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An interpretable framework 
for sleep posture change 
detection and postural inactivity 
segmentation using wrist 
kinematics
Omar Elnaggar 1, Roselina Arelhi 2, Frans Coenen 3, Andrew Hopkinson 4, Lyndon Mason 5,6 & 
Paolo Paoletti 1*

Sleep posture and movements offer insights into neurophysiological health and correlate with overall 
well-being and quality of life. Clinical practices utilise polysomnography for sleep assessment, which 
is intrusive, performed in unfamiliar environments, and requires trained personnel. While sensor 
technologies such as actigraphy are less invasive alternatives, concerns about their reliability and 
precision in clinical practice persist. Moreover, the field lacks a universally accepted algorithm, with 
methods ranging from raw signal thresholding to data-intensive classification models that may be 
unfamiliar to medical staff. This paper proposes a comprehensive framework for objectively detecting 
sleep posture changes and temporally segmenting postural inactivity using clinically relevant joint 
kinematics, measured by a custom-made wearable sensor. The framework was evaluated on wrist 
kinematic data from five healthy participants during simulated sleep. Intuitive three-dimensional 
visualisations of kinematic time series were achieved through dimension reduction-based 
preprocessing, providing an out-of-the-box framework explainability that may be useful for clinical 
monitoring and diagnosis. The proposed framework achieved up to 99.2% F1-score and 0.96 Pearson’s 
correlation coefficient for posture detection and inactivity segmentation respectively. This work paves 
the way for reliable home-based sleep movement analysis, serving patient-centred longitudinal care.

The study of human sleep behaviour reveals their state of health and well-being. Habitual in-bed behaviour can 
reveal physiological and neurological disorders that are otherwise latent during  wakefulness1 such as restless 
leg syndrome and periodic leg movements. Sleep deprivation and intermittent sleep were found to be linked to 
multiple health  risks2–5. In-bed sleep behaviour (movements and postures) could cause health complications, 
such as pressure sores6,  apnoea7 and painful  spasms8,9.

In light of the clinical context outlined above, there has been a growing interest within the research commu-
nity to study human sleep behaviour. Different aspects were investigated including sleep posture  classification10,11, 
detection of in-bed movements and posture  transitions12,13, sleep  staging14, sleep physiology and vital sign 
 monitoring15,16. Various technologies were employed for at-home and in-clinic sleep monitoring. The clinical 
gold standard for the assessment of sleep-related disorders has been polysomnography (PSG) which measures 
multiple physiological parameters. There are, however, disadvantages to using PSG such as sensor and electrode 
intrusiveness, unfamiliar sleep environment, and cost of personnel training and technology. Therefore, alter-
natives to PSG were proposed to make less sophisticated sleep assessments. Popular options included the less 
intrusive accelerometer-based sensing  (actigraphy17) which involved an actigraphic device, such as a smartwatch 
worn around the wrist or ankle, to record motor activity during sleep and measure parameters like sleep quality 
and duration. Other solutions adopted bed-embodied sensors, such as load  cells12, and in-bedroom sensors such 
as app-empowered  smartphones18 which incorporated multiple sensors like accelerometers and microphones.
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Within the large field of in-bed movement analysis, there were commonly three research directions reported 
in the literature: active/idle state detection, wake/sleep state detection and sleep stage estimation. From the litera-
ture, these directions broadly relied on similar methodologies, namely threshold-based, classification-based and 
hybrid approaches. Threshold-based  approaches12,17,19–25 were the most popular, applying a predefined thresh-
old hyperparameter to a predictor variable (raw data or processed features) to classify sensor time series on a 
sample or window basis. Classification-based  approaches18,20,21,26 employed classifiers to recognise states, such 
as the active and idle states, based on sensor measurements or features. The less popular hybrid  approaches17,27 
used a mixture of threshold- and classification-based approaches; a thresholding algorithm typically produced 
preliminary labels which were then refined by a classifier to improve performance. The previous approaches had 
shortcomings, such as the detection of short-lasting wake state surrounded by long-lasting sleep  state28. There-
fore, it was common in the literature to employ handcrafted “re-scoring rules” to correct such systematic  errors29. 
Nevertheless, this set of rules needed to be applied with caution as they might favour accuracy over F1-score or 
even degrade both of  them28. Additional insights can be found in comparative  studies28,30 which analysed the 
performance of previous approaches with a focus on actigraphy.

The limitations of existing work on body movement analysis during sleep can therefore be summarised as 
follows. First, while reported approaches predominantly addressed various forms of state detection problems 
on a sample or window basis, they overlooked the importance of temporal analysis for time series data. Second, 
threshold-based approaches heavily relied on tricky-to-tweak hyperparameters, which lack generalisability given 
that different subjects exhibit varying in-bed behaviour and movement intensities. Third, classification-based 
approaches required large-size datasets for classifier training, and these datasets were typically imbalanced in 
nature (disproportionate class-wise sample size) and lacked diversity among  participants28. Fourth, the reported 
approaches generally operated on raw sensor data or manually extracted features which are not necessarily the 
best representation of information for movement analysis, nor best comprehensible to medical experts.

This paper proposes a novel kinematics-based (in)activity detection and segmentation (KIDS) framework 
(depicted in Fig. 1). Leveraging the kinematics of a single body joint, the KIDS framework jointly addressed 
two interrelated problems: sleep posture change detection and temporal segmentation of postural inactivity. 
The effectiveness of the framework was demonstrated through a pilot study involving five human participants, 
each wearing a miniature sensor module embedded with two inertial measurement units (IMUs) around their 
left wrist joint.

The choice of exploiting joint kinematics was motivated by the authors’ recent research which indicated the 
efficacy of similar kinematic cues from extremity joints (wrists and ankles) in identifying 12 sleep  postures11. 
However, this previous work required manual segmentation of each posture to showcase the posture classifica-
tion performance. Herein lies an example of the potential application of the KIDS framework, with its ability 
to automate cumbersome tasks, such as temporal segmentation, which have often been manually performed by 
human experts. Broadly, the KIDS framework serves as a milestone towards automated and non-intrusive assess-
ment of human postural (in)activity during sleep, thereby paving the way for the next generation of diagnostic 
and treatment practices in sleep medicine.

The primary contributions of the presented work can be summarised as follows: 

1. We propose the first utilisation of magneto-inertial sensor fusion in the domain of temporal analysis of in-
bed postural activity. Our framework evaluated the whole-body physical activity level by examining a single 
joint’s segment-to-segment orientation (also referred to as joint kinematics), as demonstrated on the wrist 
joint. Compared to conventional methods that rely on raw inertial sensor measurements, joint kinematics 
is better suited for human interpretability and medical diagnosis. Additionally, the framework eliminated 
the need for sensor-to-segment calibration before implementation, making it more accessible to non-expert 
users.

2. We propose and demonstrate the practical application of dimension reduction techniques as a preprocess-
ing step for joint kinematics. This step served to produce intuitive three-dimensional visualisations of joint 
kinematic time series while simultaneously mitigating the computational burden of the algorithm. The 
dimension reduction process was achieved by employing two distinct methods: an established unsupervised 
learning approach and a novel analytical approximation of the former. It is important to note that these 
methods were mutually exclusive, meaning only one of them was utilised at a time rather than in combina-
tion.

3. We propose a novel framework that integrated Bayesian inference with changepoint detection logic to jointly 
address sleep posture change detection and temporal segmentation of postural inactivity. Notably, the 
approach distinguished itself by its capacity to function autonomously, without relying on intricate param-
eters that require meticulous fine-tuning and lack generalisability, a common issue with threshold-based 
algorithms. Moreover, the need for collecting and labelling training data was circumvented since the frame-
work did not involve trainable classifiers.

