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SUMMARY

Do people ascribe intentions to humanoid robots as theywould to humans or non-
human-like animated objects? In six experiments, we compared people’s ability
to extract non-mentalistic (i.e., where an agent is looking) and mentalistic
(i.e., what an agent is looking at; what an agent is going to do) information
from gaze and directional cues performed by humans, human-like robots, and a
non-human-like object. People were faster to infer the mental content of human
agents compared to robotic agents. Furthermore, although the absence of differ-
ences in control conditions rules out the use of non-mentalizing strategies, the hu-
man-like appearance of non-human agents may engage mentalizing processes to
solve the task. Overall, results suggest that human-like robotic actions may be
processed differently from humans’ and objects’ behavior. These findings inform
our understanding of the relevance of an object’s physical features in triggering
mentalizing abilities and its relevance for human–robot interaction.

INTRODUCTION

During the past two decades, research examining the cognitive and psychological principles facilitating

human–robot interaction for recreational (Palinko et al., 2016), assistive (Melkas et al., 2020), therapeutical

(Langer et al., 2019), and educational purposes (Senft et al., 2019) has rapidly increased. Designing auton-

omous agents whose form and motion are modeled after humans is thought to facilitate the tendency to

attribute human qualities to these agents (Fink, 2012; Press, 2011). Furthermore, modeling robots’ behav-

iors after human social behavior is thought to increase human acceptance. For example, a robot engaging

in direct compared to random gaze during a small talk interaction facilitates people’s acceptance of the

robot and leads to greater reports of human-likeness (Babel et al., 2021).

The ability to represent others’ mental content from observing their actions is considered crucial for

engaging in daily social interactions (Catmur, 2015; Tidoni and Candidi, 2016; Schurz et al., 2020; Heyes

and Catmur, 2021). However, comparing the ability to infer others’ mental states from the observation of

human and non-human agents’ actions is complicated by several confounding variables known to affect

stimuli creation. Robotic and human limbs differ in size and length across different machines, and it is diffi-

cult to precisely match human and robot kinematics (e.g., especially creating a mechanical agent with bio-

logical motion; Urgen et al., 2013; Bisio et al., 2014; supporting information in Cross et al., 2012). Current

literature also suggests that brain regions active when observing robotic actions are affected by the human-

like appearance of robots (Saygin et al., 2010,2012; Saygin and Stadler, 2012; Urgen et al., 2012; 2013; 2018,

2019; Urgen and Saygin, 2020). Furthermore, the tendency to mimic and the ability to imitate others is

affected by the perception of (non) biological motion (Hofree et al., 2015) and by the goal-directedness

of the observed robotic act (Bisio et al., 2014), respectively. Moreover, actions carried out to achieve

different aims are characterized by different kinematics. For example, people move slightly differently

when they aim to deceive an observer compared to acting as normal (i.e., with no intention to deceive;

Tidoni et al., 2013; Finisguerra et al., 2018; Makris and Urgesi, 2015), or when they grasp an object to drink

compared to pass it to someone (Bianco et al., 2020). Nonetheless, matching the kinematics across

different agents and intentions is fundamental to test the participants’ ability to process the hidden states

of the observed agent rather than low-level differences during action observation (e.g., the gaze direction

of the observed agent; Catmur, 2015; Tidoni and Candidi, 2016; Thompson et al., 2019).

It has been suggested that an observed individual’s head and gaze movements may represent a good

proxy to infer their mental content (Becchio et al., 2008). For example, observing a person looking at an
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object may automatically generate the expectation that this person will grasp that object (look to grasp), or

observing a person turning their head and gazing toward another person may indicate a different intent

(e.g., look to listen, or to start a conversation). Moreover, the human gaze toward an object of interest typi-

cally precedes a subsequent hand movement (Johansson et al., 2001). Thus, using object-directed gaze

behavior as a cue to others’ intentions instead of manual actions reduces the kinematic variability across

different agents and different intentions and is crucial to advance our understanding of the social percep-

tual building blocks of human–robot interactions. Indeed, provided that robots will (sooner or later) be tak-

ing on assistive and collaborative roles alongside humans in all manner of social environments (including

hospitals, schools, care homes, and our homes), it is vital to understand how robot gaze and head move-

ments affect the interaction with a human partner (Admoni et al., 2014;Admoni and Scassellati, 2017; Mutlu

et al., 2009; Pan et al., 2020; Strabala et al., 2013; Fiore et al., 2013). For example, establishing how implicit

cues (e.g., gaze and head movements) preceding an action performed by an artificial agent are interpreted

may be crucial to improve communication in robot-to-human handover tasks (Strabala et al., 2013; Johan-

son et al., 2020; Ortenzi et al., 2021).

Previous studies have shown that observing an agent gazing toward an object facilitates taking that agent’s

perspective (Furlanetto et al., 2013; Ward et al., 2019; but see Quesque et al., 2018, for a general tendency

to take a decentered perspective). Similarly, observing robots gazing toward objects increases the degree

to which people take their perspective but always to a lesser extent than humans (Zhao et al., 2015; Zhao

and Malle, 2022). Furthermore, observing others gazing toward a graspable object recruits brain regions

typically active during the execution and observation of actions toward that object (Pierno et al., 2006).

ALthough this literature establishes a foundation for understanding how we read other people’s social

behavior from their gaze direction, it remains unclear to what extent robotic gaze and head movements

toward objects evoke the same processes active during human gaze perception. Moreover, in order to

ensure the reliability and broader applicability of such an approach, it is vital for experimental tasks to

rule out low-level explanations of experimental findings (e.g., spatial stimulus-response mapping: faster re-

sponses for ‘‘right’’ gaze using a right-handed compared to a left-handed response), and to ensure that the

observer maintains a distinction between their own and others’ mental states (Quesque and Rossetti, 2020).

Following this logic, through the current study we investigated people’s ability to understand human and

robotic gaze behavior by manipulating the task’s demand (e.g., either detecting the non-mentalistic visuo-

spatial features of an action or inferring what an agent is going to do next; Catmur, 2015; Tidoni and

Candidi, 2016; Thompson et al., 2019) across a series of six independent experiments. Specifically, in ex-

periments 1, 2, and 5, participants detected how an action was performed (i.e., where an agent was look-

ing). We considered such tasks less mentalistic than experiments 3, 4, and 6, because understanding where

an agent is looking does not require any reflection about the observed agent’s mental state or visual

percept. Moreover, in typical gaze cueing tasks, response times of valid trials (i.e., trials where a target ap-

pears in the same spatial location of the observed gaze shift) have been shown to be identical between hu-

mans and robots (Wiese et al., 2012; Wykowska et al., 2014; Li et al., 2015). In Experiment 3, participants

indicated what the agent was looking at. In experiments 4 and 6, participants indicated what the agent

was going to do. We considered experiments 3, 4, and 6 as mentalistic tasks because participants focused

on what the agent was seeing (i.e., implying the mental state of seeing; Teufel et al., 2010; Bukowski et al.,

2015; Furlanetto et al., 2016) and what the goal of the agent was (i.e., implying the ability to plan goal-

directed actions). Hence, we did not measure spontaneous perspective-taking abilities (Cole et al.,

2015; Conway et al., 2017) because we explicitly asked participants to focus on different levels of the

observed action. Moreover, we controlled the role of the visual form and textures of the observed agents

by comparing the observation of human and robotic gaze movement with an object-like directional cue

(i.e., a triangle-shaped object without eyes). Finally, because we aimed to assess people’s ability to gener-

ally reflect upon human and non-human agents’ mental content from gaze observation (i.e., not merely

detecting a directional change in the agent’s gaze or being unable to disengage from a humanoid robot,

Chaminade and Okka, 2013), we compared gaze behaviors directed toward graspable and non-graspable

objects (i.e., 3D printed geometric shapes, a text bubble), to non-object-directed gazes as control condi-

tions (i.e., looking up or down in experiments 1, 2, 3 and 4, looking down in experiments 5 and 6). Impor-

tantly, we presented non-ambiguous objects (e.g., a sphere that does not require any mental rotation to be

identified instead of numbers like six or nine typically used in perspective-taking tasks; Surtees et al., 2016;

Zhao and Malle, 2022) before the agent appeared, and the observed agent was always front-facing partic-

ipants (i.e., reducing the need of mental rotation to understand the posture of the agent). Moreover, we
2 iScience 25, 104462, June 17, 2022



Figure 1. The set of agents and Trial Timeline

(A) Agents are displayed side by side for graphical purposes. During the experiments, agents were always centered to

screen. The triangle shaped object was presented with a set of speakers to suggest its capacity to emit sounds.

(B) An example trial timeline: after a variable interval the scenario is displayed followed by the presentation of the agent

looking straight for 400ms before gazing toward one direction (in the image an example of the agent looking toward the

text bubble).

(C) In experiments 5 and 6, the graspable objects and the text bubble were replaced by amicrophone. See STARMethods

and Video S1 for further details.
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created the impression of an apparent motion (Shiffrar and Freyd, 1990; Schenke et al., 2016) by presenting

two images in rapid succession, and asked participants to pay attention to the observed action. Hence, we

think that our tasks and trial timeline can be interpreted within an action observation framework because

our design differs from typical visuo-spatial perspective-taking tasks (dynamic stimuli, objects presented

before the agent, fixed agent orientation, participants’ attention to the agent’s action).
RESULTS

We performed six separate experiments. Some experiments were conducted to explore alternative hy-

pothesis and corroborate data interpretation. The actual order in which the experiments were conducted

was Experiment 3, 2, 4, 6, 5, and 1. The order of the experiments as presented in this manuscript is changed

for logical consistency. Participants observed an agent appearing behind a table and gazing toward

different directions (participants’ left, right, up or down) and objects (experiments 1, 2, 3 and 4: graspable

objects, and a text bubble; for experiments 5 and 6: a microphone; see Apparatus and Task and Video S1

for further details). This setup allowed to present multiple gaze behaviors and resembles typical visual

perspective-taking tasks (Furlanetto et al., 2013; Zhao et al., 2015; Quesque et al., 2018). Moreover, by

changing task demands, we were able to test whether focusing participants’ attention to low-level features

of the observed gaze or reflecting upon the hidden states of the agent yields different results. Specifically,

participants indicated where the agent was looking (experiments 1, 2, and 5), why the agent was looking in a

specific direction (experiments 4 and 6), and what the agent was looking at (Experiment 3). Agents were two

human actors (one male, one female), two humanoid robots (NAO, Softbank Robotics; Baxter, Rethink Ro-

botics), and a portable lectern edited to resemble a triangle-shaped object with realistic visual textures.

