
Adusumilli et al. Insights into Imaging          (2023) 14:165  
https://doi.org/10.1186/s13244-023-01500-y

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Radiomics in the evaluation of ovarian 
masses — a systematic review
Pratik Adusumilli1,2,3*   , Nishant Ravikumar4, Geoff Hall5,6, Sarah Swift1, Nicolas Orsi2 and Andrew Scarsbrook1,2 

Abstract 

Objectives  The study aim was to conduct a systematic review of the literature reporting the application of radiomics 
to imaging techniques in patients with ovarian lesions.

Methods  MEDLINE/PubMed, Web of Science, Scopus, EMBASE, Ovid and ClinicalTrials.gov were searched for relevant 
articles. Using PRISMA criteria, data were extracted from short-listed studies. Validity and bias were assessed indepen-
dently by 2 researchers in consensus using the Quality in Prognosis Studies (QUIPS) tool. Radiomic Quality Score (RQS) 
was utilised to assess radiomic methodology.

Results  After duplicate removal, 63 articles were identified, of which 33 were eligible. Fifteen assessed lesion clas-
sifications, 10 treatment outcomes, 5 outcome predictions, 2 metastatic disease predictions and 1 classification/out-
come prediction. The sample size ranged from 28 to 501 patients. Twelve studies investigated CT, 11 MRI, 4 ultrasound 
and 1 FDG PET-CT. Twenty-three studies (70%) incorporated 3D segmentation. Various modelling methods were 
used, most commonly LASSO (least absolute shrinkage and selection operator) (10/33). Five studies (15%) compared 
radiomic models to radiologist interpretation, all demonstrating superior performance. Only 6 studies (18%) included 
external validation. Five studies (15%) had a low overall risk of bias, 9 (27%) moderate, and 19 (58%) high risk of bias. 
The highest RQS achieved was 61.1%, and the lowest was − 16.7%.

Conclusion  Radiomics has the potential as a clinical diagnostic tool in patients with ovarian masses and may allow 
better lesion stratification, guiding more personalised patient care in the future. Standardisation of the feature 
extraction methodology, larger and more diverse patient cohorts and real-world evaluation is required before clinical 
translation.

Clinical relevance statement  Radiomics shows promising results in improving lesion stratification, treatment 
selection and outcome prediction. Modelling with larger cohorts and real-world evaluation is required before clinical 
translation.

Key points   
• Radiomics is emerging as a tool for enhancing clinical decisions in patients with ovarian masses.

• Radiomics shows promising results in improving lesion stratification, treatment selection and outcome prediction.

• Modelling with larger cohorts and real-world evaluation is required before clinical translation.
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Graphical Abstract

Introduction
Ovarian cancer (OC) is the leading cause of death from 
gynaecological cancer and the seventh commonest 
malignancy, accounting for 5% of all cancer deaths in 
women and 3% of overall cancer deaths [1–3]. Ovarian 
tumours include a heterogeneous group of benign, bor-
derline and malignant lesions with variable morphology 
[4]. The high morbidity and mortality from OC stem 
from a lack of validated screening and the late presenta-
tion of non-specific symptoms [5–8].

Histopathological evaluation is the diagnostic gold 
standard. Tissue samples are in the main acquired during 
surgical staging whereas in other malignancies, biopsy 
diagnosis precedes further patient management. Imag-
ing aims to differentiate benign adnexal lesions from 
malignancy.

First-line imaging of a clinically suspected ovarian mass 
usually involves trans-abdominal and trans-vaginal ultra-
sound assessment for suspicious features. The Risk of 
Malignancy Index (RMI) [9], Ovarian-Adnexal Reporting 
and Data System (O-RADS) [10], or International Ovar-
ian Tumor Analysis (IOTA) [11] clinical support tools are 
often employed in conjunction with ultrasound assess-
ment. RMI is a predictive model incorporating ultra-
sound features, menopausal status, and serum cancer 

antigen (CA-125) levels to estimate malignancy risk. 
O-RADS and IOTA, on the other hand, are categorisa-
tion systems that use ultrasound characteristics to strat-
ify ovarian masses into different risk categories.

Staging is through contrast-enhanced computed 
tomography CT of the abdomen and pelvis. Magnetic 
resonance imaging (MRI) is used to characterise inde-
terminate ovarian lesions or confirm dermoid/endome-
triotic cysts identified on ultrasound scans. Fluorine-18 
fluorodeoxyglucose positron emission tomography-com-
puted tomography (FDG PET-CT) has a less established 
role in OC. Patients may undergo unnecessary or inap-
propriate surgery when non-invasive investigations are 
inconclusive; adverse consequences include disease pro-
gression, decreased fertility and premature menopause.

