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Abstract—There is a growing urgency and global demand to 

address Artificial Intelligence (AI) safety. However, swift and 

sustained progress is unlikely to emerge without a shared 

understanding of what it means for the use of AI to be safe. This 

paper advances a comprehensive definition of AI safety and 

explores the fundamental concepts underpinning this definition. 

The aim is to contribute to a meaningful and inclusive discussion 

and further the public discourse on AI safety. 
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I. INTRODUCTION  

Artificial Intelligence (AI) is here to stay. The technology 
now supports everyday activities, from routine tasks such as 
driving, to specialised decisions such as clinical diagnosis. 
The domains where the impact of AI could be most beneficial, 
including transport, health and social care, are safety critical. 
The recent advances in Large Language Models (LLMs) and 
foundational models have intensified the conversation around 
AI safety specifically [1], and responsible AI generally. These 
powerful models hold the promise of global benefits, but their 
uncontrolled use across society and the economy could have 
large-scale and catastrophic consequences.  

A fundamental concern therefore arises: What does it 
mean for AI to be safe? The somewhat vague but commonly 
provided response is, 'it depends’, for example on where and 
how the technology is used and how it is developed. This 
paper proposes a well-rounded definition of AI safety. It then 
explores key concepts that influence its meaning. The aim is 
to inform the cross-disciplinary debate and advance the safety 
argument about AI. 

II. DEFINING AI SAFETY 

The definition of AI safety put forward in this paper is as 
follows: 

Freedom from unacceptable risk of harm  
caused by the use of AI 

Here, safety is characterised as a negative condition where 
freedom from harm is the focus. This definition is consistent 
with the assumption that rarely are complex technologies or 
interventions absolutely safe. As such, classic definitions of 
safety appeal to the absence of, or freedom from, unacceptable 
risk (see William Lowrance's seminal work on acceptable risk 
in 1976 [2]). Here, it is important to highlight both the 
objective and measurable facet of risk, e.g. as the product of 
likelihood and severity, and the subjective side of it, e.g. 
judging acceptability to different affected people.  

In contrast, a more affirmative description of safety, 
emphasising the existence of protective capabilities, can be 
articulated as follows: Protection from unacceptable risk of 
harm caused by the use of AI. These definitions are 
interwoven. In the latter definition, the protective capability, 
often achieved through constant technological and social 
adjustments to changing and uncertain contexts, is intended to 

produce the freedom from unacceptable risk as outlined in the 
former definition (which is the focus of this paper). 

III. EXPLAINING AI SAFETY 

Each key concept is next explained individually, 
acknowledging any interrelated aspects. For a visual summary 
of this discussion, please refer to Fig. 1. 

A. Artificial Intelligence (AI)  

AI, according to the National Institute of Standards and 
Technology, is defined as the "capability of a device to 
perform functions that are normally associated with human 
intelligence such as reasoning, learning, and self-
improvement" [3]. The dominant AI technique driving most 
current AI-enabled capabilities is Deep Learning (DL). In its 
simplest form, DL is a neural network with multiple connected 
layers, trained on large datasets. DL serves as the core 
technology for developing LLMs. Two characteristics of AI, 
and notably DL and LLMs, present significant challenges to 
existing safety practices and standards: the under-specificity 
of the function and the opacity of the model.  

Under-specificity refers to the gap between, on one hand, 
the underlying human intentions for deploying AI and, on the 
other, the specific, tangible specifications used to develop the 
technology [4]. Under-specificity hinders domain specialists, 
engineers and regulators in their efforts to establish and 
evaluate concrete safety requirements against which AI 
functions can be developed and tested. This challenge is 
exacerbated by the overwhelming focus in the literature on 
overall AI performance, overlooking nuances and context, e.g. 
treating historic, and out-of-context, clinician performance as 
a primary benchmark for clinical AI systems, which may not 
be appropriate for new or unforeseen situations [5].  