Stimuli of humans and humanoid robots had their trunk and upper arms visible and were edited to give

the impression that their upper limbs were resting on the table (Figure 1A). The faces of Baxter were

created from an open-source database (Fitter and Kuchenbecker, 2016) and the support column behind

Baxter’s screen was removed to avoid any distraction from its face (see Figure S1 comparing the original

and the edited image).
iScience 25, 104462, June 17, 2022 3



Figure 2. Results of Experiment 1

Accuracy percentage is shown on the left, Response Times expressed in seconds on the right. To provide a

comprehensive overview of collected data, raw data from each experimental condition are visualized as raincloud plots,

median bar plots (with lower and upper hinges corresponding to the 25th and 75th percentile and whiskers extending no

further than 1.5 * ‘‘InterQuartile Range’’ from the hinge), and probability density. The circles inside each median bar plot

indicate the average of the by-subject mean-aggregated data for that condition. Error bars represent 95% confidence

intervals of the mean based on subject-aggregated data. Data visualization has been possible by adapting the open-

source R code ‘‘RainCloudPlots’’ (Allen et al., 2019). The labels ‘‘Left’’ and ‘‘Right’’ indicate the participant’s left and right

respectively. Asterisks denote the significant differences (p < 0.05) for both the MLM and the ANOVA on mean-aggre-

gated data as reported in the main text.
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At the end of each experiment, participants rated their exposure to media robotic content (see STAR

Methods section).

Experiment 1– Detecting where an agent is looking (egocentric perspective)

We explored people’s ability to detect where an agent is looking (i.e., its gaze direction). If detecting a

change in human gaze is favored by participants, we should expect a main effect of the observed agent

but no interactions with gaze direction.

We aimed to collect data from 80 participants and managed to collect 81 individual datasets. The partic-

ipants were instructed that each agent could look in four directions: to the participants’ left, right, up or

down (henceforth labeled ‘up|down’ condition because each participant used the same randomised-

across-subjects key to indicate both directions; see STAR Methods). The participants indicated where

the agent was looking: toward their left, right, up|down. Thus, participants answered from an egocentric

perspective (i.e., if the agent looked toward its right, which corresponds to the participants’ left, the correct

answer was ‘‘left’’). Crucially, participants answered using a set of keys (‘n’, ‘j’, ‘i’) that were orthogonal for

left-right answers. Keys were randomized across the participants.

We removed trials where the response times (RTs) were deemed to be too fast or too slow based on pre-

registered criteria (4.64%; see STAR Method section for the statistical approach). Then, trials with RTs fall-

ing above or below 2.5SD of the overall mean within each block of each participant were removed (2.75%).

Three participants with a performance accuracy rate of <65%were removed. Finally, four participants with a

performance (either Accuracy or RT) above or below 2.5SD of the overall mean across conditions of the re-

maining participants were excluded (final sample n = 74). To facilitate comparisons across experiments 1, 2,

3 and 4, ‘‘right’’ and ‘‘left’’ throughout the study and in the figures always refer to the participants’ right and

left (i.e., observed agent’s left and right, respectively).

Main task performance

We analyzed Accuracy and RTs (see Figure 2) with Agent (human, robot, triangle) and Gaze (left, right, up|

down) as within-subjects fixed effects of a multilevel linear model (MLM; see Table S1 in Supplementary

Information for details on the fixed and random effects structure of all MLMs). In the case of a two-way inter-

action between Agents and Gaze, we performed 18 multiple paired comparisons of interest. Specifically,
4 iScience 25, 104462, June 17, 2022
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we compared the three gaze directions within each Agent (e.g., right gaze-human agent versus left gaze-

human agent; nine comparisons), and each gaze across the three agents (e.g., right gaze-human agent

versus right gaze-robot agent; nine comparisons). We also performed a confirmatory ANOVA on mean-

aggregated data to support the main analyses. Non-conclusive findings (i.e., less robust, more fragile)

are highlighted whenever the MLM and the analyses on mean-aggregated data yield discordant results

(see STAR Method sections for further details).

For accuracy, we observed a main effect of Gaze, c2(2) = 10.069, pMLM = 0.007, no main effect of Agent,

c2(2) = 1.730, pMLM = 0.421, and a significant Gaze by Agent interaction, c2(4) = 11.373, pMLM = 0.023.

The latter suggested that participants were more accurate in recognizing when the triangle was looking

up|down (average of mean-aggregated dataG SEM of mean-aggregated data; 98.20G 0.37%) compared

to the participants’ right (94.30G 0.94%; pMLM< 0.001, |d| = 0.436, BF10 = 63.812). No other Bonferroni cor-

rected pvalues were lower than 0.05 for both multiple comparisons computed on the estimates of the

simplified MLM and multiple comparisons using pairwise t-tests on aggregated data (pMLM> 0.096,

pMultComp> 0.263, |d| < 0.291, BF10< 2.327).

For RT, we removed incorrect answers (3.55%) from the final dataset. We observed a main effect of Agent,

F(2,145.7) = 8.396, pMLM< 0.001, hp2 = 0.107, no main effect of Gaze, F(2,146) = 1.330, pMLM = 0.268, hp2 =

0.018, and a significant Gaze by Agent interaction, F(4, 289.2) = 3.208, pMLM = 0.013, hp2 = 0.045. The latter

suggested that the participants were faster in detecting humans looking to the participants’ left (0.601 G

0.016 s) compared to robots (0.629 G 0.018 s; pMLM = 0.004, |d| = 0.382, BF10 = 16.533). No other compar-

isons survived Bonferroni correction (pMLM> 0.027, pMultComp> 0.063, |d| < 0.351, BF10< 8.114; see STAR

Methods for data analysis approach).

The role of the looked-at objects

To control any influence of the objects the agents were directing their attention to, we re-analysed the

same dataset based on what the agent was looking at (i.e., the graspable objects, the text bubble, up|

down).

For accuracy, we observed a main effect of Object, c2(2) = 11.654, p = 0.003, no effect of Agent, c2(2) =

1.910, pMLM = 0.385, and a significant Object by Agent interaction, c2(4) = 11.598, pMLM = 0.021. The latter

suggested that the participants were more accurate in recognizing when the triangle was looking up|down

(98.20G 0.37%) compared to the text bubble (94.52G 0.87%; pMLM< 0.001, |d| = 0.434, BF10 = 60.570). No

other comparisons survived Bonferroni correction (pMLM> 0.062, pMultComp> 0.102, |d| < 0.331,

BF10 < 5.287).

For RT, we did not observe an effect of Object, F(2, 146) = 1.387, pMLM = 0.253, hp2 = 0.019, nor an Object

by Agent interaction, F(4, 290.6) = 2.337, pMLM = 0.056, hp2 = 0.033.

Interim discussion experiment 1

Using keys orthogonal for left-right answers successfully reduced any spatial compatibility effect because

we did not observe faster RT to gazes toward participant’s right (i.e., ‘‘right’’ answers) than gazes toward

participant’s left (i.e., ‘‘left’’ answers). However, we may have seen a stimulus-response mapping depend-

ing on task demands and the observed agent. Specifically, we observed that participants had more dif-

ficulty when the triangle looked toward the participant’s right (i.e., the agent’s left side) than up|down.

The participants were also faster in recognizing a human than a robot gazing toward the participant’s

left (i.e., opposite to their responding hand). These findings may suggest that for non-human agents,

conflicting spatial features of the stimulus (e.g., an agent gazing toward the participant’s right, corre-

sponding to the agent’s left, and correct answer ‘‘right’’; agent gazing toward the participant’s left, cor-

responding to the agent’s right, and correct answer ‘‘left’’) may have had an influence in coding the cor-

rect response.

An alternative explanation for the drop in accuracy for the triangle might be that the shape of the triangle

(pointing downwards) favored the expectation of a vertical movement compared to a lateral one, and par-

ticipants might not have expected the triangle to turn toward the space occupied by their answering hand

or toward a social stimulus like the text bubble. Notably, we did not see any difference in accurately

detecting gaze direction across agents. Finally, we note that effect sizes were generally small, and the
iScience 25, 104462, June 17, 2022 5



Figure 3. Results of Experiment 2

Accuracy percentage is shown on the left, Response Times expressed in seconds on the right. The labels ‘‘Left’’ and

‘‘Right’’ indicate the participant’s left and right respectively. See Figure 2 for a detailed explanation of our data

visualization approach.
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looked-at-object and visual familiarity (see Supplementary Information) did not affect the ability to detect

directional cues from different agents.
Experiment 2– Detecting where an agent is looking (allocentric perspective)

While Experiment 1 investigated the ability to detect others’ gaze from an egocentric perspective, Exper-

iment 2 tested if taking the agent’s point of viewmay differently affect performance. If the participants use a

spatial strategy to solve the task when adopting an allocentric perspective, we should expect similar results

to Experiment 1.

We aimed to collect data from 100 participants and managed to collect 96 individual datasets. The partic-

ipants were instructed that each agent could look in four directions: to its right, left, up or down. The

participants were asked to indicate where the agent was looking: toward its left, right, up|down. Thus,

participants answered from an allocentric perspective (i.e., if the agent looked toward its right, which cor-

responds to the participants’ left, the correct answer was ‘‘right’’).

We removed trials where RTs were too fast or too slow (5.39%). Then, trials with RTs falling above or below

2.5SD of the overall mean within each block of each participant were removed (2.38%). Five participants

with a performance below 65% were removed. Finally, seven participants with a performance (either accu-

racy or RT) above or below 2.5SD of the overall mean across conditions of the remaining participants were

excluded from the final sample. Despite this data management approach, one participant had 0% accuracy

when the triangle looked to participants’ right and left, suggesting a misunderstanding of the task. Thus,

we removed that participant (final sample n = 83).

We analyzed Accuracy and RTs (see Figure 3) with Agent (human, robot, triangle) and Gaze (left, right, up|

down) as within-subject fixed effects. In case of a two-way Agent by Gaze interaction, we performed eigh-

teen multiple paired comparisons of interest as indicated in Experiment 1.

