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A B S T R A C T 

In a tidal disruption event (TDE), a star is destroyed by the gravitational field of a supermassive black hole (SMBH) to produce 

a stream of debris, some of which accretes onto the SMBH and creates a luminous flare. The distribution of mass along the 

stream has a direct impact on the accretion rate, and thus modelling the time-dependent evolution of this distribution provides 

insight into the rele v ant physical processes that drive the observable properties of TDEs. Analytic models that only account for 

the ballistic evolution of the debris do not capture salient and time-dependent features of the mass distribution, suggesting that 

fluid dynamical effects significantly modify the debris dynamics. Previous investigations have claimed that shocks are primarily 

responsible for these modifications, but here we show – with high-resolution hydrodynamical simulations – that self-gravity is the 

dominant physical mechanism responsible for the anomalous (i.e. not predicted by ballistic models) debris stream features and its 

time dependence. These high-resolution simulations also show that there is a specific length-scale on which self-gravity modifies 

the debris mass distribution, and as such there is enhanced power in specific Fourier modes. Our results have implications for the 

stability of the debris stream under the influence of self-gravity, particularly at late times and the corresponding observational 

signatures of TDEs. 

Key words: black hole physics – hydrodynamics – galaxies: nuclei – transients: tidal disruption events. 

1  I N T RO D U C T I O N  

When a star passes within a critical distance of a supermassive black 

hole (SMBH), it is destroyed by the tidal field – the difference in 

the gravitational field of the black hole across the diameter of the 

star – and transformed into a stream of debris (Hills 1975 ; Rees 

1988 ; see Gezari 2021 for a recent re vie w). This critical distance 

is typically defined in terms of the tidal radius r t = R ⋆ ( M •/ M ⋆ ) 
1/3 , 

where M • is the mass of the black hole and R ⋆ and M ⋆ are the stellar 

radius and mass, respectively, which arises from equating the stellar 

surface gravitational field to the tidal acceleration (and dropping 

order-unity numerical factors). Numerical simulations have shown 

that, depending on the star’s internal structure and specifically its 

density profile, the precise distance at which the star is completely 

destroyed can be slightly larger than or a factor of a few smaller than 

r t (Guillochon & Ramirez-Ruiz 2013 ; Mainetti et al. 2017 ; Golightly, 

Nixon & Coughlin 2019 ; Law-Smith et al. 2020 ; Nixon, Coughlin & 

Miles 2021 ). For a TDE in which the star is originally on a parabolic 

(or near-parabolic) orbit about the SMBH, approximately half of 

the stellar debris is bound to the SMBH and returns to the point of 

disruption, where it is expected to circularize into an accretion disc 1 

⋆ E-mail: jlfanche@syr.edu 
1 Though the nature of this disc could be very different from a standard, 

thin disc (Shakura & Sunyaev 1973 ; Pringle 1981 ) given the high accretion 

rates and low binding energy of the returning debris (Loeb & Ulmer 1997 ; 

Coughlin & Begelman 2014 ; Roth et al. 2016 ; Dai et al. 2018 ; Steinberg & 

(e.g. Hayasaki, Stone & Loeb 2013 ; Shiokawa et al. 2015 ; Bonnerot 

et al. 2016 ; S ֒  adowski et al. 2016 ; Curd & Narayan 2019 ; Andalman 

et al. 2022 ) and viscously liberate energy at a rate comparable to 

the Eddington limit of the SMBH (Evans & Kochanek 1989 ; Wu, 

Coughlin & Nixon 2018 ), and we are now detecting many TDEs 

with surv e ys such as ZTF (Bellm et al. 2019 ), ASAS-SN (Shappee 

et al. 2014 ), ATLAS (Tonry et al. 2018 ), eROSITA (Predehl et al. 

2021 ), and (soon) the Rubin Observatory/LSST (Ivezi ́c et al. 2019 ) 

(for recent observations of TDEs, see e.g. Komossa & Greiner 1999 ; 

Esquej et al. 2007 ; Gezari et al. 2009 , 2012 ; Bloom et al. 2011 ; 

Cenko et al. 2012 , 2016 ; Holoien et al. 2014 , 2016 ; Miller et al. 

