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ABSTRACT

Many accretion discs are thought to be warped. Recent hydrodynamical simulations show that

(i) discs can break into distinct planes when the amplitude of an imposed warp is sufficiently

high and the viscosity sufficiently low, and that (ii) discs can tear up into discrete rings when

an initially planar disc is subject to a forced precession. Previously, we investigated the local

stability of isolated, Keplerian, warped discs in order to understand the physics causing an

accretion disc to break into distinct planes, finding that antidiffusion of the warp amplitude

is the underlying cause. Here, we explore the behaviour of this instability in disc regions

where the rotation profile deviates from Keplerian. We find that at small warp amplitudes

non-Keplerian rotation can stabilize the disc by increasing the critical warp amplitude for

instability, while at large warp amplitudes non-Keplerian rotation can lead to an increased

growth rate for discs that are unstable. Tidal effects on discs in binary systems are typically

weak enough such that the disc remains close to Keplerian rotation. However, the inner regions

of discs around black holes are strongly affected, with the smallest radius at which the disc can

break into discrete planes being a function of the black hole spin. We suggest that interpreting

observed frequencies in the power spectra of light curves from accreting compact objects as

nodal and apsidal precession of discrete orbits requires an instability that can break the disc

into discrete rings such as the one explored here.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – instabilities.

1 IN T RO D U C T I O N

Accretion discs are generally warped, either during formation from

turbulent initial conditions in star formation (e.g. Bate, Lodato &

Pringle 2010) and supermassive black hole feeding (e.g. Lucas

et al. 2013), or through processes which warp an initially planar

disc such as Lense–Thirring precession from a spinning black

hole (Lense & Thirring 1918; Bardeen & Petterson 1975), the

gravitational forcing from a binary companion (Papaloizou &

Terquem 1995), magnetically driven warping by an inclined dipole

(Lai 1999) or warping with a planet on an inclined orbit (e.g. Xiang-

Gruess & Papaloizou 2013). Warped disc profiles have been directly

observed in various systems, e.g. in the maser disc found in the

galaxy NGC 4258 (Miyoshi et al. 1995), in the debris disc around

β Pic (Heap et al. 2000), and indirectly inferred from long-term

periodicities in low-mass X-ray binaries, e.g. Her X-1 (e.g. Katz

1973) and precessing jets, e.g. in the high-mass X-ray binary SS 433

(Margon 1984). Warps are now routinely observed in protoplanetary

discs with e.g. ALMA (e.g. Casassus et al. 2015).

The local thermal-viscous stability of a warped and isolated (i.e.

no external torque) disc was first explored by Ogilvie (2000), who

⋆ E-mail: suzan.dogan@ege.edu.tr (SD); cjn@leicester.ac.uk (CJN)

concluded that the disc becomes unstable when the warp amplitude

is sufficiently large and the viscosity is sufficiently small. In Doğan

et al. (2018) this was investigated in more detail with the aim of

identifying why discs can break into distinct planes (as found in

the simulations of, e.g. Larwood et al. 1996; Fragner & Nelson

2010; Lodato & Price 2010; Nixon et al. 2012; Nixon & King 2012;

Facchini, Lodato & Price 2013; Nixon, King & Price 2013; Doğan

et al. 2015; Nealon, Price & Nixon 2015; Liska et al. 2020). The disc

becomes unstable when the diffusion rate of the warp is not maximal

at the location of the maximum warp amplitude, and therefore

antidiffusion of the warp drives a sharp break between two parts

of the disc. The warp amplitude in this region grows and the surface

density drops, leading to rings of matter at different radii which

occupy different orbital planes (which, in the case that the disc warp

amplitude grows with time due to a forced differential precession of

the disc orbits, leads to disc tearing; Nixon et al. 20121). In the case

of a planar disc this unstable behaviour reduces to the Lightman–

Eardley viscous instability which leads to discontinuities in the

surface density of the disc (i.e. rings of matter which occupy the

same orbital plane; Lightman & Eardley 1974).

1We note that recent observational evidence for this process occurring in a

protoplanetary disc is presented by Kraus et al. (2020).

C© 2020 The Author(s)
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Instability of non-Keplerian warped discs 1149

In a warped disc, the local orbital plane of the matter changes

with the disc radius. The misalignment between the high-pressure

mid-plane regions of two neighbouring rings produces a pressure

gradient in the radial direction. Therefore, a fluid element orbiting in

the disc with a local orbital frequency � encounters a radial pressure

force which oscillates around the orbit at the same frequency �.