For accuracy, we observed a main effect of Gaze, c2(2) = 14.867, pMLM< 0.001, no main effect of Agent,

c2(2) = 0.044, pMLM = 0.978, and a significant Gaze by Agent interaction, c2(4) = 11.353, pMLM = 0.023.

The latter suggested that participants were more accurate in recognizing when the robot looked up|

down (97.96 G 0.43%) compared to the participants’ left (94.27 G 0.86%; pMLM< 0.001, |d| = 0.462,

BF10 = 287.679). No other comparisons survived Bonferroni correction and paired comparisons on aggre-

gated data (pMLM> 0.023, pMultComp> 0.073, |d| < 0.324, BF10 < 6.776).

For RT, we removed incorrect answers (3.75%) from the final dataset. We observed a main effect of Agent,

F(2,486.1) = 11.583, pMLM< 0.001, hp2 = 0.048, no main effect of Gaze, F(2,164) = 1.792, pMLM = 0.170,
6 iScience 25, 104462, June 17, 2022
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hp2 = 0.022, and a significant Gaze by Agent interaction, F(4, 486.1) = 5.726, pMLM< 0.001, hp2 = 0.047. The

latter suggested that participants were faster in recognizing the triangle looking up|down (0.616G 0.013 s)

compared to the participants’ right (0.649 G 0.016 s; pMLM = 0.048, |d| = 0.348, BF10 = 11.941). The partic-

ipants were also faster in detecting human agents gazing toward the participants’ right (0.619 G 0.015 s)

compared to the triangle (pMLM< 0.001, |d| = 0.447, BF10 = 187.351) and robots (0.651 G 0.015 s; pMLM<

0.001, |d| = 0.494, BF10 = 791.261). No other comparisons survived Bonferroni correction (pMLM>

0.088, pMultComp> 0.220, |d| < 0.281, BF10 < 2.587).

The role of the looked-at objects

To control for any influence of the objects the agents were gazing toward, we analyzed participants’ per-

formance measures based on what the agent was looking at (i.e., the graspable objects, the text bubble,

up|down).

For accuracy, we observed a main effect of Object, c2(2) = 21.010, pMLM< 0.001, with participants being

more accurate when the agent looked up|down (97.61 G 0.36%) compared to the graspable object

(95.13 G 0.65%; pMLM< 0.001, |d| = 0.383, BF10 = 30.064), and compared to the text bubble (95.70 G

0.62%; pMLM = 0.001, |d| = 0.301, BF10 = 3.991). We did not observe a main effect of Agent, c2(2) =

0.033, pMLM = 0.984, nor an Object by Agent interaction, c2(4) = 8.635, pMLM = 0.071.

For RT, we did not observe an effect of Object, F(2, 163.9) = 0.999, pMLM = 0.371, hp2 = 0.012. However, we

observed a main effect of Agent, F(2, 488.7) = 11.941, pMLM< 0.001, hp2 = 0.049, and an Object by Agent

interaction, F(4,488.5) = 5.283, pMLM< 0.001, hp2 = 0.043). The latter revealed that participants were faster

when humans looked at the graspable object (0.620 G 0.016 s) compared to the triangle (0.642 G 0.016 s;

pMLM = 0.012, |d| = 0.347, BF10 = 11.713) and the robot (0.644 G 0.015 s; pMLM = 0.002, |d| = 0.401, BF10 =

49.026), and when humans looked at the text bubble (0.611 G 0.014 s) compared to the triangle (0.635 G

0.015 s; pMLM = 0.004, |d| = 0.404, BF10 = 52.955) and the robot (0.636 G 0.014 s; pMLM = 0.001, |d| = 0.382,

BF10 = 28.772). No other comparisons survived Bonferroni correction (pMLM> 0.138, pMultComp> 0.184, |

d| < 0.289, BF10 < 3.017).

Interim discussion experiment 2

Using keys orthogonal for left-right answers successfully reducedany spatial compatibility effect becausewedid

not observe that gazes toward participants’ right (i.e., ‘‘left’’ answers) were faster than gazes toward participants’

left (i.e., ‘‘right’’ answers). However, a stimulus-responsemapping interference depending on task demands and

the observed agent may explain the data. Specifically, we observed that participants were more accurate in

recognizing the robot looking up or down compared to the participants’ left (i.e., right side of the agent).

This result mirrors in part the findings of Experiment 1, where we observed the triangle (not the robots) being

more accurate when the agent moved up|down compared to the participants’ left. This finding suggests that

mental rotation required to solve the task may affect task accuracy depending on the observed agent. Indeed,

we also observed faster RT for detecting humans compared to robots and the triangle looking to participant’s

right (i.e., agent’s left). This may further suggest that taking the perspective of non-human agentsmay decrease

performance when the spatial features of the stimulus conflict with response mapping (e.g., the agent gazing

toward the participant’s left, corresponding to the agent’s right, and correct answer ‘‘right’’; the agent gazing

toward the participant’s right, corresponding to the agent’s left, and correct answer ‘‘left’’).

Finally, we showed that the objects shown on the table did not affect the participants’ ability to detect

agents’ change of gaze (i.e., the differences in detecting agents’ attentional change spread evenly be-

tween the two objects), and that visual familiarity did not affect the ability to detect directional cues (see

Supplementary Information).

Experiment 3– Detecting what an agent is looking at

Experiments 1 and 2 indicated that detecting where an agent is directing its attention may be influenced by

spatial and social information. The latter was more evident when participants had to take an allocentric

perspective of the agent (Experiment 2). Here, we wanted to investigate if similar difficulties are observed

during a mentalistic task where participants indicate what the agent sees (e.g., understand others’ visual

percepts; Flavell et al., 1981; Bukowski et al., 2015). If detecting what a human agent is looking at is different

from detecting their gaze direction, we should expect differences across agents only when they look to-

ward an object but not when they gaze away from it.
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Figure 4. Results of Experiment 3

Accuracy percentage is shown on the left, Response Times expressed in seconds on the right. The labels ‘‘Object’’ and

‘‘Text’’ indicate the conditions where participants detected the agent looking at the graspable object and the text bubble

respectively. See Figure 2 for a detailed explanation of our data visualization approach.
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We aimed to collect data from 100 participants and managed to collect a total of 101 individual datasets.

The participants were instructed that each agent could look at the graspable object, at the text bubble, up

or down. The participants were asked to indicate what the agent was looking at (the object, the bubble, up|

down).

We removed trials with RTs that were deemed too fast or too slow (3.93%). Then, trials with RTs falling

above or below 2.5SD of the overall mean within each block of each participant were removed (1.97%).

No participants’ performance was <65%. Finally, six participants had a performance (either accuracy or

RT) above or below 2.5SD of the overall mean across conditions of the remaining participants and were

excluded from the final sample (n = 95).

Main task performance

We analyzed performance measures (see Figure 4) with Agent (human, robot, triangle) and Object (grasp-

able objects, text bubble, up|down) as within-subject factors. In case of a two-way interaction between

Agent and Object, we performed eighteen multiple paired comparisons of interest. Specifically, we

compared the three Object levels within each Agent (e.g., graspable object-human agent versus text bub-

ble-human agent; nine comparisons), and each Object level across the three agents (e.g., text bubble-hu-

man agent versus text bubble-robot agent; nine comparisons).

For accuracy, we observed no main effects, c2(2) < 3.133, pMLM> 0.209, and no interaction, c2(4) = 1.948,

pMLM = 0.745.

For RT, we removed incorrect answers (3.01%) from the final dataset. We observed a main effect of Agent,

F(2,187.6) = 50.888, pMLM< 0.001, hp2 = 0.354, a main effect of Object, F(2,187.9) = 37.257, pMLM< 0.001,

hp2 = 0.285, and a significant Agent by Object interaction, F(4, 374.7) = 3.938, pMLM = 0.004, hp2 =

0.042). The latter suggested that participants were faster in recognizing the triangle looking up|down

(0.674 G 0.012 s) compared to looking at the graspable objects (0.721 G 0.011 s; pMLM< 0.001, |d| =

0.511, BF10 = 5.267e+03) and the text bubble (0.737 G 0.012 s; pMLM< 0.001, |d| = 0.675, BF10 =

3.982e+06). The participants were also faster in recognizing the humans looking up|down (0.654 G

0.010 s) compared to looking at the graspable objects (0.681 G 0.011 s; pMLM = 0.017, |d| = 0.360,

BF10 = 31.317) and the text bubble (0.694 G 0.012 s; pMLM< 0.001, |d| = 0.440, BF10 = 4.122e+02). The par-

ticipants were faster to recognize robots looking up|down (0.664 G 0.011 s) compared to looking at the

graspable objects (0.723 G 0.010 s; pMLM< 0.001, |d| = 0.782, BF10 = 4.3363e+08) and the text bubble

(0.724G 0.013 s; pMLM< 0.001, |d| = 0.653, BF10 = 1.599e+06). These differences are not surprising because

participants had to remap the answer for right and left gaze each trial as objects location was randomly

assigned each trial.
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Crucially, participants were faster in detecting human agents looking toward the graspable objects

compared to the triangle (pMLM< 0.001, |d| = 0.676, BF10 = 4.221e+06) and robots (pMLM< 0.001, |d| =

0.667, BF10 = 2.809e+06). The participants were also faster in detecting human agents looking at the

text bubble compared to the triangle (pMLM< 0.001, |d| = 0.621, BF10 = 4.098e+05) and robots

(pMLM< 0.001, |d| = 0.451, BF10 = 5.831e+02). No other Bonferroni corrected pvalues were lower than

0.05 for both multiple comparisons computed on the estimates of the simplified MLM and multiple com-

parisons using pairwise t-tests on aggregated data (pMLM> 0.012, pMultComp> 0.055, |d| < 0.312,

BF10 < 8.342).

The role of gaze direction

To control the role of where the agents directed their attention, we analyzed performance measures based

on where the agent was looking at (i.e., participants’ right or left, and up|down).

For accuracy, no main effects of visual attention allocation, no interaction with the two main effects,

c2 < 5.067, pMLM> 0.231, were observed.