4. We publish an open data repository containing the preprocessed joint kinematics from all five human par-
ticipants who partook in an ethically approved simulated sleep experimental protocol devised to evaluate the 
effectiveness of the KIDS framework. This repository is available to researchers and practitioners, allowing 
them to access and use the data to drive further advancements in the field of temporal analysis of in-bed 
postural activity.
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Results
The proposed KIDS framework, shown in Fig. 1, involved three stages: (1) wrist kinematics measurement using 
wearable inertial sensors, (2) joint kinematics preprocessing and visualisation through dimension reduction 
methods, and (3) sleep posture change detection and temporal segmentation of postural inactivity using Bayes-
ian inference and changepoint detection logic.

(a)

The proposed KIDS framework

encompasses three stages:

1. Magneto-inertial time series

data were acquired from a

wrist-mounted sensor, and fused

to obtain the hand-to-forearm

relative orientation, i.e. joint

kinematics, over time.

2. The joint kinematic time

series was preprocessed using

either one of two dimension

reduction methods, based

on unsupervised learning

and analytical approaches

respectively.

Depending on the choice

of the dimension reduction

method, either an informative

or non-informative probabilistic

prior was crafted, then fed along

with the preprocessed joint

kinematic time series (after

downsampling as denoted by

the double downward red arrow)

into the last stage.

3. A combination of Bayesian

inference and changepoint

detection logic detected posture

changepoints and segmented

periods of postural inactivity.

(b)

Figure 1.  Graphical illustration (a) with explanatory text (b) of the proposed kinematics-based (in)activity 
detection and segmentation (KIDS) framework, a novel framework for wearable sensor-based sleep posture 
change detection and temporal segmentation of postural inactivity during sleep.
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The KIDS framework had four variants resulting from methodological choices made during its development. 
The first crucial decision arose at the preprocessing stage of measured joint kinematics, which involved the 
utilisation of one of two dimension reduction methods. The second decision was related to the incorporation 
of an optional enhancement step prior to the changepoint detection logic. As a consequence, each crossroad 
contributed two possible variants, ultimately yielding a total of four variants.

The comparison between the four variants would entail elaborating methodological aspects. Hence, “Results” 
section will only present the best-performing variant of the KIDS framework, providing key highlights from 
each of its three stages. An aggregated analysis of all four variants will follow in “Methods” section, where the 
methodological foundation underpinning the proposed framework will be outlined.

Wrist kinematics measurement
A simulated sleep experimental protocol (discussed in “Methods” section) was devised to validate the proposed 
KIDS framework on five healthy human participants. The protocol emulated real sleep by guiding participants 
through a sequence of 12 common sleep postures, each posture appearing twice but not consecutively, ensur-
ing a randomised distribution of all posture replications. Each participant wore a Bluetooth-enabled miniature 
wearable sensor module with two IMUs attached, respectively, to the hand and the forearm. The measurements 
from the sensors were sent over a Bluetooth link to a nearby server on which the KIDS framework was imple-
mented and executed.

For each IMU sensor, its raw measurements were fed into a magneto-inertial sensor fusion algorithm which 
computed the sensor’s three-dimensional orientation (in the form of a quaternion) referenced to the Earth frame, 
that is, a coordinate system fixed relative to the directions of gravity and the Earth’s magnetic field. The orientation 
estimates of the two IMU sensors were subsequently fused to determine the hand-to-forearm relative orientation.

The relative orientation was subsequently converted from the quaternion space to the more intuitive axis-
angle representation for subsequent preprocessing and joint kinematics visualisation. For notation purposes, 

this paper used x ∈ R
4 (= x1 · î + x2 · ĵ + x3 · k̂ + x4 · ŵ) to denote the sensor-measured segment-to-segment 

orientation in the axis (î, ĵ, k̂) - angle (ŵ) space. The relative orientation time series was indexed using a time 
stamp vector t = t1, t2, . . . , tT . Figure 2 depicts a snapshot of the hand-to-forearm orientation pertaining to 
one of the participants who partook in the simulated sleep protocol. The orientation exhibited marked stability 
within periods of sustained sleep postures. Conversely, the transitions between different sleep postures were 
characterised by conspicuous fluctuations in the orientation.

Joint kinematics preprocessing and visualisation
The preprocessing of joint kinematics served in obtaining a reduced dimensional representation of hand-to-
forearm orientation x measured by the wrist-mounted wearable sensor module. The new representation allowed 
for intuitive three-dimensional visualisation of the joint kinematics, thus making it comprehensible to medical 
professionals without extensive technical knowledge. Moreover, this reduction in dimensionality implicitly ren-
dered a lower computational cost associated with the subsequent stage of the KIDS framework which employed 
Bayesian inference, a probabilistic method whose computational complexity rises in direct proportion to the 
dimensionality of its input data.

Figure 2.  An extract from the hand-to-forearm orientation time series (also referred to as wrist joint kinematic 
time series), depicted in the four-dimensional axis-angle space, pertains to one of the participants who partook 
in the simulated sleep protocol. The figure was divided into four subplots: the top three delineate the unitless 
axis of rotation ( x1 , x2 , and x3 ), and the bottom subplot corresponds to the angle of rotation ( x4 ) in radians. 
Recorded at a rate of 30 Hz, each time step corresponds to one-thirtieth of a second. The figure provides a finite 
time interval for visual clarity, extracted from the complete recording. The simulated sleep protocol involved 
guiding the participants through a randomised sequence of 12 sleep postures while wearing a sensor module 
embedded with two inertial measurement units (IMUs) on their left wrist joint. Clear stability was observed in 
the hand-to-forearm orientation during sustained postures, contrasted with noticeable variations as transitions 
between different postures occurred.
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As previously explained in “Introduction” section, the dimension reduction process was achieved by imple-
menting one of two methods. The first dimension reduction method was the Uniform Manifold Approxima-
tion and Projection (UMAP)31, an established unsupervised method that facilitated the learning of a lower-
dimensional data representation, also referred to as the embedding space. While UMAP produced meaningful 
three-dimensional visualisation of the hand-to-forearm orientations, it had intrinsic limitations and artefacts 
(see “Methods” section). Consequently, a second dimension reduction method was proposed to analytically 
approximate the dimensional mapping function of UMAP, with the added benefit of overcoming its limitations 
and artefacts. Throughout the remainder of this paper, the second method was referred to as Analytical Dimen-
sion Reduction (ADR). For clarity in notation, the three-dimensional embedding was mathematically denoted 

by o ∈ R
3 (= o1 · î + o2 · ĵ + o3 · k̂) , and the complete embedding dataset O encompassed all preprocessed o 

over the timestamp vector, t .
The ADR was conceptually inspired by UMAP, and was mathematically formulated to map the hand-to-fore-

arm orientations to a thick-crust spherical point cloud. Latitudinal and longitudinal navigation of the point cloud 
corresponded to distinct axes of rotation, whereas the radial displacement (measured from the cloud’s centre) 
along the thickness was proportional to the angle of rotation. Figure 3a illustrates over 60 min of hand-to-forearm 

