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Abstract

A new method for numerical optimization of fiber-steered composites is
presented, which allows to control efficiently and effectively the curvature
of the fibers of single- or multi-layer composite structures. It is based
on the introduction of an artifical surface defined and controlled by a
relatively small number of control points, which is optimized to identify
optimal fiber orientations varying smoothly over the panels. Curvature
constraints like the maximum fiber curvature constraint, MFCC, or the
average fiber curvature constraint, AFCC, are respected explicitly by the
method to ensure manufacturability of the composite component. Three
validation cases are regarded where results of the unconstrained case are
compared to those of established methods to illustrate the validity of the
new approach. They are complemented by results considering curvature
constraints showing that optimal structures depend strongly on the chosen
curvature thresholds. Finally, a rib optimization of a wingbox structure
is realized as a more complex case.

1 Introduction

Composite materials based on carbon or glass fiber reinforced polymers (CFRP,
GFRP) are widely used for aerospace or other structures. One of the main ad-
vantages here is the possibility to tailor the material according to dominant load
directions, which is normally done by selecting and/or optimizing the stacking
sequence and the orientations of a set of unidirectional layers. This can be im-
proved by adapting the composite layout more locally to the directions of the
stress field employing an automated fiber placement (AFP) technology [1]; the
outcome is also known as fiber-steered composites (FSC) [2, 3], or variable stiff-
ness (VS) fiber-placed composite laminates [4, 5, 6, 7, 8, 9]. Fibers are placed
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along curvilinear paths within the plane of the laminate, tailoring mechani-
cal properties like stiffness, buckling resistance, aero-elastic and/or vibrational
properties.

When designing and optimizing fiber-steered composites, the manufacturing
procedure has to be considered with its inherent requirements. Normally, a robot
arm places one or more uni-directional fiber tows following a predefined path on
an arbitrary surface. This may result in manufacturing problems, such as local
tow gaps, steering overlaps, tow pull-up/tow misalignment, wrinkling/buckling,
or even fiber failure [8]. To avoid this, a minimum turning radius or maximum
curvature of the fiber tow paths has to be respected [1]. Related factors such
as pressure of the AFP roller, heating source/process temperature, or material
tackiness may lead to additional restrictions. Nevertheless, main constraints
for numerical optimization are given by thresholds for fiber in-plane curvature
and material width. The former is normally defined by restricting the minimum
radius for the centerline of the fiber-course [1], while the latter can be addressed
directly as band width of the tow.

The numerical optimization of structures with standard CFRP/GFRP mate-
rials is already of high complexity requiring special methods [10]. Beside shape
and topology parameters defining the global geometry, design variables related
to stacking sequence, layer thicknesses, and fiber orientations are of interest.
This leads to optimization problems with a mixture of continuous and discrete
variables. The corresponding objectives and/or constraints, e.g. compliance or
buckling resistance, are therefore often non-convex and multi-modal; i.e. there
is not a unique solution. This situation becomes even more challenging in case
of VS/FSC where additional design parameters are introduced describing local
lay-ups and orientations at every point of the structure. Fiber continuity and
laminate manufacturability have to be ensured, which leads not only to prob-
lems with a very high number of design parameters but also with a large number
of local constraints. For parametrization, different approaches have been dis-
cussed in the literature; the corresponding state of the art is summarized in the
next section.

2 State of the Art

Approaches using directly FE elements or patches: Direct variation of
fiber paths represents the first group of methods for designing and optimizing
fiber-steered composite materials. The proposed techniques control either fiber
orientation for each FE element or they use larger patches of elements with con-
stant laminate properties to reduce the number of design parameters [11, 12].
Providing less freedom for spatial variation of fiber direction, patches allow
easier consideration of manufacturing requirements. However, the obtained op-
timal design is strongly pre-determined by the chosen patch geometry or patch
material properties. The other approach is based on an iterative derivation of
principal stress directions to identify fiber angles. Here, the fiber angles are
not varied during the optimization but are defined as a result of the FE simu-
lation such that the material data has to be updated and the simulations are
repeated [13]. Another example where fiber orientations are directly taken as
design variables is presented by Setoodeh [14, 15]. Here, the domain is divided
into a large number of rectangular cells, and a cellular automaton (CA) is ap-



plied with special update rules for field and design variables to iteratively find
the optimal design. Additional heuristic pattern-matching rules are applied in
order to improve manufacturability of the obtained designs.