Radiomics involves the extraction of high-dimensional 
data from medical imaging, allowing quantitative analy-
sis of the distribution and relationship of pixel levels [12]. 
This technique has been extensively studied in oncology 
for outcome prediction modelling [13–21]. The study 
aim is to appraise the published literature reporting 
application of radiomics to different imaging modali-
ties in suspected OC, provide an overview of progress 
and remaining challenges in the field and outline future 
recommendations.
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Methods
Search strategy and selection criteria
A search of MEDLINE/PubMed, Web of Science, Sco-
pus, Embase, Ovid and ClinicalTrials.gov databases was 
performed in late March 2022. The criteria consisted of 
“radiomics” OR “radiomic” and “ovary” OR “ovarian”. 
Eligibility was assessed based on the title, abstract and 
subsequent full review. Articles not published in English, 
literature reviews and those assessing biopsy targets were 
excluded. References cited by articles were reviewed to 
identify further publications. Preferred Reporting Items 
for Systematic Reviews and Meta-Analysis (PRISMA) 
criteria were adhered to (Supplementary Files) [22].

Studies assessing biopsy targets were excluded from 
this review, focusing instead on articles describing the 
clinical utility of AI and radiomics in ovarian cancer 
diagnosis, prognosis, and treatment response prediction, 
which align with critical decisions made in multidisci-
plinary team (MDT) meetings. This emphasis on non-
invasive assessment methods is particularly relevant, as 
biopsies are often avoided in clinical practice due to the 
risk of tumour seeding.

Quality assessment
Validity and bias were assessed using the Quality in Prog-
nosis Studies (QUIPS) tool [23] and Radiomic Quality 
Score (RQS) [12]. Two authors (P.A., A.S.) independently 
reviewed all studies with any discordance resolved in 
consensus.

QUIPS evaluates validity and bias and considers six 
areas (Supplemental Table S1). The overall risk of bias 
for each study was further categorised based on the fol-
lowing criteria: if all domains were classified as low risk, 
or there was up to one moderate risk, the research was 
classified as low risk of bias. If one or more domains were 
classified as high risk, the article was classified as high 
risk of bias. All studies in between were classified as hav-
ing a moderate risk of bias [24]. Research with patient 
cohort sizes > 100 following exclusions was deemed to 
have had adequate participation.

RQS is a tool for assessing the quality and reporting 
of radiomic studies encompassing sixteen criteria with a 
maximum of thirty-six points (Supplemental Table S2). 
The RQS  rewards or penalises a study’s methodology, 
analysis, and reporting.

Results
Literature search
Database searches yielded a total of 207 articles. After 
eliminating 147 duplicates, 60 remained. In addition, 3 
articles were identified from the references of these arti-
cles. All 63 were screened for eligibility, ultimately leav-
ing 33 research studies (Fig. 1).

Quality assessment
One study demonstrated a low risk of bias in all six 
QUIPS domains [25], and 5/33 studies demonstrated 
a low overall risk of bias. Nineteen out of 33 studies 
had a high overall risk of bias, and 9/33 had a moderate 

Fig. 1  PRISMA flowchart
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overall risk of bias. Of the high-risk studies, six had a 
high risk of bias in participation, 16 in attrition, one 
in prognostic measurement, two in outcome meas-
urement, 15 in confounding factors and five in analy-
sis and reporting categories (Fig.  2 and Supplemental 
Table S3).

The highest RQS was 22/36 (61.1%), and the lowest 
score was − 6/36 (− 16.7%). Only one study had open-
source code available. No studies had source imaging 
data or segmentations available in a repository. One 
study incorporated phantom study performance. No 
studies were prospective trials registered in a database 
(Fig. 3 and Supplemental Table S4).

Outcomes
The analysed outcomes from these studies broadly fall 
into five main categories: diagnostic/pathological classifi-
cation (15 articles), prognostication/outcome prediction 
(5 reports), treatment planning/monitoring (10 articles), 
metastasis prediction (2 studies), and a single study that 
assessed both diagnostic/pathological classification and 
prognosis prediction. Table  1 summarises the pertinent 
findings, while the following sections provide a detailed 
discussion of individual research studies, broken down by 
classification and imaging modality. Supplemental Table 
S5 provides an overview of different radiomic feature 
categories for reference and Supplemental Table S6 lists 

Fig. 2  Quality in Prognosis Studies (QUIPS) stratification

Fig. 3  Radiomics Quality Score (RQS) bell curve
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details of specific radiomic feature analysis performed in 
each of the studies.