Figure 3.  Three-dimensional visualisations of wrist joint kinematic time series, provided by the proposed 
analytical dimension reduction (ADR) method, corresponding to a randomly selected participant. The top 
subfigure (a) illustrates a spherical cloud of embeddings spanning a data acquisition period exceeding 60 min. 
Latitudinal and longitudinal navigation of the sphere corresponded to distinct axes of rotation, while radial 
displacement from the sphere’s centre was proportional to the angle of rotation. The embeddings were colour-
coded to distinguish between postural transitions and the different sleep postures. These embeddings populate 
finite regions of the spherical structure, indicating that certain hand-to-forearm orientations are implausible due 
to the anatomical constraints of the wrist joint. The bottom subfigure (b) offers a different view of the three-
dimensional embedding space, illustrating only the embeddings corresponding to each of the 12 sleep postures. 
These embeddings are coloured in red and blue to differentiate between the two replications of each posture 
performed by the participant as part of the experimental protocol.
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orientations belonging to a randomly selected participant, as recorded by the miniaturised wearable sensor 
module. From this visualisation, it can be observed that the three-dimensional embeddings evidently occupy 
finite regions of the spherical structure, a typical observation since the wrist joint is anatomically constrained, 
which left some regions unpopulated. To provide a different insight into the point cloud, Fig. 3b portrays only 
the embeddings corresponding to each of the 12 sleep postures. The posture-wise embeddings demonstrate 
clear differentiation between the postures, albeit with minor overlaps. Overall, these visualisations supported the 
hypothesis that single-joint kinematics would be sufficient for the evaluation of postural (in)activity during sleep.

Sleep posture change detection and temporal segmentation of postural inactivity
The final stage of the KIDS framework jointly addressed two interrelated problems. The first problem was the 
sleep posture change detection, which focused on identifying the time stamp at which a sustained posture was 
changed. The current study also referred to this time stamp as “the changepoint”. The second problem was the 
temporal segmentation of postural inactivity, which involved estimating the duration (in time steps) of each 
sustained sleep posture from its onset up until the next posture changepoint event. In this stage, the framework 
employed Bayesian inference in conjunction with a changepoint detection logic. On one hand, the Bayesian 
inference handled the spatial modelling of the three-dimensional embedding time series at each time step to 
probabilistically infer the durations of postural inactivity periods, based on the assumption that embeddings 
belonging to a sustained sleep posture have similar statistical attributes (mean and precision). On the other hand, 
the changepoint detection logic was responsible for the transition from the probabilistic framework to the binary 
decision-making process that isolated posture changepoints in time.

The metrics for evaluating the performance of the KIDS framework varied according to the requirements of 
each of the aforementioned two interrelated problems. For the temporal segmentation of postural inactivity task, 
the Pearson’s correlation coefficient (R) was selected to assess the agreement between the predicted and ground-
truth durations of periods of postural inactivity. The periods were also referred to as “inactivity segments”. The 
duration of the inactivity segment was the number of time steps between the start and end timestamps of each 
sustained sleep posture. The start and end timestamps of the ground-truth inactivity segments were manually 
determined through careful observation of the wearable sensor time series data by an expert human annotator. 
For the sleep posture change detection task, the F1-score, Sensitivity (Se) and Positive Predictive Value (PPV) were 
the metrics used to evaluate the sleep posture change detection. All the aforementioned metrics were commonly 
reported in relevant  works28 and established a good ground for benchmarking.

Table 1 reports the performance metrics for the best-performing variant of the KIDS framework. According 
to the metrics, the framework demonstrated significant efficacy and reliability across five human participants 
(P1–P5) in the two interrelated problem domains. For the sleep posture change detection, the framework evi-
dently achieved perfect F 1-scores (100%) across all participants except for participant (P2), where it dipped 
slightly to 95%. The three metrics confirmed the superior framework’s ability to detect nearly all instances of 
sleep posture change.

Regarding the temporal segmentation of postural inactivity, the values of the R metric (in Table 1) indicated a 
strong positive correlation between the durations of periods of postural inactivity predicted by the KIDS frame-
work and the corresponding ground truth. The correlation coefficient ranged from 0.94 to 0.99, suggesting high 
temporal segmentation accuracy with a marginal variation across participants.

Figure 4 provides a visual insight into the performance of the best-performing variant of the KIDS framework, 
as demonstrated on the dataset of participant (P1). Figure 4a shows the downsampled three-dimensional embed-
ding time series, o , along with localised predictions of the mean and standard deviation, which were by-product 
statistical attributes of the Bayesian inference. The downsampling of the embedding time series (decimation 
factor of 100) was performed last at the end of the preprocessing stage for computational advantages explained 

in the “Methods” section, rendering a new downsampled timestamp vector ⇓t = ⇓
t1,

⇓
t2, . . . ,

⇓
tT . The predicted 

statistics confirmed the framework’s ability to model the underlying (hidden) data sampling process unique to 
each inactivity segment. Upon the onset of each inactivity segment, the 1-Sigma confidence interval (brown strip) 
gradually converged to the true underlying spread of the segment as shown in the exploded view in Fig. 4a. The 

Table 1.  The performance metrics resulting from the evaluation of the best-performing variant of the KIDS 
framework in two interrelated problem domains. Reported are the metrics across five individual participants 
(P1 through P5) and their mean values over all participants (rightmost column). In Problem Domain 1, the F1
-score, Sensitivity (Se), and Positive Predictive Value (PPV) were selected to evaluate the framework’s ability to 
accurately detect changes in sleep posture. In Problem Domain 2, the Pearson’s correlation coefficient (R) was 
chosen to measure the accuracy of the framework in estimating the durations of periods of postural inactivity.

Performance metric P1 P2 P3 P4 P5 Mean value

Problem domain 1: sleep posture change detection

 F1-score 1.00 0.95 1.00 1.00 1.00 0.99

 Se 1.00 1.00 1.00 1.00 1.00 1.00

 PPV 1.00 0.92 1.00 1.00 1.00 0.98

Problem domain 2: temporal segmentation of postural inactivity

 R 0.94 0.96 0.99 0.97 0.94 0.96
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observed segment-aware statistical modelling explained the effectiveness of the framework in the detection of 
sleep posture changepoints and the temporal segmentation of postural inactivity.

The final output of the KIDS framework was a timeline of detected inactivity segments. As an example, this 
timeline is presented in Fig. 4b which shows the temporal locations of all detected inactivity segments in com-
parison with the ground truth. As observed from the timeline, all ground-truth inactivity segments were suc-
cessfully detected with no false positives. Besides the timeline, Fig. 4c quantitatively compares the predicted and 
ground-truth durations of each detected inactivity segment. It can be observed that all temporal segmentations 
of inactivity lie in the proximity of the 1:1 reference line, yielding a strong positive correlation coefficient of 0.94.

Performance benchmarking of the proposed framework
Following the presentation of the KIDS framework’s results, it is pertinent to benchmark its performance against 
established methodologies. For this comparison, a threshold-based baseline approach, reported in previous 
 studies17,20,21 and aimed at classifying body movement periods, was chosen. To facilitate equitable benchmarking, 

Figure 4.  Performance visualisation for the best-performing variant of the KIDS framework applied to the 
dataset of participant (P1). The top plot (a) depicts the downsampled 3D embedding time series (blue points), 
accompanied by local estimates of the mean (yellow trace) and the 1-Sigma confidence interval (brown strip) as 
predicted by the Bayesian inference. As shown in the exploded view in (a), both statistical attributes gradually 
converged toward the true distribution of embeddings of each inactivity segment. The middle plot (b) presents 
the framework’s final output, a timeline illustrating the temporal locations of all detected inactivity segments 
(blue segments) juxtaposed with the ground truth (green segments), demonstrating successful detection of all 
true inactivity segments without any false positives. The bottom plot (c) compares quantitatively the durations of 
predicted and ground-truth inactivity segments, demonstrating a high degree of agreement (R = 0.94) between 
both, indicated by proximity to the 1:1 reference line (dashed line).
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the baseline approach was slightly adapted to align with the context of the current study. Particularly, the 
approach was confined to processing data solely from the hand-mounted IMU sensor, in line with previous 
studies’ singular sensor usage. Additionally, its operational focus was shifted from movement detection to the 
detection of inactivity segments, thereby enabling a congruous comparison given the ground-truth inactivity 
segment labels available from the simulated sleep experiment.