The second challenge is opacity [6], and the lack of 
human-centred explanation [7]. The EU defines explainable 
AI as “the ability of AI systems to provide clear and 
understandable explanations for their actions and decisions. 
Its central goal is to make the behaviour of these systems 
understandable to humans by elucidating the underlying 
mechanisms of their decision-making processes” [8]. The 
inability to understand and explain how AI arrives at its 
outputs makes traceability and accountability challenging. It 
weakens our capacity to "explain" and "deal with the 
consequences" of AI functions [9]. 

In particular, LLMs are often presented as general-purpose 
AI models, which “perform a wide variety of tasks and match 
or exceed the capabilities present in today’s most advanced 
models” [10]. However, this emphasis on generality in these 
'Frontier AI' models, aiming for broad applicability and 
transferability, introduces inherent under-specificity. This, in 
turn, weakens our ability to proactively integrate safety 
constraints and generate concrete safety evidence before 
deployment, when it is most effective to assure safety.
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Fig. 1. A visual exploration of the AI definition, with a machine learning failure triggering a complex chain of events leading to harm (simplified here), 

countered by protective technical, human and social lines of defence 

B. AI Context 

The use of AI considers the algorithm in its intended 
technological, physical and social context. Safety, as a whole 
system property, is inherently sensitive to its context. The 
notion of AI context is varied, and covers how AI interacts 
with (1) other software components, e.g. cloud services, (2) 
hardware devices, e.g. CT scanners or lidars (3) the broader 
physical environment, e.g. communication between self-
driving cars and the road infrastructure, (4) humans, e.g. 
capacity of doctors to detect bias in AI-based diagnosis 
systems and (5) the socio-political context in which AI is 
deployed, e.g. overreliance on technology to compensate for 
staff shortages. Despite the expectation that AI functions are 
adaptive, and deliver contextually meaningful experiences, 
the technology often exhibits brittleness [11].  

AI is particularly susceptible to being ‘fooled’ or 
‘confused’ by small and irrelevant environmental factors, such 
as stickers on stop signs [12]. Interestingly, while we often 
focus on external context, for AI, context extends not just 
outward but also inward. AI predictions and recommendations 
are inseparable from the contextual biases and stereotypical 
associations encoded in the training and testing datasets. This 
is noticeably the case for foundational models generated from 
unfiltered and massive datasets sourced from the Internet [13]. 
The multiple facets of this contextual complexity often 
weakens the robustness of AI safety evidence, especially 
when AI is used in constantly changing environments, e.g. in 
patient triage services. An in-depth understanding of AI and 
its context is a prerequisite for considering the subsequent 
safety concepts. 

C. AI Causation 

Causation should be interpreted in a broad socio-technical 
sense, considering the complex web of social and 
technological influences that AI produces. The impact can be 
direct, as seen in end-to-end machine learning for driverless 
cars, when AI functions autonomously control the vehicle 
sensors and actuators, or indirect, such as in AI-based clinical 
decision support systems, where clinicians are expected to 
make the final decisions. Determining causation also requires 
an understanding of the entire AI supply chain: causation can 

arise from upstream data collection practices to downstream 
user interactions and societal influences (Fig. 2). What is also 
key in establishing causation is modelling and understanding 
the wider software and systems architecture, including the 
level of redundancy, diversity and monitoring built into the 
overall design (Fig. 3). This is important in determining the 
extent to which AI failures could propagate into wider system 
failures.  

The opacity of AI, and the interactive complexity within 
its wide context, especially for general purpose LLMs, make 
it difficult to model and trace exact causes and effects (e.g. 
tracing unsafe medication recommendations to unreliable and 
promotional marketing material used for training these 
foundational models). This, in turn, challenges our ability to 
proactively mitigate risk and reactively hold people 
accountable for actual harms caused by AI. Anticipating AI's 
potential consequences (forward-looking causation) and 
explaining how it arrived at those outcomes (backward-
looking causation) is essential for a proactive, transparent and 
responsible AI safety culture.  