Diagnostic/pathological classification
Ultrasound
Chiappa et  al. [26] developed a support vector 
machine (SVM) ultrasound model to predict malig-
nancy risk in 241 masses. Model performance for 
solid malignant vs benign (accuracy 80.0%, AUC 0.87), 
cystic malignant vs benign (accuracy 87.0%, AUC 
0.88) and motley (mixed solid and liquid) malignant vs 
benign (accuracy 81.0%, AUC 0.89) was good. A sub-
sequent study [27] incorporated acoustic-shadow data 
and serum cancer antigen (CA-125) levels, yielding a 

better mean accuracy (91%) on prospective validation 
in a 35-patient test set.

Aramendía-Vidaurreta et  al. [28] developed a multi-
layer perceptron ultrasound classification model utilising 
79 radiomic features and age with 145 patients, dem-
onstrating 98.8% accuracy, 98.5% sensitivity and 98.9% 
specificity (AUC 0.99).

Computed tomography
Li and co-workers [29] developed a classification model 
based on contrast-enhanced CT in 134 lesions. The radi-
omic signature (RS) was calculated via a linear combina-
tion of selected radiomic features weighted by respective 
coefficients. Multivariate logistic regression (LR) combined 

Table 1  Summary of key features from the included studies [12, 23–54]

BSM-MLR backward stepwise multivariate logistic regression, CR Cox regression, DL-RNA deep learning-ResNet architecture, L-CR Lasso-Cox regression, LASSO least 
absolute shrinkage and selection operator, LR logistic regression, ML machine learning, MLR multivariate logistic regression, MMR multivariate multiple regression, 
MR multiple regression, MVA multivariate analysis, NNC-MPN Neural Network Classifier-Multilayer Perceptron Networks, PCS proprietary CAD scheme, RF random 
forest, RFC random forest classifier, RK radial kernel, SVM support vector machine, UA univariate analysis, ULR univariate logistic regression, UMR univariate multiple 
regression

In the QUIPS column: red, amber and green signify high, moderate and low risk respectively

In the RQS column, the lowest scores are red and this is a spectrum progressing through amber to green which signifies the highest scores
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clinical factors and RS to generate a nomogram demon-
strating an externally validated AUC of 0.95.

Park and colleagues [30] developed a contrast-
enhanced CT classification model in 427 patients with 
ovarian lesions. Radiomic features and patient age were 
used to create 3 ML models: SVM with radial kernel, ran-
dom forest and LR. Respective sensitivities and specifici-
ties were 92.0% and 61.0% (AUC 0.87), 91.0% and 69.0% 
(AUC 0.88), and 92.0% and 61.0% (AUC 0.88).

Yu et  al. [31] developed a SVM classification model 
using multiparametric CT to differentiate between serous 
borderline and serous malignant tumours in 182 patients. 
Arterial, venous, and equilibrium phase models achieved 
AUCs of 0.80, 0.86 and 0.73, respectively.

Zhu and colleagues [32] created a model based on non-
contrast CT to differentiate ovarian epithelial carcinoma 
(OEC) and non-epithelial OC in 101 patients. The RS 
was a linear combination of selected radiomic features 
multiplied by respective calculated weights. The RS and 
clinical factors were combined with multivariable LR to 
derive a nomogram. The sensitivity and specificity for 
radiomics, clinical, and combined models were 94.0%, 
47.0% (AUC 0.78); 72.0%, 87.0% (AUC 0.81); and 98.0%, 
67.0% (AUC 0.87), respectively.

Hu et  al. [33] developed a CT-based model to differ-
entiate primary (POC) and secondary OC (SOC) in a 
study of 110 patients. The RS was a linear combination 
of selected radiomic features weighted by respective coef-
ficients. The RS and clinical factors were combined in 
another model, and a nomogram was constructed. The 
combined model outperformed both radiomics and clini-
cal models with 78.8% sensitivity and 90.7% specificity 
(AUC 0.75) in the validation cohort.

