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Tissue-specific pathways and networks
underlying sexual dimorphism in non-
alcoholic fatty liver disease
Zeyneb Kurt1, Rio Barrere-Cain1, Jonnby LaGuardia1, Margarete Mehrabian2, Calvin Pan2, Simon T Hui2,
Frode Norheim2, Zhiqiang Zhou2, Yehudit Hasin2, Aldons J Lusis2* and Xia Yang1*

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) encompasses benign steatosis and more severe conditions
such as non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. This chronic liver disease has a poorly
understood etiology and demonstrates sexual dimorphisms. We aim to examine the molecular mechanisms
underlying sexual dimorphisms in NAFLD pathogenesis through a comprehensive multi-omics study. We integrated
genomics (DNA variations), transcriptomics of liver and adipose tissue, and phenotypic data of NAFLD derived from
female mice of ~ 100 strains included in the hybrid mouse diversity panel (HMDP) and compared the NAFLD
molecular pathways and gene networks between sexes.

Results: We identified both shared and sex-specific biological processes for NAFLD. Adaptive immunity, branched
chain amino acid metabolism, oxidative phosphorylation, and cell cycle/apoptosis were shared between sexes.
Among the sex-specific pathways were vitamins and cofactors metabolism and ion channel transport for females,
and phospholipid, lysophospholipid, and phosphatidylinositol metabolism and insulin signaling for males.
Additionally, numerous lipid and insulin-related pathways and inflammatory processes in the adipose and liver
tissue appeared to show more prominent association with NAFLD in male HMDP. Using data-driven network
modeling, we identified plausible sex-specific and tissue-specific regulatory genes as well as those that are shared
between sexes. These key regulators orchestrate the NAFLD pathways in a sex- and tissue-specific manner.
Gonadectomy experiments support that sex hormones may partially underlie the sexually dimorphic genes and
pathways involved in NAFLD.

Conclusions: Our multi-omics integrative study reveals sex- and tissue-specific genes, processes, and networks
underlying sexual dimorphism in NAFLD and may facilitate sex-specific precision medicine.

Keywords: Non-alcoholic fatty liver disease (NAFLD), Sexual dimorphism, Multi-omics integration, Key regulator
genes, Bayesian networks, Coexpression networks, Hybrid mouse diversity panel

Background
Nonalcoholic fatty liver disease (NAFLD) covers a wide

spectrum of disorders spanning simple liver steatosis, non-

alcoholic steatohepatitis (NASH), cirrhosis, and hepatocel-

lular carcinoma [1–3]. NAFLD has rapidly become a

significant health threat globally, affecting 25% of the world

population on average, and is strongly associated with

insulin resistance, type II diabetes, and obesity [1, 4–6].

Due to the lack of mechanistic understanding of NAFLD,

there are no existing therapies directly targeting NAFLD.

Moreover, significant unexplained age-dependent sexual di-

morphisms have been observed in NAFLD. At younger

ages, NAFLD has a higher prevalence in males than fe-

males, whereas at older ages, especially after menopause,

the prevalence in females increases [7–10]. Males with

NAFLD have more severe metabolic phenotypes than fe-

males, including higher glucose levels, higher systolic blood

pressure, greater visceral adiposity, lower adiponectin levels,
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lower high-density lipoprotein cholesterol levels, and

greater liver injury as measured by alanine aminotransfer-

ase levels and aspartate aminotransferase levels [11]. Al-

though endogenous estrogens, adipose distribution, and

other lifestyle factors have all been proposed as possible

contributors to sex differences in NAFLD [10–13], the mo-

lecular mechanisms are unclear. Revealing the underlying

biological mechanisms driving the sex differences in

NAFLD can enable the identification of novel therapies and

preventive strategies to ameliorate the heightening global

health threat from NAFLD in a sex-specific and personal-

ized manner.

Recently, human genome-wide association studies

(GWAS) have revealed a handful of candidate causal

genes such as PNPLA3, SAMM50, PARVB, GCKR,

LCP1, LYPLAL1, PPP1R3B, TM6SF2, and TRIB1 for

NAFLD [14–16]. However, sex differences in genetic risks

have not been investigated in these studies. In addition,

NAFLD is strongly influenced by environmental factors

such as diet, which are difficult to control in human stud-

ies. Rodent models, on the other hand, allow for control

of environmental factors and collection of molecular traits

from the relevant tissues when examining a complex dis-

ease. To enable the study of sex-specific mechanisms of

NAFLD, hepatic steatosis and its relevant clinical and mo-

lecular traits were recently examined in both male and fe-

male mice of more than 100 distinct inbred and

recombinant inbred strains from the hybrid mouse diver-

sity panel (HMDP) [17]. These mice were treated with a

high fat and high sucrose diet to generate hepatic trigly-

ceride accumulation or steatosis, a hallmark of NAFLD. A

comprehensive NAFLD-associated and sex-specific multi-

omics data resource has also been generated, encompass-

ing genotyping of common genetic variants, transcriptome

data from liver and adipose tissue, and tissue-specific ex-

pression quantitative trait loci (eQTLs, reflecting the gen-

etic regulation of gene expression in individual tissues).

These data sets enable tissue-specific and sex-specific in-

vestigations of NAFLD mechanisms.

To fully leverage the multi-omic datasets from

HMDP mice and incorporate disease-associated mo-

lecular signals with strong, moderate, and subtle effects,

we have recently deployed an integrative approach to

identify potential causal pathways, gene networks, and

key regulators of NAFLD in males in a tissue-specific

fashion, followed by experimental validation of the

novel predictions [18]. In the current study, we apply

this validated approach to compare the NAFLD biology

between sexes to uncover the shared, male-specific, and

female-specific genes, processes, and networks poten-

tially driving NAFLD pathogenesis, thereby providing

more comprehensive tissue-specific insight into the dif-

ferential prevalence and manifestations of NAFLD be-

tween sexes.