2015 ; Alexander et al. 2016 ; Kara et al. 2016 ; van Velzen et al. 2016 ; 

Blanchard et al. 2017 ; Gezari, Cenko & Arcavi 2017 ; Hung et al. 

2017 , 2020 ; Pasham et al. 2017 , 2019 , 2023 ; Brown et al. 2018 ; 

Pasham & van Velzen 2018 ; Blagorodnova et al. 2019 ; Nicholl et al. 

2019 , 2022 ; Saxton et al. 2019 ; Wevers et al. 2019 , 2021 , 2023 ; 

Hinkle et al. 2021 ; van Velzen et al. 2021 ; Payne et al. 2021 ; Lin 

et al. 2022 ; Hammerstein et al. 2023 ; Yao et al. 2023 ). 

An analytical model for describing the dynamics of the debris from 

a TDE, known as the frozen-in approximation and originally due to 

Lacy, Townes & Hollenbach ( 1982 ) (see also Bicknell & Gingold 

1983 ; Stone, Sari & Loeb 2013 ), treats the interaction between the 

Stone 2022 ; Metzger 2022 ; Sarin & Metzger 2023 ), which could help to 

e xplain the lower-than-e xpected temperatures seen from man y TDEs; see the 

discussion regarding TDE optical emission in Gezari ( 2021 ) and references 

therein. 

© 2023 The Author(s) 

Published by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. The specific energy distribution of the star as it approaches 

pericentre, calculated from the SPH simulation with 128 million particles. 

The first time of −3 h (the minus sign indicates that the time is before 

pericentre) is when the star is at its initial distance of 5 r t from the black 

hole. We see that the energy spread changes continuously and gradually as 

the star approaches the black hole, in agreement with Steinberg et al. ( 2019 ). 

star and the SMBH as occurring instantaneously as the star crosses 

the tidal sphere of the SMBH. Specifically, at distances much greater 

than r t , the tidal force from the SMBH is assumed to be sufficiently 

weak that the star retains exact hydrostatic equilibrium, with all of the 

stellar material moving with the centre of mass. Once the star passes 

within r t , the star is ‘destroyed’, implying that the stellar material 

mo v es ballistically in the gravitational field of the SMBH with each 

gas parcel following an independent Keplerian (or the relativistic 

generalization) orbit. 

The frozen-in approximation predicts that the specific energy of 

the debris is established at the time the star passes through r t (not 

the pericentre distance, which may be considerably smaller than r t , 

as written in, e.g. Evans & Kochanek 1989 ; Ulmer 1999 ; Lodato, 

King & Pringle 2009 ; Strubbe & Quataert 2009 ). Consequently, 

material with a ne gativ e specific energy (or a positive binding energy) 

– being half of the star in this case – is bound and returns to the 

SMBH at a rate proportional to t −5/3 (d M /d ǫ) (Rees 1988 ; Phinney 

1989 ), where t is approximately time since disruption and d M /d ǫ

is the differential amount of mass at a given specific Kepelerian 

binding energy ǫ. Since the specific binding energy is conserved in a 

Keplerian potential, the amount of mass per unit energy, d M /d ǫ, is a 

function only of ǫ, and one can use the energy–period relationship for 

a Keplerian orbit to write d M /d ǫ( t ), thereby generalizing the result 

of Rees ( 1988 ) that adopted a constant value for d M /d ǫ. Lodato 

et al. ( 2009 ) performed this generalization, and showed that the 

specific energy distribution could be predicted as a function of the 

progenitor’s density profile (assumed unaltered until the tidal radius 

is reached). From their model (see also the black, dashed curves 

in Figs 2 and 5 below), the stellar debris is expected to have a 

smooth d M /d ǫ curve that is maximized and symmetric about zero, 

and extends from −�ǫ to + �ǫ, where �ǫ = GM •R ⋆ /r 
2 
t is the 

maximum specific binding energy to the SMBH. Ho we ver, Lodato 

et al. ( 2009 ) also ran hydrodynamical simulations of TDEs, and found 

that their numerically obtained distributions had sharper features than 

their model predicted, specifically what they termed ‘wings’ that had 

more mass at larger values of the specific energy than e xpected. The y 

attributed these discrepancies and additional features in the d M /d ǫ

curve to shocks in the tidal tails of the stellar debris. 