Magnetic resonance imaging
Li and co-workers [34] subsequently developed a MRI-based 
machine learning (ML) model for the differentiation of bor-
derline and malignant epithelial tumours was developed 
with single parametric and multiparametric LR models in 
501 patients. The multiparametric solid-tumour model dem-
onstrated the best externally validated performance (area 
under the receiver operating characteristic curve, AUC 0.90) 
and outperformed radiologists (AUC 0.80).

Song et  al. [35] developed a MRI-based LR model to 
classify lesions as benign vs. borderline (task-A), benign 
vs. malignant (task-B), borderline vs. malignant (task-
C), and benign vs. borderline vs. malignant (3-class 
classification) in 82 patients with 104 tumours. A mul-
tiparametric pharmacokinetic map was generated by 
combining important radiomic features from dynamic 
contrast-enhanced MRI. AUCs were 0.899, 0.865, and 
0.893 for tasks A, B, and C, respectively. The 3-class 

classification task demonstrated AUCs of 0.893, 0.944, 
and 0.891 for the benign, borderline, and malignant 
groups, respectively. The pharmacokinetic model dem-
onstrated an overall accuracy of 74.0% compared to radi-
ologists at 64.4%.

Lupean et  al. [36] developed regression models based 
on T2W-MRI to classify cysts as benign or malignant 
(84.6% sensitivity, 80% specificity, AUC 0.84) in 28 
patients.

Wang and co-workers [37] developed a MRI deep 
learning (DL) classification model using 545 ovarian 
masses. radiomic features were harmonised and dimen-
sionality reduced. The clinical model used LR, and seven 
radiologists independently interpreted the imaging. Effi-
cientNet demonstrated the best accuracy (87.0%, AUC 
0.81). While junior radiologists demonstrated 64.0% 
accuracy and senior radiologists achieved 74.0% accu-
racy, the former aided by the DL model achieved 77.0% 
accuracy.

Zhang and colleagues [38] developed a multiparametric 
MRI classification model to differentiate between malig-
nant, benign, type I and II OECs and predict survival 
(training — 195 lesions, testing — 85 lesions). Survival 
analysis was undertaken with the least absolute shrink-
age and selection operator (LASSO) regression to gener-
ate a risk score. The model demonstrated 90.3% accuracy 
(AUC 0.97) in classifying benign vs malignant and 92.7% 
accuracy (AUC 0.86) in classifying type I and II OECs. 
Radiologists demonstrated lower accuracy of 83.5%.

Qian and co-workers [39] developed MRI, clinical and 
combined models to classify type I and II OECs in 61 
patients. Single sequence and multiparametric models 
were generated. The traditional model used univariate 
analysis of clinical factors, conventional MRI features and 
ADC values. Features with interclass correlation < 0.75 
were included in multivariate LR. Traditional models 
demonstrated 91.0% accuracy (AUC 0.96). The perfor-
mance of the mixed model was not significantly different 
(93.0% accuracy, AUC 0.91).

Jian and co-workers [40] developed a multiparametric 
MRI-based model to differentiate between type I and II 
OEC in 294 patients. The top four radiomic features were 
retained after feature elimination. A LASSO predictive 
model was generated for each sequence, a combined 
multiparametric model and a light combined model (FS-
T2W, DWI, ADC). In the external validation cohort, the 
combined model demonstrated the best performance 
(AUC 0.85).

FDG PET‑CT
There were no studies identified supporting the role of 
FDG PET-CT in this domain.
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Summary
Several studies have investigated CT and MRI-based 
techniques, reporting diverse but generally promising 
results. Notably, a few studies reported ML models which 
outperformed radiologists, though the wider applicabil-
ity of these findings requires additional validation. In 
ultrasound-based research, the integration of radiom-
ics with clinical markers such as CA-125 levels has been 
explored for malignancy risk prediction. However, limi-
tations across these studies, including lack of external 
validation, limited comparison with human expertise, 
and occasional lack of methodological detail, tempering 
the current findings. Additionally, small sample sizes and 
the absence of correction for multiple testing in certain 
studies present further challenges. These early findings 
underline the necessity for continued research, standard-
isation of methods, and rigorous validation to enhance 
the robustness and applicability of radiomics in ovarian 
cancer diagnosis and classification.

Diagnostic/pathological classification 
and prognosis prediction
Ultrasound
There were no studies identified supporting the role of 
ultrasound in this domain.

