GA
and RS for practical boundary closeness thresholds:
MLCSHE finds significantly more diverse regions
that overlap with the hazard boundary at a faster
rate than GA and RS.

6.4 Discussion
6.4.1 Interpretability of Boundary Region

Since the boundary complete solutions found by MLCSHE
and other methods are for safety monitoring, one might
wonder if we could obtain interesting insights from such
boundaries regarding the characteristics leading to high
risks of safety violations.

However, the concept of meaningful boundaries is not
relevant here as we are not looking for boundaries for a spe-
cific MLC implementation but for boundaries that should
not be approached by any implementation for given sce-
narios. Incorrect MLC implementations can yield arbitrary
outputs that may lead, for certain scenarios, to violations.
Why that is the case for certain scenarios and not others
is extremely difficult to explain as it requires going into the
details of how the system uses these outputs across different
scenarios.

Nevertheless, the violations identified by MLCSHE are
the result of executing the system (including the MLC)
in interaction with the simulation environment. Therefore,
they are real violations regardless of whether engineers can
interpret them.

6.4.2 Threats to Validity

This section discusses potential threats to the validity of our
results, namely internal, external, conclusion and construct
validity [50, 51, 52].

Internal Validity. Internal validity is concerned with the
accuracy of the cause-and-effect relationships established by
the experiments.

As mentioned in Section 6.2.1, the actual number of
executed simulations is slightly higher than the allocated
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Fig. 6: Plots of DBS vs. % simulation budget for MLCSHE, GA, and RS, with dy, € {0.1,0.2,0.3} and 7, € {0.03,0.05,0.15}.

simulation budget (1,300) for the population-based methods
(i.e., MLCSHE and GA). Although the same budget should
be used for different methods for a fair comparison, the
deviations are so small (less than 5% of the allocated budget)
that they cannot significantly impact the results in terms of
effectiveness and efficiency.

Another potential threat to internal validity is that the
hyperparameter values for GA can affect the results. For
example, one might want to intentionally increase the mu-
tation rate of GA to improve the diversity of the complete
solutions found by GA. However, it could make GA similar
to a Random Search (RS) and could substantially reduce its
performance [47], which was also confirmed in our prelimi-
nary evaluation results. To mitigate this threat, as mentioned
in Section 6.2.1, we relied on the values recommended by
Mirjalili [47], which are commonly used in the literature.

External Validity. External validity is concerned with the
generalizability of the results.

One notable factor to consider is related to the fact that
we have relied only on a specific ADS (Pylot) and simulator
(Carla). However, Carla is a widely used open-source, high-
fidelity simulator, and Pylot was the only component-based
AV among those high-ranking in the Carla leaderboard [41]
at the time of our evaluation. Moreover, running the ex-
periments on Pylot and Carla took more than 75 days of
execution, even with parallelization, making it infeasible to
consider additional evaluation subjects. Nonetheless, fur-
ther studies involving other ML-enabled Autonomous Sys-
tems in autonomous driving as well as other domains, such
as aerospace, agriculture, and manufacturing, are required.

Also resulting from the high cost of running experiments
is the fact that we could not evaluate different design



choices for MLCSHE using the ADS case study, namely
hyperparameters, individual fitness assessment, and archive
update strategies. This might impact the generalizability of
our results. To account for this factor, we relied on two
widely used benchmark problems which are widely used
by the literature, as referred to in Section 5.3, to tune the hy-
perparameters of MLCSHE and decide between alternative
strategies.

The generalizability of our results is also affected by the
fact that a specific ODD, i.e., urban driving, was considered
for the evaluation. Changing the ODD to highway driving,
for example, changes the lower and upper bounds of the
scenario parameters, as well as the complete solutions that
will be discovered close to the hazard boundary. However,
urban driving is one of the most complex driving ODDs
where complicated interactions (and safety violations) be-
tween many cars and pedestrians can occur, e.g., at an
intersection. Thus, the hazard boundary related to the urban
driving ODD is expected to have a more complex shape
than a simpler ODD such as highway driving. Furthermore,
additional ODDs could not be considered due to time and
resource constraints, as described above. We encourage

The specific encoding of scenarios and MLC outputs
would be another generalizability factor since it determines
the search space, which could significantly affect the effec-
tiveness and efficiency of each search method. However,
for the large search space problems that are common in
practice, we expect MLCSHE to fare increasingly better
than GA and RS since MLCSHE is designed to decom-
pose high-dimensional problems into lower-dimensional
subproblems.

Conclusion Validity. Conclusion validity is concerned
with the conclusions that can be drawn from the collected
data and their statistical significance. The experiments could
only be repeated 10 times, which is less than the widely
accepted rule-of-thumb of 30 repetitions. However, as men-
tioned in Section 6.1, more than 1,800 hours were consumed
to run the experiments with 10 repetitions. To account for
the statistical error associated with the lower number of rep-
etitions, we report every statistical value with its confidence
interval.

Construct validity. Construct validity is concerned with
the degree to which the measured variables in the study
represent the underlying concept being studied. In our case,
the concept of hazard boundary coverage is operationalized
by the DBS value, which sufficiently captures both concepts
of closeness to the hazard boundary (via #,) and coverage of
the hazard boundary in diverse regions (via dy;) at the same
time.

6.5 Data Availability

The search algorithms (i.e., MLCSHE, GA, RS), the parallel
simulation execution module, and the postprocess script are
all implemented in Python. The replication package, includ-
ing the aforementioned implementations, the instructions to
set up and configure Pylot and CARLA, the detailed de-
scriptions of the initial conditions used in the experiments,
and the detailed results, is available at [46].
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7 CONCLUSION AND FUTURE WORK

In this paper, we presented MLCSHE, a cooperative co-
evolutionary search algorithm to effectively and efficiently
approximate the systemic hazard boundary of a machine
learning component embedded in an ML-enabled au-
tonomous system, given a system-level safety requirement.
We address the challenge of the high-dimensional search
space and expensive high-fidelity simulations by using
cooperative coevolutionary search, which decomposes the
problem into two smaller subproblems. We rely on a prob-
abilistic fitness function that guides the search towards
the boundary of probabilistic unsafe regions. We apply
the method to an AV case study, where we run large-
scale experiments with parallel simulations to evaluate the
effectiveness and efficiency of MLCSHE. The evaluation
results show that, for practical boundary closeness thresh-
olds, MLCSHE is significantly more effective and efficient
than random search and a standard genetic algorithm in
identifying diverse boundary regions.

As part of the future work, we plan to apply MLCSHE
to other AVs as well as other ML-enabled autonomous sys-
tems in various domains such as agriculture or aerospace.
Furthermore, we plan to use the hazard boundary approxi-
mated using MLCSHE in developing and evaluating safety
monitors, and guiding the testing of ML components being
integrated in ML-enabled autonomous systems.
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