Ho we ver, the importance of shocks on the dynamics of the debris 

has recently been questioned by Norman, Nixon & Coughlin ( 2021 ), 

Coughlin & Nixon ( 2022 ), and Kundu, Coughlin & Nixon ( 2022 ), 

who found that even for deep TDEs, in which the stellar pericentre 

distance is well within the canonical tidal radius, shocks during 

the compression of the star were either weak with a Mach number 

near unity or absent completely. 2 Contrarily, it seems possible that 

the other physical effect ignored in the frozen-in approximation –

the self-gravity of the debris stream – could be responsible for 

the deviation of the numerically obtained d M /d ǫ curve from the 

analytic prediction. Various works have suggested that self-gravity 

can play an important role in modifying the dynamics of the debris 

(Kochanek 1994 ; Guillochon, Manukian & Ramirez-Ruiz 2014 ; 

Coughlin et al. 2016 ; Steinberg et al. 2019 ) and its hydrodynamic 

stability (Coughlin & Nixon 2015 ; Coughlin 2023 ), and in the 

extreme case of a partial TDE in which only the outer envelope 

of the star is tidally stripped, the gravitational influence of the core 

(i.e. self-gravity) results in a departure of the asymptotic fallback 

rate from the expected ∝ t −5/3 scaling (Guillochon & Ramirez-Ruiz 

2013 ) to ∝ t −9/4 (Coughlin & Nixon 2019 ; Miles, Coughlin & Nixon 

2020 ; Nixon et al. 2021 ). 

Here, we directly assess and isolate the effects of self-gravity 

versus pressure (i.e. shocks) on the evolution of the debris stream 

from a TDE and the corresponding fallback rate. In Section 2 , we 

present the results of numerical hydrodynamical simulations of a 

TDE with and without self-gravity and the resulting evolution of 

the specific energy distribution or lack thereof, and we conclude in 

Section 3 . 

2  N U M E R I C A L  SI MULATI ONS  

2.1 Setup 

We used the smoothed particle hydrodynamics (SPH) code PHANTOM 

(Price et al. 2018 ) to simulate the tidal disruption of a solar-type 

star (where M ⋆ = M ⊙ and R ⋆ = R ⊙) by a 10 6 M ⊙ SMBH. The 

star is initially assumed to have a polytropic equation of state with 

adiabatic index γ = 5/3 and is relaxed by allowing the star to evolve 

in isolation after the polytrope with the desired density profile has 

been constructed. This lets the internal properties of the star reach 

equilibrium before it encounters the SMBH. The relaxed star is 

placed at a distance of 5 r t from the black hole with the centre of mass 

on a parabolic orbit where the distance from the hole at pericentre 

is equal to the tidal radius. The gas retains its adiabatic equation of 

state throughout the TDE. For additional details on the specifics of the 

SPH kernel and the implementation of self-gravity, see Coughlin & 

Nixon ( 2015 ) and Price et al. ( 2018 ). 

We ran two sets of simulations with identical initial parameters. 

In the first set of simulations, self-gravity is included throughout 

the TDE; in the second, self-gravity is no longer included after the 

star reaches pericentre. Simulations were performed with a range 

of particle numbers from 250 thousand to 128 million to assess 

convergence. 