Central to this baseline’s decision-making was a threshold parameter, which acted as a condition for variations 
between successive scalar magnitudes of acceleration. Consequently, the baseline’s performance was assessed 

by systematically sweeping the value of this parameter from 0 to 0.5 (×9.81m s
−2) , as exhibited in Fig. 5. The 

performance insights in the figure confirmed that the baseline’s performance was markedly inferior to that of 
the proposed KIDS framework across both problem domains.

Figure 5a depicts the baseline’s performance in the domain of sleep posture change detection, represented 
by the PPV-Se curve. This curve amalgamates the PPV-Se pairings, averaged over the cohort of five participants 
(P1–P5). The PPV and Se metric values revealed a poor-to-mediocre changepoint detection capability, with an 
F1-score not exceeding 76.60% despite the exhaustive threshold parameter sweep.

On the other hand, Fig. 5b portrays the baseline’s performance in the domain of temporal segmentation of 
postural inactivity, captured in the R metric averaged across the entire participant set. Across the spectrum of 
threshold parameter values, the R metric exhibited significant variations. The agreement between the durations 
of predicted and ground-truth inactivity segments generally suggested the unreliability of the baseline in this 
domain, ranging from moderate positive correlation (R = 0.52) to negative, poor correlation (R = − 0.18).

In addition to performance effectiveness, computational efficiency was another important criterion for bench-
marking. To this end, both the KIDS framework and the baseline were assessed by evaluating their execution 
time on an approximately 60-min-long dataset from one of the participants, using a 3.8 GHz Quad-Core Intel 
Core i5 CPU. On average, the baseline approach took 6.10 ms to process the entire dataset, resulting in a per-
sample processing time of 0.06 ms. In contrast, the KIDS framework took an average of 106.76 s to process the 
entire dataset, rendering a per-sample processing time of 98.94 ms as the framework operated on downsampled 
time series. Despite this difference in processing time, both the framework and the baseline approach achieved 
real-time performance, as the sample-to-sample intervals with and without downsampling were 300 and 33.33 
ms, respectively. This confirmed that the KIDS framework not only attained much higher performance but also 
did not compromise the real-time computational capability, thereby demonstrating its practicality for further 
deployments.

Discussion
Limitations of previous research
Previous studies predominantly addressed various forms of state detection problems, such as the differentiation 
between wake and sleep states. Due to the nature of the state detection problem, reported algorithms typically 
suffered from “temporal short-sightedness”; the state detection was often evaluated on a sample or window basis. 

Figure 5.  Performance insights into a reported threshold-based baseline  approach17,20,21 evaluated across two 
problem domains. The metrics provided were averaged over five participants (P1–P5). Subplot (a) delineates 
the baseline’s sleep posture change detection performance, captured in the dynamic relationship between the 
Positive Predictive Value (PPV) and Sensitivity (Se) as the classification threshold hyperparameter was adjusted. 
The PPV-Se pairings were colour-coded based on the hyperparameter’s value. The specified hyperparameter 
pertained to the maximum relative change in the acceleration magnitude of a hand-mounted sensor, a condition 
for a sample to be classified as “inactive”. Subplot (b) elucidates a similar performance analysis for the temporal 
segmentation of postural inactivity. The efficacy of the segmentation is indicated by Pearson’s Correlation 
Coefficient (R) between the predicted and ground-truth durations of inactivity segments in response to a 
sweeping change in the classification threshold hyperparameter.
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Nevertheless, few works took the detection information a step further by extracting time-dependent quantities, 
such as sleep latency and wake after sleep  onset23. These quantities were estimated rather indirectly from the 
detection outputs through, for example, accumulating the durations of consecutive windows that were assigned 
the same  state22. Consequently, these time-dependent estimates were oftentimes  overestimated28.

Besides the short temporal span of decision-making in pervasive state detection approaches, methodological 
limitations and utilitarian constraints also exist. First, threshold-based approaches generally required manual 
adjustment of hyperparameters to function acceptably across varied participants and sensor devices. Second, 
classification-based approaches prerequisited sufficiently large labelled datasets for classifier training. Moreover, 
these sleep datasets were typically imbalanced in nature (disproportionate class-wise sample size) and lacked 
diversity among participants. Third, while both threshold- and classification-based approaches relied heavily on 
raw sensor measurements, it was particularly the classification-based approaches that often utilised black-box 
models. This practice, in turn, contributed to a deficit of explainability which is important prior to adoption in 
clinical practice.

Contributions of the KIDS framework
The KIDS framework offered multifaceted contributions that touched upon five primary areas of improvement. 
First, the problem space in which the framework operated and how it compared to research problems typically 
addressed in reported work. Second, the emphasis on interpretability for developing a clear understanding of the 
framework’s internal workings. Third, the role of explainability in communicating the framework’s decisions to 
both experts and non-experts alike. Fourth, the temporal span of the framework’s decision-making and its implica-
tions for making robust and contextually informed decisions. Lastly, the generalisability of the framework as an 
indicator of its potential for broader use and adaptation across diverse scenarios and settings. Delineated below 
are the contributions of the framework in all five areas of improvement.

The problem space
Recognising the overlap between sleep posture change detection and temporal segmentation of postural inactiv-
ity, the framework was conceived to address the two interrelated problems directly and concurrently. To the best 
of the authors’ knowledge, this work presents the first simultaneous exploration of both problems, positioning 
the framework to more comprehensively capture detectable states and their temporal information.

Interpretability
Joint movements and orientations are a common language for clinicians. To enhance the comprehensibility of 
the framework to medical experts and reinforce its relevance to their practice, it was designed to rely purely on 
processing the measured segment-to-segment orientation about a single body joint, namely the wrist joint, as 
demonstrated in this manuscript. This joint kinematic profile was utilised to evaluate the whole-body physical 
activity level.

While it is relatively easy for humans to interpret a joint’s orientation at individual instants of time, it might 
become less intuitive to visually keep track of the orientation over time. This perceptual complexity stems from 
the multidimensional nature of the joint kinematic space and the intricacies involved in observing temporal 
changes. For this reason, not only the input features were crafted to be comprehensible, but also an intermedi-
ate stage of the framework was employed, utilising dimensionality reduction to provide a three-dimensional 
visualisation of the joint kinematic time series. This reduction in dimensionality served dual purposes. On the 
one hand, it made the complex temporal patterns in the joint kinematic profile more accessible and intuitively 
graspable by translating them into a visual form that more closely relates to human spatial understanding. On 
the other hand, the reduction also contributed to lessening the computational burden of the subsequent and 
final stage of the framework.

Explainability
This area emphasises providing justifications for the framework decisions to develop trustworthiness in its 
decision-making. Simply stated, the decisions of the KIDS framework were the start and end times of sustained 
postural inactivity, which were evaluated in the tertiary (and last) stage of the framework. In this stage, a fusion 
between Bayesian inference and changepoint detection logic was utilised, both of which were explainable tech-
niques. Bayesian inference is characterised by its probabilistic nature that accounts for a range of possible out-
comes and utilises an evidence-based belief update mechanism, making it one of the established and trustworthy 
techniques for decision-making. Similarly, the detection logic isolated sleep posture changepoints in time based 
on a set of explicitly defined rules, which are easy for humans to follow and understand.