Computed tomography
Lu et  al. [41] developed a radiomics-determined math-
ematical descriptor of high-grade serous OC (HGSOC) 
risk phenotype using contrast-enhanced CT scans from 
283 patients. A radiomics prognostic vector (RPV) was 
calculated using LASSO regression. High RPV was signif-
icantly associated with primary chemotherapy resistance, 
shorter progression-free survival (PFS), poor surgical 
outcome, ECM-receptor interaction, focal adhesions, 
fibronectin and a high proportion of tumour-associated 
stromal cells. DNA damage response pathways were 
found to be activated in RPV-low tumours.

Magnetic resonance imaging
There were no studies identified supporting the role of 
MRI in this domain.

FDG PET‑CT
There were no studies identified supporting the role of 
FDG PET-CT in this domain.

Summary
This model was developed using a sizeable patient cohort 
and validated with external data. The clear documenta-
tion of their method suggests the potential for reproduc-
ibility. Additional validation with larger datasets would 
strengthen its findings. The addition of MRI data to the 

model could provide a more comprehensive understand-
ing of its applicability and performance.

Prognostication/outcome prediction
Ultrasound
Yao et  al. [42] developed an ultrasound-based model 
to predict PFS in 111 patients. The RS was calculated 
through a linear combination of selected radiomic fea-
tures weighted by respective coefficients. clinical factors 
and RS were incorporated to build a combined LASSO 
model which predicted 5-year PFS with 77.1% accuracy 
(AUC 0.83).

Computed tomography
Vargas and co-workers [55] developed a contrast-
enhanced CT-based model to evaluate associations 
between metastatic lesion inter-site tumour heterogene-
ity and clinical outcomes in 38 patients. Inter-site simi-
larity matrices were calculated [43]. Inter-site similarity 
entropy, similarity level cluster shade, and inter-site simi-
larity level cluster prominence were associated with 
reduced OS. Similarity level cluster shade, inter-site 
similarity level cluster prominence and inter-site cluster 
variance were associated with incomplete surgical resec-
tion.  19q12 involving cyclin E1 gene amplification (a 
primary oncogenic driver in HGSOC) occurred predomi-
nantly in patients with more heterogeneous inter-site 
textures.

Meier et  al. [43] developed a model to assess inter-
site texture homogeneity with survival and BRCA status 
using contrast-enhanced CT in 88 patients. Haralick fea-
tures and pairwise similarities were calculated to gen-
erate the inter-site similarity matrix. Higher inter-site 
cluster prominence was associated with lower PFS, and 
higher inter-site entropy was correlated with lower OS. 
Higher values of all metrics were significantly associated 
with lower complete surgical resection in BRCA muta-
tion-negative patients.

Veeraraghavan et  al. [44] developed an integrated 
intra- and inter-site radiomics-clinical-genomic marker 
of HGSOC outcomes and explored the biological basis of 
radiomic features in 75 patients; based on their previous 
work [43, 55] and cluster dissimilarity (cluDiss) [45]. A 
clinical-genomic variables model demonstrated the best 
platinum resistance classification accuracy with an AUC 
of 0.78. CluDiss was found to be associated with PFS, 
negatively correlated with Wnt signalling (which controls 
cell proliferation) and positively correlated to several 
immune tumour micro-environment cell types [46].

Magnetic resonance imaging
There were no studies identified supporting the role of 
MRI in this domain.
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FDG PET‑CT
Wang and colleagues [25] developed a FDG PET-CT 
model for predicting PFS in HGSOC in 261 patients. 
Univariate Cox regression analysis was used to assess 
the correlation between radiomic features and PFS. 
PET and CT-RS were calculated from selected fea-
tures weighted by regression coefficients. clinical fac-
tors were analysed with univariate Cox regression 
analysis. Multivariate Cox regression analysis was per-
formed with different combinations of clinical, PET, CT 
and metabolic parameters. The combined clinical and 
PET-RS model showed the highest prognostic perfor-
mance in the validation cohort (C-index 0.70, 95% CI 
0.66–0.74).

Summary
These studies provide valuable insights into the use of 
radiomics for predicting clinical outcomes in ovarian 
cancer, demonstrating the potential of integrated diag-
nostics combining imaging, clinical, and genomic data 
for guiding personalised decision-making. However, 
they are current limitations including relatively small 
sample sizes, absence of external validation, which 
could potentially result in overfitting and false posi-
tives. While the integration of multi-dimensional data 
in these models is promising, practical considerations 
regarding the availability of such data in various clinical 
settings also need to be addressed. Overall, the prom-
ising findings necessitate further robust research, with 
larger cohorts and rigorous statistical validation, before 
these models can be fully incorporated into clinical 
practice.