Methods
Overall study design

We aimed to understand the sexually dimorphic mecha-

nisms underlying NAFLD using an integrative genomics

approach, Mergeomics [19, 20]. In our recent study [18],

we used this pipeline to integrate the multi-omics data

from the male mice of the hybrid mouse diversity panel

(HMDP) [17, 21] to identify causal NAFLD gene net-

works and predict key regulator (driver) genes in these

networks. Our subsequent in vivo and ex vivo experi-

ments supported the reliability of our multi-omics mod-

eling approach [18]. In our current study, we predicted

the NAFLD processes and their key driver genes using

the female HMDP mice [17, 21] and compared these

findings with those from the male-focused study [18]. As

illustrated in Fig. 1, we first reconstructed tissue-specific

coexpression networks and identified modules (groups

of co-expressed genes) using liver and adipose tissue

Fig. 1 Schematic representation of the methodology. Genotype,
liver and adipose tissue gene expression data, and hepatic
triglyceride phenotypic data from both sexes of the hybrid mouse
diversity panel (HMDP) mice were first integrated using Marker Set
Enrichment Analysis in the Mergeomics pipeline to predict sex- and
tissue-specific pathways perturbed in NAFLD. Then, potential
regulatory genes (key drivers) for male-specific, female-specific, and
shared pathways were identified using the Key Driver Analysis in
Mergeomics. TG triglyceride, eQTL expression quantitative trait loci,
GWAS genome-wide association studies
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gene expression data from female mice across more than

100 HMDP strains. Then, we integrated these modules

with GWAS of hepatic triglyceride levels together with

the eQTLs from liver and adipose tissue to identify gene

co-expression modules or biological pathways enriched

for NAFLD GWAS signals in females. The incorporation

of the genetic signals helped to infer causal modules and

pathways that are perturbed by genetic risks. Lastly, these

NAFLD-associated gene sets in females were mapped on

Bayesian networks that carry gene-gene regulatory infor-

mation to predict potential key driver genes of the

NAFLD processes. The findings from the female-specific

analysis were compared with those from the male-specific

study [18] to retrieve sex-specific and shared mechanisms.

HMDP study of NAFLD

The HMDP strains and the NAFLD study design with a

high-fat high-sucrose diet were previously described in

detail [17, 22]. Experimental procedures had been ap-

proved by the UCLA animal research committee. Female

mice from 103 mouse strains and male mice from 113

strains used in this study were purchased from the Jack-

son Laboratory and bred at University of California, Los

Angeles. These mice were fed an 8-week chow diet

followed by an 8-week high-fat high-sucrose diet with

16.8% kcal protein, 51.4% kcal carbohydrate, and 31.8%

kcal fat [17]. They were sacrificed after a 4-h fasting.

Hepatic lipid content measurement

Liver lipids were extracted from 365 female mice and 465

male mice by following an established method [23]. About

60 mg of liver was used for lipid extraction, and the dried

organic extract was dissolved in 1.8% (wt/vol) Triton

X-100 [17]. Colorimetric assay from Sigma (St. Louis,

MO) (triglyceride, total cholesterol, and unesterified chol-

esterol) and Wako (Richmond, VA) (phospholipids) were

used to determine the amount of liver lipids in each ex-

tract according to the manufacturer’s instructions.

RNA isolation and gene expression analyses of liver and

adipose tissues

Flash-frozen liver and epididymal adipose samples from

256 female mice from 103 strains and 288 male mice

from 113 mouse strains were weighed and homogenized,

as detailed in [17]. RNA was isolated using RNeasy col-

umns and global gene expression was profiled using

Affymetrix HT_MG430A arrays for 206 liver and 211

adipose tissues from females and 227 liver and 228 adi-

pose tissues from males (some mice had both liver and

adipose tissue samples analyzed, whereas others had

only one tissue passing quality control) [22]. ComBat

provided in the SVA tool [24] was used to remove batch

effects from the gene expression data.

Statistical analysis

Genome-wide association analysis of liver triglyceride and

tissue-specific eQTL analysis in females

Genotypes for 365 samples from 103 strains of female

mice were determined using the Mouse Diversity Array

[25]. SNPs with poor quality, a minor allele frequency of

< 5% or a missing genotype rate of > 10%, were removed

as previously described [17], resulting in about 200,000

SNPs. Genome-wide association mapping of the liver tri-

glyceride content and tissue-specific eQTLs were previ-

ously generated using Factored Spectrally Transformed

Linear Mixed Models [26, 27]. We used cis-eQTLs that

were defined within ±1 Mb region of the transcription

start and end sites of the genes. False discovery rate

(FDR) estimated by the q value approach [28] was used

for correcting for multiple testing. In the adipose tissue,

216,296 cis-eQTL associations were used (76,451 unique

cis-eSNPs and 1954 cis-genes), and in the liver, 241,463

cis-eQTL associations were used (81,076 unique cis-

eSNPs and 2168 cis-genes) at P < 1E−6 (FDR < 0.01).

Reconstruction of tissue-specific co-expression networks

from liver and adipose tissue transcriptome data from

females

Tissue-specific coexpression networks from gene expres-

sion data from 206 liver and 211 adipose tissue of female

mice in HMDP were constructed using two complemen-

tary network methods: Weighted Gene Co-expression

Network Analysis (WGCNA) [29] and Multiscale Embed-

ded Gene Co-expression Network Analysis (MEGENA)

[30]. WGCNA tends to cluster genes into large-sized

modules and assigns each gene into a single module,

whereas MEGENA defines smaller, more coherent mod-

ules and can assign each gene into multiple modules. As

shown in our recent study focusing on male NAFLD [18],

these two methods complement each other and can un-

cover hidden biology that could be missed by the other

method.

Both network methods assign the co-regulated genes

into the same coexpression module via hierarchical clus-

tering based on correlation of gene pairs. WGCNA is

based on agglomerative hierarchical clustering, whereas

MEGENA uses a divisive method of clustering. Gene

clusters are merged (in agglomerative) or split (in div-

isive) according to a distance measure. The distance

measure used in WGCNA is Topological Overlap Matrix

(TOM) subtracted from 1 (dissTOM= 1-TOM), which is

based on the edge weight (correlation score) between two

nodes (genes) by considering the edge weights of their

neighbors in the network. Distance between two clusters

is calculated as the average dissTOM score of all the gene

pairs (one gene from each cluster in a pair-wise manner).

Divisive clustering of MEGENA is based on the shortest

path distance measure and a nested k-medoids clustering
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that finds k optimal clusters at each step by minimizing

the shortest path distance within each cluster to define

more compact modules. The nested clustering process

continues until there is no more compact child cluster

found. MEGENA clusters genes in a multi-scale manner,

allowing the assignment of a gene into multiple modules,

but at different scales.