The temporal span of decision-making
The extended temporal context in which the KIDS framework operated was one crucial aspect that sets the 
framework apart from previous literature. The framework utilised Bayesian inference, which inherently sup-
ports “sequential learning”—a process that integrates previous knowledge and continually updates beliefs as 
new information becomes available over time. Harnessing this capability for sequential learning, the framework 
conducted a probabilistic spatial modelling of time series which captured how the statistical attributes of measured 
joint kinematics evolved over time. By incrementally constructing this statistics timeline, the framework was 
subsequently able to infer both the specific moments of change (changepoints) and the durations of postural 
inactivity periods (durations of sustained statistics) within the joint kinematic time series. The working principle 
of the framework was in stark contrast to earlier approaches, which operated on individual samples or short time 
windows and had a restricted ability to recognise the broader patterns within time series data.
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Generalisability
There were two primary hurdles associated with the development and implementation of earlier approaches in 
the literature: (1) the prerequisite of large, balanced and labelled training data and (2) the meticulous tweaking 
of hyperparameters for performance stability. A substantial advantage of the proposed framework was that both 
hurdles did not apply to it. In regard to the first hurdle, the development of the framework did not involve the 
collection of training data from human participants. For the second hurdle, all framework hyperparameters were 
fixed across all participants and no finetuning was conducted during the development stage. This hyperparameter 
relief was the outcome of utilising hyperparameters that were independent of human behaviours, such as the 
movement intensity often used in threshold-based approaches). Alternatively, the framework benefited from 
two strategies. The first strategy ensured that the definition of hyperparameters stemmed purely from a meth-
odological design perspective. For example, the design of the intermediate dimension reduction-based stage of 
the framework benefited from the targetted spherical topology in the three-dimensional embedding space. The 
second strategy was utilising the adaptive Bayesian inference approach, which enabled the framework to learn 
effectively from sensor measurements as they become available over time despite the presence of hidden vari-
ables, such as subject-to-subject variability and sensor noise.

Assumptions of the KIDS framework and their validity
The KIDS framework laid down two primary assumptions related to the monitoring of joint kinematics and its 
temporal resolution. The following text explains each assumption and the rationale behind it.

Assumption 1: the kinematics of a single joint reflect the whole-body activity level. The tracking of multiple 
body joints during sleep could be uncomfortable and technically unjustifiable, depending on the purpose of the 
study. For the detection of sleep posture changepoints and the temporal segmentation of postural inactivity, it was 
logical to investigate whether monitoring the kinematics of a single joint would be sufficient to jointly address 
the two problems. The hand is probably one of the most moved parts of the human body, and being lightweight, 
it potentially carries much of the information on body mobility during sleep. Therefore, as a starting point, this 
paper exploited the feasibility of utilising the kinematics of the left wrist joint alone.

Assumption 2: the measured joint kinematics need not have a high temporal resolution. While sensors with high 
refresh rates are capable of capturing higher-order kinematics, it can be argued that sleep, being a dormant state 
of the human body, does not always require an ultra-fast algorithm to detect changes in physical sleep behaviour. 
Moreover, excessive computations would compromise power efficiency and real-time performance, which are 
desirable criteria for portable sleep monitoring devices. Assuming that every posture transition would incur a 
permanent change in the estimated hand-to-forearm orientation, the requirement for a frequently updating 
framework was redundant. Consequently, the KIDS framework safely incorporated the downsampling of the 
three-dimensional embeddings. As a result, the tight time constraint on the computation cycle of the framework 
was substantially relaxed, allowing for the adoption of more advanced approaches, such as Bayesian inference, 
without compromising real-time performance.

The performance evaluation for the best-performing variant of the KIDS framework confirmed that the two 
aforementioned assumptions held true, subject to a minor contingency (covered below). According to Table 1, 
the framework achieved high performance metrics across all five participants in the two interrelated problem 
domains. Specifically, the framework detected nearly all sleep posture changepoints (mean F 1-score = 99%) and 
demonstrated supreme efficacy in estimating the durations of periods of postural inactivity (mean R = 0.96%).

Limitations of the KIDS framework and avenues for future research
While the results from the experimental protocol suggested the promising potential of the framework, it is 
important to recognise its limitations and, where possible, potential solutions.

The KIDS framework in its current form utilised a bespoke wearable sensor  module11 to measure the seg-
ment-to-segment orientation about a single body joint. In this work, this quantity was considered an indicative 
measure of the whole-body physical activity level during sleep. However, it is worth noting that most commercial 
devices, such as smartwatches, typically feature a single IMU sensor and are affixed to only one body segment. 
Nevertheless, in instances where dual-IMU sensing is not supported by the device, the KIDS framework can still 
be adapted to utilise a single segment’s orientation instead of the segment-to-segment relative orientation. This 
alternative orientation can be obtained in a similar manner by employing the Madgwick filter to fuse the IMU 
measurements available in the device.

Based on a detailed analysis of the KIDS framework, it is important to highlight a potential source of failure 
that may affect the framework’s ability to detect sleep posture changepoint events. Since the permanent change 
in the joint kinematics was crucial for the framework to identify changepoint events, the detection turned 
out to be more challenging in rare cases where the wrist joint orientation does not change significantly across 
two consecutive sleep postures, particularly if the intermediate posture transition was ephemeral. Though the 
best-performing variant of the framework detected nearly all changepoint events across all participants, the 
aforementioned failure case was close to happening once during a posture transition. In this particular case, the 
framework demonstrated a slightly “weaker” detection event, but the change in posture was detected nevertheless.

While the sequential learning of Bayesian inference lent the framework adaptability to hidden variables, such 
as subject-to-subject variability, it might incur additional computational cost for time series that are too long. 
This limitation was not encountered in this study as only a simulated sleep protocol was implemented, which 
was shorter than real sleep by orders of magnitude. In practice, there are workaround solutions to this limitation 
which include, for example, pruning the time series and restarting the framework once the duration of the past 
time series exceeds a predetermined value, say an hour.
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While this study elucidated several key dimensions of the proposed framework, it simultaneously unveiled 
partially explored territories for further scientific inquiry. Herein presented two avenues for improving the 
framework in the future. First, the framework could be applied to kinematics observed from various body joints, 
such as the ankle, in order to derive formal recommendations for ideal sensor placement. Second, the valida-
tion of the framework could be extended to real sleep scenarios with larger cohorts of participants, including 
individuals with sleep disorders.

Methods
To foster clarity and systematic comprehension of the results reported in this paper, this section provides an 
in-depth overview of the KIDS framework at first, spotlighting its purpose, design rationale, and deployment 
procedures. This preliminary discussion provides the conceptual groundwork for the second, more detailed 
subsection on the methods pertinent to the study and the proposed framework. The third subsection presents 
aggregative results from the variants of the framework, in addition to performance benchmarking analysis.

The KIDS framework: design rationale and operational overview
The proposed KIDS framework, conceived as a plug-and-play wearable system, was specifically developed to 
facilitate unobtrusive and automated analysis of postural (in)activity during sleep. Through gauging and analys-
ing clinically meaningful kinematics of a single body joint, the framework presented a comprehensive solution 
to two interconnected problems simultaneously: sleep posture change detection and the temporal segmenta-
tion of postural inactivity. The output of the framework primarily comprised a detailed timeline of segmented 
periods of postural inactivity (refer to Fig. 4b for an illustrative example), clearly indicating the start and end 
timestamps of each inactivity segment. In addition to the timeline, the framework provided a complementary 
three-dimensional visualisation (exemplified in Fig. 3a), elucidating the temporal variations in the joint kinemat-
ics and enhancing comprehensibility to both clinicians and lay users. The framework could be particularly useful 
for clinicians probing sleep-associated behaviours and disorders. There are several use cases of the framework in 
sleep medicine, ranging from basic sleep quality assessments to more complex investigations into the implications 
of physical sleep behaviour for the diagnosis of underlying health conditions, such as musculoskeletal disorders.