 

Fig. 2. A complex supply chain of foundational models [14] 
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Fig. 3. AI system design, combined with backup/monitoring functions [15] 

D. AI Harm 

Harm in system safety is traditionally defined against 
physical damage. Typically, the focus is on damage to human 
physical health. This is followed by damage to property, with, 
more recently, the inclusion of damage to psychological 
health and to the environment. These remain key when 
considering AI safety. However, some discussion around AI 
safety seems to favour an ‘expansive’ scope of harm [14], 
which stretches to discrimination, bias, misinformation, 
privacy violation and threats to democratic institutions, 
amongst other moral, political and social harms. These kinds 
of harms or wrongs are significant and concerning, regardless 
of whether they fall within the scope of AI safety or the 
broader scope of responsible or ethical AI. They should be 
systematically considered and, where causally relevant, 
integrated into AI safety assurance practices. For example, 
this includes avoiding safety measures that could unjustly 
limit personal freedom or exacerbate existing inequalities. 
Collaboration with the wider responsible or ethical AI 
community is essential to achieve this goal. Another important 
factor in safety assurance is intent: was harm intended, and if 
so, by whom? Was it justified? If harm is unintended, its 
occurrence is treated as a safety accident or incident. If harm 
is intended and this harm was caused maliciously, it is treated 
as a security event. Healthcare presents intriguing cases in this 
respect. Physical harm in surgery is often intended, for 
example making a precise incision, but may be justified, given 
the anticipated clinical benefit. In short, AI safety needs to 
build on, and where appropriate adapt, established methods 
from safety-critical domains. These specialist methods help us 
control both physical and psychological harm caused by AI. 

E. AI Risk 

Risk is the ‘idea of a possibility of danger’ [16]. 
Technically, risk is the product of likelihood and severity of 
harm. However, risk is not an objective truth to be discovered 
and calculated. It is a social construct influenced by various 
uncertainties that are difficult to quantify [17], like the origin 
and quality of the data used to train AI or how users will 
actually interact with the tool. The notion of risk is central 
because complete avoidance of harm is rarely feasible. In risk 
analysis, harm is considered in relation to a particular context. 
Further, risk determination is typically framed by how harm 
could be caused “in a stipulated way by the hazard” [18], e.g. 
a hazard could be: misclassifying a ‘slow down’ traffic sign in 
foggy conditions. For narrow AI, i.e. intended to serve a 
specific purpose, hazard-based risk analysis is feasible though 
challenging. If AI's intended purpose is unclear or 
underspecified (e.g. classifying traffic signs in all weather 
conditions) and the AI model is opaque, it is hard to predict 
how likely it is to cause harm through its hazardous outputs. 
However, these concerns are significantly more complex for 

general-purpose AI, since the underpinning models, e.g. 
LLMs, are often presented as context-independent (i.e. 
specifying a well-defined purpose/context for this type of AI 
is often deliberately avoided by the AI developers). Even 
when context is identified for a specific use case, deployers of 
a general-purpose AI often lack sufficient access to the AI 
model and its vast training and testing datasets to allow them 
to accurately assess the likelihood of harm. 

F. Risk acceptability 

Acceptable risk to whom and given what else are two 
factors that need to be assessed as fundamental inputs into the 
AI risk decision-making process. Risk acceptability, and the 
lack of it, is a complex social notion not a technical one. To 
this end, risk decision-making needs to be participatory and 
transparent. Affected stakeholders, or their trusted 
representatives, e.g. regulators, need to be meaningfully 
involved in how the use of AI could present them, and others 
in society, with potential benefits and risks. The variety of risk 
communicated should be comprehensive, covering physical, 
psychological and societal ones, amongst others, to allow the 
affected stakeholders to understand and consider any 
necessary tradeoffs. This will enable an open and reflective 
dialogue about the distribution of benefits and risks from the 
use of an AI system and whether it is equitable across all 
affected stakeholders [19]. 