This induces epicyclic motion within the disc. When the disc

is Keplerian, the orbital and the epicyclic frequencies are the

same, i.e. � = κ where κ is the epicyclic frequency, creating

a resonance between the forcing and the epicyclic motion, and

this excites strong epicyclic motions which communicate the disc

warp in the radial direction. However, the disc orbital and epicyclic

frequencies need not be the same. In many astrophysical systems,

the disc is subjected to additional effects (arising from, e.g. the

gravitational field of a spinning black hole or the gravitational

potential of a binary) leading to departures from Keplerian rotation.

Non-Keplerian rotation weakens the resonance between the forcing

and the motion. In this case, the numerical values of the diffusion

coefficients in the warped disc equations (see Ogilvie 1999, 2000;

Ogilvie & Latter 2013), and thus the disc evolution, will not be the

same as for a Keplerian disc.

In this work, we explore the influence of non-Keplerian rotation

on the instability of warped discs described by diffusive propagation

of the warp. In Section 2 we discuss the systems where departures

from Keplerian rotation are expected to be important. In Section 3

we provide, for a range of rotation profiles, numerical evaluations

of the diffusion coefficients, the growth rates of the instability, and

the critical warp amplitudes at which the disc becomes unstable. In

Section 4 we present our conclusions.

2 N ON - KEP LERIAN ROTATION

In the Newtonian regime, the radial epicyclic frequency for an

accretion disc is defined by

κ2 = 4�2 +
d�2

d ln r
, (1)

where �(r) is the angular frequency, and �(r) = (GM/r3)1/2 for a

Keplerian disc. As in Ogilvie (2000), it is useful to introduce the

dimensionless rate of orbital shear q for the stability analysis which

will be presented in Section 3:

q = −
d ln �

d ln r
. (2)

Therefore, the Newtonian dimensionless shear rate and the epicyclic

frequency can be related to each other by

κ̃2 = 4 − 2q, (3)

where κ̃ = κ/� is the dimensionless epicyclic frequency. For

Keplerian orbits q = 3/2, and κ̃2 = 1. In many astrophysical

systems the rotation is not strictly Keplerian with the dimensionless

rate of shear higher than 3/2, and thus κ̃2 < 1. In this section

we present some cases where non-Keplerian rotation is expected

to be important: (1) discs subject to tides from a binary, i.e.

circumprimary/circumsecondary and circumbinary discs, and (2)

discs around a (spinning or Kerr) black hole. We aim to determine

the range of possible deviations in the rate of orbital shear and the

epicyclic frequency from the Keplerian case.

2.1 Discs with a tidal torque from a binary

2.1.1 Circumstellar discs

In a binary system, a disc around one component can be perturbed

by the gravitational (tidal) field of the companion, leading to non-

closed disc orbits (described by apsidal and nodal precession) with

� �= κ . The perturbation is strongest in the outer regions of the disc

closest to the companion. The strength of the deviation depends on

the companion’s mass and the disc radius.

The orbital and the epicyclic frequencies for a circumstellar disc

are given by (e.g. Lubow & Ogilvie 2000)

�2 =
GM1

r3
+

GM2

2r2
b r

[

r

rb

b
(0)
3/2

(

r

rb

)

− b
(1)
3/2

(

r

rb

)]

(4)

and

κ2 =
GM1

r3
+

GM2

2r2
b r

[

r

rb

b
(0)
3/2

(

r

rb

)

− 2b
(1)
3/2

(

r

rb

)]

, (5)

where

b(m)
γ (x) =

2

π

∫ π

0

cos(mφ)(1 + x2 − 2x cos φ)−γ dφ (6)

is the Laplace coefficient, rb is the binary separation, and M1 is the

mass of the component which has a disc (for simplicity we have

assumed a circular binary). In Fig. 1 (left-hand panel) we show q

and κ̃2 as a function of radius (r/rb) for various values of M2/M1.

As the deviation from Keplerian rotation increases with increasing

radius in the disc, we need to estimate the outer radius of the disc to

find the maximal deviation. For a circumprimary disc, the location

of the outer edge is determined by tides and an approximate value

for its location is given by rt ≃ 0.9rL1 (Frank, King & Raine 2002).