In a real sleep scenario, it was envisaged that the deployment of the KIDS framework would follow a sys-
tematic and user-friendly procedure. Initially, the subject would attach the miniature wearable sensor module, 
provided by clinicians beforehand, to their wrist joint, specifically by affixing the module’s two IMUs onto their 
hand and forearm segments, respectively. The IMUs would only need to be approximately aligned to their respec-
tive segments. Subsequently, the subject would power on both the sensor module and a proximate server, such 
as a smartphone, and then a Bluetooth connection would be established between the two devices accordingly. 
This connection would serve as the medium for the real-time transmission of sensor measurements. Owing to 
the framework’s design, which eliminated the need for preliminary training data collection, the subject would 
seamlessly proceed with their usual sleeping routine. Throughout the night, the collected measurements would 
be continuously transmitted to the server. Upon awakening, the subject would terminate the Bluetooth con-
nection and deactivate the sensor module. The amassed data would then be dispatched to a cloud server where 
subsequent data processing, analysis and visualisation would take place. Finally, the analytical report delineating 
the subject’s overnight postural (in)activity would be readily accessible via an online platform to both the subject 
and their reporting clinician, promoting transparency in care and facilitating timely and informed decisions.

The research outlined herein pivoted on a simulated sleep protocol, devised to assess the performance of the 
KIDS framework in conditions approximating real sleep settings. The ensuing subsection details the stages of the 
proposed methodology, spanning from the initial data acquisition to the culmination of the framework operation.

Comprehensive walkthrough of the methodology
This section provides a detailed account of the comprehensive methodology utilised in the research presented. 
The discussion is organised in alignment with the workflow, commencing with the participant study, which 
encompassed the design and execution of the simulated sleep protocol. Subsequently, it delves into each of the 
three stages of the KIDS framework, elucidating the methods employed in each stage. The methodology encom-
passes all the variants of the proposed framework, including the best-performing variant. Moreover, the discus-
sion explains the rationale behind the design choices and provides comparisons and reflections, where applicable.

Participant study: simulated sleep protocol
The study involved a simulated sleep protocol which was devised to emulate realistic sleep settings, thereby 
ensuring the applicability of the subsequent analysis of the proposed framework performance.

Five healthy adult participants (age: 36 ± 15.8 years, height: 169 ± 11 cm, body weight: 72.8 ± 23.2 kg) will-
ingly partook in the study upon providing informed consent. The methods were carried out in accordance with 
relevant guidelines and regulations and all experimental protocols were approved by The University of Liver-
pool Research Ethics Committee (review reference: 9850). Each participant attached a bespoke wearable sensor 
module to their left wrist, with its two integrated IMUs affixed to the hand and forearm segments, respectively. 
The sensor module was designed to gauge the hand-to-forearm relative orientation, also referred to as wrist 
joint kinematics, and to transmit these data to a proximate server at a rate of 30 Hz. Once the sensor module 
was set up and running, the study proceeded with the simulated sleep protocol, in which the participant was 
guided through a randomised sequence of 12 common sleep postures. To further assist the participant through 
the posture replication procedure, a leaflet containing pictures of the 12 sleep postures was initially handed to 
them (definitions of postures can be found in previous  work11). Each posture appeared twice in the sequence, 
but not consecutively. This random posture shuffling strategy was adopted to ensure statistical independence 
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among samples across the dataset and to resemble a realistic sleep scenario. Throughout the study, the duration 
of sustained postures and intermediate transitions varied depending on the comfort of the participants and their 
need for guidance from the on-site researcher.

For the collected data to be fit for the purpose of evaluating the performance of the KIDS framework, it was 
imperative to acquire high-quality ground-truth labels. The choice of the ground truth definitions was primarily 
determined by the problems framework addressed: the sleep posture change detection and the temporal segmen-
tation of postural inactivity. To this end, the start and end timestamps for each posture formed the minimum set 
of ground-truth labels required to assess the performance of the framework comprehensively. The acquisition 
of these labels was conducted over two steps. First, the researcher on site recorded the approximate boundary 
timestamps for each posture during the simulated sleep protocol. Second, these approximate timestamps were 
refined by an expert annotator by manually examining the collected wearable sensor time series data, pinpointing 
the exact start and end timestamps for each posture.

With this joint kinematics dataset in place, the following section transitions to a technical account on the 
measurement of wrist kinematics; the foundational pillar of the proposed framework.

Wrist kinematics measurement
The measurement of meaningful joint kinematics was a distinctive highlight that set the presented study apart 
from previous work reported in the literature. This section elaborates on the instrumentation and data processing 
methods that enabled the measurement of these kinematics.

Bespoke wearable sensor module.  The participant study employed a custom-made wearable sensor module, 
specifically designed to measure the left wrist joint kinematics, or alternatively the hand-to-forearm relative ori-
entation. In a previous  work11, four such modules were affixed to extremity joints (wrists and ankles) to provide 
a comprehensive sleep posture classification. However, for a start, this study explored the feasibility of whether 
the kinematics of a single joint would be sufficient to evaluate postural (in)activity during sleep. Consequently, 
the wrist joint was selected for the analysis due to the rich information it potentially carries on body mobility, 
being one of the most moved and lightweight parts of the human body.

The custom-made sensor module offered dual-segment orientation tracking across the wrist joint, enabled by 
two embedded IMU sensors mounted on the hand and forearm respectively. The IMU model was the BNO055 
(Bosch Sensortec GmbH, Reutlingen, DE). Both IMU sensors were managed by a single ESP32-WROOM-32D 
microcontroller (Espressif Systems Shanghai Co Ltd, Shanghai, CN) featuring Bluetooth connectivity for wireless 
data transmission. At about 6 cubic centimetres in volume for each IMU case, the sensor module was sufficiently 
slim and small for wearability during sleep. Prior to each in-vivo experiment, all IMU sensors were calibrated 
according to standard  procedures32,33 to estimate and reduce errors owing to constant bias, scale factors, cross-
axis sensitivity and response nonlinearity.

Magneto-inertial sensor fusion.  A dual-stage fusion approach, encompassing both intra- and inter-sensor 
fusion, was adopted in the work. The orientation of each IMU sensor was estimated using a magneto-inertial 
sensor fusion algorithm, termed as intra-sensor fusion. Since each IMU sensor was securely attached to its 
respective body segment, each IMU sensor’s estimated orientation was a function of the orientation of the seg-
ment to which it was affixed. Utilising orientations derived from the two IMU sensors, an inter-sensor fusion was 
subsequently employed to determine the relative orientation of the hand to the forearm across the wrist joint, 
i.e. the hand-to-forearm orientation.