For each module from WGCNA or MEGENA, we an-

notated the putative biological functions using known

biological pathways curated from MSigDB database [31],

which incorporates KEGG, Reactome, and Biocarta path-

ways, using the one-tailed Fisher’s exact test. Bonferroni

correction was used to correct the P values. Pathways that

have an adjusted P < 0.05 and shared ≥ 5 genes with a

given module were deemed significant. Up to top five sig-

nificant pathways were used to annotate each module. For

modules without significant annotation terms, we used a

less stringent cutoff at uncorrected P < 5E−3 and ≥ 5

shared genes to annotate them with suggestive pathways

(indicated with an asterisk sign in figures and tables).

Module preservation analysis of the sex- and tissue-specific

coexpression modules

We evaluated the preservation of the female-specific coex-

pression modules within the male-specific modules and

vice versa, in a tissue-specific manner, using the module-

Preservation procedure from the WGCNA R package.

This procedure reports a Z-summary score to determine

whether a module is preserved in another data set by

using both connectivity and density statistics of the nodes

within a module. A Z-summary score > 2 means that there

is evidence for the preservation of a module in the second

condition/dataset tested [29]. The modulePreservation

procedure was applied in a tissue-matched manner be-

tween sexes to analyze the reciprocal preservation of the

modules obtained from the female mice expression data

with those from the male mice.

Filtering the coexpression modules based on their

correlation with NAFLD

For downstream analysis, we only kept the coexpression

modules that are relevant to the phenotype of interest

(liver triglyceride levels), based on Pearson correlation

between liver triglyceride and eigen genes of MEGENA

and WGCNA modules. To select NAFLD-correlated

modules, correlation P < 1E−3 was chosen as a cutoff,

which corresponds to a false positive rate of 0.1 based

on a permutation test. We generated 1000 random gene

sets, with a member size ranging from 20 to 500 genes,

as our negative controls, followed by calculating the

Pearson correlation between the trait and the eigen gene

of each negative control gene set. Among the 1000 nega-

tive controls, 102 gene sets had a correlation P < 1E−3

with the trait, representing false positives. The remaining

negative control gene sets were true negatives. There-

fore, at P < 1E−3, false positive rate = false positives/(false

positives + true negatives) = 0.1.

Mergeomics pipeline for multi-omics integration

Similar to our previous study on male NAFLD [18], in the

current study, we integrated the genetic (liver triglyceride

GWAS) and functional genomics data (eQTLs, coexpres-

sion modules, and pathways) from female HMDP to de-

fine pathways and coexpression networks that are

genetically associated with NAFLD using the Marker Set

Enrichment Analysis (MSEA) in Mergeomics [19, 20].

MSEA maps the genes within each pathway (from Bio-

carta, KEGG, and Reactome) or coexpression modules

(from MEGENA and WGCNA) to the expression single

nucleotide polymorphisms (eSNPs) through eQTLs of the

corresponding tissue in female mice. The cis-eQTLs

(within ±1 Mb of the transcription start and end sites) at

P < 1E−6 were used for mapping and eSNPs in linkage

disequilibrium were trimmed to keep only one eSNP per

linkage disequilibrium block based on the block informa-

tion reported by the PLINK2 tool [32]. The mapped

eSNPs for each module or pathway were queried for the

corresponding association P values from the hepatic tri-

glyceride GWAS. Then, a modified chi-square statistics,

which summarizes enrichment assessment across a range

of quantile-based cutoffs for the GWAS, is applied to each

eSNP set to assess the significance of enrichment for

stronger disease-associated GWAS P values by comparing

the GWAS P values of the given eSNP set against the

eSNPs of randomly generated gene sets [19]. Since this ap-

proach is not based on a single GWAS P value cutoff but

uses a set of quantile-based cutoffs, it produces more

stable enrichment scores and avoids artifacts. This modi-

fied chi-square statistics is defined as χ ¼
Pn

i¼1
Oi−Ei
ffiffiffi

Ei

p
þκ

,

where O and E are the observed and estimated number of

positive findings (i.e., findings above the i-th quantile

point), respectively; n is the number of quantile points (10

quantile points were used ranging between the top 50%

and top 99.9% signals based on the rank of the GWAS P

values), and κ = 1 denotes a stability parameter that re-

duces the artifacts for small eSNP sets with low expected

counts. Benjamini-Hochberg approach was used to cor-

rect for multiple hypothesis testing and an FDR < 0.05

cut-off was used to define the significantly enriched gene

sets for a given GWAS.

If the significant gene sets (pathways or modules) for

NAFLD at FDR < 5% had significant sharing of member

genes, defined as gene overlapping ratio > 0.33 and Bon-

ferroni corrected Fisher’s exact test P value< 0.05, we

merged the overlapping gene sets into non-overlapping

“supersets” to reduce the redundancy. Occasionally, we

observed that a canonical pathway and a coexpression
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module, or two independent coexpression modules,

which were annotated with the same biological term but

did not share significant numbers of genes. In such

cases, they were kept as independent supersets despite

being annotated with the same (or similar) terms.

To predict potential key regulators, termed key drivers,

within the NAFLD supersets, the Weighted Key Driver

Analysis (wKDA) from Mergeomics pipeline was used.

wKDA projects the tissue-specific NAFLD-associated gene

sets onto a tissue-specific Bayesian network, which depicts

putatively causal relationships between genes, to identify

network hub genes (i.e., key driver genes), whose network

neighborhoods are significantly enriched for genes in the

NAFLD-associated supersets compared to the neighbor-

hood of a random gene in the network. This analysis has

been previously shown to successfully derive meaningful

biological findings [19, 33, 34]. Here, we mapped the hep-

atic triglyceride-associated supersets onto previously de-

fined liver and adipose tissue Bayesian networks, which

were curated from multiple human and rodent expression

datasets of previous studies [35–41] and constructed using

RIMBANET [42, 43] based on the gene expression pat-

terns, genetic information, causal inference, and previously

known regulatory relationships among the genes [18]. Since

the Bayesian networks incorporate genetic data, they can

reveal causal regulatory relationships between gene pairs

and enable the identification of potential regulators of dis-

ease genes and pathways. While combining the Bayesian

networks from these individual studies and defining a

union network for each tissue, we did not consider the edge

weights and the directions since some of the edge direc-

tions included in these Bayesian networks might be con-

flicting while the edges included in each individual network

were considered robust. Gene symbols given in the network

figures are illustrated in human orthologs since the curated

networks were taken from both human and rodent studies.