Parametric path approaches: To reduce the number of design variables,
a one-dimensional parametric description of fiber paths can be chosen. The
changing paths are then defined on the geometry level and do not require de-
sign domain discretization using elements or patches of elements, see for example
the work of Giirdal et al. [16, 17] and later Alhajahmad et al. [18] and Stan-
ford et al. [19]. The fiber path orientations, for example, can be changed linearly
from one end of the panel to the other along one axis. This parametrization al-
lows to explicitly derive the fiber paths and obtain curvature radius to consider
manufacturability [18]. Results indicate that even with simple linear variation of
fiber orientation, significant design improvements can be achieved compared to
classical uni-directional laminates. Alhajahmad et al. [2] also investigated non-
linear angle variation based on Lobatto-—Legendre polynomials. Alternatively,
Nagendra et al. [33] proposed to represent fiber paths as a weighted sum of pre-
defined one-dimensional basis fiber curves (non-uniform rational basis splines,
NURBS) and to vary the weights to achieve improved or optimized fiber layouts.

Huang and Haftka [20] proposed optimization of fiber orientations based on
a 2D fiber path parametrization. To optimize a structure around a hole, fiber
angles in the vicinity of the hole are represented using piecewise bilinear inter-
polation functions. Brooks et al. [21] used tensor products of B-splines to define
fiber angle variations over the design domain. The authors mention several de-
sired properties of such parametrization, including flexibility due to arbitrary
number of control points, smoothness of the resulting fiber paths and compact
support of splines, making a change of a single control point to have only local
effect. Smoothness of the fiber paths was controlled by increasing or decreasing
the number of control points, which provides an option to include curvature
constraints within the optimization. It was also shown, that for relatively sim-
ple plate-in-bending problems, a gradient-based optimizer can be trapped in a
local optimum, which motivates the use of global optimization methods.

Another approach was presented by Honda et al. [22] where the fiber path
distribution is defined by contour lines of cubic polynomials specified over a
2D plate domain. Polynomial coefficients are manipulated directly in order to
vary fiber paths. This approach can be viewed as an implicit parametrization,
as no explicit path parametrization is defined. The method uses the average
curvature condition for manufacturability of fiber curvature, see also [23]. A
multi-objective optimization was realized showing that average curvature as first
objective is clearly conflicting with structural criteria like first eigenfrequency
or Tsai-Wu failure index as second objective.

LP-based approaches: To reduce complexity, the optimization can be di-
vided into two steps, see some of the early approaches for standard compos-
ites [24, 25]. Here, the first optimization stage consists in optimizing the so-
called lamination parameters (LPs) and the second identifies the stacking se-
quence which fulfils the optimal values of the lamination parameters. The 12
lamination parameters where introduced by Tsai et al. [26, 27] and represent
together with material invariants the stiffness tensors of laminated composites



based on a set of uni-directional laminae; they are trigonometric functions of
the ply orientations. Because the LPs are interrelated, additional inequality
constraints have to be introduced to describe the feasible regions for the LPs.
These regions are convex as shown in [28]. Both, the reduction of the num-
ber of design variables by using LPs and the convexity of the design space are
advantageous for numerical optimizations.

For the second step, the identification of the lay-up fulfilling the optimized
LPs, new methods are required to enable optimization of AFP design prob-
lems. Here, after identifying the optimal distribution of LPs, the corresponding
stacking sequences and fiber paths have to be determined. This is not a trivial
task and, in fact, is another optimization problem with no closed-form solu-
tion. Moreover, assuming a predefined number of layers, no laminate lay-up
exists for some points in the LP space. In this case, a least squares problem
can be used to find the best possible stacking for the optimal LPs, as pro-
posed by van Campen et al. [29]. Because of non-convexity of this problem, a
genetic algorithm was used by the authors together with a cellular automata
method. Once the layer-wise optimal stacking sequence is obtained, the discrete
element-wise values of fiber angles within each layer need to be converted into
continuous paths; further details are given in [30, 5]. For single-layer problems,
Setoodeh et al. [31] proposed to identify fiber paths corresponding to optimal
LP distributions using also a least-squares formulation where the paths were
parametrized via Lobatto polynomials. Klees et al. [32] used hierarchical shape
functions to parametrize fiber angles for multi-layered composite rectangular
plates, which were optimized for maximum buckling load using LPs. The stud-
ies showed that shape functions of higher order are more efficient than increasing
the number of laminate layers. Blom et al. [3] developed an approach convert-
ing the given fiber orientations into continuous fiber paths using a streamline-
analogy. How to integrate here the local conditions on fiber curvature is, to the
knowledge of the authors, an open question.