G. Confidence and communication 

Freedom from unacceptable risk is rarely, if ever, a 
certainty. Rather, it is communicated with a degree of 
confidence. Confidence is determined given the effectiveness 
of the protection or control measures deployed, acknowledged 
uncertainties and underlying assumptions. For AI, epistemic 
uncertainty is particularly significant. It represents deficits in 
our knowledge about the AI implementation and outputs, and 
the impact the technology may have on its environment [20]. 
For instance, poor performance of an AI model in accurately 
diagnosing rare diseases often reflects our incomplete 
knowledge about these diseases and our limited exposure to 
these clinical scenarios. In safety, confidence may be 
effectively communicated using safety cases [21]. The explicit 
and structured arguments in safety cases provide a means for 
justifying and evaluating confidence about the absence of 
unacceptable risk. An AI safety case can help facilitate the 
scrutiny of the otherwise implicit reasoning, the interrogation 
of sufficiency of the evidence, and whether assumptions hold 
true (for whom and under what conditions). This, in turn, helps 
foster transparency throughout the entire AI lifecycle. 

For example, in Fig. 4, we depict an ethics assurance 
argument, in which AI safety, as well as other principles such 
as equity and respect for human autonomy are considered. The 
argument, represented using the Goal Structuring Notation 
and explained in detail in [19], advances the claim (JG1) that 
the ‘distribution of benefit, tolerable residual risk, and 
tolerable constraint on human autonomy (from use of AI) is 
equitable across all affected stakeholders’. There are three 
key issues to note here: (1) The question of safety is hard, and 
counterproductive, to consider in isolation from the wider 
issue of fairness and equity (JG1). (2) Affected stakeholders 
should be identified (JC4), and their diversity considered, 
including the different kinds of (positive and negative) impact 
AI will have on their lives. (3) Tradeoffs are inevitable and 
should be reasoned about in a participatory manner (JG5).      
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Fig. 4. Arguing safety in the context of a wider AI ethical assurance framework, depicted as a GSN argument pattern [19]

IV. BASIC INGREDIENTS FOR AUTHENTIC AI SAFETY  

Just as a surgical checklist is not a complete guide for 
training competent surgeons, the definition of AI safety above 
is not an exhaustive tutorial on a rapidly emerging field. Its 
aim is to ensure that established safety concepts do not get lost 
in the hype surrounding AI, a field dominated by both a 
deliberate downplaying of real and pressing safety concerns 
and an unhealthy fixation on existential threats [22]. These 
core concepts are essential ingredients for building a 
responsible safety mindset, replacing the current sci-fi hubris 
with a pluralistic basis that upholds an equitable right to safety 
for all. 
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        The distribution of benefit 

and tolerable residual risk and 

tolerable constraint on human 

autonomy is equitable across 

all affected stakeholders

JG1

{Principle of 

justice} 

JC1

{All affected 

stakeholders: beneficiaries, 

risk-bearers, autonomy 

risk-bearers}

       Argument by reasoning about 

b-r-an from use of system as 

connected elements of ethical 

acceptability

   {Benefit Matrix, 

Residual Risk Matrix; 

Human Autonomy 

Matrix}

Problematic role 

combinations of b-r-an  

across all affected 

stakeholders have been 

eliminated

     The distribution of 

b-r-an does not entrench 

existing inequalities across 

all affected stakeholders

{Problematic 

role 
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{Reflective 

equilibrium}

JA2

JC5

JC6

JG3

       Argument by reasoning 

about b-r-an from use of 

system as discrete elements 

of ethical acceptability

JA1

Beneficence Assurance Argument

The use of system benefits the 

groups of beneficiaries

The use of system does not 

cause unjustified harm to 

groups of risk-exposed

   Non-Maleficence Assurance Argument

    The use of system does not 

unduly constrain the human 

autonomy of groups of 

autonomy risk-exposed

Human Autonomy Assurance Argument

BG1 NG1 AG1

{Discrete elements of 

ethical acceptability}

J

    Trade-offs (within and 
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b-r-an are reasoned over in 

a reflective equilibrium 

procedure

{Connected elements of 

ethical acceptability}
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JG4
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JG2
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