Key drivers of a NAFLD superset were identified based on

a modified chi-square statistics, as described for the MSEA

above, that evaluates the enrichment of the member genes

in the superset within the candidate key driver’s neighbor-

hood in the Bayesian network compared to that of a ran-

dom gene chosen from the same network. Benjamini-

Hochberg FDR was calculated, and genes with an FDR <

0.05 were determined as significant key drivers of a given

NAFLD superset. We identified the top key drivers in each

shared and sex-specific NAFLD-superset based on their

wKDA-FDR scores. Then, we extracted the subnetworks of

the top key drivers in each Bayesian network by gathering

the network neighbors of these key drivers.

Assessing overlap between the sex-specific NAFLD networks

and sex-hormone target genes

To explore the origin of the sex-specific NAFLD net-

works, we investigated whether the female networks are

enriched for estrogen target genes and whether the male

networks are enriched for androgen target genes. Liver

and adipose transcription factor regulatory networks were

obtained from the Functional Annotation of the Mamma-

lian genome (FANTOM) repository [44]. Tissue-specific

downstream genes of estrogen receptors and androgen re-

ceptors were extracted from the FANTOM networks and

used to assess overlaps with the female and male NAFLD

networks using Fisher’s exact test in a sex and tissue

matched manner (e.g., female liver NAFLD network genes

were overlapped with estrogen receptor target genes in

the FANTOM liver network).

Curation of previously studied NAFLD-relevant genes

As described in [18], 107 previously validated NAFLD-as-

sociated genes were taken from the DisGeNET database

[45], which manually curates the gene-disease associations

via text mining or from databases such as UniProt, Clin-

Var, Comparative Toxicogenomics Database (CTD), and

the GWAS Catalog. We compared these genes to the ones

identified by the current study as an in silico validation of

our findings.

Gonadectomy and ovariectomy

The gonadectomy and ovariectomy experiments were

performed as detailed previously [21, 46]. Male and fe-

male C57BL/6 J mice were purchased from The Jackson

Laboratory (Bar Harbor). Mice were maintained on a

chow diet (Ralston Purina Company) till 8 weeks of age

and then placed on a high-fat high-sucrose diet (Re-

search Diets D12266B) until 16 weeks of age. At 6 weeks

of age, the mice were gonadectomized under isoflurane

anesthesia (n = 4/group). Scrotal regions of male mice

were bilaterally incised, testes removed, and the incisions

closed with wound clips. Ovaries of female mice were re-

moved through an incision just below the rib cage. The

muscle layer was sutured, and the incision closed with

wound clips. In sham-operated control mice, incisions

were made and closed as described above. The gonads

were briefly manipulated but remained intact.

RNA library preparation and sequencing for liver and

adipose tissues from gonadectomized or ovariectomized

mice

Upon sacrifice, liver and gonadal adipose tissues were in-

stantly frozen in liquid nitrogen. Frozen tissues were ho-

mogenized in Qiazol, and following chloroform phase

separation RNA was prepared from the pink phase using

Qiagen miRNAeasy kits as per original protocol. BioA-

NAlyzer was used to validate total RNA quality (all sam-

ples had RIN > 8). RNA libraries were prepared by the

sequencing facility at the UCLA Neurosciences Genom-

ics Core using Illumina TruSeq Stranded kits v2,

followed by paired-end sequencing. Reads were aligned

Kurt et al. Biology of Sex Differences            (2018) 9:46 Page 5 of 14



using STAR 2.5.2b, mm10 genome, and GENCOD M11

transcript annotation. Reads-per-gene tables were gener-

ated as part of STAR output, and DESeq2 was used for

differential expression analysis (see below).

Differentially expressed gene analysis between

gonadectomized/ovariectomized mice and sham-operated

mice

DESeq2 R Bioconductor package [47] was used to iden-

tify the genes that were differentially expressed between

the gonadectomized or ovariectomized mice and sham-

operated mice. DESeq2 tool estimates the variance-mean

dependence of the raw gene counts using a negative bino-

mial distribution and identifies the differentially expressed

genes between two groups (i.e., calculates the log2 fold

changes and corresponding P values for each gene) based

on a generalized linear modeling. Benjamini-Hochberg ad-

justed P < 0.05 was used to identify the differentially

expressed genes. Then, we analyzed enrichment of the dif-

ferentially expressed genes for the sex-specific NAFLD

subnetworks in the liver and adipose tissues using Fisher’s

exact test.

Results

Tissue-specific coexpression networks in females

To retrieve functional gene-gene relationships, gene

coexpression networks were constructed based on tran-

scriptome data of 206 liver and 211 adipose tissue sam-

ples of female mice from 103 HMDP strains using

WGCNA [29] and MEGENA [30] (see the “Methods”

section). For females, we identified 30 coexpression

modules in the liver and 30 modules in adipose tissue

using WGCNA, whereas with MEGENA, we identified

213 and 85 modules in the liver and adipose tissue, re-

spectively. These findings are comparable with those

from male mice [18]. Comparison of the modules be-

tween females and males revealed high preservation,

with ~ 95% and ~ 90% of the modules reciprocally pre-

served between sexes in the liver and adipose tissues, re-

spectively (Additional file 1). However, it is possible that

different modules may be perturbed in NAFLD in each

sex by different genetic risk factors.

Identifying modules that are correlated with NAFLD

phenotypes in females

Coexpression modules that are associated with the

NAFLD phenotype were identified based on the correl-

ation between the expression patterns of the module

eigengenes and hepatic triglyceride levels across all fe-

male samples (see the “Methods” section). We found 65

MEGENA modules (29 from liver and 36 from adipose)

and 10 WGCNA modules (7 from liver and 3 from

adipose) to be significantly correlated with hepatic tri-

glycerides. In the male HMDP data, we found similar

percentages of adipose modules to be associated with

NAFLD [18], but a higher percentage of NAFLD-associ-

ated liver modules (32% vs 13% for MEGENA modules

and 35% vs 23% for WGCNA modules in males vs fe-

males). These percentages suggest less prominent

NAFLD-related liver gene network perturbations in fe-

males compared to males, agreeing with the milder mea-

sures of liver injury in NAFLD females [11]. Functional

annotation of the NAFLD-associated modules in females

revealed diverse pathways ranging from various metabolic

pathways, immune pathways, to extracellular matrix

organization (Additional file 2). These NAFLD-correlated

modules were further integrated with GWAS signals from

female HMDP to identify potential causal mechanisms, as

detailed below.