For RT, we observed a main effect of Gaze, F(2,187.6) = 50.814, pMLM< 0.001, hp2 = 0.351, and a significant

Agent by Gaze interaction, F(4, 282.3) = 3.614, pMLM = 0.007, hp2 = 0.038. The latter suggested that par-

ticipants were faster in recognizing the triangle looking up|down (0.674 G 0.012 s) compared to looking to

participants’ left (0.734 G 0.011 s; pMLM< 0.001, |d| = 0.723, BF10 = 3.216e+07) and right (0.725 G 0.012 s;

pMLM< 0.001, |d| = 0.550, BF10 = 2.286e+04). The participants were faster in recognizing the humans look-

ing up|down (0.654G 0.010 s) compared to looking to participants’ left (0.698G 0.012 s; pMLM< 0.001, |d| =

0.550, BF10 = 2.347e+04). The participants were faster in recognizing robots looking up|down (0.664 G

0.011 s) compared to looking at participants’ left (0.729 G 0.012 s; pMLM< 0.001, |d| = 0.848, BF10 =

8.832e+09) and right (0.716 G 0.010 s; pMLM< 0.001, |d| = 0.633, BF10 = 6.722e+05). Again, these differ-

ences are not surprising because participants had to remap the answer for right and left gaze each trial

as objects location was randomly assigned each trial.

The participants were faster in detecting human agents looking toward the participants’ left compared to

the triangle (pMLM< 0.001, |d| = 0.561, BF10 = 3.535e+04) and robots (pMLM< 0.001, |d| = 0.467, BF10 =

1.041e+03). We also observed faster RT in detecting human agents looking at the participants’ right

compared to the triangle (pMLM< 0.001, |d| = 0.767, BF10 = 2.311e+08) and robots (pMLM< 0.001, |d| =

0.639, BF10 = 8.714e+05). No other comparisons survived Bonferroni correction (pMLM> 0.010, pMultComp>

0.055, |d| < 0.333, BF10 < 14.620).

Interim discussion experiment 3

The participants were faster in recognizing what human agents were looking at compared to other non-hu-

man agents. The results were not affected by the participants’ visual familiarity with robots (see Supple-

mentary Information) or the agent’s gaze direction.

While experiments 1-2 suggested that detecting where a non-human agent is looking at may decrease the

ability to map the correct answer with the spatial information derived from the observedmovement, asking

participants to indicate what the agent is looking to (i.e., focusing on what the agent is seeing) revealed a

clearer difference between agents and faster processing of human gaze.

Nonetheless, it may be argued that the participants were simply faster in mapping the observed human

action with the correct answer. We note that the participants’ RT was faster for human than non-human

agents when they looked at the objects, but not when looking up or down. Thus, matching the correct

answer with the observed movement was more difficult for the robots and the triangle in those

conditions. This may suggest that trying to represent others’ mental content (i.e., what they are seeing)

is harder for non-human compared to human agents. To further explore this idea, participants in

experiment 4 completed a similar task to experiment 3 with object locations that did not differ across

the entire task.

Experiment 4– Inferring why an agent is looking at an object

Experiment 3 showed that interpreting what non-human agents are looking at may be more demanding

than interpreting what a human sees. Here, we tested whether inferring the forthcoming action of an agent
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Figure 5. Results of Experiment 4

Accuracy percentage is shown on the left, Response Times expressed in seconds on the right. The labels ‘‘Grasp’’ and

‘‘Speak’’ indicate the condition where participants attributed the intention to grasp and to speak to respectively. See

Figure 2 for a detailed explanation of our data visualization approach.
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may affect performance when the location of the graspable object and text bubble during the task does not

change. In other words, the graspable objects and the text bubble location on the table were fixed for each

trial, and participants could, in principle, use a spatial strategy to solve the task (e.g., the graspable object is

always on the agent’s right, thus, if the agent looks right, I will press key ‘n’). We reasoned that if the par-

ticipants solved the task by detecting others’ gaze direction, we should expect results similar to experiment

1 or 2. Contrary, if predicting others’ actions from gaze observation requires access to others mental rep-

resentations, results should mirror the findings of experiment 3.

We aimed to collect data from 80 participants and managed to collect a total of 82 individual datasets. The

participants were instructed that each agent could look toward the object to grasp it (gaze to grasp, motor

intention), toward the text bubble to speak (gaze to speak, social intention), up or down to do nothing (non-

goal directed action as control). For 40 participants, the graspable object was displayed on the agent’s left

(with the text bubble on the agent’s right) and, for 42 participants, the graspable object was displayed on

the agent’s right (with the text bubble on the agent’s left). The participants were asked to indicate what the

agent was going to do (i.e., the agent is going to grasp, to speak, or is looking up or down).

We removed trials whose RTs were too fast or too slow (5.17%). Then, trials whose RTs fell above or below

2.5SD of the overall mean within each block of each participant were removed (2.30%). A further five par-

ticipants with a performance below 65%were removed. Finally, four participants with a performance (either

accuracy or RT) above or below 2.5SD of the overall mean across conditions of the remaining participants

were excluded (final sample n = 73; group with the graspable object to the agent’s left n = 36; group with

the graspable object to the agent’s right n = 37).

Main task performance

We analyzed performance measures (see Figure 5) with Agent (human, robot, triangle) and Intention (to

grasp, to speak, look up|down) as within-subject’s factors, and the graspable object-Location (left, right)

as between-subjects factor. In case of a two-way Agent by Intention interaction, we performed eighteen

multiple paired comparisons of interest as indicated in experiment 3.

For accuracy, we observed a main effect of Agent, c2(2) = 6.084, pMLM = 0.048, and a Graspable Object

Location by Agent interaction, c2(2) = 6.158, pMLM = 0.046. These results were not confirmed in the analyses

on aggregated data (Agent: F = 2.647, pAnova = 0.074, hp2 = 0.036; Graspable Object Location by Agent:

F = 3.015, pAnova = 0.052, hp2 = 0.041). No other effects were observed, c2 < 3.670, pMLM> 0.077.

For RT, we removed incorrect answers (3.26%) from the final dataset. We observed a main effect of

Agent, F(2,141.7) = 17.296, pMLM< 0.001, hp2 = 0.200, and a significant Agent by Intention interaction,

F(4, 282.3) = 3.082, pMLM = 0.017, hp2 = 0.044. No other main effects or interactions were observed,
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F < 2.982, pMLM> 0.054, hp2 < 0.040. The two-way interaction suggested that participants were faster in

recognizing the triangle looking up|down (0.625 G 0.015 s) compared to attributing the intention to grasp

(0.661G 0.017 s; pMLM = 0.010, |d| = 0.412, BF10 = 32.327) and to speak (0.657G 0.018 s; pMLM = 0.043, |d| =

0.369, BF10 = 11.684). The participants were also faster in detecting human agents’ intention to grasp

(0.627 G 0.016 s) compared to the triangle (pMLM< 0.001, |d| = 0.596, BF10 = 5.877e+03) and robots

(0.650 G 0.016 s; pMLM = 0.009, |d| = 0.414, BF10 = 34.225). Moreover, participants were faster in detecting

human agents’ intention to speak (0.629 G 0.016 s) compared to the triangle (pMLM = 0.001, |d| = 0.486,

BF10 = 2.304e+02). No other Bonferroni corrected pvalues were lower than 0.05 for both multiple compar-

isons computed on the estimates of the simplifiedMLM andmultiple comparisons using pairwise t-tests on

aggregated data (pMLM> 0.189, pMultComp> 0.425, |d| < 0.325, BF10 < 4.471).

The role of gaze

To control for gaze direction, we analyzed participants’ performance based on where the agent was look-

ing (i.e., participants’ right or left, and up|down; see Figure S2).

For accuracy, we observed no main effects of visual attention and no interaction with the two main effects,

c2 < 3.157, pMLM> 0.206.

For RT, we observed a main effect of Gaze, F(2,142) = 3.117, pMLM = 0.047, hp2 = 0.042, and a significant

Agent by Gaze interaction, F(4, 282.3) = 4.263, pMLM = 0.002, hp2 = 0.059. No other main effects or inter-

actions with attention were observed, F < 0.3611, pMLM> 0.809, hp2 < 0.005. The two-way interaction sug-

gested that participants were faster in recognizing the triangle looking up|down (0.625 G 0.015 s)

compared to looking to the participants’ right (0.664 G 0.017 s; pMLM = 0.003, |d| = 0.496, BF10 =

287.824). The participants were also faster in detecting human agents’ looking toward the participants’

left (0.621 G 0.016 s) compared to the triangle (0.654 G 0.018 s; pMLM< 0.001, |d| = 0.537, BF10 =

9.821e+02) and robots (0.651 G 0.017 s; pMLM< 0.001, |d| = 0.474, BF10 = 1.630e+02). The participants

were also faster in detecting human agents looking to participants’ right (0.634 G 0.016 s) compared to

the triangle (pMLM< 0.001, |d| = 0.546, BF10 = 1.296e+03). No other comparisons survived Bonferroni

correction (pMLM> 0.051, pMultComp> 0.189, |d| < 0.308, BF10 < 3.112).

Interim discussion experiment 4

We observed that trying to infer why an agent is gazing toward an object is faster when people observe

humans compared to non-human agents. Participants were faster in detecting humans’ intentions to speak

and to grasp compared to the triangle and were faster in detecting humans’ intention to grasp compared

to robots. Results were not affected by the participants’ visual familiarity with robots (see Supplementary

Information).

The results indicate that anticipating what an agent is going to do may affect how others’ gaze is pro-

cessed. Indeed, we observed that participants were always faster in detecting human gaze directed to-

ward participants’ right and left compared to the triangle. Note that Experiment 1 showed no differences

and Experiment 2 showed a small difference only for the right side of participants (Experiment 2, |d| =

0.447, BF10 = 187.351; Experiment 4, |d| = 0.546, BF10 = 1.296e+03). Moreover, the effect size for the

difference between detecting a human compared to a robot’s gaze toward the participant’s left was

larger in Experiment 4 than Experiment 1 (Experiment 1, |d| = 0.382, BF10 = 16.533; Experiment 4, |

d| = 0.474, BF10 = 1.630e+02).

Interestingly, we observed no difference when the robots were going to speak or were looking toward the

participants’ right. Although we did not observe a three-way interaction for RT (Groups by Agent by Gaze),

visual inspection of the data (Figure S3) suggests that when the graspable object was located on the right

side of the screen (i.e., participants’ right, agents’ left), attributing the intention to speak was faster for hu-

mans than robots. On the contrary, RT for the intention to grasp was not influenced by the graspable object

location (i.e., RT was faster for humans than other agents). This result may suggest that participants have

processed motor and communicative intentions differently depending on the spatial location of the grasp-

able object. That is, the processing time for attributing the intention to speakmay have been favored by the

proximity of the graspable object to the responding hand. This may suggest a potential pre-activation of

the motor system well before the agent appeared and gazed (note that the scenario was displayed for

1100 ms before the agent appeared). However, this potential advantage of the motor system in
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interpreting a social action was specific for humans and not for non-human agents. Future studies should

investigate if motor and social intentions are processed differently.