2.2 Results 

Fig. 1 shows the differential amount of mass per unit energy, d M /d ǫ, 

as a function of the specific Keplerian binding energy, ǫ, as the star 

approaches pericentre (i.e. during its initial ingress through the tidal 

2 It seems likely that a shock forms near the surface following the compression 

and rebound of the star in deep TDEs, but this only impacts the outer stellar 

layers (Kobayashi et al. 2004 ; Guillochon et al. 2009 ; Yalinewich et al. 2019 ). 
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Figure 2. The evolution of the specific energy distribution with (left) and without self-gravity (right; self-gravity was turned off at pericentre) at a resolution of 

1 million particles. The dashed line shows the predicted d M /d ǫ curve calculated from the frozen-in approximation. The approximation is a good fit for the data 

near pericentre in both cases, but becomes less accurate as the stream evolves with self-gravity. 

sphere). The curves are calculated from the SPH simulation with 128 

million particles, and we used 500 energy bins evenly spaced between 

−1.5 �ǫ and 1.5 �ǫ, where �ǫ = GM •R ⊙/r 2 t is the canonical energy 

spread from the frozen-in approximation. The legend gives the times 

at which the energy distributions are calculated, where the minus 

sign indicates that the star has not yet reached pericentre, and at t = 

−3 h the star is at a distance of 5 r t from the black hole. For this 

simulation, self-gravity is included until the star reaches pericentre. 

In agreement with the results found by Steinberg et al. ( 2019 ), we 

see that the spread in the binding energies of the debris occurs o v er 

an extended period of time, reaching a value that is comparable to 

�ǫ when the star is near pericentre. Thus, the approximation that the 

energy distribution is instantaneously set as the star passes through 

the tidal radius is rather crude. 

The left panel of Fig. 2 shows the d M /d ǫ curves calculated every 

3.5 min after pericentre from the simulation with 1 million particles 

and self-gravity included. The predicted d M /d ǫ curve indicated by 

the dashed black line is calculated from the frozen-in approximation 

as in Lodato et al. ( 2009 ). The prediction approximately matches the 

simulated curve at pericentre (shown in dark blue), but the curves 

from the simulation immediately evolve to become wider and flatter, 

making the prediction inaccurate within minutes from disruption. 

The d M /d ǫ curves from the 1 million particle simulation without 

self-gravity are shown in the right panel of Fig. 2 , where the dashed 

black line is again the prediction. Without self-gravity, the d M /d ǫ

curve is essentially frozen-in at pericentre, implying that pressure is 

dynamically insignificant. 

Both sets of d M /d ǫ curves in Fig. 2 have large fluctuations between 

−�ǫ/2 and �ǫ/2. To assess whether this feature is related to Poisson 

noise or physical, we plotted the d M /d ǫ curve calculated 35 min after 

pericentre from simulations with self-gravity included at different 

resolutions, shown in Fig. 3 . It is clear that at lower resolution the 

amplitude and the number of fluctuations increases, but abo v e 16 

million particles the curves are relatively smooth and resemble each 

other. This implies that while there is some numerical noise related 

to particle binning, there are underlying physical oscillations in the 

density of the disrupted stream. 

To further assess the convergence of the simulations, in Fig. 4 we 

o v er-plotted the d M /d ǫ curv es from the 16 million (dashed lines) and 

128 million (dark solid lines) particle simulations with the d M /d ǫ

curves from the 1 million particle simulation (light solid lines) as 

seen in Fig. 2 . The colours of the curves match the colours in Fig. 2 

Figure 3. The d M /d ǫ curve 35 min after pericentre at different resolutions. 

Note that there are still short-length-scale variations along the debris stream 

even at high resolutions, which suggests there are physical density oscillations 

in the disrupted star. 

Figure 4. The d M /d ǫ curves with self-gravity at different resolutions. The 

lighter solid lines correspond to 1 million particles (Fig. 2 ), the dashed lines 

to 16 million particles, and the dark solid lines to 128 million particles. 
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Figure 5. The d M /d ǫ curves with 128 million particles at later times past 

pericentre, during which the central peak reforms. After the curve at 51.5 h, 

the d M /d ǫ distribution remains essentially constant for the next 66 d, which 

marks the end of the simulation. 

for the same times. The approximately sinusoidal fluctuations seen 

between 14 and 21 min in Fig. 2 are still apparent at the 128 million 

particle resolution, although the feature is now strongest between 

21 and 28 min. At all resolutions, this feature is much weaker but 

still present at 35 min. 

