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Enhanced Two Consecutive Samples based De-modulation Technique

for Atomic Force Microscopy Application
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A B S T R A C T

This article investigates robust amplitude detectors suitable for atomic force microscopy (AFM) while

discussing better alternatives. An AFM instrument’s measurement unit is responsible for providing the

amplitude information obtained from the tip of a cantilever beam to identify the surface smoothness

of a test material. Therefore, two efficient approaches are suggested to leverage Lyapunov’s theory

while adhering to better noise suppression and DC-offset rejection capabilities. Nevertheless, an

enhanced two samples-based Lyapunov’s demodulation approach is proposed to detect the amplitude

information rapidly. Consequently, the modifications applied to the conventional method help reduce

the tuning efforts and structural complications. The proposed solution remains structurally simpler

and useful for high- and low-frequency probes. Furthermore, the extensive design guidelines for

all techniques and the simulation results are presented. Different amplitude signals are synthetically

generated from several rough pseudo-test surfaces for early verification and sent to a real-time digital

controller to judge the proposal’s efficacy.

1. Introduction

High-resolution nano-scale imaging is often essential

to characterize materials or biological samples for various

research and industrial applications. In these cases, nanome-

ter or lower spatial resolution of the characterized sample

surfaces can provide researchers significant insight into the

properties of the material. In recent times, atomic force mi-

croscopy (AFM) became a strong contender for nano-scale

material surface characterization applications. Compared to

similar other microscopy methods, AFM can provide atomic

scale characterization with low-cost and ease of operation

[1, 2, 3].

In the early days of AFM development, AFM was used

to work in static mode, i.e., the cantilever probe is always

in contact with surface and characterization is done from

the interaction force between the probe and the sample.

However, later on, dynamic mode was developed. This mode

is also known as amplitude modulated AFM (AM-AFM).

In AM-AFM, the cantilever oscillates at high frequency

over the sample being characterized. By processing the

cantilever deflection signal, a feedback controller performs

the scanning of the material surface. Since the probe is not

always in direct contact, this mode is more suitable to scan

delicate samples owing to the low interaction force between

the probe and the sample. Control-oriented dynamic mode

AFM operation is detailed in [4, Fig. 1]. Interested readers

may consult this reference for further details.

Cantilever deflection signal plays a fundamental role

in ensuring high quality scanning by the AFM system.

By estimating the amplitude of the scanned surface from

the cantilever deflection signal, AFM controller can make

sure that raster scanning is performed. Moreover, this also

contributes to determine the overall imaging bandwidth of

the scanning system since the estimated amplitude is used

as the feedback signal to the controller. This highlights

the importance of estimating the amplitude of the scanned

ORCID(s):

surface from the cantilever deflection signal. Fast, accurate,

and low-complexity amplitude estimation method will not

only contribute to better scan quality, but also increase the

overall imaging bandwidth of the system.

A simple but effective amplitude estimation method is

the RMS-to-DC circuit [5]. This circuit can be implemented

either in analog or digital domain. It works by integrating

over a large number of samples. As such, the estimation

speed is relatively slow. Traditionally, hardware lock-in-

amplifiers (LIAs) [6, 7, 8, 9, 10, 11] are often used for the

amplitude estimation purpose from the cantilever deflection

signal. LIA exploits orthogonality property of the sinusoidal

cantilever deflection signal. By multiplying the sinusoidal

deflection signal with known frequency sine and cosine

signals, LIA can easily estimate the amplitude. However,

traditional LIA has low-bandwidth as high cut-off frequency

low-pass filters (LPFs) are needed. To overcome this issue,

high-bandwidth LIA was proposed in [12]. This approach

is analogous to the synchronous reference frame phase-

locked loop (SRF-PLL) [13] technique widely used in the

power system literature. In [12], first an orthogonal signal is

generated from the deflection signal. Then, the classical Park

transformation [13] is applied. Thanks to the orthogonal

signal and Park transformation, LIA in [12] require low cut-

off frequency LPFs as opposed high cut-off frequency LPF

in conventional LIAs. However, this approach is not suitable

if the deflection signal has a DC component. In this case,

additional filtering is required. Following similar line of

investigation, discrete Fourier transform (DFT)-based LIA

was proposed in [14]. Although this method has good per-

formance, it requires real-time DFT implementation which

can be computationally expensive. Similarly, the method in

[15] enhanced the imaging bandwidth of LIA by employing

four points-based estimation. This approach is often suitable

for single-frequency sinusoidal signal. Extension to multi-

frequency signal can be complicated. In addition to the

electronic and/or software LIA, mechatronic LIA [16] is also

proposed in the literature.
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In recent times, two advanced amplitude estimation tech-

niques are proposed in the AFM literature. They are Kalman

filter [17, 18, 19, 20] and gradient a.k.a. Lyapunov estimator

[21, 22, 23, 24]. By exploiting the noise properties of the

signal, the Kalman filter can provide robust estimation of

the amplitude. However, it is computationally expensive

due to the presence of online matrix inversion. As such,

the effective imaging bandwidth can be limited in practice.

Gradient estimator is simple to implement and can extend

the imaging bandwidth. However, in the presence of DC

offset, the transient response can be sluggish. This motivated

us to further improve the Lyapunov’s estimator for AFM

application.

As discussed, a conventional Lyapunov’s demodulator

(CLD) is a popularly accepted approach but require addi-

tional DC-offset feedback loop [21], which affects the am-

plitude tracking and noise elimination abilities. To overcome

this drawback, the current proposal plays a better role in

rapidly rejecting the DC-offset while having good noise

suppression abilities confirming no significant modifications

applied to the CLD approach. For this purpose, at first the

possibilities to improve the CLD structure without using

additional DC-offset feedback loop is explored. Accordingly,

the need of employing additional noise filters is studied for

further enhancing the noise suppression abilities, if required

as per the AFM application environment. Unlike, the four

samples [15] approach the proposed enhanced Lypunov’s

demodulator (ELD) relies on storing two samples which

further enables to reduce additional memory requirements

while enjoying it’s usefulness for both the low and high

frequency probe applications without applying significant

tuning efforts.