Notable, we observed that attributing the intentions to grasp and speak took longer for the triangle

compared to the simple detection of up|down movements. This further suggests that participants tried

to actively reflect upon others mental states rather than using a simple spatial strategy to solve the task.

These results are not in line with what we should have expected if participants were using either an allocen-

tric or an egocentric spatial strategy to solve the task. Thus, the fact that we did not replicate in full any of

the findings of experiments 1 and 2 (see also Figure S2 for a graphical visualization of the Experiment 4 data

based on where the agent was looking) suggests that participants did not use only a spatial rule to solve the

task (e.g., responding uniquely based on where the agent was looking given that right and left gaze move-

ments implied the same intention throughout the whole task). Contrary, findings in Experiment 4 may indi-

cate that after detecting a gaze direction, additional processes responsible for action interpretation and

the attribution of motor and communicative intentions to (non-) human agents may have intervened. None-

theless, it may be possible that participants computed a line of sight to resolve experiments 3 and 4. This

explanation may be unlikely because we did not see the response time of Nao to be faster than all other

agents (as Nao was close to the gazed objects; Surtees et al., 2013; Michelon and Zacks, 2006; see plots

of all the main tasks separated by Agent on the online repository).

Overall, the findings from experiments 3 and 4 suggest that when participants are asked to reflect upon

others’ mental content (either what the agent is seeing or is going to do), the interpretation of the observed

action is faster for humans compared to non-human agents.
Experiment 5– Detecting where an agent is looking (vertical axis)

Given the result from previous experiments, we reasoned that if reflecting upon others’ mental content may

highlight differences across the agents (while detecting gaze direction changemay not), we should achieve

similar results in a simpler setup where the only factor that is changed is the axis along which gaze can be

directed.

Here, participants were instructed that each agent could look up or down (i.e., we removed the graspable

objects and the text bubble), and they were asked to indicate where the agent was looking (up or down;

non-mentalistic task demand) using two different orthogonal keys (see STAR Method section). Given the

non-mentalistic task we expected no differences across agents and gaze directions. We aimed to collect

data from 50 participants and collected 48 individual datasets.

We removed trials with RTs that were deemed too fast or too slow (0.59%). Then, trials with RTs falling

above or below 2.5SD of the overall mean within each block of each participant were removed (2.53%).

No participants had a performance below 65%. Three participants with a performance (either accuracy

or RT) above or below 2.5SD of the overall mean across conditions of the remaining participants were

excluded from the final sample. The final sample size for this experiment was n = 45.

Main task performance

We analyzed performancemeasures (see Figure 6) with Agent (human, robot, triangle) and Gaze (up, down)

as within-subject’s factors.

For accuracy, the effect of Gaze, c2(2) = 0.457, pMLM = 0.499, and the two-way interaction, c2(2) = 4.080,

pMLM = 0.130, were not significant. We observed a main effect of Agent, c2(2) = 12.091, pMLM = 0.002,

with participants being less accurate in recognizing the gaze of the robots (97.27 G 0.36%) compared to

the triangle (98.58 G 0.26%; p = 0.002, |d| = 0.400, BF10 = 18.743). Visual inspection of the data suggests

that this result was mainly driven by a reduced accuracy in detecting robots looking up compared to the

other agents. No other Bonferroni corrected pvalues were lower than 0.05 for both multiple comparisons

computed on the estimates of the simplified MLM and multiple comparisons using pairwise t-tests on

aggregated data (pMLM> 0.117, pMultComp> 0.008, |d| < 0.473, BF10 < 12.095).

For RT, we removed incorrect answers (2.10%) from the final dataset. We observed a main effect of Agent,

F(2,175.8) = 53.956, pMLM< 0.001, hp2 = 0.385, no effect of Gaze, F(1,44) = 0.006, pMLM< 0.939, hp2 = 0.001,
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Figure 6. Results of Experiment 5

Accuracy percentage is shown on the left, Response Times expressed in seconds on the right. No interaction between the

agents and the observed action was observed for the accuracy measure. For consistency across the figures of all

experiments we display accuracy measure for each experimental condition. We invite the reader to refer to the main text

for accuracy results. The labels ‘‘Up’’ and ‘‘Down’’ indicate the condition where participants observed the agent looking

up and down respectively. See Figure 2 for a detailed explanation of our data visualization approach.
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and a significant Agent by Gaze interaction, F(2, 175.9) = 3.938, pMLM< 0.001, hp2 = 0.086. The latter sug-

gested that participants were slower in recognizing the robot looking up (0.466G 0.010 s) compared to the

triangle (0.418 G 0.009 s; pMLM< 0.001, |d| = 1.239, BF10 = 7.101e+07) and the human (0.425 G 0.008 s;

pMLM< 0.001, |d| = 1.156, BF10 = 1.236e+07). The participants were also slower in recognizing the robot

looking down (0.450 G 0.009 s) compared to the triangle (0.424 G 0.009 s; pMLM< 0.001, |d| = 0.646,

BF10 = 2.788e+02). No other comparisons survived Bonferroni correction (pMLM> 0.055, pMultComp>

0.081, |d| < 0.407, BF10 < 4.271).

Interim discussion experiment 5

Accuracy and RT did not differ between humans and the triangle. On the contrary, participants made more

errors and were slower in detecting the robots looking up compared to the other agents. Results were not

affected by the participants’ visual familiarity with robots (see Supplementary Information).

It is possible that while the triangle movements could be solved by simply detecting a change along the ver-

tical axis, participants may have had the impression that agents with eyes (humans and robots) were looking at

the microphone placed above their heads. This might have facilitated an automatic perspective-taking of

eyed agents (i.e., what is the agent looking at?). Thus, based on experiment 3, participants may have had

more difficulty ascribing perceptual content to robots. An alternative explanation is that looking up, which

is a typical western-world action people perform when thinking about something (Baron-Cohen et al.,

1995; Scherf et al., 2018; McCarthy et al., 2006; Andrist et al., 2014), might have evoked a mentalistic interpre-

tation of human-like agent (not triangles) actions. If this is correct, results would suggest that a mentalistic

interpretation of others’ gaze may be less associated with human-like robots. Participants were also slower

in detecting robots looking downwards compared to the triangle. This may indicate that the shape of the tri-

angle (pointing downward) was easier to associate with a spatial strategy for recognizing the downwardmove-

ment. Notably, observing humans and robots did not differ in that condition.

Overall, these results suggest that processing robots’ gaze toward an object required more effort than hu-

man gazes and the vertical movements of the triangle. However, despite the non-mentalistic task demand,

these results may have implicitly evoked mentalising processes for human-like agents. Hence, in the next

and final experiment, we tested whether asking participants to focus on others mental content influences

the pattern of results we observed in this experiment.

Experiment 6– Inferring why an agent is looking at an object (vertical axis)

In this final experiment, participants were instructed that each agent could look down at the table or look

up at the microphone to speak. The participants were asked to indicate what the agent was doing (going to
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Figure 7. Results of Experiment 6

Accuracy percentage is shown on the left, Response Times expressed in seconds on the right. No interaction between the

agents and the observed action was observed for the accuracy measure. For consistency across the figures of all

experiments we display accuracy measure for each experimental condition. We invite the reader to refer to the main text

for accuracy results. The labels ‘‘Speak’’ and ‘‘Table’’ indicate the condition where participants observed the agent

looking up to the microphone to speak and down to the table respectively. See Figure 2 for a detailed explanation of our

data visualization approach.
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speak, looking at the table). If predicting what an agent is going to do is easier for humans, we should

expect faster response times for human agents compared to others. We aimed to collect data from 50 par-

ticipants and collected 47 individual datasets.

We removed trials with too fast or too slow RT (0.89%). Then, trials with RT falling above or below 2.5SD of

the overall mean within each block of each participant were removed (2.58%). No participant had a perfor-

mance below 65%. Finally, two participants had a performance (either accuracy or RT) above or below

2.5SD of the overall mean across conditions of the remaining participants and were excluded (final sample

size n = 45).

Main task performance

We analyzed accuracy and RT (Figure 7) with Agent (human, robot, triangle) and Intention (speaking, look-

ing at the table) as within-subject’s factors.

For accuracy, we observed a main effect of Agent, c2(2) = 8.944, pMLM = 0.011, with participants being less ac-

curate in recognizing the gaze of the robots (96.69G 0.37%) compared to the triangle (98.26G 0.41%; pMLM =

0.041, |d| = 0.416, BF10 = 4.830). Visual inspection of the data suggests that this result was probably driven by a

reduced accuracy in detecting robots looking at the microphone. No other Bonferroni corrected pvalues were

lower than 0.05 for both multiple comparisons computed on the estimates of the simplified MLM andmultiple

comparisons using pairwise t-tests on aggregated data (pMLM> 0.040, pMultComp> 0.056, |d| < 0.364,

BF10 < 2.301). We also observed amain effect of Intention (c2(2) = 4.457, pMLM = 0.027) with participants being

more accurate when agents looked at the table (98.27G 0.27%) compared to themicrophone (97.12G 0.38%).

The two-way interaction was not significant (c2(2) = 4213, pMLM = 0.122).

For RT, we removed incorrect answers (2.30%) from the final dataset. We observed a main effect of Agent,

F(2,175.8) = 30.694, pMLM< 0.001, hp2 = 0.263, no effect of Intention, F(1,44) = 0.326, pMLM = 0.571, hp2 =

0.007, and a significant Agent by Intention interaction, F(2, 175.8) = 6.836, pMLM = 0.001, hp2 = 0.074. The

latter suggested that participants were slower in attributing the intention to speak to the robot (i.e.,

0.481 G 0.011 s) compared to the triangle (0.435 G 0.011 s; pMLM< 0.001, |d| = 1.175, BF10 = 1.867e+07)

and the human (0.457 G 0.012 s; pMLM< 0.001, |d| = 0.691, BF10 = 6.763e+02). The participants were

also slower in attributing the intention to speak to humans compared to the triangle (pMLM = 0.002, |d| =

0.600, BF10 = 1.140e+02). No other Bonferroni corrected pvalues were lower than 0.05 for both multiple

comparisons computed on the estimates of the simplified MLM and multiple comparisons using pairwise

t-tests on aggregated data (pMLM> 0.035, pMultComp> 0.171, |d| < 0.363, BF10 < 2.269).
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Interim discussion experiment 6

The participants made more errors in interpreting robots’ movements compared to the triangle. They were

also slower when the robots were looking up to speak compared to humans and the triangle, and increased

RTs were observed when attributing humans the intention to speak compared to the triangle. Results were

not affected by the participants’ visual familiarity with robots (see Supplementary Information).