Biological pathways and coexpression modules that

exhibit genetic association with NAFLD

To identify potential causal processes for NAFLD in fe-

male mice, genetic information (GWAS; which carries po-

tential causal inference), tissue-specific eQTLs, NAFLD-

correlated co-expression modules, and biochemical and

signaling pathways were integrated to infer groups of

functionally connected genes that together demonstrate

significant genetic association with NAFLD in females.

Out of the 1823 canonical pathways and the 75 hepatic

triglyceride-correlated female modules (36 from liver and

39 from adipose tissue), NAFLD GWAS signals from fe-

males were significantly enriched in 18 pathways and 5

liver co-expression modules informed by liver eQTLs, and

12 pathways and 6 adipose modules informed by adipose

eQTLs, at FDR < 5% (Additional file 3). Some of the sig-

nificant modules or pathways share member genes and

represent similar biological processes. To reduce the re-

dundancy, we derived “supersets” by merging overlapping

gene sets; thereby each superset was comprised of one or

more overlapping NAFLD-associated gene sets (see the

“Methods” section). These supersets still carry enrichment

for strong NAFLD genetic signals that their constituents

carried (Additional file 4). Some of the gene sets were an-

notated with the same term but were not merged because

the overlap in gene members was not sufficient to meet

our criteria as specified in the “Methods” section (e.g., in

female adipose tissue, 2 modules were annotated with

extracellular matrix and matrisome terms but were not

merged). Comparison of supersets between tissues revealed

6 liver-specific supersets (e.g., innate immune system, oxi-

dative phosphorylation, metabolism of vitamins and cofac-

tors), 6 adipose-specific supersets (e.g., branched-chain

amino acid metabolism, extracellular matrix glycoproteins,

axon guidance), and 8 cross-tissue supersets (e.g., apop-

tosis/cell cycle, gene expression regulation, growth factor

receptor signaling) (Fig. 2).
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Comparison of the NAFLD-associated supersets between

female and male mice

Comparison of the female NAFLD supersets with those

from the males [18] revealed five supersets (lipid metab-

olism, apoptosis/cell cycle, signal transduction, and tran-

scription pathways) to be shared across tissues for both

sexes (Fig. 3a; Additional file 4). In liver, oxidative phos-

phorylation and transmembrane transport of small mol-

ecules were shared between sexes, whereas branched-

chain amino acid metabolism was shared between sexes

in the adipose tissue (Fig. 3a).

Besides the consistent pathways between tissues and

sexes discussed above, we also found that certain path-

ways demonstrate differential tissue-specificity between

males and females (Fig. 3a; Additional file 4); innate im-

munity was specific to liver in females but was specific

to adipose tissue in males, whereas the adaptive immune

system and B cell receptor (BCR) signaling superset was

shared by both tissues in males but was adipose-specific

in females. Therefore, the two arms of the immune sys-

tem appear to act in different tissues during NAFLD in

females, whereas both the innate and adaptive immune

systems were found to be perturbed in adipose tissue in

males. Although the adaptive immune system is impli-

cated in both female and male adipose tissue, it still has

a sex-specific pattern since males have transforming

growth factor-beta (TGFβ) and BCR signaling pathways,

while females have a T cell receptor (TCR) pathway.

TGFβ is a cytokine that can induce profibrogenic gene

expression and may promote the progression from stea-

tosis to steatohepatitis in males [48]. Additionally, males

showed perturbations in fatty acid, triacylglycerol, and

ketone body metabolism in both tissues, but this path-

way was liver-specific in females. On the other hand,

growth factor receptor signaling and cancer pathways

were adipose-specific in males but identified in both tis-

sues in females.

Processes that were specific to one sex were also iden-

tified. For instance, insulin signaling-related terms were

observed only in the adipose tissue of male mice. In

addition, more metabolism-related pathways (e.g., lipid,

lysophospholipid, fatty acid) were identified in males com-

pared to their female counterparts. Another male-specific

adipose pathway was Wnt signaling, which has diverse ef-

fects on cellular metabolism and inflammation. Perturbed

Wnt signaling is known to contribute to increased inflam-

mation and decreased adipogenesis, leading to triglyceride

accumulation and acceleration of NAFLD. Wnt signaling

is known to crosstalk with Notch and TGFβ signaling,

which were also found to be perturbed only in male liver

and adipose tissues, respectively. Peroxisome, cytochrome

p450 drug metabolism, and G2-M DNA damage check-

point are additional male-specific pathways in the liver

(Additional file 4). These findings may help explain the

more severe metabolic syndrome and liver injury, as well

as the higher ratio of DNA damage and inflammation

markers observed in males.

For females, metabolism of vitamins and cofactors and

ion channel transport were uniquely identified in liver

(Fig. 3b), whereas extracellular matrix glycoproteins,

axon guidance, and TCR signaling were female-specific

in adipose tissue. Ion transport has been associated with

oxidative stress and plays an important role in the pro-

gression of liver steatosis to insulin insensitivity and

more severe conditions such as hepatocellular carcinoma

[46, 49–52]. Regarding the vitamins and cofactors path-

way, adverse impacts of vitamin A, B12, D, and E defi-

ciency in NAFLD, fibrosis, and NASH have been studied

[53–57]. Vitamin A and D are involved in extracellular

matrix remodeling during liver fibrosis, B12 deficiency

impairs fatty acid oxidation [54], and vitamin E reduces

endoplasmic reticulum stress and prevents liver inflam-

mation and apoptosis. Some of these terms have been

associated with NAFLD before, but here, we provide

novel evidence that they may play a causal role in

NAFLD based on the fact that we incorporated genetic

signals in our analysis.