2. Error Signal Demodulation Approaches

In this study, several improved estimators are presented

for rapid detection of the amplitude information from a

test surface, which are principally based on non-linear Lya-

punov’s estimation theory [21]–[23]. Note that high preci-

sion and reduced computational complexity are often needed

for the sophisticated measuring instruments such as the

AFM. There are several modes of operation suitable for an

AFM instrument among which amplitude modulation mode

emphasizes on accurate and fast detection of amplitude

signal. In general, the signal obtained from a test surface

under inspection is time varying and its envelop provides the

amplitude information of a test surface. Consequently, the

amplitude signal is itself a time varying variable in nature.

The conventional amplitude detectors are capable to detect

the amplitude signal but one has to compromise with the

time response. For instance, let us consider a test signal along

with DC-offset signal, as follows:

𝑆(𝑡) = 𝐴(𝑡) sin(𝜃𝑜) + 𝐴𝑜 (1)

where 𝜃𝑜 = ∫ 𝜔𝑜 𝑑𝑡 = 𝜔𝑜𝑡+Φ is the known reference phase

angle information based on the reference angular frequency

adjusted prior to the measurement, i.e., 𝜔𝑜, and Φ is the

initial phase angle. The expansion of (1) upon applying the

trigonometric identity, i.e. sin(𝐴 + 𝐵) = sin(𝐴) cos(𝐵) +

sin(𝐵) cos(𝐴), is as follows:

𝑆(𝑡) = 𝐴(𝑡) cos(Φ) sin(𝜃𝑜)+𝐴(𝑡) sin(Φ) cos(𝜃𝑜)+𝐴𝑜 (2)

Equation (2) consist of two important components which we

assume to be slowly time-varying and given by:

𝑥1 = 𝐴(𝑡) cos(Φ) (3)

𝑥2 = 𝐴(𝑡) sin(Φ) (4)

The accurate estimation of these components helps to esti-

mate the amplitude information obtained from a test surface.

Therefore, the estimated test signal can be re-written as

follows:

𝑆̂(𝑡) = 𝑥̂1 sin(𝜃𝑜) + 𝑥̂2 cos(𝜃𝑜) + 𝐴̂𝑜 (5)

It is evident from the literature that the Laypunov demodu-

lation (LD) [25] approach is the most attractive technique to

estimate the signals, i.e. 𝑥̂1, 𝑥̂2 and 𝐴̂𝑜 by simply applying

the Laypunov’s estimation law as given below:

̇̂𝑥1(𝑡) = 𝜎 sin(𝜔𝑜𝑡) (𝑆(𝑡) − 𝑆̂(𝑡)) = 𝜎 sin(𝜔𝑜𝑡) 𝑒𝑜 (6)

̇̂𝑥2(𝑡) = 𝜎 cos(𝜔𝑜𝑡) (𝑆(𝑡) − 𝑆̂(𝑡)) = 𝜎 cos(𝜔𝑜𝑡) 𝑒𝑜 (7)

̇̂𝐴𝑜 = 𝜎1 (𝑆(𝑡) − 𝑆̂(𝑡)) = 𝜎1 𝑒𝑜 (8)

where the positive tuning gains 𝜎 and 𝜎1 can be chosen

as 𝜎 = 8 𝜔𝑜∕2𝜋 and 𝜎1 = 𝜔𝑜∕2𝜋 = 𝜎∕8 according

to [21]–[23]. The conventional Lyapunov’s de-modulator

(CLD) obtained from Equations (6)–(8) is depicted in Fig 1.

Figure 1: Generic Lyapunov’s demodulator with DC-offset
rejection loop.

The state-space model for the CLD can be expressed as:

⎡⎢⎢⎢⎣

̇̂𝑥1
̇̂𝑥2
̇̂𝐴𝑜

⎤⎥⎥⎥⎦
=
[
sin(𝜔𝑜𝑡) cos(𝜔𝑜𝑡) 1

]𝑇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

H

⋅

⎡⎢⎢⎢⎣

1

1

1∕8

⎤⎥⎥⎥⎦
𝜎 𝑒𝑜 (9)

𝑆̂ = H𝑇
[
𝑥̂1 𝑥̂2 𝐴̂𝑜

]𝑇
(10)

It requires attention that the signal vector H follows per-

sistent excitation (PE) property and the strictly positive
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real Lyapunov design approach along with the Kalman-

Yakubovich-Popov and Meyer-Kalman-Yakubovich Lem-

mas in order to ensure the stability of Lyapunov’s estimation

law. Besides this fact, the errors in the estimation are

presented to determine the boundedness of the estimated

states as follows:

𝑥̃1 = 𝑥1 − 𝑥̂1

𝑥̃2 = 𝑥2 − 𝑥̂2

𝐴̃𝑜 = 𝐴𝑜 − 𝐴̂𝑜 (11)

Using (11), the term 𝑒𝑜 can be expressed as:

𝑒𝑜 = 𝑥̃1 sin(𝜔𝑜𝑡) + 𝑥̃2 cos(𝜔𝑜𝑡) + 𝐴̃𝑜 (12)

As per the previously mentioned lemmas, a Lyapunov-like

function can be chosen as follows:

𝑋𝐿𝑃 (𝑡) =
𝑥̃2
1
(𝑡) + 𝑥̃2

2
(𝑡) + 8𝐴̃2

𝑜

2
(13)

The time derivative of (13) is:

𝑋̇𝐿𝑃 (𝑡) = 𝑥̃1 ̇̃𝑥1 + 𝑥̃2 ̇̃𝑥2 + 8𝐴̃𝑜
̇̃𝐴𝑜 (14)

where ̇̃𝑥1=− ̇̂𝑥1, ̇̃𝑥2=− ̇̂𝑥2 and ̇̃𝐴𝑜=−
̇̂𝐴𝑜. Similarly, the time

derivatives are further expressed as follows:

̇̃𝑥1 = −𝜎 sin(𝜔𝑜𝑡)𝑒𝑜
̇̃𝑥2 = −𝜎 cos(𝜔𝑜𝑡)𝑒𝑜
̇̃𝐴𝑜 = −𝜎∕8𝑒𝑜 (15)

A non-positive 𝑋̇𝐿𝑃 (𝑡) is confirmed as follows:

𝑉̇𝐿𝑃 (𝑡) = −𝜎 (𝑥̃1 sin(𝜔𝑜𝑡) + 𝑥̃2 cos(𝜔𝑜𝑡) + 𝐴̃𝑜) 𝑒𝑜 = −𝜎 𝑒2𝑜 (16)

For 𝜎 > 0 along with the PE property [21],[26], 𝑉̇𝐿𝑃 (𝑡) ≤ 0,

helps in confirming that the estimated state variables are

settled to the actual values as follows:

lim
𝑡→∞

= 𝑥̂1 = 𝑥1

lim
𝑡→∞

= 𝑥̂2 = 𝑥2

lim
𝑡→∞

= 𝐴̂𝑜 = 𝐴𝑜 (17)

A guaranteed boundedness can be ensured without any

steady-state error. To effectively estimate 𝐴̂𝑜, the tuning gain

parameter (𝜎1) must be lower than the actual value of 𝜎 [25].

Since the DC-offset is a low-frequency component whose

elimination requires a narrow bandwidth loop resulting in a

slower dynamic response.

2.1. Small-Signal Model Development for the CLD

Method
The Lyapunov function-based stability analysis approach

presented above is very suitable to assess stability. However,

the gain tuning and/or frequency-domain analysis is more

complex to obtain, which is very useful for practical im-

plementation and analyzing the frequency-domain stability

of the CLD method. This void is addressed here through

small-signal model development. For further progression

in this section, we will extensively use the small-angle

approximation approach, i.e., sin (𝜃) ≈ 𝜃 and cos (𝜃) ≈ 1.

Moreover, we assume quasi-locked condition, i.e., 𝐴 ≈ 𝐴̂,

𝐴0 ≈ 𝐴̂0, and Φ ≈ Φ̂0 [27]. These assumptions imply

that we are working close to the zero estimation error

vicinity, i.e., the equilibrium point in which the small-signal

model is developed. This is essential to obtain a linear

model for a nonlinear estimator given by eqs. (6)-(8). Using

the estimated variables 𝑥̂1 and 𝑥̂2, the amplitude can be

estimated as 𝐴̂ =
√

𝑥̂2
1
+ 𝑥̂2

2
and the dynamics are computed

as:

̇̂𝐴 =
𝑥̂1

̇̂𝑥1 + 𝑥̂2
̇̂𝑥2√

𝑥̂2
1
+ 𝑥̂2

2

. (18)

By substituting eqs. (6) and (7) together with eqs. (1)-(5) in

eq. (18), one can obtain that:

̇̂𝐴 =
𝑥̂1𝜎 sin(𝜔𝑜𝑡)

(
𝑆 − 𝑆̂

)
+ 𝑥̂2𝜎 cos(𝜔𝑜𝑡)

(
𝑆 − 𝑆̂

)
√(

𝐴̂ cos
(
Φ̂
))2

+
(
𝐴̂ sin

(
Φ̂
))2 ,

=
𝜎𝐴̂ sin

(
𝜃̂0
) (

𝑆 − 𝑆̂
)

𝐴̂
,

= 𝜎 sin
(
𝜃̂0
) (

𝐴0 + 𝐴 sin
(
𝜃0
)
− 𝐴̂0 − 𝐴̂ sin

(
𝜃̂0
))

,

=
𝜎

2

[
𝐴 cos

(
𝜃0 − 𝜃̂0

)
− 𝐴 cos

(
𝜃 + 𝜃̂0

)
+

cos
(
2𝜃̂0

)
− 𝐴̂

]
+ 𝜎

(
𝐴0 − 𝐴̂0

)
cos

(
𝜃̂0
)
. (19)

Applying the small-signal approximation to eq. (19), this

equation can be simplified as:

̇̂𝐴 ≈
𝜎

2

(
𝐴 − 𝐴̂

)
+ 𝜎

(
𝐴0 − 𝐴̂0

)
. (20)

Similarly, the DC-offset estimation dynamics (eq. (8)) can

be rewritten as:

𝐴̂0 = 𝜎1
(
𝐴0 + 𝐴 sin

(
𝜃0
)
− 𝐴̂0 − 𝐴̂ sin

(
𝜃̂0
))

,

= 𝜎1
(
𝐴0 − 𝐴̂0

)
+

𝜎1
(
𝐴 sin

(
𝜃0
)
− 𝐴̂ sin

(
𝜃̂0
))

. (21)

Applying small-signal approximation to eq. (21) and assum-

ing 𝐴 ≈ 𝐴̂ ≈ 1, the eq. (21) can be simplified as:

𝐴̂0 ≈ 𝜎1
(
𝐴0 − 𝐴̂0

)
+ 𝜎1

(
Φ − Φ̂

)
. (22)

Initial phase angle can be estimated as Φ̂ = arctan
(
𝑥̂2∕𝑥̂1

)
.