To conclude the state of the art section, it can be noted that there is a num-
ber of parametrization approaches for AFP composites but they differ strongly
concerning their complexity (number of parameters) and their ability to ac-
count for manufacturability (maximum curvature control). The main target of
the current work was to develop a new method which would allow to describe
big variety of fiber paths without a high parameter or constraint dimensionality,
at the same time providing an efficient way to integrate curvature constraints,
which resulted into the Iso-Contour Method (see Section 4). Before this is
presented in detail, different ways to consider manufacturing requirements are
discussed in the next section.

3 Manufacturing requirements

As described in the introduction, it is necessary to control the fiber curvature;
high curvatures lead to various imperfections of the material and/or violate ca-
pabilities of existing AFP machines. Thus, manufacturability of the obtained
fiber layout should be addressed during the optimization. In literature, there
are different ways to realize this; most of them use either the average fiber cur-
vature constraint (AFCC) or the maximum fiber curvature constraint (MFCC).
In cases, where a parametric description of fiber paths is used, the curvature can



be directly derived from the one-dimensional parametric curves [2, 18, 17, 33, 19]
or the two-dimensional representations, e.g. [21, 22]. Then, the obtained curva-
ture can be averaged over the design space for AFCC (e.g. [22]) or directly used
to obtain the curvature maximum for MFCC. The same techniques can also be
applied when converting LP-based optimization results into fiber paths using
least-squares formulations with explicit path parametrizations [32, 31]. Often,
discrete (element-wise) parametrization of fiber angles is used, such that linear
shape functions can be defined over the elements to approximate the angle vari-
ation. Then, the curvature is calculated as the rate of change in fiber angles, see
e.g. [30, 23] to determine the MFCC. For the AFCC, the element-wise curvature
information can be assembled into a layer representation of the curvatures to
compute the average fiber curvature as proposed for example in [34, 23]. A
similar approach can be used in case the streamline analogy is used to limit the
streamlines’ curvatures [3]. Note that in general, the AFCC approach cannot
guarantee that designs are manufacturable w.r.t. maximum curvature; but they
can provide an improvement over an unconstrained design while being less com-
plicated for an optimizer than the maximum curvature constraint. In contrast,
the MFCC captures accurately local curvature conditions but leads to a high
number of values to be considered in the optimizations, which increases com-
plexity therefore is not optimal. Hence, a new approach is proposed in the next
section using an iso-contour approach.

4 Iso-contour method

In this section, the main steps of the proposed 2D fiber steering optimization
method, the
'Iso-Contour Method’ (ICM), are described. The main idea without details
was introduced in [35, 36, 34]; further aspects including an embedding into an
overall hierarchical optimization of aerospace structures are given in [37]. The
key idea of the proposed method is to use an artificial parametric surface de-
fined over the 2D structural domain to control fiber paths. In a certain way,
this can be understood like a level-set function; although, we do not consider
only the zero-level boundary, but the gradients of the surface describing the
fiber orientations and their changes. The smoothness of this surface controls
the continuity and smoothness of the fiber steering.

The scheme of the method is presented in Fig. 1. To introduce the artificial
contour function, a 2D box domain is created in a first step containing com-
pletely the structural component. Then, a grid of control points (could also be
non-regular) is defined inside this box. This may be identical or non-identical
to the finite element (FE) nodes. The number and the locations of these control
points are user-defined. To each control point an initial height value is assigned,
which is then varied within the optimization. The artificial surface is finally cre-
ated using standard regression or interpolation algorithms from meta-modeling
approaches, e.g. described in [38]. In the current work, non-parametric surfaces
are used, such as Radial Basis Functions (RBF), Gaussian Process Interpolation
(GP), or 2D splines. Splines interpolation requires regular grid positioning of the
control points, while RBF and GP allow flexible point locations. The locations
of the control points can be adjusted to fit specific geometrical elements (e.g.
holes) allowing more flexibility for fiber paths where necessary. As for geodesic
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Figure 1: Workflow of the proposed Iso-Contour Method.

maps, the iso-contour lines are obtained from this artificial surface. These iso-
contours guide the fiber paths at each point of the 2D structural domain, with
the fiber directions aligned locally to the iso-contour lines. The curvature can
be also obtained from these isolines.