Fig. 5 shows the d M /d ǫ curves from later times with self- 

gravity. The d M /d ǫ curve continues to flatten until ∼1.5 h after 

pericentre, after which time it ‘bounces’ and the central peak begins 

to reform, suggesting material is coalescing toward the marginally 

bound radius. By this time, the sinusoidal variations are no longer 

visibly present, and the curves are much smoother than those around 

pericentre. Note that the difference in time between successive curves 

is much greater than that adopted in Fig. 2 , and it is only on 

these much longer time-scales that the d M /d ǫ curves show temporal 

v ariability. This slo wing of the debris stream e volution is consistent 

with the findings of Coughlin ( 2023 ), who found that perturbations 

on top of the background state of the stream – which is o v er-stable –

vary logarithmically with time. The d M /d ǫ curve remains essentially 

constant from the curve at 51.5 h (seen in Fig. 5 ) until the end of the 

simulation, which runs to approximately 68 d. The d M /d ǫ curve for 

later times is wider than the curve at pericentre, and the central peak at 

later times never reaches the height of the peak at pericentre, meaning 

the prediction from the frozen-in approximation is inaccurate at later 

times for both the height of the peak and range of �ǫ (note that 

Lodato et al. 2009 arbitrarily rescaled the height of their frozen-in 

model to match their numerically obtained d M /d ǫ curve at late times, 

meaning, among other things, that the mass of their frozen-in model 

did not equal that of their numerical simulation). 

The d M /d ǫ curves can be used to calculate the fallback rate, Ṁ , 

at a given time after disruption according to (Lodato et al. 2009 ; 

Guillochon & Ramirez-Ruiz 2013 ) 

Ṁ = 
(2 πGM •) 2 / 3 

3 

d M 

d ǫ
t −5 / 3 , (1) 

where M • is the mass of the black hole and 

ǫ( t) = −
1 

2 

(

2 πGM •

t 

)2 / 3 

. (2) 

The evolution of the d M /d ǫ curve when self-gravity is included 

therefore results in a changing fallback rate that is not predicted 

when using the frozen-in approximation (see also the discussion in 

Guillochon & Ramirez-Ruiz 2013 ); Wu et al. ( 2018 ) showed that 

Figure 6. Top: The fallback rates calculated from the d M /d ǫ curves at the 

times specified in the legend. The dashed line indicates the fallback rate 

directly calculated from the 16 million particle run. Bottom: The evolution 

of the predicted peak fallback rate (calculated from d M /d ǫ) as a function of 

the time after disruption when the peak is expected to occur. The shading 

indicates the time at which the fallback rate was calculated, with early times 

on the right in blue. 

the canonical scaling of the fallback rate as ∝ M 
1 / 2 
• , as discussed in 

Lacy et al. ( 1982 ) and Rees ( 1988 ), is accurately reco v ered for black 

hole masses between 10 5 M ⊙ ≤ M • ≤ 10 7 M ⊙; see specifically their 

figure 1. 3 The top panel of Fig. 6 plots the evolution of the predicted 

fallback rates o v er time calculated with the 128 million particle 

d M /d ǫ curves. As the time at which the d M /d ǫ curve is measured 

shifts to later times, the peak fallback rate increases and occurs 

earlier while the asymptotic limit of the fallback rate decreases; 

these two trends are not independent, as a higher peak at earlier 

times means that less mass will return to the black hole at later times. 