Here, rL1 is the primary’s Roche lobe radius which is given by

(Eggleton 1983)

rL1

rb

≃
0.49(M1/M2)−2/3

0.6(M1/M2)−2/3 + ln[1 + (M1/M2)−1/3]
. (7)

A more accurate method to find the tidal truncation radius is

described, and the radii outside which tidal torques dominate are

tabulated, by Papaloizou & Pringle (1977) for various mass ratios

(see their table 1). These values are a few per cent smaller than those

estimated from the Roche lobe approximation. However, for our

purpose an approximate value will suffice and we overlay (dotted

line) the approximate location of the outer disc for different binary

mass ratios in Fig. 1 (left-hand panel). As we see in Fig. 1 (left-

hand panel), the deviation from Keplerian rotation remains small

for all parameters and is maximized for larger mass companions.

For circumprimary discs the dimensionless orbital shear lies in the

range of 1.5 ≤ q ≤ 1.55, and correspondingly 1 ≤ κ̃2 ≤ 0.9.

2.1.2 Circumbinary discs

Similar to the previous case, we can derive the orbital and epicyclic

frequencies for a circumbinary disc from the gravitational potential

of the binary. Following, e.g. Nixon, King & Pringle (2011b), we

assume that the relevant potential is given by the m = 0 Fourier mode

of the time-dependent potential generated by the binary orbit, as all

other modes are oscillatory with time and thus their effects cancel

out over a binary period. Thus we can write the potential due to

the binary as the sum of the potentials from each binary component

averaged over their orbits (which for simplicity we assume here to be

circular). This means spreading the mass of each binary component

(M1, M2) into rings at their orbital radii from the origin (a1, a2).

MNRAS 495, 1148–1157 (2020)
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1150 S. Doğan and C. J. Nixon

Figure 1. Left-hand panel: This shows the radial distribution of the dimensionless orbital shear rates and corresponding dimensionless epicyclic frequencies

for circumstellar discs for various mass ratios. The dashed line approximates the tidal radius which determines the outer edge location of the disc and the

corresponding q value. The disc cannot extend beyond this distance. Right-hand panel: This shows the radial distribution of the dimensionless orbital shear rates

and corresponding dimensionless epicyclic frequencies for circumbinary discs for various mass ratios. The inner edge of the disc predicted by Artymowicz &

Lubow (1994) and corresponding q values are shown with the dashed line. We note that in the case of a circumbinary disc the values of q and κ̃2 are identical

for mass ratio M2/M1 and M1/M2.

Note that the total mass M = M1 + M2 and the orbital separation

rb = a1 + a2, and thus a1 = rbM2/M and a2 = rbM1/M. For an

arbitrary position in cylindrical polars (r, z) with the binary in the

z = 0 plane (note that by symmetry we are free to take the arbitrary

position to have any azimuthal angle, and thus we take it to be zero),

the m = 0 mode of the gravitational potential is given by

	 = 	1 + 	2 =
GM1

2π

∫ 2π

0

dφ

r1

+
GM2

2π

∫ 2π

0

dφ

r2

, (8)

where r1 is the distance to the M1 ring from the point (r, z) with

r2
1 = r2 + a2

1 + z2 − 2ra1 cos φ, and r2 is the distance to the M2

ring from the point (r, z) with r2
2 = r2 + a2

2 + z2 − 2ra2 cos φ,

and φ is the azimuthal angle around the rings. The orbital and

epicyclic frequencies can now be derived from the potential using

the definition for the orbital frequency

�2 =
1

r

∂	

∂r

∣

∣

∣

∣

z=0

, (9)

and equation (1) above for the epicyclic frequency (again evaluated

at z = 0).

In the limit that r/rb ≫ 1, analytical expressions for the frequen-

cies are given by e.g. Nixon et al. (2011a), Facchini et al. (2013),

Miranda & Lai (2015). Here, we are concerned with small radii

near the binary, and so we choose to solve the integrals numerically

to avoid taking the large radius approximation. For r/rb ≫ 1, the

results are essentially identical to the approximate expressions. For

r ∼ rb, the frequencies differ from the approximate expressions

by several 10s of per cent. To determine the largest deviation from

Keplerian rotation in this case, we need to determine the location

of the inner disc edge. To illustrate the inner disc location, we use

tidal truncation radii given by Artymowicz & Lubow (1994) (see

their table 1) for a circumbinary disc around a circular binary with

various mass ratios.

In Fig. 1 (right-hand panel), we show the dimensionless shear

rates and corresponding epicyclic frequencies for the circumbinary

discs as a function of r/rb for various mass ratios. The effect of

non-Keplerian rotation is maximum when the binary components

have equal masses. In this case, the dimensionless orbital shear and

dimensionless epicyclic frequency lie in the range 1.5 ≤ q ≤ 1.57

and 1 ≤ κ̃2 ≤ 0.86. The strength of the deviation from Keplerian

rotation in circumbinary discs is similar to the circumstellar disc

case, with both remaining much closer to Keplerian than the inner

regions of discs around black holes (see below).