For the optimization, the "heights’ defined at the control points are consid-
ered as design variables, which means that the number of control points repre-
sents the dimension of the optimization problem. The results presented here are
meant to illustrate the Iso-Contour Method. Hence, the focus is put on identi-
fying optimal fiber orientations; other parameters (e.g. related to the stacking
sequence) of composite materials are not considered in the optimizations. It is
therefore assumed that the homogenized properties of the fiber reinforced com-
posite are already known; they are inserted into the orthotropic material model
of the FE code. In this case, the main principal axis of this orthotropic material
is aligned with the fiber direction. Changing of the fiber direction of the com-
posite is then equal to rotating the material’s principal axes. As a consequence,
the method can be easily used together with commercial ’black box’ FE codes,
especially if non-intrusive implementations are required. Via rotation of the
local coordinate systems (LCS) for each element, the fiber alignment according
to the iso-contour lines passing through the element centroid can be realized.

Curvature handling: As discussed in Section 3, maximum curvature of fiber
paths must be limited to assure manufacturable fiber-steered composite de-
signs. This paragraph shows how this constraint is included within the proposed
method for mono- or multi-layered designs. The distribution of the fiber angles
in the design domain can be viewed as a vector field V, defined by

V =u(z,y)e, + v(z,y)ey, (1)

where v and v are the z,y components of the fiber directions. e,,e, are the
Cartesian unit vectors. With this definition, the absolute curvature of the vector



field V can be expressed by (see e.g. [39]):
vy — v?uy 4+ uv(vy — uy) @)
(u2 + v2)3/2 ’

klvy =

where subscripts x, y denote partial derivatives w.r.t x and y, respectively. The
fiber directions are derived from the artificial surface ¢(x,y) as tangents to the
iso-contours, i.e.:

=2 =2 ®
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choosing a special value ¢(z,y) = C as particular contour line. Using Eqs. (1,2)
leads to

ey — 202y PaPy + CyyPa
(92 + 2)3/2

For the important case of multi-layered composite materials, layers are designed
interdependently, e.g. using reflected or rotated layers w.r.t. the baseline layer.
In the case of reflection, the fiber angle « is changed to —a for each point of
the geometry domain. This can be expressed mathematically as:

ke =

(4)

u[_a] =UuU=——; v = —

oy’ T oz

Inserting these expressions into (2) leads to
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Another option to construct new layers is to rotate fibers by /2 : o — a+7/2.
This transformation is expressed as:

Ekl=al —

C

(6)

dp Op
7/2] — _, = 27, (/2] —, = 9¥¢ -
! VS VT T T gy (7)
leading to
L) _ | P (93 = 03) + 0oy (yy = Pua) .
¢ = (o2 +<,0§)3/2 .

In general, for a given rotation angle v, the curvature can be calculated [39]:
kDD = |ke cosy + kT sin~|. (9)

Fig. 2 shows an example of fiber paths obtained from the case of a hyperbolic-
paraboloid surface for a plate with hole for different layer transformations. As
can be seen, the curvature for the mirrored and the rotated layer can differ signif-
icantly from the curvature of the original layer. This means that the curvature of
the transformed layers needs to be considered when designing such multi-layered
composites. In general, the MFCC for each layer requires to find the maximum
curvature within the total geometry domain. In this work, a straightforward
sampling-based approach is used here because artificial surface evaluations are
very cheap. For the examples regarded here, a sampling between 200 x 200 and
1000 x 2000 grid points are used. The advantage is that the obtained MFCC
values are independent from the finite element discretization.
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Optimization approach The aim of the optimization is to find the global
optimal fiber placement in order to improve desired properties of the structure
(e.g. structural stiffness, maximum stress, buckling force, etc.) and at the same
time to fulfil the aforementioned manufacturability constraints, formulated in
terms of fiber curvature. While it is possible to compute local sensitivities
of integral functions (e.g. strain energy, compliance.) w.r.t. fiber orientations
within finite-elements, extreme-based quantities, such as maximum curvature or
maximum equivalent stresses must be reformulated using constraint aggregation
techniques (e.g Kreisselmeier-Steinhauser function), which may end up in violat-
ing original constraints. Moreover, local curvatures are highly non-linear w.r.t.
design parameters, represented by the artificial surface control points, which
makes the optimization problem challenging for local gradient-based methods.
Thus, gradient-free global optimization methods are used within this work for
handling highly non-linear curvature constraints. Flexibility of the iso-contour



parametrization allows to keep the optimization problem dimension relatively
low, which makes global optimization computationally feasible. The fact, that
sensitivity information is not required allows to apply the proposed technique
to problems, where sensitivity information is not straightforward available (ex-
treme problems, contact/crash applications, etc).