For intra-sensor fusion, the Madgwick  filter34, a computationally efficient and robust sensor fusion algorithm, 
was used to fuse the magneto-inertial measurements from the IMU sensor, providing a filtered estimate of the 
sensor’s absolute orientation with respect to the Earth reference frame in the quaternion space. The utilisation 
of the quaternion space contributed to removing singularities from the orientation space. In regard to inter-
sensor fusion, kinematic transformations facilitated the derivation of hand-to-forearm relative orientation by 
referencing the hand (child segment) IMU orientation to that of the forearm (parent segment). Comprehensive 
mathematical underpinnings of this fusion process are available in an earlier  work11. Following this, the relative 

orientation was transmuted from the quaternion space to the axis-angle space, where a unique x(tk) ∈ R
4 existed 

at each discrete time step tk . Such an axis-angle rendition of joint kinematics was more interpretable than its 
quaternion counterpart and facilitates the derivation of meaningful insights, as demonstrated in previous  work11.

Joint kinematics preprocessing and visualisation
While the four-dimensional axis-angle representation provided a detailed snapshot of the wrist kinematics at 
specific instances, it did not aptly convey the evolution of these kinematics over time. Dimension reduction, with 
its successful applications spanning diverse areas from wearable  sensing11 and speech  processing35, to knowledge 
 exchange36, offers a compelling solution to this challenge. Consequently, the second stage of the KIDS framework 
employed preprocessing methods to reduce the dimensionality of the kinematic time series, thereby providing 
visualisations that promote the intuitive comprehension of the measured kinematics to domain specialists and 
lay users alike. Additionally, the reduced dimensionality contributed to computational gains which would be 
evident at the ultimate stage of the framework.

Presented in this section are two distinct dimension reduction methods based on unsupervised learning and 
analytical transformation, respectively. Following this, the section ends with the framework’s last preprocessing 
step which involved the downsampling of the dimensionally reduced kinematic time series.
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Unsupervised learning-based dimension reduction (option 1 for dimension reduction).  Unsupervised learn-
ing-based dimension reduction captures the essence of high-dimensional data without the need for labels, mak-
ing this category of methods apt for simplifying complex datasets. Within this category, the Uniform Manifold 
Approximation and Projection (UMAP)31 stands out as a prominent nonlinear dimension reduction method. It 
gradually constructs a lower-dimensional force-directed graph that captures the patterns of the original high-
dimensional dataset. UMAP’s advantage lies in its ability to deal with nonlinear data manifolds while preserving 
both local and global data structures within the low-dimensional embedding space. It seamlessly accomplishes 
this through two core stages: first, it identifies nearest neighbours to form a neighbour graph, and second, it 
learns the dimensionally reduced representation through iterations of minimising a dedicated cost function. A 
thorough discussion on the underpinnings of UMAP is available in its original  paper31.

The use of UMAP in the current study was distinct from the common use of dimension reduction within the 
literature of human motion  analysis37–40. Previous works utilised dimension reduction methods to transmute 
pre-collected data into visualisable low-dimensional embeddings. While these visualisations were useful in 
discovering data patterns, they were mainly applicable to the processed dataset and they might fail to generalise 
to unseen data if the new samples were drastically different from the pre-collected ones. Consequently, the 
implementation of UMAP in this work was performed over two steps to promote its generalisability to as many, 
if not all possible, orientations in the axis-angle space. The first step involved presenting a synthetic orientation 
dataset to UMAP for it to learn the mapping from the four-dimensional axis-angle space to a three-dimensional 
embedding space. The synthetic orientation dataset was carefully constructed such that it uniformly sampled 
the axis-angle orientation space (given a predefined resolution), thereby enabling UMAP to construct a reliable 
neighbour graph. Subsequently, the second step utilised the pre-learnt dimensional transformation of UMAP 
to import the sensor-measured wrist kinematics into the same embedding space.

Illustrations of UMAP’s three-dimensional visualisations, both for the synthetic orientation dataset and for 
a participant’s sensor-measured wrist kinematics, are depicted in Fig. 6a,b respectively. The three-dimensional 
embeddings formed a thick-crust structure that resembled the shape of an egg. In Fig. 6a, the embeddings were 
coloured based on the direction of their respective axes of rotation, namely ±x1 , ±x2 and ±x3 . Based on this 
colour convention, it was evident that UMAP associated longitudinal and latitudinal navigations of the egg-like 
structure with different axes of rotation. Additionally, different angles of rotation corresponded to varying radial 
displacements, as measured from the centre of the structure. When importing over 60 min of sensor-measured 
wrist kinematics pertinent to a randomly selected participant into this embedding space, Fig. 6b shows that 
only finite regions of the space were populated due to the anatomical constraints discussed in “Results” section. 
Moreover, the populated regions revealed a decent separation between the 12 sleep postures replicated through-
out the simulated sleep protocol.

Figure 6.  Visualisations of both a synthetic orientation dataset (left) and the sensor-measured wrist kinematic 
time series (right) in a three-dimensional embedding space, as provided by the Uniform Manifold Approximation 
and Projection (UMAP) method. Initially, synthetic orientations uniformly sampled from the axis-angle space 
were presented to UMAP to enhance its generalisability to (unseen) sensor-measured orientations in subsequent 
uses. Subplot (a) presents the synthetic orientation embeddings, colour-coded according to the directions of 
their respective axes of rotation ( ±x1 , ±x2 , and ±x3 ). Notably, the topology of these embeddings resembled a 
thick-crust, egg-like structure, where longitudinal and latitudinal navigations of this structure were associated 
with varying axes of rotation, while radial displacements corresponded to varying angles of rotation. Following 
the initial use of synthetic data, UMAP was reused to import the wrist kinematic time series, obtained from 
a randomly selected participant, into the same pre-learnt embedding space as depicted in subplot (b). These 
embeddings were colour-coded to distinguish between postural transitions and the different sustained sleep 
postures during the simulated sleep protocol. Only finite regions of the egg-like structure were populated with 
embeddings, a result of the anatomical constraints inherent to the wrist joint.
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The uniform sampling of the axis-angle space was a key concept in the creation of the synthetic orientation 
dataset. Since the axis-angle representation comprises two components, the axis and the angle of rotation, the 
domain of each component was sampled uniformly in isolation, and then all possible axis-angle combinations 
were generated to form the complete synthetic orientation dataset.

Sampling the axes of rotation could be simply performed by sampling the surface of a three-dimensional 
sphere. However, the naiv ̈e approach of choosing equidistant latitudinal and longitudinal angles would render 
denser axes of rotation near the poles and sparser ones near the equator. Consequently, a computer graphics 
pipeline was employed to generate a set of uniformly sampled axes of rotation. The pipeline commenced with the 
construction of a cubic structure, whose vertices were then meticulously projected onto a unit sphere containing 
the cube. In the first step, a procedural mesh generation technique was used to construct the unit cube with face 
vertices, vf = {xf , yf , zf } . Following this, the ellipsoidal projection

was utilised to project all vf  onto the surface of a unit sphere, to ensure that the projections were evenly distrib-
uted over the surface of the sphere. The projected vertices, ve , represented the synthetic axes of rotation, and were 
then exported into a comma-separated values file. All procedural three-dimensional modelling was implemented 

in the C# programming language and visually produced in Unity© (Unity Technologies Inc., California, US).

Moving to the synthesis of the angles of rotation, an equidistant set of 36 angles, { 36
36

π , 35
36

π , 34
36

π , . . . , 1
36

π} , 
were considered as eligible values. Finally, both the axes and angles generated previously were fused to form 
the synthetic orientation dataset. To this end, the exported file containing all ve was subsequently imported into 

MATLAB© (The MathWorks, Massachusetts, US). Therein, an orientation dataset generator script exhausted 
all unique combinations between the axes and angles of rotation, ultimately yielding a total of 48,600 orienta-
tions. Further details on the computer graphics pipeline are available online in Supplementary Methods titled 
“Computer graphics pipeline”.