Then, the dynamics can be obtained as:

̇̂Φ =
𝑥̂1

̇̂𝑥2 − 𝑥̂2
̇̂𝑥1,

𝑥̂2
1
+ 𝑥̂2

2

=
𝑥̂1𝜎 cos(𝜔𝑜𝑡)

(
𝑆 − 𝑆̂

)
− 𝑥̂2𝜎 sin(𝜔𝑜𝑡)

(
𝑆 − 𝑆̂

)

𝐴̂2
,

= 𝜎
cos

(
𝜃̂0
) (

𝐴0 + 𝐴 sin
(
𝜃0
)
− 𝐴̂0 − 𝐴̂ sin

(
𝜃̂0
))

𝐴̂
,

= 𝜎
cos

(
𝜃̂0
) (

𝐴 sin
(
𝜃0
)
− 𝐴̂ sin

(
𝜃̂0
))

𝐴̂
+
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+𝜎
cos

(
𝜃̂0
) (

𝐴0 − 𝐴̂0

)

𝐴̂
. (23)

The second term in eq. (23) can be simplified using small-

angle approximation and assuming 𝐴̂ ≈ 1 as 𝜎
(
𝐴0 − 𝐴̂0

)
.

Moreover, the first-term in eq. (23) can also be approximated

as:

𝜎
cos

(
𝜃̂0
) (

𝐴 sin
(
𝜃0
)
− 𝐴̂ sin

(
𝜃̂0
))

𝐴̂

≈ 𝜎
(
𝜃0 − 𝜃̂0

)

≈ 𝜎
(
Φ − Φ̂0

)
. (24)

As a result, eq. (24) can be approximated as:

̇̂Φ ≈ 𝜎
((
Φ − Φ̂0

)
+
(
𝐴0 − 𝐴̂0

))
. (25)

Equations (20), (22), and (25) represent the small-signal

model of the CLD method. These equations show that the

estimation dynamics of amplitude, DC-offset, and initial

phase angle not only depend on these variables itself but also

other variables. These cross-coupling effects make it difficult

to obtain individual transfer functions that can be utilized

for gain tuning and stability analysis. The main variable of

interest in this work is the estimated amplitude, which is then

used for characterizing the surface of the material sample.

Equation (20) show that the amplitude estimation dy-

namics depends also on the DC-offset estimation error.

Typically, DC-offset’s amplitude is significantly smaller than

the signal amplitude. As such, the DC-offset estimation

error, i.e., the second term in eq. (20) will be significantly

smaller and can locally be ignored. Then, eq. (20) can be

approximated as

̇̂𝐴 ≈
𝜎

2

(
𝐴 − 𝐴̂

)
. (26)

Applying Laplace transformation to eq. (26), the amplitude

estimation dynamics transfer function can be obtained as:

𝐴̂

𝐴
(𝑠) =

𝜎

2

𝑠 + 𝜎

2

. (27)

Transfer function (27) shows that the amplitude esti-

mation dynamics works as a low-pass filter and the cut-

off frequency is selected by the tuning gain 𝜎. Transfer

function (27) is obtained by ignoring the DC-offset estima-

tion dynamics, and consequently the DC-offset estimation

dynamics gain 𝜎1. As such, validity of this transfer function

depends on small-amplitude DC-offset only. If the DC-offset

amplitude is sufficiently high, this will invalidate the transfer

function. Moreover, transfer function (27) can be used for

tuning the gain 𝜎 not the DC-offset estimation gain 𝜎1.

According to Fig. 1, the DC-offset estimation loops acts

as an outer-loop, whereas the amplitude estimation loop is

the inner-loop. To ensure the system stability, the outer-loop

has to be slower than the inner-loop, which is evidenced by

the significantly smaller value selection for 𝜎1 compared to

𝜎. As such, there is a trade-off in selecting the gains for the

conventional Lyapunov demodulator.

To mitigate the effect of cross-coupling terms in the

amplitude dynamics and consequently the stability of con-

ventional Lyapunov demodulator, two improved demodula-

tors are proposed in this work. In the first approach, DC-

offset-induced estimation error is mitigated through in-loop

filtering. In the second approach, the DC-offset is rejected

outside the amplitude estimation loop, i.e., through a pre-

loop filter. Both approaches overcome the effect of cross-

coupling terms in the amplitude estimation dynamics, which

results in improving the stability of the CLD.

2.2. Improved CLD approach
For the previously mentioned reason, possible improved

approaches may require attention for dynamic performance

improvement of an AFM instrument. It is advantageous and

important to have the rejection of both the DC-offset and the

noisy components simultaneously from an amplitude signal.

In order to achieve this goal, good efforts are required to

get rid of the sluggish DC-offset rejection loop from the

structure of CLD. In Fig. 2, an improved proposal is reported

in [28] for power system applications consisting of either

moving average filters (MAF) or delayed signal cancellation

(DSC) operators, denoted by𝐺(𝑠)may be employed. Herein,

Figure 2: General structure of an improved conventional
Lyapunov’s de-modulator based amplitude detector.

the choice of the aforementioned filters can affect the follow-

ing: structural complexity, dynamic response time and the

noise suppression abilities. Hence, the objective of this work

is to obtain efficient CLD architectures while highlighting

the pros and cons for AFM application. Thus, the issues

are sub-divided and investigated accordingly in the ensuing

subsections.

2.3. Elimination of DC-Offset rejection loop
In this section, the removal of DC-offset rejection loop

is emphasized. From the improved conventional LD (ICLD)

(see Fig. 2), assuming 𝐺(𝑠) = 1, leads to a CLD without

a DC-offset rejection loop. Therefore, CLD will become

sensitive to DC-offset component present in the amplitude

signal obtained from a cantilever beam. Let us now consider

the Equations (1) and (5), then the error signal is,

𝑒𝐷 = 𝑒𝑜 + 𝐴𝑜 (28)

Note that, mathematically the term 𝐴̂𝑜 will be absent in

Equation (5). After applying demodulation, the state vari-

ables ̇̂𝑥1 and ̇̂𝑥2 are obtained as:

̇̂𝑥1 = 𝜎 sin(𝜔𝑜𝑡)𝑒𝐷 = 𝜎 sin(𝜔𝑜𝑡) 𝑒𝑜 + 𝜎 𝐴𝑜 sin(𝜔𝑜𝑡)
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̇̂𝑥2 = 𝜎 cos(𝜔𝑜𝑡)𝑒𝐷 = 𝜎 cos(𝜔𝑜𝑡) 𝑒 + 𝜎 𝐴𝑜 cos(𝜔𝑜𝑡)
(29)

The component 𝐴𝑜 will induce full-cycle oscillations in 𝑥̂1
and 𝑥̂2 components with the choice of reference frequency

𝑓𝑜. Therefore, the low-pass filters, i.e. MAF and DSC oper-

ators are beneficial over a sluggish DC-offset rejection loop.