Predicting key driver genes of the NAFLD-associated

gene supersets in females

To predict the potential regulators of the NAFLD genes

and pathways, we used liver and adipose tissue-specific

Bayesian networks [42, 43] that involve causal or regula-

tory relationships between gene pairs and were independ-

ently constructed from previous human and mouse

studies [35–41]. Numerous key drivers were predicted for

each of the female NAFLD-associated superset at FDR <

5% (top key drivers for each superset in Additional file 4;

full list in Additional file 5). We found that 23 of all

significant key drivers were among the 107 previously

reported NAFLD genes curated in DisGeNET

Fig. 2 Comparison between NAFLD processes perturbed in the liver
and adipose tissue for females. Putative causal pathways that are
common to both tissues and unique to each tissue are listed. Co-
expression modules are annotated with the most over-represented
gene ontology terms. “NA” indicates no over-represented terms
were found for a given module. BCAA branched-chain amino acid,
BCR B cell receptor, ECM extracellular matrix, TCR T cell receptor
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(Additional file 6), including AHSG, FASN, RBP4, and

SREBF1, which were found to be key drivers in both liver

and adipose tissue in our analysis.

We compared the top key drivers predicted for the fe-

male NAFLD subnetworks with those predicted for

males in a tissue-specific manner. As elucidated in Fig. 4

and detailed in Additional file 4, the shared liver or adi-

pose key drivers between sexes included genes with di-

verse functions involved in fatty acid and cholesterol

metabolism (such as ACOT2, DECR1, DHCR7, SQLE,

INSIG1, and ACSS2), branched-chain amino acid catab-

olism (such as BCKDHA, MCCC1, and ECHS1), cell

cycle (such as CDCA8, MKI67, and CCNA2), extracellu-

lar matrix (such as FBN1, COL1A2, and CCDC80), and

immune system and inflammation (such as RELB, IFNG,

and CXCL10). The key drivers and the pathways they

regulate intimately interconnect in gene networks (Fig. 4a

for liver and Fig. 4b for adipose tissue).

We also identified key drivers (Additional file 4) and

their associated subnetworks (Fig. 4c–f ) for the

sex-specific mechanisms in a tissue-specific manner.

Many top female-specific key drivers are immune-related

genes such as PTPRO, SH3BP2,TYROBP, and C8B (Fig. 4c

for liver, Fig. 4d for adipose). In contrast, male-specific key

drivers show broader functional diversity including

various aspects of metabolism (e.g., fatty acids—FASN and

CD36, mitochondria—CPT2 and CHCHD6), insulin sig-

naling (e.g., FASN, GYS1), immune system (e.g., INPP5D,

FCER1G, NCKAP1L), and cell growth and apoptosis

(ANXA2, CIDEC) (Fig. 4e for liver, Fig. 4f for adipose).

Notably, both the shared and sex-specific key driver sub-

networks contain numerous known human GWAS genes

such as PNPLA3 and TRIB1, but the GWAS genes are less

likely to be key drivers. The combined subnetworks of

NAFLD processes that are female-specific or shared be-

tween sexes are given in Additional file 7 A and B for liver

and adipose tissue, respectively, whereas the male-specific

or shared networks were previously presented in [18].

Potential regulation of the NAFLD networks by sex

hormones

To explore the potential role of sex hormones in regulat-

ing the sexually dimorphic NAFLD genes and pathways

identified, we tested the sex-specific liver and adipose tis-

sue key driver subnetworks for enrichment of known tar-

get genes of estrogen receptors (ESR1, ESRRA, ESRRB,

and ESRRG) and androgen receptor (AR) based on FAN-

TOM5 transcription factor regulatory networks [44] from

matching tissues. We found that female-specific liver and

adipose NAFLD networks were strongly enriched with

Fig. 3 Comparison between NAFLD processes perturbed in the liver and adipose tissue of both sexes. Putative causal pathways that are a shared
between sexes in one or both tissues and b unique to each sex and each tissue are listed. TCA the citric acid
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target genes of estrogen receptors and male-specific key

driver subnetworks showed a strong enrichment for the

target genes of AR in both tissues (Additional file 8). We

also investigated whether individual key drivers in the

sex-specific networks are targets of sex hormones or show

interactions with sex hormones. Among the female-specific

key drivers, NCKAP1L is a target of estrogen receptor

ESRRA; C8B is a target of multiple estrogen receptors

ESRRA, ESRRB, and ESRRG; and SH3BP2 is a target of

ESR1 [44]. Among the male-specific key drivers, CHCHD6

is a target gene of the androgen receptor. These results sug-

gest that sex hormones may regulate the sex-specific key

drivers and pathways and partially explain the sexual di-

morphism in NAFLD.

Gonadectomy and ovariectomy experiments support the

regulatory roles of sex hormones in NAFLD sexual

dimorphism

To more directly test the role of sex hormones, we com-

pared our NAFLD subnetworks with the transcriptome
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of both liver and adipose tissues from gonadectomized

and ovariectomized mice. At FDR < 5%, we identified

2435 and 196 differentially expressed genes in liver tis-

sue of males and females, respectively, and 1804 and

1491 differentially expressed genes in adipose tissue of

males and females, respectively (Table 1). These results

suggest a significant impact of testosterone on both male

tissues and estrogen on the female adipose tissue. In

contrast, female liver tissue was less affected by estrogen

deficiency. We analyzed the enrichment of each differen-

tially expressed gene list in our sex-specific NAFLD sub-

networks (Fig. 4c–f ) for the corresponding sex and

tissue. Consistent with the numbers of differentially

expressed genes from the gonadectomy/ovariectomy ex-

periments, the female liver NAFLD subnetworks (Fig. 4c)

had the smallest number of genes (86 compared to hun-

dreds in the other networks). Only two genes in this

subnetwork were found to be affected by estrogen defi-

ciency in the female liver. In stark contrast, about half of

the male liver NAFLD subnetwork genes (100 of 218

genes) were found to be affected by testosterone defi-

ciency in male liver tissue. Similarly, significant overlaps

between the adipose NAFLD subnetwork genes and the

adipose genes affected by sex hormone deficiency were

observed for both sexes. Besides, some of our top key

driver genes were among the differentially expressed

genes for the corresponding tissue and sex as listed in

Table 1 (see also Fig. 4c–f ). These results support that

sex hormones are involved in the regulation of the

male-specific NAFLD processes in both tissues but only

adipose pathways in females.