Treatment planning/monitoring
Ultrasound
There were no studies identified supporting the role of 
ultrasound in this domain.

Computed tomography
Himoto et  al. [45] developed a model to determine if 
tumour heterogeneity from baseline contrast-enhanced 
CT could identify patients who would benefit from 
immunotherapy in 75 women. Fewer disseminated dis-
ease sites and lower intra- and inter-tumoural hetero-
geneity were associated with durable clinical benefits. 
Shorter time to off-treatment was associated with more 
disease sites, presence of pleural disease/distant metas-
tases, higher inter-tumoural heterogeneity, higher cluD-
iss and higher intra-tumoural heterogeneity. Higher 
inter-tumoural heterogeneity was also associated with a 
shorter time to off-treatment.

Rizzo and colleagues [47] developed a LR model to 
assess residual tumour and disease progression within 
12  months after cytoreductive surgery using contrast-
enhanced CT in 101 patients. Radiomic feature stability 
and reproducibility were assessed with phantom studies. 
The multivariate clinical-radiomics model (AUC 0.87) 
outperformed the clinical model (AUC 0.73).

Yi and co-workers [48] developed a model incorporat-
ing human sulfatase 1 single nucleotide polymorphisms 
(SNPs) and radiomic features from contrast-enhanced 
CT to predict platinum resistance in 102 patients. RS was 
calculated through a linear combination of selected radi-
omic features weighted by respective coefficients. The 
best performance in the validation cohort was achieved 
by the combined radiomic, clinicopathological, and SNP 
model (AUC 0.97).

Wei et  al. [49] developed a LR model to predict 
3-year post-operative recurrence of OC using contrast-
enhanced CT in 94 patients. LASSO was utilised to build 
the RS which demonstrated 74.4% accuracy in the vali-
dation cohort (AUC 0.85). A subsequent model to pre-
dict recurrence risk was developed in 142 patients [50]. 
Kaplan–Meier analysis was performed, and patients were 
divided into high- and low-risk groups. A clinical prog-
nostic model was constructed, and a nomogram based on 
combined radiomic and clinical factors was derived. The 
nomogram predicted 18-month and 3-year recurrence 
risks with accuracies of 84.1% and 88.9%.

Danala and co-workers [51] developed a model to 
identify features associated with predicting post-surgical 
chemotherapy response using contrast-enhanced CT 
in 57 patients. One model utilised pre-treatment CT 
and a second model utilised feature differences between 
pre- and post-treatment CTs. The top 15 radiomic fea-
tures were combined with equal weights to generate a 
likelihood score. The fusion-based features achieved the 
best performance (AUC 0.84). This model was further 
refined in a subsequent study [52]. Twelve radiomic fea-
tures were selected before applying a nearest-neighbour 
algorithm to select optimal features. The pre-treatment 
and feature-difference models demonstrated comparable 
AUCs of 0.81 and 0.83.

Zargari and colleagues [53] developed a model to inves-
tigate spatial and frequency domain features predictive of 
chemotherapy 6-month PFS using 120 patients. A gener-
alised linear model achieved an AUC of 0.86.

Magnetic resonance imaging
Li et  al. [54] developed an MRI-based (T2W and CE-
T1W) radiomic-clinical nomogram to predict residual 
disease (RD) status in 217 patients with HGSOC. LASSO 
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was used to select radiomic features and build a single 
parameter signature to predict RD. Multivariable LR 
identified optimal radiomic and clinico-radiological fea-
tures. The MF-based combined radiomic-clinical nomo-
gram demonstrated the best performance with 73.6% 
accuracy (AUC 0.8).

Li et al. [56] developed a SVM model to predict recur-
rence risk in OC patients using MRI in 117 patients. L1 
regularisation-based LASSO feature selection was used. 
A clinical model was developed using post-surgical resid-
ual tumour status and serum CA-125 levels. A fusion 
model incorporating CE-T1W, T2W and clinical factors 
demonstrated the best performance with 86.0% accuracy 
(AUC 0.86).

FDG PET‑CT
There were no studies identified supporting the role of 
FDG PET-CT in this domain.