In particular, within this work, an evolutionary optimizer is used here for
the examples on fiber-steered composite optimization. This is complemented in
some cases by a local optimizer to establish a two-stage optimization, first an ex-
ploration phase via the evolutionary strategy followed by an exploitation phase
using COBYLA (Constrained optimization by linear approximation). Both al-
gorithms are provided by Dakota [40], see also [41]. The optimization algorithms
are not described in detail here because the main emphasis of the work presented
here lies on the parametrization and the constraint handling.

5 Validation results

To validate the proposed Iso-Contour Method, several test problems are inves-
tigated here. The first test problem consists of optimal fiber placement for a
plate under two static loads; this case enables a qualitative comparison with
results from classical density-based topology optimization. The second test case
is inspired by the work of Setoodeh [15] where a clamped plate is optimized
for maximum stiffness in bending. This problem allows direct comparison of
optimal fiber placement via the proposed method and Setoodeh’s work. The
third test problem addresses a more complex problem; i.e. the design of a
multi-layer fuselage panel for maximum buckling force where results of an LP-
based optimization are available for qualitative comparison. Simulations are
performed using laminate modeling capabilities of the commercial FE solver
ANSYS. For all test problems, an orthotropic material represented by homog-
enized fiber-steered laminates are used having the following elastic properties:
elastic moduli Fy = 130 GPa, F> = E3 = 10 GPa, shear moduli G152 = G31 =5
GPa, Go3 = 27 GPa, and Poisson’s ratios v1o = 31 = 0.35, v93 = 0.2.

Plate under two in-plane static loads: As first test problem, a fiber path
optimization for a centrally supported composite plate with two top/side loads
(see Fig. 3, top left) is regarded. The dimensions of the plate are taken as 160
mm x 100 mm with a thickness of 1 mm. A single-layer laminate material is
used for the plate. In total 9 points are placed in a 3 x 3 grid over the 2D
plate domain, which control the artificial surface and define the corresponding
iso-contour fiber paths. Thus, the number of design variables for this test case is
equal to 9. The control points are placed on a regular grid and a bivariate spline
surface is used for this example. The FE model is relatively coarse with a mesh
of 16 x 10 shell elements (8-node 2°¢ order shell elements). An evolutionary
algorithm is employed for optimization, where the sum of the displacements of
the loaded points on the top of the plate should be minimized. The first results
are given here without consideration of curvature constraints.

The optimal surface reached after 100 iterations and therefore 4000 FE sim-
ulations is shown in the top row (right) of Fig. 3. The corresponding isoline
results are given in the middle row (left) of the same figure. The optimal topol-
ogy (obtained by Solid Isotropic Material with Penalization, SIMP) for equally
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Figure 3: Results of the first test case (from left to right): Top row: Problem
definition and 3D visualization of optimal contour; middle row: Optimal isolines
and isotropic topology results; bottom row: Optimal fiber orientations and
overlaid image of topology and fiber orientation results.

loaded isotropic design is shown in the middle row (right) of Fig. 3. In the
bottom row of the same figure, the optimal fiber orientations for each FE ele-
ment are shown (left without and right with the overlay of the topology result).
Comparison of the results suggests, that the fiber orientations identified with the
proposed iso-contour method are in this case similar to the load path directions
derived from an isotropic SIMP topology optimization.

In the next step, the influence of the curvature constraints is explored. For
this, several optimization runs with different curvature constraints are per-
formed, starting with the unconstrained case from above, followed by an opti-
mization using the average fiber curvature constraint (AFCC) with a threshold
of of 0.2 m™! and 0.4 m~! and finally an optimization constraint by the max-
imum fiber curvature constraint (MFCC) with 0.2 m~! and 0.4 m~! as limits.
The isoline results of the constraint cases are given in Fig. 4. The Table 1 sum-
marizes the results of the optimization, listing displacement reduction factor in
relationship to a displacement obtained for a simple 90° laminate solution. A

10



Table 1: Final values of the objective. Displacements are normalized with
respect to the average displacement of a 90° laminate (constraint values in
-1

90° AFCC AFCC MFCC MFCC
- 00 0.4 0.2 0.4 0.2
1.0 2.027 1.818 1.688 1.480 1.100

stricter (i.e. smaller) constraint value leads to design performance loss, however
even the very smooth design with MFCC equal to 0.2 m~! outperforms unidi-
rectional laminate. It can be noted, that MFCC produces much smoother paths
for the same constraint setting, as AFCC. The reason for that is the inability
of AFCC to capture effects of high local curvatures: for example, the maximum
curvature, obtained for AFCC setting 0.4 m™! is 5.3 m™', and for 0.2 m~! is
1.1 m~!. On the other hand, AFCC is a much smoother metric of global cur-
vature changes during optimization, less sensitive to local design changes than
MFCC, and can still produce valuable designs which require only slight manual
1]
AFCC ke=0.4m™1

\\v%///

10| =e—— _ 1 10

[
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N £y

0 5

B a [e0]
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0 - ‘ v YT -~ i
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Figure 4: Results of the first test case for AFCC constraints (top row) and
MFCC constraints (bottom row). Red dots indicate points of maximum curva-
ture.