Discussion

To understand the sexual dimorphism observed in

NAFLD, here, we compared the genetically perturbed

mechanisms in NAFLD between sexes via integration of

multi-omics data including GWAS, tissue-specific tran-

scriptomic and eQTL data, and NAFLD phenotypic data

from > 100 inbred and recombinant inbred mouse strains

for females and males. This comprehensive data-driven

analysis revealed both shared and sex-specific pathways,

regulatory genes, and networks, thereby providing

molecular insights into the sex differences in NAFLD.

Furthermore, both our in silico FANTOM5 transcription

factor analysis and in vivo hormone modulation experi-

ments support a strong role of sex hormones in the regu-

lation of sex-specific NAFLD pathways.

We conducted our analysis in a tissue and sex-specific

manner, identifying and comparing causal NAFLD pro-

cesses between sexes in the liver and adipose tissue since

those are the most relevant and implicated tissues in

NAFLD pathogenesis [48]. We observed numerous pro-

cesses that are shared by both sexes, such as the cell

cycle, apoptosis, and lipid metabolism in both tissues,

fatty acid metabolism, oxidative phosphorylation, and

growth factor receptor signaling in liver tissue, and

branched-chain amino acid metabolism, adaptive im-

mune system, and post-translational protein modifica-

tion in adipose tissue (Additional file 4). Many of these

pathways have been previously associated with NAFLD

[48, 58, 59], confirming the reliability of our approach.

The consistency of these shared terms between sexes

highlights them as the core processes that can be tar-

geted generally for NAFLD.

To facilitate the identification of potential targets for

the above-shared pathways, we used a network modeling

approach to define candidate regulator genes or key

drivers. The predicted key drivers were found to orches-

trate genes in the NAFLD processes shared by both

sexes, forming highly connected subnetworks containing

numerous previously known NAFLD genes (such as

AHSG, FDFT1, FASN, ACADVL, PNPLA3, GCKR,

LYPLAL1, and LCP1) (Fig. 4a, b). In liver tissue, many

key drivers are involved in fatty acid and cholesterol me-

tabolism, such as ACOT2 and DHCR7. In adipose tissue,

notable key drivers such as BCKDHA, MCCC1, and

ECHS1 are key enzymes involved in branched-chain

amino acid catabolism. Branched-chain amino acids are

known to be involved in numerous physiological activ-

ities related to nutrition, metabolism, and immune sys-

tem processes and metabolic disorders such as insulin

resistance and NAFLD. Impairments in branched-chain

amino acid degradation deteriorate the TCA cycle, which

may lead to mitochondrial dysfunction in NAFLD [60].

Table 1 Overlap between sex-specific NAFLD subnetworks and DEGs affected by sex hormones

Tissue Sex Network size DEG size Overlap gene size
(overlap KD size)

Overlap KD list Fold change P value

Liver M 218 2435 100 (14) C8B, CYP7B1, SLC16A7, SLC16A5, CD36,
MGST3, NCKAP1L, INPP5D, ANXA2, HCK,
FCER1G, FGL2, CIDEC, TBC1D15

6.13 8.28E−71

F 86 196 2 (0) – 3.86 8.68E−02

Adipose M 261 1804 71 (8) FASN, AACS, ETFDH, GYS1, ECHS1,
SH3D21, SLC2A3, PMEPA1

4.39 9.34E−35

F 206 1491 34 (5) MSLN, GPM6A, PTGIS, RSPO1, BNC1 3.22 4.57E−13

One-sided Fisher’s exact test was used to calculate enrichment P values
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Identification of the key drivers that regulate the shared

pathogenic processes between sexes may facilitate the

prioritization of targets to treat the disease in the general

population.

In addition to the shared pathways, we observed

female-specific processes in the liver and adipose tissue

(Additional file 4) and predicted their potential regula-

tors. NCK-associated protein 1-like (NCKAP1L) and

TYRO protein tyrosine kinase binding protein (TYR-

OBP) were found to be the top key drivers of the innate

immune system in the liver. The same key drivers have

been previously found to regulate an inflammation net-

work involved in a large number of diseases including

diabetes, obesity, cardiovascular disease, and cancers

[61]. Another top key driver regulating a female-specific

process in the liver is complement C8 beta chain (C8B)

in the complement pathway. It has not been previously

associated with NAFLD; however, it is connected to

three human NAFLD GWAS genes (GCKR, LYPLAL1,

and TM6SF2) in our liver network, making it a strong

novel candidate target for NAFLD. SH3 domain-binding

protein 2 (SH3BP2), is a female-specific adipose key

driver for the TCR signaling and lysosome module.

SH3BP2 has not been previously associated with NAFLD

to the best of our knowledge, but it is a target of estro-

gen receptor 1 according to FANTOM5 adipose tissue

gene regulatory network [44], which may support our

sex and tissue-specific finding on SH3BP2.

Notably, lipid-related processes (e.g., phospholipid, lyso-

phospholipid) are prominent in males (Additional file 4)

[18] but not in females. Another male-specific process,

Notch signaling, was previously found to be correlated

with insulin resistance, hepatic steatosis, alanine amino-

transferase, and NAFLD activity score in liver biopsies

[62]. Our results support a causal role of this pathway in

NAFLD development, particularly in males. We also ob-

served male-specific adipose tissue pathways such as Wnt

and insulin signaling, which agrees with the observations

that insulin resistance is strongly correlated with NAFLD

mainly in males and that males with NAFLD have higher

glucose and lower adiponectin levels than females [11].

Differences in insulin sensitivity may partially explain sex

differences in NAFLD. Male-specific top key drivers in-

clude CHCHD6 and CD36 in liver and FASN and CPT2 in

adipose tissue, which primarily regulate mitochondrial

function and fatty acid metabolism. Coiled-coil-helix-coi-

led-coil-helix domain containing 6 (CHCHD6) was experi-

mentally validated in our recent study as a novel key

regulator of NAFLD by impairing mitochondrial functions

in the liver [18]. These male-specific pathways and regula-

tors along with the female-specific ones discussed earlier

can facilitate future efforts to investigate the sex-specific

mechanisms in NAFLD and may serve as potential thera-

peutic targets for sex-dependent treatments.