2.2 Discs around Kerr black holes

For discs around black holes the orbital frequencies deviate from

Keplerian values leading to apsidal precession and (for misaligned

orbits around spinning black holes) nodal precession. These effects

are strongest at small radii around the black hole. The stable orbit

of accreting gas in a thin disc around a spinning black hole can

be described by a circular equatorial Kerr geodesic with orbital

frequency given by (Bardeen, Press & Teukolsky 1972; Kato 1990;

Gammie 2004)

�−1 =

(

GM

c3

)

[

(

r/rg

)3/2
+ abh

]

. (10)

Here, r is the distance from the black hole in Boyer–Lindquist

coordinates, rg = GM/c2 is the gravitational radius of the black

hole, abh is the dimensionless spin parameter of the black hole

with −1 ≤ abh ≤ 1. A non-spinning black hole has abh = 0, and

abh < 0 implies a retrograde disc. The radial dependence of the

epicyclic frequency for circular equatorial Kerr geodesics is given

by (Gammie 2004)

κ2
bh =

1

r3

1 − 6(r/rg)−1 + 8a(r/rg)−3/2 − 3a2(r/rg)−2

1 − 3(r/rg)−1 + 2a(r/rg)−3/2
, (11)

in which G = M = c = 1. The epicyclic frequency is zero (κ2
bh = 0)

at the innermost stable circular orbit (ISCO), and imaginary inside

the ISCO (κ2
bh < 0) where a circular shear flow around the hole

is unstable to axisymmetric perturbations. As mentioned above,

in a Keplerian potential the epicyclic frequency is equal to the

Keplerian orbital frequency, i.e. κ̃2 = 1. However, near a black

hole the epicyclic frequency is less than the orbital frequency. A

thin disc starts with κ̃2
bh = 0 at the ISCO, and then κ̃2

bh increases

until it reaches 1 at large radii. Fig. 2 (left-hand panel) shows the

radial distribution of the dimensionless epicyclic frequency, κ̃2
bh, for

various abh values. The deviation from Keplerian rotation is stronger

(weaker) when the disc is retrograde (prograde), and maximum

deviation at a given radius occurs when abh = −1.

A dimensionless measure of the shear rate for circular equatorial

geodesics in the Kerr metric is given by (Gammie 2004, see also

MNRAS 495, 1148–1157 (2020)
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Instability of non-Keplerian warped discs 1151

Figure 2. We show the radial distributions of the dimensionless epicyclic frequency from equation (11) (left-hand panel) and the dimensionless shear rate

from equation (12) (right-hand panel) for discs around spinning black holes for various spin parameters. The inner radii for each case corresponds to the ISCO

where κ̃2
bh = 0 and qbh = 2. The deviation from Keplerian rotation is large in the inner parts of the disc with κ̃2

bh → 0, and correspondingly qbh → 2. Retrograde

discs are more strongly affected at the same radius than prograde discs.

Penna et al. 2013)

qbh =
3

2

1 − 2(r/rg)−1 + a2(r/rg)−2

1 − 3(r/rg)−1 + 2a(r/rg)−3/2
. (12)

Circular equatorial geodesics have qbh = 2 at the ISCO, and qbh

becomes 3/2 at large radii. Fig. 2 (right-hand panel) shows the radial

distribution of the dimensionless shear rate for circular equatorial

geodesics around a spinning black hole. We should note that Fig. 2

shows the epicyclic frequency and the shear rate values for the

region outside the ISCO. The inner disc radii for each abh value can

be found from the relation between the black hole spin parameter

and the location of the ISCO (e.g. King & Pringle 2006):

abh =
1

3

(

rISCO/rg

)1/2
[

4 −
(

3
(

rISCO/rg

)

− 2
)1/2]

(13)

These locations correspond to the radii where κ̃2
bh changes sign.

We should also note that the relativistic expressions of the

epicyclic frequency (κbh) and the dimensionless shear rate (qbh)

given by (11) and (12) do not exactly satisfy the simple relation

given by (3). Here, the relation between κbh and qbh is modified as

follows:

κ̃2
bh =

(

4 − 2qbh

)[

1 + abh(r/rg)−3/2
]2

. (14)

We see that (14) is reduced to (3) at large radii where [1 +

abh(r/rg)−3/2] → 1, or in case of a Schwarzschild black hole, i.e.

where abh = 0. We comment on this further below in the context of

our results.2

3 INSTA BILITY OF A N ON-KEPLERIAN D I SC

The local stability of an isolated, Keplerian, warped disc with α

> H/R (where α is the dimensionless Shakura & Sunyaev 1973

viscosity parameter and H/R is the disc angular semithickness)

has been described in Ogilvie (2000) and Doğan et al. (2018).