At very late times this trend reverses slightly, and the fallback rate 

remains ef fecti v ely unchanged if the d M /d ǫ curv e at times greater 

than � 630 min is used. To further illustrate this behaviour, the bottom 

panel of Fig. 6 shows the peak fallback rate as a function of the 

time post-disruption at which the peak is predicted to occur. The 

colour indicates the time after pericentre when the d M /d ǫ curve 

3 For either extremely large or extremely small black hole masses, the 

behaviour shown in Fig. 6 must change qualitatively, as in the large- 

mass limit relativistic effects will introduce an additional mass dependence, 

while in the small-mass limit, the fallback time will not be much longer 

than the dynamical time of the original star. Since self-gravity acts on 

the latter time-scale (as shown in Fig. 4 ), if the fallback time is shorter 

than the dynamical time, self-gravity will not have enough time to modify 

the energy distribution. Fig. 5 illustrates that the energy distribution does 

not evolve significantly after ∼10 h; setting 10 h equal to T fb , where 

T fb = 2 π ( R ⋆ / 2 ) 
3 / 2 / 

√ 
GM ⋆ × ( M/M ⋆ ) 

1 / 2 , and letting the star be solar-like, 

yields a mass ratio of ∼100. Therefore, we would expect a qualitatively 

different fallback rate – owing to the inability of self-gravity to act quickly 

enough – for mass ratios � 100. 
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Figure 7. The Fourier coefficients calculated from the d M /d ǫ curves at the 

times shown in the legend. The peaks at n = 6–8 displayed by some of the 

curves indicate enhanced power at wavelengths ≃ �ǫ/ n . 

was used to calculate the fallback rate, with early times in blue 

and later times in red. The fallback rate predicted under the frozen- 

in approximation closely aligns with the fallback rate calculated 

at pericentre, meaning it underestimates the peak fallback rate and 

o v erestimates the asymptotic limit shortly after pericentre. 

2.3 Fourier analysis 

It is apparent by eye from Fig. 4 that there is, at early times (between 

∼20 and −30 min post-disruption), a sinusoidal and physical oscil- 

lation along the d M /d ǫ curve with a wavelength of ∼�ǫ/8. To more 

rigorously assess the strength of this oscillatory feature, we Fourier 

transform the d M /d ǫ curve from the 128 million particle simulation 

from −�ǫ/2 to �ǫ/2, such that the Fourier coefficients are 

c n = 
1 

�ǫ

∫ �ǫ/ 2 

−�ǫ/ 2 

d M 

d ǫ
e −

2 πinǫ
�ǫ d ǫ. (3) 

Fig. 7 illustrates the Fourier coefficients – normalized by c 0 to 

offset the declining amount of mass between −�ǫ/2 and �ǫ/2 –

from n = 2–14 for the times shown in the legend (the colours match 

those in Figs 2 and 4 for the same times); note that there are points 

only at integer values of n , and the lines connecting the points are 

drawn simply to guide the reader. The coefficients with the largest 

amplitudes are n = 0, which yields the (time-dependent) total mass 

from −�ǫ/2 to �ǫ/2, and n = 1, which accounts for the quadratic- 

like peak displayed by the d M /d ǫ curves (especially pronounced at 

the earliest times). We therefore omitted these values of n from the 

plot to enhance its readability. This figure demonstrates that, for 

many of the times indicated in the legend, there is significant and 

enhanced power at Fourier numbers n = 6–8, or wavelengths of λ ≃ 

�ǫ/(6–8). Ho we ver, the po wer is not static: the largest coef ficients 

occur around times of ∼10 and ∼25 min, with a relative minimum 

near ∼16 min, and the feature is almost entirely absent by ∼35 min. 

To further highlight the presence of the sinusoidal variation 

imprinted on the energy distribution, one can high-pass filter the 

data by subtracting from the d M /d ǫ curve the first n Fourier modes 

modes preceding the peak in the power spectrum. The top panel of 

Fig. 8 illustrates this technique for the d M /d ǫ curve at t = 22.8 min 

post-disruption. In particular, the top-left panel shows the d M /d ǫ

curve at that time, while the right panel shows the same curve but 

with the first 6 Fourier modes remo v ed; the dashed curve in the top- 

right panel illustrates the 7th term in the Fourier series, highlighting 

the agreement between this Fourier mode – which has a wavelength 

of �ǫ/7 – and the sinusoidal variation of the high-passed data. 