It is noted that estrogen deficiency in mice fed a

high-fat diet leads to accelerated NAFLD progression

[13], and after menopause, the rate and severity of

NAFLD increases in females [10, 12]. Testosterone has

also been associated with a protective role in NAFLD in

males [46, 63, 64]. Since both male and female sex hor-

mones might have a role in slowing the NAFLD progres-

sion, we also investigated the potential effects of the sex

hormones on the sexual dimorphism in NAFLD using

both an in silico transcription factor analysis and in vivo

gonadectomy/ovariectomy experiments. Both analyses

support significant overlaps between the sex-specific

liver and adipose tissue NAFLD networks and sex hor-

mone target genes. The significant overlaps also include

our top key driver genes for the corresponding tissue

and sex (Table 1, Fig. 4c–f ). These results support a role

of sex hormones in the regulation of the sex-specific

NAFLD networks and pathways. However, hormones

only partially explain the sex-specific networks. In the

case of females, ovariectomy had limited effects on liver

gene expression, suggesting minor contribution of estro-

gen deficiency to the female-specific liver networks.

Since the ovariectomy experiment was carried out in

adulthood, it is possible that developmental estrogen ex-

posure plays a stronger role in shaping female liver net-

work. It is also plausible that sex chromosomes play an

important role, particularly in the female liver. Further

investigations are required to explore the role of sex

chromosomes in regulating sexually dimorphic networks

for NAFLD.

A major strength and novelty of our study is the

utilization of a multi-omics integrative approach to iden-

tify genetically causal or perturbed sex- and tissue-specific

processes and key regulatory genes in NAFLD based on

genetics, functional genomics, and gene regulatory net-

works. The integration of multidimensional datasets en-

abled us to derive one of the most comprehensive views of

the genes and pathways that are likely perturbed by gen-

etic risks of NAFLD in both males and females, thereby

significantly enhancing our understanding of sexual di-

morphisms in NAFLD. Compared to a previous study ex-

ploring sex differences in the same animal cohort, which

focused on a few genome-wide significant loci and

pair-wise correlations between phenotypes and individual

genes [46], our study uniquely leveraged the full spectrum

of molecular associations across multi-omics dimensions

and benefited from network representations of regulatory

relationships. In addition to confirming mitochondrial

function, oxidative phosphorylation, and transmembrane

transport as important NAFLD processes [46], we identi-

fied numerous sex-specific genes and pathways that were

missed in the previous study.

A principle limitation of our study is that our analyt-

ical framework only considers the effect sizes but not
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the directionality of NAFLD GWAS associations and

gene expression changes. As such, it is difficult to infer

if the sex-specific pathways are protective or pathogenic

for NAFLD. For example, it is possible that some of the

sex-specific pathways reduce instead of promote disease

risks. Building on our recent successes in experimentally

validating predictions from the integrative genomics ap-

proach described here, future studies that perturb indi-

vidual sex-specific pathways and key drivers identified

here will help confirm the causality of the predicted

genes and pathways and determine whether they should

be activated or inhibited to ameliorate NAFLD.

Our sex-specific findings help understand the long-ob-

served sexual dimorphism in NAFLD and provide in-

sights into the potential differential pathogenic pathways

between males and females, which can guide future de-

velopment of sex-specific therapeutics in translational

studies. Although our study is carried out in mice, there

is strong evidence for replication of our findings in hu-

man studies. For instance, results from our previous

male-focused study [18] are consistent with an inde-

pendent human study demonstrating the functional as-

sociations of FASN, PKLR, and THRSP with NAFLD

[65]. Additionally, our NAFLD gene subnetworks (Fig. 4)

contained human NAFLD GWAS genes such as

PNPLA3, LCP1, and TMSF2. Furthermore, our recent

study examining liver fibrosis identified significant over-

laps in the genes and pathways between mouse and hu-

man [66]. These observations support the translatability

of our findings from mouse studies to human NAFLD or

NASH pathogenesis.

Conclusions
The National Institute of Health and the Food and

Drug Administration have prioritized personalized

medicine as a key to developing effective therapies

[67]. Sex is one of the important factors to consider

when developing personalized medicine as it can

affect drug dose level, adverse reactions, and re-

sponses. There are numerous reported sex differ-

ences in liver disease drugs with regard to the rate

of response and adverse reactions, but few of these

sex differences are understood [12]. Our multi-omics

integrative approach combining genetic, gene expres-

sion, functional genomics, and network modeling

delineated genes, pathways, and tissue-specific net-

works that contribute to the sexual dimorphism of

NAFLD. Our findings support the existence of core

pathogenic processes that can be targeted in both

sexes and pinpoint sex-specific mechanisms to guide

differential therapeutic options for males and females

to more effectively mitigate NAFLD in a personal-

ized manner.
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3: Raw MSEA results. Left Panel shows the liver tissue

results, while right panel shows the adipose tissue re-
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results of the sex-specific, tissue-specific, and shared

supersets between sexes in each tissue. A superset is a

gene set merging a group of highly overlapping pathways

or coexperssion modules to reduce redundancy. Coex-

pression modules are labeled with IDs from WGCNA or

MEGENA network and annotated with GO terms. (XLSX

14 kb)Additional file 5: KDA results. Left Panel shows

the liver tissue results, while right panel shows the adipose

tissue results. (XLSX 71 kb)Additional file 6: Previously
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are highlighted in particular colors as denoted below.

(XLSX 18 kb)Additional file 7: Combined subnetworks of

NAFLD processes that are shared between sexes or

female-specific. (A) Liver Bayesian subnetwork comprised

of NAFLD supersets that are perturbed in liver tissue of fe-

males (as a combination of female-specific processes or

shared processes between sexes) and the top key drivers of

each superset. (B) Adipose Bayesian subnetwork comprised

of NAFLD supersets that are perturbed in adipose tissue of

females (as a combination of female-specific processes or

shared processes between sexes) and the top key drivers of

each superset. (PDF 4683 kb)Additional file 8: Enrichment

of the key driver subnetworks for the target genes of the

sex hormone receptors. Enrichment is evaluated in a

tissue-specific manner using the tissue-specific FANTOM5

gene regulatory networks. (XLSX 9 kb)
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