In this work we follow the same analysis, but focus on the effect of

2We also note that the frequencies used here differ from those used in Lubow,

Ogilvie & Pringle (2002) which were derived in the frame of an observer at

infinity by Kato (1990). We use the frequencies derived in the fluid frame by

Gammie (2004), as the calculation of the torque coefficients below (which

depends on the shear rate q) is a local fluid calculation and the method we

use (following Ogilvie & Latter 2013) requires that the relation in (3) holds.

non-Keplerian rotation. Here we provide a brief description of the

relevant equations and refer the reader to Ogilvie (2000) and Doğan

et al. (2018) for more details. The governing evolutionary equations

are the conservation of mass equation,

∂�

∂t
+

1

r

∂

∂r
(rῡr�) = 0, (15)

and the conservation of angular momentum equation,

∂

∂t

(

�r2�l
)

=
1

r

∂

∂r

[

Q1�c2
s r

2l + Q2�c2
s r

3 ∂ l

∂r
+ Q3�c2

s r
3l

×
∂ l

∂r
−

(

∂

∂r

[

Q1�c2
s r

2
]

− Q2�c2
s r |ψ |2

)

h

h′
l

]

.

(16)

Here �(R, t) is the disc surface density, ῡr is the mean radial velocity,

�(R) is the orbital angular velocity of each annulus of the disc,

l (R, t) is the unit angular momentum vector pointing perpendicular

to the local orbital plane, cs is the sound speed, |ψ | = r|∂ l/∂r| is

the warp amplitude, h = r2� is the specific angular momentum,

h
′

= dh/dr and Qi are the dimensionless torque coefficients. A

detailed description of these equations can be found in Ogilvie

(2000), Ogilvie & Latter (2013), Doğan et al. (2018). Recall that

q =− d ln �/d ln r, and here we are focusing on non-Keplerian disc

rotation, implying that Qi = Qi(α, q, |ψ |). Note we have assumed

no bulk viscosity (αb = 0).

The details of the stability analysis are given in Ogilvie (2000)

and Doğan et al. (2018). The stability is considered with respect

to linear perturbations in δ� and δl , and then wave solutions are

sought. This yields a third-order dispersion relation given by

s3 − s2
[

aQ1 − 2Q2 + |ψ |
(

aQ′
1 − Q′

2

)]

− s
[

2aQ1Q2 − Q2
2 − Q2

3 + |ψ |
(

aQ1Q
′
2 − Q2Q

′
2 − Q3Q

′
3

)]

− a
[

Q1

(

Q2
2 + Q2

3

)

+ |ψ |
(

Q1Q2Q
′
2 − Q′

1Q
2
2

+ Q1Q3Q
′
3 − Q′

1Q
2
3

)]

= 0. (17)

Here, the prime on Qi represents differentiation with respect to |ψ |,

a = h/rh
′

= d ln r/ d ln h = 1/(2 − q). We note that a = 2 for

a Keplerian disc with q = 3/2. The dimensionless growth rate, s, is

MNRAS 495, 1148–1157 (2020)
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1152 S. Doğan and C. J. Nixon

Figure 3. Q1 (top), Q2 (middle), and Q3 (bottom) coefficients plotted as a function of warp amplitude |ψ |, assuming that α = 0.01 (first column), α = 0.03

(second column), α = 0.1 (third column) for various q values. The red line represents the Keplerian case in each panel, i.e. q = 1.5.

defined by

s = −
iω

�

(

�

csk

)2

, (18)

where k � 1/H for validity. The perturbations grow (R[s] > 0) or

decay (R[s] < 0) as exp [R(− iω)t].

Doğan et al. (2018) provide a detailed investigation with sim-

plified cases as well as full solutions to (17). The disc becomes

unstable if any of the roots of (17) has a positive real part, i.e. R(s)

> 0, as the perturbations then grow exponentially with time. In

Doğan et al. (2018), we showed that there is always a critical warp

amplitude, |ψ |c, which gives rise to instability for the parameters

we have explored, with the exception of high viscosity discs with α

∼ 1. Nearly flat discs with |ψ | � 0.1 were found to be stable. The

instability occurs as a result of antidiffusion of the warp amplitude.