In addition to the prominent peak in the power spectrum around 

a wavelength of �ǫ/7, Fig. 7 also shows that there is non-trivial 

power at higher frequencies, e.g. the solution at a time of 8.8 min 

post-disruption that has a second prominent peak at n = 12. The 

bottom-left panel gives the d M /d ǫ curve at this time, while the light- 

gre y curv es in the bottom-right panel show the high-passed data up 

to n = 6 (solid) and the n = 7 Fourier mode (dashed). We scaled 

the light-gre y curv es by a factor of 3 to help distinguish them from 

the dark-gre y curv es, which show the high-passed data up to n = 11 

(solid) and the Fourier mode with n = 12 (dashed). This shows that, 

while neither mode is immediately apparent in the d M /d ǫ curve itself, 

the sinusoidal variations at these wavelengths are highly significant. 4 

This significance is further substantiated by Fig. 9 , which shows the 

power spectrum at t = 10.5 min from the 128M-particle run (solid) 

and the 16M-particle run; enhanced power at n ≃ 7 is obvious in 

both cases. 

3  SUMMARY  A N D  C O N C L U S I O N S  

When a star is destroyed by the gravitational field of a black hole in 

a TDE, a useful analytical approach for understanding the ensuing 

dynamics – known as the frozen-in approximation and originally 

due to Lacy et al. ( 1982 ) – assumes that the gas evolves purely 

ballistically in the gravitational field of the black hole. Under this ap- 

proximation, the specific Keplerian energy is a conserved Lagrangian 

(i.e. per-fluid-element) quantity, implying that the binding energy 

distribution, d M /d ǫ, is unaltered from the time of disruption. It was 

shown by Lodato et al. ( 2009 ) that this energy distribution, and the 

corresponding return rate of gas to the black hole, can be calculated 

analytically from the density profile of the star. Lodato et al. ( 2009 ) 

also ran smoothed-particle hydrodynamical simulations to test their 

analytical model and found noticeable discrepancies, among those 

being the presence of ‘wings’ in the numerically obtained d M /d ǫ

curve that were absent from the frozen-in prediction. Lodato et al. 

( 2009 ) attributed these features to one physical effect missing from 

the frozen-in approximation but included in their hydrodynamical 

simulations, namely pressure in the form of shocks that putatively 

occurred near pericentre. 

Ho we ver, there is a second mechanism that can modify the energy 

distribution of the debris and that was included in the simulations 

of Lodato et al. ( 2009 ), namely the self-gravity of the gas. To 

investigate which of these two effects – pressure or self-gravity 

– is predominantly responsible for the presence of the features in 

the d M /d ǫ curve that are not predicted by the frozen-in method, 

we ran two sets of hydrodynamical simulation of the disruption of 

a γ = 5/3, polytropic and solar-like star by a 10 6 M ⊙ black hole 

(identical in setup to one of the simulations ran by Lodato et al. 

2009 ). In one set of simulations, self-gravity was turned off after the 

stellar centre of mass reached pericentre (equal to the canonical tidal 

radius). In this case, the specific energy distribution of the debris was 

ef fecti vely unchanged (i.e. sho wed little to no temporal evolution) 

from the time of pericentre onward and was in o v erall good agreement 

with the frozen-in prediction, as shown in the right panel of Fig. 2 . 

Therefore, pressure alone is dynamically insignificant – the specific 

4 Note that the number of bins used to generate the d M /d ǫ curves is 500, 

meaning that the Nyquist frequency corresponds to n ≃ 500/6 ≃ 83, and 

hence we are analysing excess power at frequencies well below the values at 

which we are limited by our bin size. 
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Figure 8. Top: The d M /d ǫ curve at a time of 22.8 min post-pericentre (left), and the high-passed d M /d ǫ curve – where the first 6 Fourier modes are remo v ed 

(right). The dashed curve in the right panel shows the n = 7 term in the Fourier decomposition, i.e. a sinusoidal curve with a wavelength �ǫ/7. Bottom: The 

d M /d ǫ curve at a time of 8.8 min post-pericentre (left), and the high-passed d M /d ǫ curve (right); the solid and light-gre y curv e shows the high-passed solution 

with the first 6 Fourier modes removed, while the solid and dark-grey curve shows the high-passed data with the first 11 modes remo v ed. The dashed curv es show 

the 7th (light-grey) and 12th (dark-grey) terms in the F ourier e xpansion. To isolate the curves and increase the clarity of the data, we multiplied the light-grey 

curves by a factor of 3. 