To illustrate the performance of the optimizer, the case for MFCC with a
threshold of 0.4 m~! is shown here exemplarily, i.e. for the result given in Fig. 4,

11



bottom, left. The optimization using the genetic algorithm (population size:
70, iterations: 70) was stopped after 4,900 FE evaluations, reaching sufficient
convergence without constraints violation as shown in Fig. 5.

204

154

Displacement [mm]

Maximum curvature

0 1000 2000 3000 : 000 2000 2000
Sample number Sample number

Figure 5: Exemplary optimization performance of the first test case for an
MFCC constraint of 0.4 m~1.

Clamped plate under uniform load: A second case, a clamped plate under
uniformly distributed in-plane loading, is regarded to relate the results to fiber
orientations derived by alternative approaches from the literature (here the PhD
thesis of Setoodeh [15]). A fiber-steering optimization of a clamped composite
plate loaded by a uniform load on the top is realized (see Fig. 6, top row).
As the objective, minimization of the average displacement of the top line is
considered. The control points for the surface are again equally distributed; we
define here a grid of 16 (4 x 4) control points. Because the reference solution is
derived without curvature control, our result is also given here without AFCC
or MFCC values.

The results shown in Fig. 6 from the proposed method (third row) and
the reference method (bottom row) do not match perfectly, which is due to
the fact that different methods and therefore optimization problems have been
regarded. Nevertheless, the two distributions are comparable and show similar
main features. In the top and bottom element rows, both structures show
horizontal fiber orientations (except in the corners). There is a rapid change in
orientation along a horizontal line a little above the center line. Main differences
between both solutions appear at the very right of the structure, which can be
explained by the fact that the stress distribution there is very low and therefore
fiber orientation is of minor importance.

To show that the proposed method can not only derive comparable results
to established approaches but is also able to include smoothness considerations,
i.e. curvature constraints, additional results are shown here, which cannot be
compared to the reference solution obtained without any constraints. The cor-
responding isoline results are depicted in Fig. 7.

A closer look on the obtained displacement values (see Table 2) suggests,
that less strict MFCC requirements results in a better design stiffness, meaning
that these two design goals, fiber smoothness and compliance/displacement are
contradictory. In this case existence of Pareto front is expected, which can be
found using multi-objective optimization. This is, however, out of the scope

12
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Figure 6: Optimization result of the second test case (no curvature constraint):
top row: problem definition; second row: optimal isolines; third row: corre-
sponding fiber orientations; bottom row: reference solution [15].

of the current work, which is concentrated on the validation and illustration of
the proposed iso-contour method. To finalize this, a third and last example is
regarded next.
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Figure 7: Optimal isolines for the second test case with different curvature
constraints k..

Table 2: Average top line displacements for optimal fiber placement w.r.t. 0°
simple laminate solution.

0° Fiber-steered laminates
kem™1 - 00 30 20 15 5
(5,“,9 1.0 1.79 1.78 1.74 141 1.23

Uni-axial buckling of a cylindrical plate with a hole: The third test
case considers a cylindrically curved composite structure with a circular hole
(see Fig. 8) in order to maximize the critical buckling load. This case is mo-
tivated by geometry and loading conditions from a simplified representation of
a fuselage section design with a window; first results were published without
details in [36, 34] and the full details are given here. Via this example, the
application of the proposed iso-contour method to multiple-ply fiber steering
problems is discussed. Besides the challenge how to handle multiple plies and
their curvature constraints simultaneously, an additional complexity is added
here by the non-linearity of the buckling problem. The plate is simply sup-
ported at the straight edges and subjected to uni-axial pressure at the curved
edges, as shown in Fig. 8. The dimensions of the plate are in-plane 0.5 m x 0.5 m
with a total laminate thickness of 1 mm. The radius of the curvature is 0.75 m,
and the radius of the centered hole is 0.12 m. Two different laminate designs
are considered, each having four layers: [£a]s and [, o + 90°],, where « is the
local fiber angle in the design layer. In order to test how the number of con-
trol points influences the optimal fiber paths, three different grids with 3 x 3,
4 x 4 and 5 x 5 control points are defined over the 2D plate-projection domain.
Thus, the number of design variables for this test case is equal to 9, 16 or 25.
Several optimizations with different maximum curvature constraint bounds are
performed, starting with an unconstrained case, followed by MFCC of 5, 10,
and 20 m~!.
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Figure 9: Top row: isolines and fiber orientations for the curved structure with
hole and 4 plies [+a]s without considering curvature constraints; bottom row:

results from [42] using lamination parameters Vi, V3 showing comparable fiber
orientations.