The growth rates of the instability can be comparable with the

dynamical rate (R[s] ∼ 1).

The main effect of non-Keplerian rotation is to change the

values of the dimensionless torque coefficients in the conservation

of angular momentum equation (16). Other than that, the basic

equations remain the same. Similar to our previous work, we

calculate the Qi coefficients using the code kindly provided by

G. I. Ogilvie following the calculations in Ogilvie & Latter (2013).

Fig. 3 shows the values of Qi coefficients for three different values

of the shear viscosity parameter α = 0.01, 0.03, and 0.1, for various

q values. The Qi coefficients are calculated assuming a locally

isothermal equation of state, and therefore relevant to optically

thin discs. However, as discussed in Doğan et al. (2018), our results

are also applicable to the highly optically thick case as the basic

physics in these two cases remains the same on the time-scale on

which the torque coefficients, and thus the stability, is determined.

We note that some part of the solutions of the Qi coefficients for

non-Keplerian discs show a discontinuous behaviour in the regions

where they change their sign from negative to positive. This occurs

when the viscosity is very low. This behaviour was discussed by

Ogilvie (1999) and Ogilvie & Latter (2013) for inviscid (α = 0)

and non-Keplerian discs with q > 1.5 (κ̃2 < 1). The breakdown

of the solution was attributed to a non-linear resonance of coupled

horizontal and vertical oscillators (see appendix B of Ogilvie &

Latter 2013). When α = 0.01, we observe a similar behaviour for

q > 1.65, and similarly when α = 0.03, we observe this behaviour

for q > 1.75. When the viscosity is higher (e.g. for α = 0.1), this

behaviour disappears.

By using the non-Keplerian values of the Qi coefficients, we

evaluate the growth rates of the instability by solving equation (17)

(the full solutions are given in Doğan et al. 2018, their eqns 33–37).

In Fig. 4, we show the variation of dimensionless growth rates R[s]

with |ψ | for different values of q. The figures are plotted for α =

0.01, α = 0.03, and α = 0.1. We note that these growth rates mainly

consist of the combined effects of the Q1 and Q2 torque coefficients
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Instability of non-Keplerian warped discs 1153

Figure 4. We show the dimensionless growth rates R[s] as functions of |ψ | for various values of q for a disc with α = 0.01, α = 0.03, and α = 0.1. The growth

rates are calculated by solving equation (17) (the full solutions are given in Doğan et al. 2018, their equations 33–37). The red line represents the Keplerian

case where q = 3/2 and the grey line represents the zero growth rate in each panel.

Figure 5. We present the maximum values of the dimensionless growth rates of instability (R[s]max) as a function of q for different viscosities. 1st max

corresponds to the maximum growth rate in the low warp amplitude region, |ψ | ∈ [0.3, 1.0], where Q2 term is dominant (left-hand panel), and 2nd max

corresponds to the growth rate which is found at |ψ | = 5, i.e. in the region where Q1 term is dominant (right-hand panel). Note that we choose not to plot the

1st max value for q > 1.85 in the case of α = 0.1 as our defined range of |ψ | ∈ [0.3, 1.0] captures the initial down turn from R[s] ≈ 0 at |ψ | ≈ 0.3 before the

behaviour we are trying to exhibit (whereas if we increased the lower bound of the |ψ | range we would miss the peak values for the near-Keplerian cases when

α = 0.01; cf. Fig. 4).

(see fig. 2 in Doğan et al. 2018). At small warp amplitudes the Q2

term is dominant. At larger values of the warp amplitude, the Q1

term becomes dominant. In Fig. 4 we see that the growth rates of

the instability are higher and the critical warp amplitudes, where

the disc becomes unstable, are smaller for low α as found for the

Keplerian case in Doğan et al. (2018).

In Fig. 5, we present the maximum values of the dimensionless

growth rates of instability (R[s]max) against q for different viscosi-

ties. Here, we define two maxima for the growth rates. We see in

Fig. 4 that each R[s] reaches its peak value somewhere between

0.3 < |ψ | < 1.0, where the Q2 term is dominant. We call this peak

value 1st max; specifically we define the 1st max as the maximum

growth rate in the warp amplitude interval |ψ | ∈ [0.3, 1.0]. Then, the

growth rates show a monotonically increasing behaviour for higher

warp amplitudes. We call the growth rate value found at |ψ | = 5 as

2nd max. We see that the values of the 1st max are highest in the

near-Keplerian region. However, we should note that for α = 0.1

the 1st max are always negative, implying that the Q2 term is not

responsible for instability in such discs whatever the rotation profile

they have. On the other hand, the values for the 2nd max are higher

when the disc rotation deviates from Keplerian, except for α = 0.1

where strong non-Keplerian rotation acts to stabilize the disc.