The continuous-time transfer functions for MAFs and DSC

operators which may be plugged into 𝐺(𝑠), are as follows:

𝐺(𝑠) = 𝐺𝑀𝐴𝐹 (𝑠) =
1 − 𝑒−𝑇𝑤𝑠

𝑇𝑤𝑠
(30)

𝐺(𝑠) = 𝐺𝐷𝑆𝐶 (𝑠) =
1 + 𝑒−𝑇𝑤𝑠∕2

2
(31)

Note that the window length (𝑇𝑤) is 𝑇𝑤=𝑇𝑜, where 𝑇𝑜 =

1∕𝑓𝑜. In view of the digital implementation of the amplitude

detectors, using bi-linear transformation [29], the discrete

time realization of the filters is as follows:

𝐺𝑀𝐴𝐹 (𝑧) =
1

𝑁

1 − 𝑧−𝑁

1 − 𝑧−1
(32)

𝐺𝐷𝑆𝐶 (𝑧) =
1 + 𝑧−𝑁∕2

2
(33)

where, 𝑁 = 𝑇𝑤∕𝑇𝑠 and 𝑇𝑠 are the number of samples and

the sampling time period, respectively. Assuming a sampling

frequency (𝑓𝑠) of interest is 200 kHz and reference frequency

(𝑓𝑜) of 20 kHz [21], a bode response plot is depicted in

Fig. 3 to demonstrate the usefulness of the proposed filters

in ICLD structure for elimination of DC-offset component.

The structure involving MAF is identified as ICLD-M and

Figure 3: Bode response plots of CLD, ICLD-M and ICLD-D.

the structure with DSC operator is identified as ICLD-D.

Note that both the structures behave as a comb filter like

structure. This ensures that the designer can tweak the filter

properties and can avoid the sluggish DC-offset rejection

loop. Furthermore, the estimation of amplitude signal can be

carried out using 𝐴̂1 =
√

𝑥̂2
1
+ 𝑥̂2

2
. Therefore, in a simulation

environment (see Fig. 4), the signal 𝑆(𝑡) contaminated with

40% of DC-offset along with a 50% step change in amplitude

is applied to all the amplitude detectors discussed so far.

It can be seen that all the amplitude detectors are able to

track the amplitude signal. However, the CLD shows an

oscillatory behavior and takes longer time to settle when

compared to ICLD-M/D structures.

Figure 4: Amplitude tracking performance of CLD, ICLD-M
and ICLD-D.

2.4. Noise elimination and reduction in structural

complexities
A noise signal when coupled with the amplitude signal

might affect the accuracy of AFM instrument while con-

ducting an experiment on a test surface in noisy conditions.

Therefore, the measurements obtained from an AFM instru-

ment will always lie in a region of certain approximation.

To explore the aforesaid concern, let us consider a third

harmonic component as a noisy component which is coupled

with the eq. (1). For the sake of simplicity 𝐴𝑜 is considered

absent in eq. (1). Thus, the noise affected test signal is,

𝑆𝑛(𝑡) = 𝑆(𝑡) + 𝑆3(𝑡)

= 𝐴(𝑡) sin(𝜔𝑜𝑡 + Φ) + 𝐴3(𝑡) sin(3𝜔𝑜𝑡 + Φ3)

(34)

where, 𝐴3(𝑡) is the amplitude and Φ3 is the initial phase of

the third harmonic component. The error signal generated in

this case is as follows:
𝑒𝑛 = 𝑒𝑜 + 𝑆3(𝑡) (35)

Using Lyapunov’s estimation law, the state variables, i.e.
̇̂𝑥1 and ̇̂𝑥2 are contaminated with unwanted even harmonic

components and are re-written as follows:

̇̂𝑥1 = 𝜎 sin(𝜔𝑜𝑡) 𝑒𝑜 + 𝜎

𝑋
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑆3(𝑡) sin(𝜔𝑜𝑡)

̇̂𝑥2 = 𝜎 cos(𝜔𝑜𝑡) 𝑒𝑜 + 𝜎 𝑆3(𝑡) cos(𝜔𝑜𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑌

(36)

The evaluation of the terms ‘𝑋’ and ‘𝑌 ’ yields:

𝑆3(𝑡) sin(𝜔𝑜𝑡) =
𝐴3

2
[cos(2 𝜔𝑜 𝑡) − cos(4 𝜔𝑜 𝑡)]

𝑆3(𝑡) cos(𝜔𝑜𝑡) =
𝐴3

2
[sin(2 𝜔𝑜 𝑡) + sin(4 𝜔𝑜 𝑡)] (37)

The coupling of even-harmonic terms with the 𝑥̂1 and 𝑥̂2
leads to an inaccurate estimate of amplitude. Hence, the

inclusion of low-pass filter such as MAFs and DSC operators

can be an effective choice in simultaneous rejection of noise

and DC-offset components.