We do not think that the observed faster RT for the triangle truly reflects the recruitment of mentalizing pro-

cessing for non-human-like objects. Rather, the triangle may have been perceived as a simple directional

agent rather than an intentional one, and a visual-spatial rather than high-level strategy may have been

used to interpret its movements. As such, it may be possible that after observing a spatial change, addi-

tional mentalizing processes may have been recruited for interpreting human-like (humans and robots),

but not the triangle, movements.

Similarly, the different instructions used in this task (i.e., asking participants to interpret a movement as an

action with a purpose) may have led participants to interpret the looking at the table as a non-goal directed

action. Hence, no additional processes were required to understand the observed action, which may

explain the absence of differences across agents in that condition. Finally, we observed that RT for robots

was slower than humans when ascribing the intention to speak. This may further indicate that attributing

intentions toward humanoid robots may be more effortful than attributing the same intent to humans.
DISCUSSION

Understanding others by looking at their gaze is fundamental for human-human and human–robot social

interactions. In a series of experiments, participants observed three different agents (humans, human-like

robots, and a triangle) gazing and orienting toward different directions and different objects. The partic-

ipants made explicit judgments about where the agent was looking (experiments 1, 2, and 5), what the

agent was looking at (Experiment 3), and why an agent was looking at a specific object (experiments 4

and 6).

The main finding was that interpreting what a human was looking at, or what a human was going to do after

gazing, generally required less time compared to other non-human agents. Such an advantage for process-

ing human gaze was clearly observed in tasks requiring participants to represent others’ minds (experi-

ments 3 and 4) rather than tasks focused on detecting a change in others’ gaze (experiments 1-2). This

excludes the possibility that people generally perceived robots’ motion and appearance as incongruent

(Saygin and Stadler, 2012; Urgen et al., 2018). Moreover, the observed advantage for decoding human

perspective and intentions compared to non-human agents cannot be explained merely by spatial ac-

counts, and the mechanisms supporting the ascription of mental content to others may have varied also

depending on the observed agent’s visual form. Indeed, processing human gaze was faster than process-

ing robotic gaze (experiments 5-6) but slower than the triangle ‘‘gaze’’ (Experiment 6).

We exclude the interpretation that participants were distracted by the robotic agents because no differ-

ences in the control condition were observed in experiments 1—4, and no differences emerged in exper-

iments 5 and 6 between human and robots when they were looking at the table (i.e., not looking at a specific

object). Moreover, it is unlikely that the text bubble with mentalistic sentences affected our results (Alias-

ghari et al., 2021; Mahzoon et al., 2021) because sentences were not linked to a specific agent. Moreover,

we exclude that results were affected by the ability to process an object’s location (especially in experi-

ments 4, 5, and 6 where object location did not vary across trials) because we ensured participants had suf-

ficient time to see the scenario (table, graspable objects, text bubble) by presenting it well before the agent

appeared.

In the following sections, we discuss how the adopted tasks offer a useful tool to assess people’s ability to

represent others’ mental content. We further consider how domain-general cognitive mechanisms cannot

explain our data (e.g., participants being generally faster in detecting human gaze compared to other en-

tities). Because we have been able to exclude that participants were simply faster in processing the direc-

tional change of the human compared to other agents, our approach also underscores the importance of

both control conditions and control agents when assessingmentalizing abilities (Schurz et al., 2015). Finally,

we outline the need to go beyond a human-centric approach to study how we perceive and ultimately

interact with robots, and move toward an integrated approach that incorporates a fuller representation
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of the neural and cognitive processes required for supporting successful human-machine interaction (Cross

et al., 2016; Henschel et al., 2020; Cross and Ramsey, 2021).
Does evaluating others gaze provide access to their mental content?

Assessing people’s ability to read others’ minds from gaze observation should rule out low-level explana-

tions (e.g., spatial stimulus-responsemapping), and should ensure that an observer is maintaining a distinc-

tion between their own and others’ mental states. These two criteria are referred to as the ‘‘mentalising’’

and the ‘‘nonmerging’’ criterion, respectively (Quesque and Rossetti, 2020). We believe that in the current

study participants tried to represent others’ mental content. The results showed that human and robot gaze

are processed differently when the task required participants to represent an agent’s mental content (ex-

periments 3, 4, and 6) rather than to detect the direction of their gaze (experiments 1, 2 and 5). Moreover,

we did not observe any difference between detecting humans and robots gazing toward a spatial location

where no object was present (looking up|down in experiments 3 and 4; looking down in experiments 5 and

6). Importantly, to ensure that the detection of a directional change toward a spatial location could not

explain our data, we used as a control agent an object with a clear non-biological shape and texture (Schurz

et al., 2015), as opposed to an object sharing posture and visual features similar to our human-like robotic

agents (Santiesteban et al., 2014). Thus, by using a control condition and a control agent, low-level mech-

anisms cannot fully explain the results reported in the present study. In this sense, we did not find a general

spatial compatibility effect (i.e., faster responses when agents looked to their right, or the correct answer

was ‘‘right’’, as participants responded with the right hand) when participants had to detect where the

agent was looking at (experiments 1 and 2). On the contrary, experiments 1 and 2 suggest that the

observed actions were more spatially coded for non-human rather than human agents. That is, there

may have been a conflict between task- and agent-centred spatial codes and participants’ egocentric

frame of reference. For example, when observing the agent looking toward participants’ left in experiment

1 (or participants’ right in experiment2), and the correct answer is ‘‘left’’ while responding with the right

hand. Hence, detecting the gaze of a non-human agent (irrespective of its human-like shape) may rely

more on visuo-spatial information rather than representing the observed gaze through visual and motor

brain areas (e.g., superior temporal sulcus, frontal eye fields; Stephenson et al., 2021). This may explain

the observed reduced ability to map the observed action with the correct response for non-human but

not human agents in experiments 1 and 2.

It may be argued that a basic associative explanation could explain our data. Indeed, our ability to under-

stand others’ actions can be influenced by our knowledge about an agent (Cross et al., 2016; Bach and

Schenke, 2017). For example, learning a person has a preference for kicking a ball will facilitate recognizing

that action (but not other actions) whenever the same actor is seen (Schenke et al., 2016). In our study,

agents did not have a preferred action, so it is unlikely that any form of implicit learning may explain our

results (Heerey and Velani, 2010; Hudson et al., 2012).

Experiment 4 further supports the interpretation that low-level mechanisms and the simple detection of

others’ gaze direction are not solely responsible for understanding others’ intentions. Indeed, results

did not resemble the findings from the non-mentalistic tasks (experiments 1 and 2) despite the objects’

identity not being relevant to solve the task (i.e., because the objects’ location did not change across trials,

the identity of the object, say, located on the participant’s right, was always the same). Similarly, experi-

ments 5 and 6 showed performance differences between humans and robots only when they looked toward

an object (i.e., no differences when they looked down). Hence, we suggest that it is plausible that partic-

ipants solved the tasks by also using high-level social cognition processes.

Nonetheless, it has been suggested that true mentalizing tasks require participants to maintain a clear

distinction between self and others’ mental content (Quesque and Rossetti, 2020). This position is

strongly based on false belief tasks. Crucially, typical false belief tasks may not reflect our ability to reason

upon others mental states but rather the ability to compare different mental representations

(Deschrijver and Palmer, 2020). Although the ‘‘nonmerging’’ criterion has been defined as crucial for sup-

porting the claim of mentalizing abilities, we believe this criterion to be more important in text-based and

vignette-based tasks where mismatching mental representations between different agents must be de-

tected. Contrary to these text-based setups, online inferences based on observing an agent’s actions

may rely more on an automatic non-reflective distinction between self and others. In this sense, we propose

that observing others’ gaze and trying to infer their visual perspective or future actions is different from the
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ability to monitor whether another’s mental state representation is mismatching with one’s own. However,

it may still be argued that shared neural mechanisms may make the self/other distinction more difficult

when observing others performing an action. It is worth noting that single-cell recording studies showed

that not all neurons active during self-generated actions are also active during the observation of actions

generated by others (Bonini et al., 2014; Bonini, 2017). Moreover, physiological evidence in humans sug-

gests a potential role of the motor system for an early distinction between self- and other-generated ac-

tions (Weiss et al., 2014). Thus, although false belief tasks focus on belief conflict monitoring, we studied

the ability to understand others mental content through action observation (i.e., their true belief;

Deschrijver and Palmer, 2020).

For all the above reasons, we believe participants did represent the action the observed agent was going to

do and that automatic processes at a physiological level may have discriminated the origin of that action

(i.e., not self-generated).
Shifting from human to object social cognition to improve human–robot interaction

It has been proposed that mentalizing abilities can be influenced by the ability to detect others’ gaze di-

rection (Stephenson et al., 2021), and that wemay have an advantage in taking the perspective of agents we

perceive similar to ourselves (e.g., ingroup vs outgroup; Ye et al., 2021).

The actions participants observed were familiar movements (head and gaze movements for the human

and robots), and we reduced the impact of low-level factors (e.g., kinematic differences) by using iden-

tical temporal profiles to create agents’ gaze movements. This may have limited the possibility to evoke

an ingroup/outgroup categorization of the agent based on human-like or robot-like motor behavior.

Importantly, clear differences between human and robotic agents’ performance emerged only when

participants were asked to reflect upon their mental states (experiments 3 and 4) compared to non-

mentalistic questions (experiments 1-2). This suggests that a solely ingroup-outgroup categorization

of the agents cannot fully explain our data. Supporting this, we note that participants did not differ

in the control condition where agents moved but did not direct their attention to any object (i.e.,

up|down condition). Furthermore, as we observed longer RT to encode directional cues toward an ob-

ject for human and robotic agents compared to the triangle (experiments 5-6), it is unlikely that the sa-

liency and familiarity of face features (both humans and robots had eyes and mouth) can explain our

results.