In Fig. 4, the warp amplitude value where the dimensionless

growth rate becomes positive gives the critical warp amplitude

(|ψ |c) for the instability. In the left-hand panel of Fig. 6 we show

the stable and unstable regions of the q–|ψ | parameter space for

different values of α. For α = 0.01 (top panel), we see that instability

occurs for all warp amplitudes |ψ | > 0.8 for the dimensionless

orbital shear between 1.5 < q < 1.96. For 1.96 < q < 1.98, it is

still possible to find a critical warp amplitude which makes the disc

unstable. Only the discs with an extremely non-Keplerian rotation

profile (q � 1.98) are expected to be stable for this case. A nearly

flat disc with |ψ | < 0.2 is always stable for α = 0.01. Similarly,

for α = 0.03 (middle panel), the disc becomes unstable for all warp

amplitudes |ψ | > 1 when the orbital shear lies between 1.5 < q

< 1.85. For 1.8 < q < 1.95, a higher warp amplitude is needed

for instability. The discs with q � 1.95 are always stable for this

case. The discs with |ψ | � 0.4 are also always stable. Finally, for

α = 0.1 (bottom panel), the critical warp amplitudes which give

rise to instability are found to be higher than those we find for low

viscosities. The instability requires warp amplitudes of |ψ |� 2.5–3

for 1.5 < q < 1.8. The discs with q � 1.825 are expected to be stable

for all warp amplitudes. Discs with |ψ | < 2.2 are always stable for

α = 0.1.

We find that for a given value of α, the critical warp amplitudes

are smaller for Keplerian and near-Keplerian orbits. However the

growth rates are complicated in that at small warp amplitudes

(where the Q2 term dominates) the growth rates are higher for

MNRAS 495, 1148–1157 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
5
/1

/1
1
4
8
/5

8
3
1
0
8
5
 b

y
 g

u
e
s
t o

n
 0

2
 N

o
v
e
m

b
e
r 2

0
2
3



1154 S. Doğan and C. J. Nixon

Figure 6. Left-hand panel: Stable (yellow) and unstable (green) regions in the (q, |ψ |) parameter space for three different values of the viscosity parameter

α = 0.01 (top), 0.03 (middle), and 0.1 (bottom). Each plot shows the critical warp amplitudes for instability to occur in discs with various q values. Right-hand

panel: Critical warp amplitudes as a function of (r/rg) for various values of the spin parameter (abh) for α = 0.01 (top), 0.03 (middle), and 0.1 (bottom).

near-Keplerian rotation, while at large warp amplitudes (where the

Q1 term dominates) they are higher for non-Keplerian rotation (e.g.

left and middle panel of Fig. 4); however, for larger values of α

(e.g. right-hand panel of Fig. 4) large q can stabilize the disc for

all values of |ψ |. This is shown in Fig. 5 where the left-hand panel

(for small |ψ |) shows lower growth rates as q increases, while the

right-hand panel (for larger |ψ |) shows increasing growth rates for

increasing q except where q � 1.9 or where α = 0.1. Thus, while

in detail the evolution is quite parameter dependent, we find that in

general higher viscosity discs are more stable (higher critical warp

amplitudes and lower growth rates). We also find that non-Keplerian

rotation provides a stabilizing effect at low warp amplitudes, but

at high warp amplitudes non-Keplerian rotation can increase the

growth rate if the disc is unstable. We plot the 1st max (defined as

the maximum growth rate in the warp amplitude interval |ψ | ∈ [0.3,

1.0]) and 2nd max (defined as the growth rate at a warp amplitude

MNRAS 495, 1148–1157 (2020)
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Instability of non-Keplerian warped discs 1155

Figure 7. We present the maximum values of the dimensionless growth

rates as a function of radial distance (r/rg) for different α values. The

continuous line represents 1st max and the dashed line represents 2nd max.

of |ψ | = 5) growth rates as a function of radial distance from the

black hole for different viscosities and spin parameters in Fig. 7.