Summary
Overall, these studies showcase the application of radi-
omic models in assessing ovarian cancer treatment, with 
outcomes such as a residual tumour, disease progression, 
and platinum resistance. However, common limitations 
across these studies include a lack of robust internal or 
external validation and the need for larger datasets. Addi-
tionally, some studies, face potential compliance issues 
with non-Image Biomarker Standardisation Initiative 
(IBSI) compliant in-house software. Despite these chal-
lenges, the initial results indicate a promising direction 
for the field, emphasising the importance of continued 
research and validation efforts.

Metastasis prediction
Ultrasound
There were no studies identified supporting the role of 
ultrasound in this domain.

CT
Ai and co-workers [57] developed a CT-based model to pre-
operatively predict metastases in 101 patients. Optimal fea-
tures were selected, and a RS was calculated using a linear 
combination of radiomic features weighted by respective 
weights. Univariate analysis was used to select clinical fac-
tors and build a LR model. A combined model with LR was 
built integrating radiomic and clinical factors (AUC 0.86).

Magnetic resonance imaging
Song et al. [58] developed a model to predict peritoneal 
metastasis pre-operatively from multiparametric-MRI in 
89 patients. RS was developed after feature elimination 
using LASSO and patients were stratified into low- or 
high-risk groups. A nomogram was constructed using 
multivariate LR with the RS and clinical factors. Radi-
ologists demonstrated 65.7% accuracy (AUC 0.67) in the 
validation cohort. The RS demonstrated 80% accuracy 
(AUC 0.97) in the validation cohort, while the nomogram 
achieved 82.9% (AUC 0.94).

FDG PET‑CT
There were no studies identified supporting the role of 
FDG PET-CT in this domain.

Summary
These studies highlight the promising potential of radi-
omics in predicting metastasis in ovarian cancer patients. 
The incorporation of both radiomic signatures and clini-
cal factors in developing predictive models underscores 
their innovative approach. However, the relatively mod-
est sample sizes utilised in both studies highlight the 
need for more expansive studies with larger datasets for 
robust validation. Notably, the absence of clear informa-
tion on the use of CT contrast in the study by Ai et al. is 
a point that future research could clarify. Despite these 
challenges, these studies contribute valuable insights and 
provide a foundation for further research.

Table 2  Limitations of the current literature and opportunities for the future

Limitation Opportunity

1. Multiple scanners and imaging protocols Phantom studies
Image harmonisation techniques
IBSI-compliant radiomic packages
Validate reproducibility using publicly available data sets

2. Comparison with human readers Undertake blinded review with human interpreters with varying 
experience levels

3. 2D segmentation and manual segmentation Undertake all segmentation using 3D
Develop automated/semi-automated segmentation techniques

4. Lack of external validation Use publicly available data sets as external validation

5. Open source code Upload code to public repositories such as GitHub
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Current limitations and future challenges
This systematic review highlights several areas of devel-
opment for future radiomics research (Table 2).

A significant limitation stems from inconsistent imag-
ing protocols, feature extraction and feature selection 
methodologies and disparities between feature extrac-
tion packages. Radiomics involves quantitative analysis 
of image data, which is sensitive to variations in image 
quality, resolution, and contrast. Factors such as image 
acquisition parameters, reconstruction techniques, scan-
ner manufacturers, and scan protocols can therefore 
introduce variability in the extracted features [59–63]. 
For CT, variations in kilovolt peak (kVp), tube current 
exposure time product (mAs), tube current modulation 
(TCM) settings, slice thickness, and reconstruction algo-
rithms can introduce inconsistencies in radiomic analy-
sis. Similarly, in MRI, magnetic field strength and pulse 
sequences affect the signal-to-noise ratio and contrast-
to-noise ratio, which in turn influence radiomic features. 
Ultrasound imaging parameters, such as frequency, gain 
settings, and dynamic range, play a role in determining 
the appearance of tissue texture and the extraction of 
radiomic features. In PET-CT, the choice of reconstruc-
tion algorithm, standardised uptake value (SUV) meas-
urements, time-of-flight (TOF) reconstruction, and point 
spread function (PSF) correction can all impact the con-
sistency and comparability of radiomic features across 
different datasets. Ideally, studies should adopt standard-
ised imaging protocols and feature extraction methodol-
ogies to minimise the impact of these variables. Phantom 

studies can help compensate for these variations to some 
extent; however, only one study utilised phantom studies 
to address scanner and protocol variability [47].