The optimal fiber distributions for the unconstrained problem obtained by
the proposed Iso-Contour Method for [+a]s layers and 3 x 3 control points are
shown in the top row of Fig. 9, with the maximum curvature location indicated
by a red point for each layer. This can be compared to results from literature;
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Table 3: Final values of the objective for [ta]s design and different k. values.
Values of critical buckling loads are normalized with respect to the critical load
for [+45°], laminate.

[£45°]s  Fiber-steered laminates
kefm™1] - 00 20 10 5
P., 1.0 1.89 1.83 1.766 1.502

e.g. Hesse [42] used Lamination parameters (LPs) Vi, V5 to derive the optimal
stiffness distributions and orientations for bending and membrane stiffnesses
(bottom row of Fig. 9). The colors represent the angles according to the Miki
diagram also given in the same figure. Comparing the top and the bottom rows,
it can be seen that the obtained results via the ICM are in good agreement with
those obtained using LPs; the fibers are nearly straight (i.e. [90°];) near the
straight edges (blue areas in Fig. 9, bottom row). Near the hole in the center,
the fibers have a [+45°], orientation indicated by the green color in Fig. 9,
bottom row). This corresponds roughly to the fiber orientations shown in the
top row obtained by the proposed method. Note, that these results are obtained
for the unconstrained case where no curvature constraint is considered.

Optimized designs for the constrained cases (MFCC with 5, 10, 20 m~!)
for the same type of composite, i.e. the [ta]s laminate design and the same
number of 3 x 3 control points are shown in Fig. 10 with corresponding critical
buckling forces given in Table 3. A global design change can be observed when
the MFCC limit is increased from 5 to 10 m™!; for higher MFCC values, circular
paths are obtained around the hole.
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Figure 10: Fiber orientations for the curved structure with hole and 4 plies
[£a]s with consideration of the MFCC curvature constraint for different critical
curvatures k..

For the next study, the laminate design is changed to [a, a 4+ 90°];. The
results obtained for the constrained (k. = 5m™1!) for different number of control
points are shown in Fig. 11 and are summarized in Table 4. Concerning the
critical buckling load, [, & + 90°]s laminate design provides a better buckling
resistance compared to the [fa], stacking with 3 x 3 grid. Also the variation
of the number of control points has a clear influence on optimal results; as
expected, more control points provide higher fiber path flexibility to improve
the objective while satisfying complicated maximum curvature constraints.
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Figure 11: Fiber orientations for the curved structure with hole and 4 plies
[a, o + 90°]; with consideration of the MFCC curvature constraint for k. =
5m~L.

6 Wingbox rib optimization using the Iso-Contour
Method

This section shows an application of the proposed method to the realistic en-
gineering problem, the optimization of a single rib of a wingbox of an aircraft.
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Table 4: Final values of the objective for [, a + 90°]s design with k. = 5m~!
for different number of control points. Values of critical buckling loads are
normalized with respect to the critical load for a [£45°], laminate.

[£45°];  Fiber-steered laminates

ke[m™1] - 5x5  4x4 3x3
P., 1.0 1.839 1.726  1.641

For this, the rib is treated as a sub-structure of the total wing structure. The
corresponding load definition originates from a hierarchical wingbox optimiza-
tion approach developed in [37]. This means, a complete optimization of the
wing is not presented here, but a representative rib optimization is discussed to
show the potential of the proposed fiber-steering optimization.

Extracted sub-models of each
rib with interface loads

Forces and moments

Figure 12: Top: full wing model with a result from a static bending analysis
concerning static aerodynamic loads and weight from [37]. Bottom: extracted
exemplary rib with interface nodes where the interface conditions (forces / mo-
ments) are defined.