3.1 Validity of κ−q relation for black hole discs

In both the stability analysis and the calculation of the torque

coefficients we make use of the relation between epicyclic and

orbital frequency given by equation (3). However, as discussed in

Section 2.2 this relation does not hold exactly for the frequencies

quoted by Gammie (2004), Penna et al. (2013) for discs around

black holes. Far from the black hole, or for Schwarzschild black

holes the relation holds. Thus the values quoted above should not

be taken as precise for radii close to the ISCO. We can provide an

indication of the level of error introduced by this by comparing the

values of κ̃2 that are calculated by (i) putting qbh into (14) which

correspond to (11), and (ii) calculated by putting qbh in (3). We

plot these in Fig. 8, and we can see that the dimensionless epicyclic

frequency values found from (14) slightly differ from those found

from (3) near the black hole. The deviation is remarkable only

when abh ∼ 1. We expect the use of equation (3) would slightly

shift the corresponding distances to the values of the critical warp

amplitudes presented in the right-hand panel of Fig. 6 and to the

maximum growth rates presented in Fig. 7. However, the change is

expected to be small, and does not affect our main results.

4 C O N C L U S I O N

We have provided an analysis of the effects of non-Keplerian

rotation on the stability of warped discs where α > H/R, that is,

the case where the warp is propagated principally by local diffusion

rather than wave transport. We find that, as for the case of Keplerian

rotation, higher viscosity discs are generally more stable with a

higher critical warp amplitude and lower growth rates than lower

viscosity discs. We also find that as the rotation deviates more

strongly from Keplerian, the disc is increasingly stabilized at small

warp amplitudes, while at large warp amplitudes the growth rates

can be higher. The strong dependence of the evolution of these discs

on the value of α, the shear rate q, and the warp amplitude |ψ |, is

likely to be responsible for the rich dynamics found in numerical

simulations of these objects.

For discs subject to tides from a binary system, e.g. circumstellar

discs with a companion or circumbinary discs, we find that the

departures from Keplerian rotation are small enough that the general

picture from a Keplerian analysis is still valid, as the growth rates

and critical warp amplitudes are similar to the Keplerian case.

These types of disc may occur in stellar binary systems, such as

CVs or X-ray binaries. In these cases the discs are expected to be

thin enough, and the viscosity high enough, that warps propagate

diffusively. The outer regions of these discs (or the inner regions of

circumbinary discs) are where tides are strongest, but even here the

departure from Keplerian rotation is still quite small as the discs are

efficiently truncated by orbital resonances (Papaloizou & Pringle

1977; Artymowicz & Lubow 1994). Protoplanetary discs are also

expected to have rotation that is close to Keplerian, but our analysis

cannot be directly applied to protoplanetary discs as these discs are

likely to propagate warps with a significant wavelike component,

as H/R is typical greater than α.

However, we find that non-Keplerian rotation has a significant

impact on the dynamics of a warp in the inner regions of discs

around black holes. The sharp upturn in critical warp amplitude at

small radii seen in Fig. 6 suggests that discs may not break all the

way down to the ISCO, instead the disc is expected to rapidly align

to the black hole spin in these regions. However, for lower values

of the viscosity �0.1, the critical warp amplitudes rise significantly

only close to the ISCO, and thus it should be possible for the disc

to break into discrete rings that can precess independently close to

the black hole. We note that this is a requirement of the Relativistic

Precession Model (RPM; Stella & Vietri 1998; Ingram & Done

2010; Ingram & Motta 2014; Motta et al. 2014; Motta et al. 2018)

which assumes that some of the frequencies observed in the power

spectra of light curves from accreting compact objects are caused

by nodal and apsidal precession of disc material at discrete radii. It

is, of course, not possible for a fluid disc to exhibit repeated local

precession at the driving frequency (e.g. Lense–Thirring precession

frequency) coherently over many cycles without the disc breaking

into discrete parts (if the disc cannot break, a non-local response

such as a propagating warp occurs). Therefore we conclude that

if the observed frequencies are indeed caused by relativistic nodal

MNRAS 495, 1148–1157 (2020)
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1156 S. Doğan and C. J. Nixon

Figure 8. We compare the dimensionless epicyclic frequency values calculated by writing qbh in (14) which correspond to κ̃2
bh given by (11), and calculated

by writing qbh in (3) which corresponds to the assumption made in evaluating the torque coefficients.

and apsidal precession, then it is consistent with and requires that

the disc be unstable to breaking into discrete rings (i.e. the disc

tearing behaviour suggested by Nixon et al. 2012). It may then

be possible to understand the wide range of complex variability

observed in accreting black hole (and neutron star) sources with a

model that takes into account the dependence of the disc warping

instability discussed here on the local parameters of the accretion

disc throughout the accretion cycle (cf. Nixon & Salvesen 2014).
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Doğan S., Nixon C., King A., Price D. J., 2015, MNRAS, 449, 1251
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