It was not possible to identify any consistent trends in 
radiomic feature correlations, primarily due to the con-
siderable variability in extraction methodologies, which 
encompassed a diverse array of radiomic packages, soft-
ware tools, and parameter settings, ultimately leading to 
non-uniform feature extraction and limiting comparabil-
ity of results across different studies. With a multitude of 
available radiomic software packages (Fig. 4), it is essen-
tial to ensure IBSI compliance [14, 64] to standardise the 
extraction process. Furthermore, some studies did not 
implement multiple testing correction when assessing 
the correlation between outcomes with radiomic features 
[30, 32, 36, 49] which increases the likelihood of false 
positives given the volume of features being analysed 
simultaneously.

Only 5/33 studies compared performance with radiolo-
gist interpretation [34, 35, 37, 38, 58]. This is crucial to 
enable a better understanding of the real-world potential 
and limitations of models. In this respect, Wang et  al. 
[37] assessed the accuracy of radiologists assisted by AI, 
which is more representative of how these models would 
be employed clinically.

Variability in segmentation methodology was evident in 
the studies, as researchers employed different manual or 
automated segmentation techniques and opted for either 
2D or 3D segmentations. A common drawback in these 
studies is the prevalent use of manual segmentation. All 

Fig. 4  Radiomic packages used by the studies



Page 11 of 14Adusumilli et al. Insights into Imaging          (2023) 14:165 	

but one study employed a manual segmentation tech-
nique. One group developed a semi-automated technique 
utilising in-house software, although the code is not avail-
able for public review [51–53]. Manual and automatic 
segmentation methods present various advantages and 
disadvantages in the studies. Manual techniques allow 
for greater control and precision but are more labour-
intensive and subject to inter- and intra-rater variability. 
Automatic or semi-automatic approaches offer increased 
efficiency and reproducibility, reducing both time taken 
and rater variability, but may potentially compromise 
accuracy. The labour-intensive nature of manual segmen-
tation has resulted in relatively small cohort sizes in most 
studies, with sample sizes varying from 28 to 501 cases. 
This leads to further limitations, such as small internal 
and external validation cohorts. Out of the 33 studies, 14 
did not include internal validation, and 27 lacked external 
validation.

The dimensionality of segmentation techniques exhib-
ited considerable variation, with 9/33 (27.3%) studies 
using 2D segmentations rather than 3D volumes of inter-
est (possibly due to time constraints). 3D segmentation 
provides a more comprehensive and accurate repre-
sentation of tumour volume by capturing the tumour’s 
complete spatial context. This leads to reduced inconsist-
encies between slices, diminished inter/intra-rater vari-
ability, increased feature stability, and ultimately, more 
reliable and reproducible radiomic features. However, 
while 3D segmentation delivers superior tumour rep-
resentation, it also presents challenges such as greater 
computational demands and extended processing times. 
These factors can impact the efficiency and scalability of 
research projects.

Ovarian lesions may demonstrate solid and cystic 
components. Included studies demonstrated vari-
ability in segmentation methodology, with only 2/33 
(6.1%) studies investigating separate models based on 
solid, cystic and whole lesion segmentation. Deciding 
between the segmentation of the solid, cystic part or 
whole tumour, and whether to consider only the ovar-
ian lesion or all lesions including disseminated disease, 
greatly influences extracted radiomic features and will 
affect the generalisability of models based on these 
features.

AI techniques have the potential to alleviate the chal-
lenges associated with manual segmentation and 3D pro-
cessing. By automating the segmentation process, AI and 
DL can significantly reduce the time and labour required, 
ultimately leading to larger cohort sizes and more robust 
validation. Furthermore, advanced DL techniques could 
potentially bypass the need for segmentation alto-
gether by directly learning and extracting radiomic fea-
tures from raw imaging data. As AI models continue to 

advance, they may also demonstrate increased computa-
tional efficiency thereby overcoming computational and 
processing time limitations.

Code should be made publicly available, allowing 
other researchers to fine-tune models, for auditing and 
research transparency. Yet, only one study had easily 
accessible code available [37, 65]. Finally, larger studies 
are needed to ensure generalisable patient models.

Conclusion
Radiomics has potential as a clinical diagnostic tool in 
patients with ovarian masses where it may allow better 
lesion stratification and inform future personalised patient 
care. Standardisation of feature extraction methodology, 
larger and more diverse patient cohorts and real-world 
evaluation are all required before clinical translation.
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