2.5. Small-Signal Modeling of the ICLD Method
The error demodulation approach is simply an equiv-

alence to Park’s transformation [28] employed for phase-

locked loops algorithms wherein stationary reference (𝛼𝛽)
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frame components are transformed into rotating reference

(𝑑𝑞) frame components. The estimated states variables (𝑥̂1
and 𝑥̂2) are treated as DC-variables in 𝑑𝑞−frame. Using

small angle approximation, if Φ → 0 then sin(Φ) ≈ 0 and

cos(Φ) ≈ 1, therefore, the state variables are expressed as

follows:

𝑥̂1 ≈ 𝐴(𝑡) (38)

𝑥̂2 ≈ 0 (39)

This simply states that the designer might not have to deal

with both the components and/or the mathematical square

root operation. Since only 𝑥̂1 state is enough to estimate

the amplitude signal. The small signal model for the ICLD

structure is shown in Fig. 5. Note that the factor of ‘1/2’ is

Figure 5: Small signal model of ICD

included in the models, as the error signal is equally divided

into two parts. The transfer function relationship for ICLD

structure is obtained as follows:

𝑋̂1,2(𝑠)

𝑋1,2(𝑠)
=

𝑋̂1(𝑠)

𝑋1(𝑠)
=

𝑋̂2(𝑠)

𝑋2(𝑠)
=

𝐺(𝑠)(
𝑠

𝜔𝑝

)
+ 𝐺(𝑠)

(40)

where 𝜔𝑝 = 𝜎∕2 is the cut-off frequency. Note that the

transfer function of the improved conventional Lyapunov

demodulator given by eq. (40) is the same as the conven-

tional Lyapunov demodulator transfer function given by eq.

(27) when 𝐺(𝑠) = 1. However, unlike the conventional

method, the improved one did not exclude the DC-offset

estimation dynamics as the DC-offset induced estimation

error is mitigated by the transfer function 𝐺(𝑠). As such,

stability analysis and tuning of the improved Lyapunov

demodulator can be easily done using well-known methods

from the linear system theory. Moreover, by making an

appropriate choice of the transfer function𝐺(𝑠), it is possible

to enhance the stability, unlike the conventional counterpart.

In addition, the gain 𝜎 and the transfer function 𝐺(𝑠) can

be independently tuned without compromising the stability,

unlike the conventional Lyapunov demodulator. In order to

design 𝜎, consider 𝐺(𝑠) = 1 in (40) and obtain the CLD

structure, with an appropriate choice of 𝜎, the bandwidth

of the CLD structure can be varied till a satisfactory trade-

off in dynamic response time and noise attention abilities is

obtained [25].

3. Proposed Two Consecutive Samples Based

Amplitude Estimation

The knowledge gained from the filter properties of the

ICLD structure, it is to be recalled that the estimation of

𝑥̂1 and 𝑥̂2 states is still slower in response. Therefore, a two

consecutive samples based amplitude detector is proposed.

Using only two consecutive samples of the amplitude signal,

an error signal can be generated while rapid rejection of the

DC-offset component can be ensured. Let us try to obtain the

error signal from an amplitude signal given below:

𝑆(𝑡) = 𝐴(𝑡) sin(𝜔𝑜𝑡 + Φ) + 𝐴𝑜 (41)

The delayed version of 𝑆(𝑡) is obtained as:

𝑆(𝑡 − 𝜏) = 𝐴(𝑡 − 𝜏) sin(𝜔𝑜𝑡 + Φ − 𝜏𝜔𝑜) + 𝐴𝑜 (42)

The error signal is obtained as follows:

𝑒𝑜 =
𝑆(𝑡) − 𝑆(𝑡 − 𝜏)

2Δ𝑡
(43)

where, 𝜏 and Δ𝑡 are equivalent to 𝑇𝑜 and 𝑇𝑠, respectively.

The estimated amplitude can be obtained as follows:

̇̂𝑥1 = 𝑓𝑜 sin(𝜔𝑜𝑡) 𝑒𝑜 (44)

The block diagram of the current proposal is shown in

Fig. 6. The proposed amplitude estimator can be employed

Figure 6: Proposed two consecutive samples based amplitude
detector

for both low and high-frequency probes. In a simulation

environment, four consecutive samples (FCS) [15] and the

proposed two consecutive samples (2CS) based amplitude

estimators are compared at both low and high frequencies. In

Fig 7, a 20 kHz input signal “𝑆(𝑡)" along with a square am-

plitude modulation of 1 kHz is applied to both the amplitude

estimators. It can be observed that the FCS is not a feasible

Figure 7: Amplitdue tracking performance for low frequency
probes.

solution for low frequency probes. On the other hand, when

a 10 MHz input signal “𝑆(𝑡)" along with a square amplitude

First Author et al.: Preprint submitted to Elsevier Page 6 of 11
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Figure 8: Amplitdue tracking performance for high frequency
probes with close-up view on right-hand side.

modulation of 10 kHz is applied to both the amplitude

estimators, as shown in Fig. 8. It is clearly visible from

zoom view (see Fig. 8) that both the amplitude estimators

take equal amount of settling time i.e. one fundamental

cycle with a similar kind of dynamic response behavior.

From the bode plot (see Fig. 9), note that the proposed

Figure 9: Bode reponse plots of FCS and 2CS amplitude
estimators.

Figure 10: Enhanced Lyapunov’s de-modulator based ampli-
tude detector.

2CS offers unity gain in low-frequency region whereas FCS

offers zero gain, illustrating the fact that the FCS technique is

unsuitable for low frequency operation. Nevertheless, some

of the architectural properties of the proposed 2CS approach

are identical to the ICLD. Thus, an enhanced Lyapunov

demodulator (ELD) structure can be derived which make

use of a transport delay block to avoid the state feedback

approach for error signal generation similar to the case of

ICLD and CLD structures (see Fig. 10). If required, low-

pass filters (𝐺(𝑠)) such as MAFs and DSCs operators can be

employed to further improve the noise immunity in case of

the ELD. The discrete time transfer function of the transport

delay block can be realized as follows:

𝑇 (𝑧) =
𝐸̂(𝑠)

𝑆(𝑠)
=

1 − 𝑧−𝑁

2𝑇𝑠
(45)

where, 𝑁 = 𝜏∕Δ𝑡. This ensures that the window length (𝑇𝑐)
is equivalent to 𝑁 samples required to enforce the 𝑒𝑜 toward

zero as well as rejection of DC-offset component. In Fig. 11,

a bode plot is exemplified to confirm the DC-offset rejection

ability of the ELD structure. Further, the demodulation of

Figure 11: Bode response plots for ELD structures.

error signal will become simpler to implement and the state

variables, i.e. ̇̂𝑥1 and ̇̂𝑥2 converge to 𝑥̂1 and 𝑥̂2 rapidly after

𝑁 samples of delay without employing a state-feedback ap-

proach. Furthermore, an adequate amount of filtering is also

offered by transport delay block alone considering 𝐺(𝑠)=1.