For current study it is assumed, that the wing design is already optimized on
the global level (e.g. shape of the wing and shapes of the airfoil cross-sections,
stringers and other global reinforcements). Then, the rib can be optimized in
a decoupled manner on a lower level of the overall hierarchical scheme. For
this, the rib is cut out from the full wingbox model after the complete wing
is computed/optimized w.r.t. appropriate load cases. Here, wing loading at
cruise conditions is considered. The interface loads, in this case static forces
and moments at the nodes of the outer circumference of the rib as shown in
Fig. 12, are automatically extracted from the full model and applied to the rib
sub-model using multi-point constraints (MPCs). These are special equations,
connecting multiple degrees of freedom (DoFs) in the FE model, used here

19



Exemplary ribs for sub-structure
optimization
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distance between upper and lower edges

Y
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Figure 13: Top: full wing structure with two exemplary ribs for rib optimiza-
tion from [37]. Bottom: local coordinate system with definition of the initial
dimension in local y-direction.

to distribute the loads from the locations of the nodes of the full model onto
much finer interface nodes of the sub-model, see Fig. 12. Sure, this decoupled
approach does not consider full interaction between wing and rib structures and
a complete iterative loop is required. Nevertheless, this is not the purpose of
this paper; here, we want to demonstrate the fiber-steering optimization with
the new curvature constraint handling.

The rib optimization problem is now defined as follows: the total stiffness
of the rib should be maximized, to ensure that the outer surface of the wing
does not deform so much and the aerodynamically optimized performance is
maintained. Hence, the proposed objective function is defined as the average
change of the rib height profile under the pre-defined nodal loads, which reflects
the changes of the aerodynamic profile of the wing in the defined flight situation.
This corresponds to using the rib local coordinate system and computing the
relative deformation in local y-direction between lower and upper rib sides (see
Fig. 13, bottom).

Optimization results are presented here for two exemplary ribs (Rib 4 and
Rib 6, shown in red in Fig. 13, top). Several optimization studies are per-
formed with various composite designs, including single-layer and symmetric
[£a]s four-layer configurations. A number of optimizations with different max-
imum curvature constraint bounds are performed including an unconstrained
case, followed by MFCC with k. = 10,20m™!, depending on the actual rib di-
mensions. In total 15 control points (3 x 5 grid) are distributed regularly over
the rib, placing more points along the local z-direction.
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Figure 14: Isolines for the unconstrained case (top) and for the constrained case
(bottom) with an MFCC with k. = 10m™!; (both results are derived for the
single layer composite).

The results for the single layer case are shown in Fig. 14 for the unconstrained
(top) and constrained (bottom) optimization cases for Rib 6. The influence
of the curvature constraint is relatively high for the case regarded here. The
introduction of the MFCC constraint significantly complicates the task. Overall,
15,000 evaluations are realized for both cases; the unconstrained case reaches
reasonable designs relatively early while the constrained needs around 5,000
samples to get into the feasible area since a lot of good designs with violated
constraint are rejected at the beginning. Finally, results for the composite rib
with 4 layers ([£a]s case) are shown for the constrained and unconstrained
cases, see Fig. 15, 16.

(b) Iso-lines, kY = oo

Figure 15: Fiber orientations for the unconstrained case; (results are derived
for the 4-layer composite with [+a]s).
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Figure 16: Fiber orientations for the constrained case with an MFCC with
ke =20m™!; (results are derived for the 4-layer composite with [+a]y).

7 Conclusions

In this paper, a novel method for parametrization and optimization of fiber-
steered composite designs is presented based on iso-contours of an artificial
smooth surface. The corresponding isolines of this artificial surface represent
fiber paths in fiber-steered composite laminate plies. The method is able to
accurately handle maximum fiber curvature constraint (MFCC) for mono- or
multi-layered fiber-steered composites; this was shown exemplarily for compos-
ites with [ta]s and [o, & + 90°]s 4-layer structures where the maximum cur-
vature can differ significantly for different layers. The method was validated
against available test cases and its capabilities were illustrated using several
examples, which confirmed the parametrization flexibility and accurate con-
straints handling. Depending on the manufacturing constraints, it was shown
how the method is able to switch between different optimal fiber placement pat-
terns, thanks to the non-local optimization. Finally, the iso-contour fiber paths
optimization is applied to improve designs for the composite wing box ribs.

The combination of a low-dimensional flexible parame-trization, a global
derivative-free optimization approach and an accurate handling of maximum
curvature constraints for multilayered laminates are the features, which make
the proposed approach attractive for many applications. In future research,
limitations and benefits of the proposed method should be analyzed especially
by a comparison with the existing approaches. In addition, the method can be
extended for periodic cases, such as cylindrical shells, or other more complex
examples. From a numerical viewpoint, the speed of optimization convergence
and the overall effort may be evaluated. More advanced optimization tech-
niques, including speed-up due to local gradient-based searches with smoothed
maximum curvature constraints, may be interesting.
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