Thus, the fact that performances differed depending on the experimental question (experiments 1, 2,

and 5, ‘‘Where’’ taking an egocentric and allocentric perspective for experiments 1 and 2 respectively;

Experiment 3, ‘‘What’’; Experiments 4 and 6, ‘‘Why’’) and whether the agent looked at an object or not,

may suggest that participants represented the agent’s mental content by integrating across multiple

sources. A parsimonious interpretation of our data may be that the analysis of both the agent’s visual

features (visual bodyform, facial features, and textures) and motor actions, may have differently

engaged neural networks attributed to the ‘‘social brain’’ (Henschel et al., 2020; Cross and Ramsey,

2021).

In this respect, gaze and head actions started after the agent was displayed in a static position for

400 ms. This temporal window may have given enough time to process both body and facial features

and recruit a wider network of brain areas responsible for integrating motion and semantic information

from an observed agent (Quian Quiroga et al., 2008; Harry et al., 2016; Yovel and O’Toole, 2016; Hu

et al., 2020). Nonetheless, we showed clear differences between agents only when task instructions

required a mentalistic representation of others’ minds. Thus, it is possible that processing and inte-

grating low-level visual features of the observed agent with high-level task demands may have created

a mismatch between the qualities expected from human-like bodies (e.g., having a mind, animacy) with

their metal-like appearance and slowed the interpretation of robots’ behavior. Supporting this interpre-

tation is the fact that the triangle was generally faster than humans and robots in experiments 5 and 6.

This suggests that a visual strategy may have been adopted to detect the triangle’s directional changes

in less demanding tasks (compared to experiments 1-4 that required three answers, more attention to

process objects’ location, and may have required mental rotations or stimulus-response mapping).

Hence, agents with a more human-like appearance may automatically engage mentalizing processes

among observers, which are then responsible for matching (or not) the living or non-living nature of
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the observed agent with typical human qualities (e.g., the capacity to intend and plan). The longer

response times for the human-like robots when they gazed toward an object may thus suggest that their

visual textures evoking non-living qualities may have slowed the match between the observed action and

the underlying intention.

These results hold further relevance for our understanding of how to optimize collaborative physical tasks

between humans and robots (e.g., handover tasks) where robots could use gaze cues to communicate the

start of a manual reach-to-grasp action. Our findings suggest that when a robot communicates the

intention to grasp one object among multiple choices using implicit behavioral cues, trying to infer their

intention or to take their perspective may hinder people’s ability to anticipate the robot’s next movement

(experiments 3-4). However, results from non-mentalistic tasks suggest that people may understand a

robot communicating a spatial location (experiments 1-2), for example, to share the same attentional work-

space. This result further corroborates previous studies showing that humans can use spatial information

derived from robots’ gaze (Moon et al., 2014).

In summary, our interpretation of the results obtained from six separate experiments is that different

visual shapes and textures may evoke specific qualities of the observed agent and consequently recruit

a diverse group of neural and cognitive responses within the human social brain networks. Neverthe-

less, it is essential to note that the recruitment of different brain networks may not indicate a less effi-

cient (in terms of RT and accuracy) processing of the observed stimulus. Instead, they may indicate a

distinct qualitative way to understand human and non-human behavior. In this sense, the future of so-

cial neuroscience research exploring human–robot interaction, and indeed, the more general concept

of human-machine interaction, should aim to extend beyond a human-centric approach to social cogni-

tion and explore how an object’s visual appearance interacts with social aspects of perception and

interaction.

Conclusion

We observed that an agent’s visual body-form (human-like vs non-human-like) and visual textures (skin-like

versus plastic/metal) may differently affect the processing of high-level social behaviors depending on its

human and non-human nature.

Our results cannot be explained by domain-general cognitive mechanisms that simulate the effects of

mentalizing in social contexts (Heyes, 2014). Rather, online mindreading (as our tasks required) is likely

to rely on the correct integration of the intentional nature of the observed agent (by processing its

bodily form and visual textures) with both motor and mentalizing processes during action observation.

Moreover, our experimental design and stimuli have introduced important findings and methodolog-

ical considerations to inform ongoing debates concerning the role of robots’ visual appearance on hu-

man collaboration and acceptance (Saygin and Stadler, 2012; Ortenzi et al., 2021; Cross et al., 2016;

Mamak, 2021). By using a non-human-like object as control agent and by focusing on gaze behavior,

our findings expand existing literature that demonstrated the importance of human-like and robot-

like visual textures during the observation and prediction of humanoid robots mechanical manual ac-

tions (Saygin et al., 2012; Saygin and Stadler, 2012; Urgen et al., 2018). Further work is now required

to examine how implicit signals (e.g., gaze movements) of human-like and non-human-like robots (Mi-

celli et al., 2011; Pan et al., 2018; Sivakumar et al., 2013) facilitate the predictability of artificial agents to

positively improve the fluency and subjective experience of human–robot interactions (Ortenzi et al.,

2021).

Overall, our findings suggest that ascribing mental content to dynamic displays of agents (what they are

looking at, why they are looking to a specific object) differs across human-like and non-human-like artificial

agents compared to humans, and may be more difficult for people to achieve when viewing hybrid agents

like a human-like robot with machine-like visual features.

Limitations of the study

Individual perspective-taking abilities are fundamental for social interactions and may have been relevant

to solve our tasks. Because of our use of a between-subjects design, we were not able to reliably assess how

individual differences in the ability to detect a gaze direction according to an egocentric or allocentric

frame of reference may be related to the ability to understand what the agent is doing. One valuable
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direction for future work will be to try to explore similar questions with within-subjects designs, in order to

more convincingly address questions related to individual differences. Moreover, we used only a single

self-reported question to account for familiarity with robots. This approach may not have been sensitive

enough to highlight differences across participants and does not account for people’s lasting experience

in interpreting human faces and bodies. Moreover, we did not assess how participants perceived a mind in

our stimuli (Stenzel et al., 2012). Future studies will need to test how individual differences in attributing a

mind to a robot may explain our results and how easy is to infer the goals of an agent and which goal the

observed action may have evoked (Kupferberg et al., 2018).

Although our conclusion may be limited to screen-based scenarios (Sciutti et al., 2015), results are in line

with real-life HRI studies that suggested that human participants may have difficulties in tracking and attrib-

uting intentions to robots during action observation (Bisio et al., 2014). However, future studies will need to

address how screen-based investigations can be applied in natural settings.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Participants

d METHOD DETAILS

B Procedure

B Apparatus and task

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104462.

ACKNOWLEDGMENTS

We thank Andrea Cherubini (CNRS) for helpful feedback on earlier version of this manuscript. We thank Prof

John Murray and the University of Hull Department of Computer Science for the pictures of the robots and

the 3D printed objects.

AUTHOR CONTRIBUTIONS

Conceptualization: ET, LH, ESC, Methodology, Software: ET, Formal Analysis: ET, MS, Investigation: ET,

LH, Visualization: ET, ESC, Project administration, Writing – original draft: ET, Writing – review & editing:

ET, HH, ESC, IS, LH, MS.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

While citing references scientifically relevant for this work, we also actively worked to promote gender bal-

ance in our reference list.

Received: February 15, 2022

Revised: May 5, 2022

Accepted: May 17, 2022

Published: June 17, 2022
iScience 25, 104462, June 17, 2022 19

https://doi.org/10.1016/j.isci.2022.104462


ll
OPEN ACCESS

iScience
Article
REFERENCES

Admoni, H., Dragan, A., Srinivasa, S.S., and
Scassellati, B. (2014). Deliberate delays during
robot-to-human handovers improve compliance
with gaze communication. In ACM/IEEE
International Conference on Human-Robot
Interaction, pp. 49–56. https://doi.org/10.1145/
2559636.2559682.

Admoni, H., and Scassellati, B. (2017). Social eye
gaze in human-robot interaction: a review.
J. Human-Robot Interact. 6, 25. https://doi.org/
10.5898/jhri.6.1.admoni.

Aliasghari, P., Ghafurian, M., Nehaniv, C.L., and
Dautenhahn, K. (2021). How do different modes
of verbal expressiveness of a student robot
making errors impact human teachers’ intention
to use the robot? In Proceedings of the 9th
International Conference on Human-Agent
Interaction (ACM), pp. 21–30. https://doi.org/10.
1145/3472307.3484184.

Allen, M., Poggiali, D., Whitaker, K., Marshall,
T.R., and Kievit, R.A. (2019). Raincloud plots: a
multi-platform tool for robust data visualization.
Wellcome Open Res. 4, 63. https://doi.org/10.
12688/wellcomeopenres.15191.1.

Andrist, S., Tan, X.Z., Gleicher, M., and Mutlu, B.
(2014). Conversational gaze aversion for
humanlike robots. In Proceedings of the 2014
ACM/IEEE International Conference on Human-
Robot Interaction (ACM), pp. 25–32. https://doi.
org/10.1145/2559636.2559666.

Babel, F., Kraus, J., Miller, L., Kraus, M., Wagner,
N., Minker, W., and Baumann, M. (2021). Small
talk with a robot? The impact of dialog content,
talk initiative, and gaze behavior of a social robot
on trust, acceptance, and proximity. Int. J. Soc.
Robot. 13, 1485–1498. https://doi.org/10.1007/
s12369-020-00730-0.

Bach, P., and Schenke, K.C. (2017). Predictive
social perception: towards a unifying framework
from action observation to person knowledge.
Soc. Personal. Psychol. Compass 11, e12312.
https://doi.org/10.1111/spc3.12312.

Baron-Cohen, S., Campbell, R., Karmiloff-Smith,
A., Grant, J., and Walker, J. (1995). Are children
with autism blind to thementalistic significance of
the eyes? Br. J. Dev. Psychol. 13, 379–398. https://
doi.org/10.1111/j.2044-835x.1995.tb00687.x.
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Materials availability
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Data and code availability

The datasets generated during this study are available at the Open Science Framework Repository: https://

osf.io/zq3fg/.