In order to provide better immunity against noise, 𝐺(𝑠) in

ELD structure may be replaced with the MAFs and/or DSC

operators as:

𝐺𝑀𝐴𝐹 (𝑧) =
2

𝑁

1 − 𝑧−𝑁∕2

1 − 𝑧−1
(46)

𝐺𝐷𝑆𝐶 (𝑧) =
1 + 𝑧−𝑁∕2

2
(47)

A minor difference between ELD-M structure and ICLD-M

structure is, 𝑁 samples are required by the MAFs in ICLD-

M structure and 𝑁∕2 samples are required by the MAFs in

ELD-M structure. Also, with regard to the DSC operators,

both the ELD-D and ICLD-D needs 𝑁∕2 samples. For high-

Figure 12: Dynamic behavior comparison of the ELD structures
when 𝐺(𝑠) = 1 is replaced by 𝐺𝑀𝐴𝐹 (𝑠) and 𝐺𝐷𝑆𝐶 (𝑠) filters.

frequency probes, the dynamic performance of the proposed

ELD structures is compared in Fig. 12. It can be inferred that

all the estimators possess good steady-state accuracy with

slight differences in settling time abilities. Furthermore, the
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overall transfer function relationship for an ELD structure is

straightforward to deduce using the small-signal modeling

approach applied to ICLD structure, as follows:

𝑋̂1,2(𝑠)

𝑋1,2(𝑠)
=

𝑇 (𝑠) 𝐺(𝑠)(
𝑠

𝜔𝑝

) (48)

where, 𝑇 (𝑠) and 𝐺(𝑠) are 𝑠-domain transfer functions of the

transfer delay block and the MAF/DSC filters, respectively.

4. Simulation Results For Pesudo-Test

Surfaces

In Matlab/Simulink environment, four pseudo-test sur-

faces are generated which are in near proximity to the actual

test surfaces. The generated test signal is then provided

to six potential amplitude detectors, i.e. the conventional

Lyapunov’s demodulator (CLD) [21], the gradient descent

estimator (GE) [23], the improved CLD with 𝐺𝑀𝐴𝐹 (𝑠) is

denoted as ICLD-M [28] which are compared with the

proposed approach. The different variants of the proposed

ELD structures are as follows: the first variant without filter

(𝐺(𝑠) = 1) is denoted as ELD, the second variant with

a moving average filter (𝐺𝑀𝐴𝐹 (𝑠)) is denoted as ELD-M

and the third variant with a delayed signal cancellation

operator (𝐺𝐷𝑆𝐶 (𝑠)) is denoted by ELD-D. The test input

signal frequency is considered 20 kHz, and the sampling

frequency is 200 kHz. A pseudo-material surface having

equal spaces with a height of 20 𝜇m along with its equivalent

amplitude signal is exemplified in Fig. 13(a). Moreover, the

(a) Pseudo-equally spaced surface and it’s equivalent input signal

(b) Amplitude estimation

Figure 13: Amplitude estimation for an equally spaced pseudo-
surface
input signal has a slower rise time and fall time whose impact

on amplitude tracking abilities of different estimators is

shown in Fig. 13(b). The structures such as ELD, CLD, GE,

and ELD-M/D are closer to the reference amplitude signal

when compared to ICLD-M. However, a smoother dynamic

response is obtained with the ICLD-M amplitude detector

when compared to all other estimators. Nevertheless, the

(a) Input signal with DC-offset

(b) Amplitude estimation in the presence of DC-offset

Figure 14: Dynamic amplitude tracking performance.

malfunctioning of the analogue-to-digital converter of an

AFM instrument might lead to the existence of a DC-offset

component in the measurement, as shown in Fig.14(a). It is

observed in Fig. 14(b), that the GE is incapable of handling

the DC-offset component present in the amplitude signal.

Note that a fast dynamic response is obtained with the ELD

and ELD-M/D structures without any error when compared

to the CLD structure. On the other hand, a slower and

smoother dynamic response is obtained with the ICLD-M

structure owing to the existence of MAF filters. In practice,

(a) Input signal with triangular amplitude modulation

(b) Amplitude estimation of a triangular envelop

Figure 15: Amplitude tracking performance for a pseudo
triangular surface
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Table 1

Comparative analysis of key metrics for different amplitude estimators

Key parameters
Amplitude Estimators

CLD [25] GE [23] 2CS [15] ELD

DC-offset Elimination Ability
√

× ×
√

Noise Rejection ability Good Average Poor Better

High-Frequency Application × ×
√ √

Low Frequency Application
√ √

×
√

Steady-state Accuracy Good Good Better Better

Control Complexity Higher Medium Least Medium

the test surfaces are not smooth in nature and possible

slow variations may occur in the surface. For example,

a triangular amplitude-modulated signal (see Fig. 15) and

sinusoidal amplitude-modulated signal along with DC-offset

(see Fig. 16) are considered to evaluate the robustness of

the proposed amplitude detectors. The ELD estimator and

(a) Sinusoidal amplitude modulated input signal with DC-offset

(b) Rejection of DC-offset while estimating sinusoidal envelop

Figure 16: Sinusoidal amplitude tracking performance

its derivatives outperform in terms of following the mean

value of the reference amplitude signal compared to other

amplitude estimators without any steady-state errors. It is ev-

ident that all the estimators can effectively track the ramping

and sinusoidal variations, among which ELD proves to be

a dynamically faster and more accurate approach for AFM

application.