Figure 9. The power spectrum at a time of 10.5 min post-disruption, 

calculated from the d M /d ǫ curve with 128 million particles (solid) and 16 

million particles (dashed). This highlights the resolution-independence of the 

excess power at a wavelength in energy of ∼�ǫ/7. 

Keplerian energy is a conserved Lagrangian variable – and shocks 

near pericentre are not responsible for producing the deviation in the 

d M /d ǫ curve from the frozen-in prediction. 

In a second set of simulations that varied in resolution, from 250 

thousand (comparable to the highest resolution employed in Lodato 

et al. 2009 ) to 128 million particles, the self-gravity of the gas was 

included for the duration of each simulation. In these simulations and 

as shown in the left-hand panel of Fig. 2 , the d M /d ǫ curve showed 

significant temporal evolution, flattening substantially from the initial 

distribution (which matched that of the pressure-only simulation at 

pericentre) in the first ∼30 min (roughly the dynamical time of the 

original star) after pericentre was reached. At later times a central 

peak reformed, with the evolution of the debris stream slowing 

substantially by ∼few days following pericentre, after which time 

it agreed with the numerical results of Lodato et al. ( 2009 ). We 

therefore conclude that self-gravity – and in particular the component 

of the gravitational field that acts along the direction of the stream 

(see also Steinberg et al. 2019 , who similarly argued that the influence 

of self-gravity along the stream is responsible for the time-dependent 

modification of the energy spread during the ingress of the star 

through the tidal sphere) – is the physical mechanism responsible 

for the evolution of the energy distribution of the debris, 5 and shocks 

are irrele v ant. 

5 There is also an asymmetry in the peaks that form around ±0.5 �ǫ, with 

the peak at + 0.5 �ǫ systematically higher than that at −0.5 �ǫ, which is 

particularly noticeable in the high-resolution simulations in Fig. 3 ; we thank 

Matt Todd for pointing this out to us. This asymmetry is likely due to the 

fact that the shear in the unbound segment of the stream is reduced compared 

to that in the bound half (Coughlin et al. 2016 ), rendering self-gravity more 

capable of modifying the mass distribution. 
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Self-gravity results in clear sinusoidal variations in the specific 

energy distribution shortly after the star reaches pericentre; these 

are apparent by-eye in Fig. 4 around ∼20 min post-pericentre, and 

a Fourier analysis of the stream shows increased power on energy 

scales of ∼�ǫ/7 (see Figs 7 and 8 ). On the one hand, increased power 

at a specific spatial scale is not unexpected, as hydrostatic cylinders 

are gravitationally unstable with a fastest-growing mode that peaks 

at a wavenumber of ∼1.2 H for a 5/3-polytropic gas (Coughlin & 

Nixon 2020 ), where H is the cross-sectional radius of the cylinder. 

If the specific Keplerian energy was exactly conserved, then the 

energy would correlate with the initial position of a Lagrangian fluid 

element, and thus we would expect pronounced power on the energy 

scale that correlates with the length-scale of the most unstable mode. 

Since the Keplerian energy is not actually a conserved Lagrangian 

variable (as we have shown in the present analysis) this conclusion 

is only tentative, but it is suggestive of the fact that this oscillation 

in energy space is a result of the gravitational instability of the 

stream. The details (e.g. the growth rate, the dispersion relation) of 

the instability are significantly more complicated than the hydrostatic 

case owing to the presence of the shear along the filament axis, but 

the recent work of Coughlin ( 2023 ) has shown that the stream is 

o v erstable in the cylindrical-radial direction, and it is plausible that 

the oscillation in energy space identified here is a manifestation of 

an analogous instability along the filament axis. 
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