All original code are available at the Open Science Framework Repository: https://osf.io/zq3fg/.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

We recruited adult English-speaking participants via the online research participation platform Prolific Ac-

ademic (Palan and Schitter, 2018). The task, procedure, and methodology were reviewed and approved by

the institutional review boards of the University of Hull (protocol number: FHS150) and carried out in accor-

dance with the standards set by the Declaration of Helsinki. All participants were naı̈ve to the task and

purpose of the experiment. Each participant completed a single experiment (we used the ‘excluded

participants from previous studies’ screener available in the participation platform) in exchange for

monetary compensation and informed consent was obtained before starting the task.
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A total of 455 participants completed different online experiments (Experiment 1, number of participants

n = 81 [female = 36, male = 45, prefer not to say = 0]; mean ageGs.e.m. 25.93G 0.78, range [18-50]; Exper-

iment 2, n = 96 [female = 42, male = 54, prefer not to say = 0]; 27.59 G 1.19 [18-72]; Experiment 3, n = 101

[female = 40, male = 60, prefer not to say = 1], 25.81 G 0.87 [18-60]; Experiment 4, n = 82 [female = 29,

male = 52, prefer not to say = 1], 26.16 G 1.08 [18-66]; Experiment 5, n = 48 [female = 17, male = 30, prefer

not to say = 1], 24.55 G 1.16 [18-53]; Experiment 6, n = 47 [female = 17, male = 30, prefer not to say = 0],

24.04G 0.75 [18-41]). A sample size calculation (G*Power; Faul et al., 2007) was performed to have sufficient

power to detect small effect sizes for Experiments 2 and 3 (dz = 0.30, Alpha = 0.05, Beta = 0.80, minimum

sample size of 90), and Experiments 1 and 4 (dz = 0.35, Alpha = 0.05, Beta = 0.80, minimum sample size of

67). As we observedmedium to large effects in Experiments 2, 3, and 4, sample size for Experiments 5 and 6

was computed and updated accordingly (dz = 0.45, Alpha = 0.05, Beta = 0.80, minimum sample size of 41).

Anticipating that some participants might be removed (e.g., outliers), we slightly increased the target sam-

ple size in all studies to avoid reduced statistical power.
METHOD DETAILS

Procedure

All experiments were performed online. Participants were invited to read the information sheet and

communicate any questions to the experimenter if needed. After providing informed consent, participants

read the experimental instructions. Three agents were presented and described as humans, robots, and a

triangle capable of performing three actions, and the trial timeline was explained (see Video S1 for instruc-

tions and trial timeline). After that, participants performed a quick online practice session of 18 trials and

received accuracy feedback after their answers for the first 12 practice trials (‘‘CORRECT!’’ for correct an-

swers; ‘‘WRONG! The correct key was [key label]! The agent is [text message that explained what the agent

was doing based on experiment instructions]’’, for example ‘‘looking to your right’’ in Experiment 1). After

the online practice session, participants started four experimental blocks. Each block comprised 45 trials

for Experiments 1-4 (total of 180 trials) and 30 trials for Experiments 5-6 (total of 120 trials). After the

main task, participants rated their exposure to media robotic content (‘‘How often do you watch movies,

TV series, or play videogames where robots are involved?’’) using a nominal scale (1 = Never, 2 = Once

every Year, 3 = Once every 6 months, 4 = Once every 3 months, 5 = Once every month, 6 = More than

once every month). After the experiment, participants were debriefed as to the purpose of the experiment.
Apparatus and task

In Experiments 1-4, each agent could gaze towards a graspable object, a text bubble, or up and down for

20 trials (a total of 60 trials per agent; 180 trials for the whole experiment). We displayed 3D printed

geometrical shapes as graspable object (i.e., cube, cylinder, sphere, and a rectangle) and the text bubble

could contain one of ten short self-descriptive sentences (i.e., I think, I plan, I desire, I judge, I worry, I

believe, I imagine, I relax, I feel, I like). These short sentences were selected to facilitate both physical

and mental states attribution to the observed agent (Tamir et al., 2016). Sentences were not associated

to any agent and were randomly presented each trial. Moreover, the location of the graspable object

and text bubble was randomly generated each trial (with exception of Experiment 4). Thus, while an agent

gazed towards the graspable object 20 times, the graspable object was located to the agent’s right or to

the agent’s left randomly (e.g., an agent could gaze at the graspable object located on their left 12 times,

and 8 times at the graspable object located on their right). This randomisation was preferred over counter-

balancing as we were interested in testing differences across agents when they were looking towards ob-

jects (Experiment 3 was completed first). We decided to keep the same randomisation procedure for

Experiments 1 and 2 to make comparable analyses across Experiments 1, 2, and 3 (the main analyses of

Experiments 1-2 and the ‘‘role of Gaze’’ analyses of Experiment 3). Participants were asked to place their

right index, middle, and ring fingers over three keys (‘n’, ‘j’, ‘i’) and to indicate as fast and as accurate as

possible where the agent was from an egocentric perspective (e.g., the agent is looking to his right; Exper-

iment 1), from an allocentric perspective (e.g., the agent is looking to your right; Experiment 2), to indicate

what the agent was looking at (e.g., the agent is looking at the object; Experiment 3), or what the agent was

going to do (e.g., the agent is looking at the object to grasp; Experiment 4).

In Experiments 5-6, each agent could direct their gaze up towards a microphone placed over their heads

(20 trials) or down (20 trials) for a total 120 trials. Participants were asked to place their right index, and mid-

dle fingers over two keys (‘l’, ‘k’) and to indicate as fast and as accurate as possible where the agent was
24 iScience 25, 104462, June 17, 2022
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looking (e.g., up or down; Experiment 5), or what was going to do (e.g., the agent is going to speak or is

looking at the table; Experiment 6).

Keys were randomly assigned to one gaze direction (Experiments 1, 2, and 5) or action (Experiments 3, 4,

and 6) across participants. In Experiments 1-4, the up and down gaze movements were associated to the

same (randomised across participants) key.

Trial timeline was identical in all experiments. Participants observed for 1100ms a picture of the table with

either a graspable object on one side and a text bubble on the other side in Experiments 1-4, or a micro-

phone at the top in Experiments 5-6. Then, one of the three agents could appear, and 400ms later they

turned their head and gaze towards one of the presented objects (graspable objects and text bubble

for Experiments1-4; a microphone for Experiments 5-6) or not (either up or down for Experiments 1-4;

down for Experiments 5-6). The agent and the environment remained on screen until keypress. In all exper-

iments the intertrial interval randomly ranged between 400ms and 600ms. The tasks were developed using

Psychopy3 (Peirce et al., 2019) and were hosted on Pavlovia (Pavlovia.org).
QUANTIFICATION AND STATISTICAL ANALYSIS

We collected task Accuracy and Response Time (expressed in seconds) as performance measures, and we

specified how data would be processed in the online pre-registration file for Experiment 3, the first experiment

we conducted (AsPredicted; 54499: https://aspredicted.org/nq822.pdf). Specifically, for all experiments we

excluded trials <0.150 s and >1.500 s.. Although, we pre-registered to exclude trials <0.150 sec and >3.000

sec, we preferred to adopt a more stringent criteria in the paper to avoid data to be driven by very long RT

by excluding trials >1.500 sec (Bayliss and Tipper, 2005; Wykowska et al., 2014; Kompatsiari et al., 2018).

This allowed us to remove motor responses anticipating gaze onset or influenced by non-controllable factors

(e.g., participants getting distracted by surrounding noise). Then, for each participant, we excluded trials whose

RTs fell above or below 2.5 SDs of the overall mean within each block. At this stage of data processing, we

excluded participants whose overall accuracy was below 65%. Although this value was arbitrary, it is well above

chance level for Experiments 1, 2, 3 and 4 (33%) and Experiment 5-6 (50%). Hence, participants randomly re-

sponding should have been excluded from the final sample. Finally, we excluded participants considered out-

liers when their performance (in RTs or Accuracy) fell above or below 2.5 SDs of the overall mean across con-

ditions of the remaining participants.

On the final dataset, statistics were performed using R 3.5.1 (R Core Team, 2018) run on the University of

Hull High-Performance facility VIPER (http://hpc.wordpress.hull.ac.uk/home/). We used the lme4 package

(v1.1.27.1; Bates et al., 2015) to perform MLM with fixed effects and complex random intercepts (CRIs) as

scalar random effects (Scandola and Tidoni, 2021). Scalar random effects can represent the complexity

of categorical factors (e.g., in lme4 syntax 1 | Participants:Factor; Factor; Bates et al., 2015). Model reduc-

tion started from the full-CRIs MLM (Scandola and Tidoni, 2021) with all main effects and interaction of

interests. If the model overfitted, the CRI with the lowest variance was removed until a convergent non-sin-

gular model was found. For MLMs on RT of correct answers we also report the partial eta-squared as a mea-

sure of effect size (effectsize v0.4.5; Ben-Shachar et al., 2020). For all MLM we computed the conditional R2

(for lme4::lmer performance v0.7.3, Lüdecke et al., 2020; for lme4::glmer MuMIn v 1.43.17, Kamil, 2016).

Throughout the paper we report the p-values computed on the estimates of the simplified MLM, and for

each multiple comparison we report the individual Bonferroni corrected p-values computed from the final

MLM using emmeans (Lenth et al., 2020). Furthermore, we performed confirmatory ANOVAs on mean-

aggregated data to support the main analyses. For each confirmatory analyses we ran multiple compari-

sons on the mean-aggregated data (Scandola and Tidoni, 2021) and report the absolute value of the

Cohen’s d (|d|) and the Bayes Factor (BF10; default Cauchy prior of 0.707; JASP Team, 2021, Version

0.14) to further facilitate the reader in assessing the strength of the evidence. Classically, BF10 is inter-

preted as showing very strong evidence towards the alternative hypothesis when greater than 150, strong

evidence when equal or greater than 20, positive evidence when equal or greater than 3, and with weak or

negligible evidence when between 1 and 3 (Raftery, 1995). The inverse of these values (1/150, 1/20, 1/3) can

be interpreted as BF10 showing very strong, strong, or positive evidence towards the null hypothesis.

We considered as non-conclusive results discordant findings obtained from theMLM and from the analyses

on mean-aggregated data. If not stated otherwise, the ANOVAs and multiple comparisons performed on

mean-aggregated data confirmed the results obtained from the MLM model.
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Amultinomial test assessed that the answers to the robotic content exposure question were equally distrib-

uted across the 6 options (see Supplementary Information).
ADDITIONAL RESOURCES

Pre-registration file for Experiment3: https://aspredicted.org/nq822.pdf.
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