5. Experimental Results

This section compares the proposed ELD estimator with

conventional Lyapunov’s demodulator [25] and gradient es-

timator [23] to assess the real-time applicability. For this

purpose, the pseudo-surface signal is generated internally

through the use of a digital-to-analogue converter (DAC)

Control Desk and

 MATLAB/Simulink

D
S

1
1

0
4

 C
o

n
tr

o
ll

e
r

CLP1104 board

DL-750 Scopecorder
Personal Computer

A 1 

ADCs

DACsMUX

S(t)

Figure 17: Experimental rig for early verification of amplitude
estimators
port of a dSPACE (DS1104) controller card, which is sam-

pled at 10 kHz as shown in Fig. 17. The amplitude

estimators are implemented using a discrete-time solver in

a MATLAB/Simulink environment. The control algorithms

will receive pseudo-surface signals through an analogue-to-

digital converter (ADC) port, and the estimated amplitude

signals and pseudo-surface signals are captured on a DL-

750 ScopeCorder. In Fig. 18 and Fig. 19, four test cases are

presented, which are organized as follows:

• Amplitude tracking without DC-offset (Fig. 18(a))

• Amplitude tracking with DC-offset (Fig. 18(b))

• Triangular Modulation (Fig. 19(a))

• Sinusoidal Modulation with DC-offset (Fig. 19(b))

The amplitude signal of the pseudo-surface signal is

easily detectable by all the estimators in the absence of the

DC-offset, as shown in Fig. 18(a). However, the performance

of the gradient estimator is severely affected in the presence

of DC-offset compared to the proposed ELD and the CLD,

as shown in Fig.18(b)-18(c). In addition, the ELD outper-

forms in terms of settling rapidly to a new-steady state as

regards the CLD and the gradient estimator (see Fig. 18(c),

magnified view). All the estimators are equally capable

of tracking the triangular and/or the sinusoidal amplitude-

modulated signals, as shown in Fig. 19(a)-19(b). Note that

the proposed ELD ensures faster DC-offset elimination and

has a better dynamic response than the CLD and GE, as

shown in Fig. 19(c). Hence, it can be inferred that the

proposed amplitude estimator has better amplitude tracking

capability and a higher degree of DC-offset immunity. It

requires the most minor tuning efforts compared to the CLD

and GE estimators. The key metrics such as the DC-offset

elimination ability, noise rejection ability, steady-state accu-

racy, applicability, and control complexity of the proposed
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(a) Equally spaced pseudo-surface (b) Equally spaced pseudo-surface with DC-offset (c) Case 2: magnified view

Figure 18: Amplitude tracking performance with equally spaced pseudo-surface signal without DC-offset and with DC-offset

(a) Triangular modulation (b) Sinusoidal modulation with DC-offset (c) Case 4: magnified view

Figure 19: Amplitude tracking performance in the presence of a triangular and sinusoidal pseudo-surface amplitude modulation

amplitude estimator are compared with the conventional

amplitude estimators along with a more recent two-sample

based approach (2CS) [15], refer to Table 1. Note that the

ELD approach demonstrates better noise suppression ability

and steady-state accuracy than the conventional approaches.

Compared to the 2CS approach, the amplitude tracking ca-

pabilities given low/high-frequency probes AFM application

are superior but at the cost of slightly higher control com-

plexity. Furthermore, two additional test cases are reported,

which are organized as follows:

• Unequally spaced step variations (Fig. 20(a))

• Equally spaced surface with -20dB noise (Fig. 20(b))

The purpose of these test cases is to present often en-

countered real-life situations as regards the non-smooth ma-

terial surfaces [30], as shown in Fig. 20. A test pseudo-

surface signal is accordingly generated, demonstrating that

the material may have a non-uniform surface and unequal

gaps, which might interest structural studies. Therefore, the

step decrement in the pseudo-surface signal is considered as

shown in Fig. 20(a). It can be observed that all the amplitude

estimators can track the step variations in the amplitude

signal. Note that the proposed ELD structure and the GE

demonstrate higher accuracy in tracing the amplitude infor-

mation than the CLD structure. Similarly, the measurement

accuracy of the AFM instrument may be severely affected

by the choice of the working environment. Typically, white

Gaussian noise is coupled with the input signal of the mea-

suring device to test the algorithm’s performance employed

to improve the instrument’s performance. In Fig. 20(b), a

test pseudo-surface signal is subjected to -20dB of the noise

signal, which is later sent to all the amplitude estimators. It

can be observed that the impact of noise affects the operation

of all the estimators, as shown in Fig. 20(c). However, the

noise sensitivity of the CLD estimator is slightly higher than

the ELD and GE estimators.

6. Conclusion

This article discusses two samples’ potential amplitude

tracking abilities based on enhanced Lyapunov’s demodula-

tion approach. The modification applied to the conventional

(a) Unequally spaced surface with step variations (b) Equally spaced pseudo-surface with Noise (c) Case 6: magnified view

Figure 20: Amplitude tracking performance in the presence of step variations and noise in the pseudo-surface
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Lyapunov approach using delay operators has significantly

improved the dynamic response time and addressed the DC-

offset issue without any additional feedback loops. Conse-

quently, a faster dynamic response is achieved with ELD and

its variants. Also, there is scope to accommodate additional

noise-suppressing filters in the ELD structure according to

the requirements of the AFM application. It is important

to stress that the proposed ELD approach benefits both the

low and the high-frequency AFM probes without applying

tedious tuning efforts. The experimental results corroborate

that the proposed ELD amplitude tracker outperforms the

difficulties faced by the CLD and the gradient estimator

approach. Hence, the proposed ELD estimator is a suitable

choice for AFM application.
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