While the unsupervised learning capability of UMAP produced meaningful visualisations of kinematics, the 
embedding space turned out to be weakly constrained which was evident in the geometrical artefacts inherent 
to the egg-like structure. According to Fig. 6, the egg-like structure had different stretch factors along the three 
pseudo-dimensions, o1 , o2 and o3 , in addition to having a non-zero offset from the origin of the embedding space. 
The implication of the unequal stretch along the three dimensions was that the difference between embeddings 
at compressed regions of the structure could be significantly larger than that between embeddings at expanded 
regions, even if the two cases were equivalent in the original axis-angle space. Therefore, the following section 
presents a second dimension reduction method that analytically approximated UMAP’s dimensional transfor-
mation, whilst maintaining full control over the embedding space to resolve the geometrical artefacts discussed 
above.

Analytical dimension reduction (option 2 for dimension reduction).  Building upon the observations from 
the UMAP’s visualisations, this section proposes an enhanced alternative to UMAP, the Analytical Dimension 
Reduction (ADR). Distinctively, ADR was not a standalone dimension reduction method; instead, it was primar-
ily inspired by UMAP’s visualisations and exclusively targeted one task which was reducing the four-dimensional 
axis-angle orientations to a more tractable three-dimensional space. Unlike UMAP, which relied on unsuper-
vised learning, ADR harnessed pure mathematics and geometry to achieve the sought dimensional transforma-
tion. The objective behind ADR was to generate a perfectly structured thick-crust sphere in the embedding 
space, devoid of any geometrical artefacts, thereby ensuring a more consistent and standardised representation 
in comparison to UMAP. For visualisation purposes only, the synthetic orientation dataset, which was previously 
used to facilitate UMAP learning the dimensional transformation, was re-visualised by ADR, as shown in the 
perfectly sampled spherical structure in Fig. 1. Depicted in Fig. 3a are the embeddings corresponding to over 60 
minutes of wrist kinematic time series for a randomly selected participant.

Motivated by the topology of the UMAP’s embeddings, the ADR sphere was configured with inner and outer 
radii, forming a thick-crust sphere. This spherical configuration not only retained the meaningfulness of visu-
alisation offered by UMAP but also rectified its inherent geometrical artefacts. Within this spherical structure, 
traversing in the latitudinal and longitudinal directions connoted distinctive axes of rotation, whereas the radial 
displacement along the crust’s thickness was proportionate to the change in the angle of rotation.

The procedure of dimensionally transforming an axis-angle orientation was performed over two steps. The 
first step determined the radial displacement from the centre of the sphere, followed by the second step which 
defined all three cartesian coordinates of the embedding at that radial displacement.

The radial constraints of the ADR sphere were set between an inner radius, irs = 1 unit length, and an outer 
radius, ors = 2 unit lengths. The displacement between these two endpoints reflected a change in the angle of 
rotation from 0 to π radians, respectively. With this geometric correlation, the embedding’s radial displacement, 
i
rs , could be interpolated based on the sensor-measured angle of rotation:

The latitudinal and longitudinal navigation across the spherical structure corresponded to differently oriented 
axes of rotation as defined by the components x1 , x2 and x3 . Building on this definition and taking into account 

the radial displacement from Eq. (2), an arbitrary ADR embedding, ADRo , can be described by
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The implementation of ADR hinged on mathematical formulations to achieve the geometric configuration 
aforementioned. Crucially, due to these mathematical confines, ADR ensured no embeddings ventured beyond 
the defined thick-crust spherical bounds.

Downsampling of dimensionally reduced wrist kinematics. An inherent inverse correlation would be expected 
between the length of the three-dimensional embedding time series (in time steps) and the computational effi-
ciency of the methodology utilised in the ensuing (and ultimate) phase of the KIDS framework. Put differently, 
the larger the number of time steps, the tighter the time constraints would be for the employed algorithm. Under 
such circumstances, the algorithm’s capacity would have to be compromised, and only rudimentary to moder-
ately complex algorithms would be rendered viable, akin to the pervasive naiv̈e threshold-based approaches.

A fact is that sleep patterns are characterised by extended periods of inactivity. Hence, downsampling repre-
sents a good workaround solution to curtail computational demands and data storage requirements for wearable 

devices. Capitalising on this insight, the temporal resolution of the complete embedding dataset, O , was reduced 

by a decimation factor of 100. This step produced a new downsampled timestamp vector ⇓t = ⇓
t1,

⇓
t2, . . . ,

⇓
tT . 

Notably, this downsampling step was implemented irrespective of the selected dimension reduction method.

Sleep posture change detection and temporal segmentation of postural inactivity
The previous stages of the framework shed light on the acquisition and treatment of wrist kinematics. Recalling 
the current study’s main purpose which was to leverage these kinematics in facilitating an automated analysis of 
postural (in)activity during sleep, this section presents the ultimate stage of the proposed framework, incorpo-
rating its decision-making core wherein these measurements culminated in purposeful outcomes. The methods 
herein are discussed in a top-down manner. Firstly, the section provides a clear formulation of the problems 
addressed by the framework, accompanied by a succinct overview of the strategy for tackling them. Following 
this foundation, the discussion proceeds with elucidating the internal workings of each step within this strategy.

Problem statement and strategic plan.  The ensuing discussion would not only clarify the nature of the prob-
lems addressed by the KIDS framework but also provide a structured overview of the methodological compo-
nents designed to solve them, thereby establishing a clear foundation for the methods covered subsequently.

The KIDS framework was conceived to tackle two closely related problems. Firstly, there was the sleep pos-
ture change detection problem, which entailed pinpointing the posture changepoints, or the moments when a 
participant shifted from one prolonged sleep posture to another. Concurrently, the second problem revolved 
around the temporal segmentation of postural inactivity, which aimed to estimate the duration, counted in time 
steps, of each inactivity segment. More explicitly said, this duration represented the time interval starting from 
the onset of a sleep posture until the subsequent posture changepoint. Consequently, a joint solution to these 
problems would manifest as a clear timeline, demarcating the beginning and end of each period of postural 
inactivity, effectively denoting the boundaries of sustained sleep postures.

With the three-dimensional visualisations availed by UMAP and ADR, it was observed that changes in sleep 
postures were associated with considerable changes in the spatial arrangement of the embeddings. Capitalising 
on this observation, the third stage of the framework concentrated on modelling the evolving spatial distribution 
of these embeddings. The intent was to proficiently predict when posture changepoints occurred and to segment 
periods of postural inactivity accordingly.

To achieve this, the strategy employed four (three essential and one recommended) methodological compo-
nents—Bayesian inference, probabilistic point estimation, an enhancement step, and changepoint detection logic. 
These were instrumental in transitioning from a probabilistic decision-making space with multiple potential 
outcomes to a single binary outcome.

The Bayesian inference was utilised to recursively derive a posterior distribution over the duration of pos-
tural inactivity based on the observed three-dimensional embeddings up to each point in time. Subsequently, 
through probabilistic point estimation, the most probable value or point estimate for the duration of postural 
inactivity was determined for each time step, given its posterior distribution. In scenarios where sleep postures 
were sustained, this point estimate would grow linearly in time. However, a change in the sleep posture would 
trigger this estimate to reset nearly to zero. This resetting pattern was instrumental in facilitating the detection 
of changepoints subsequently. An auxiliary enhancement step was incorporated to refine the timeline of point 
estimates. The aim here was to reinforce the magnitude of change noticeable during transitions from one posture 
to another. The significance of this enhancement to the overarching performance of the KIDS framework will 
be highlighted through an ablation study in the concluding part of “Methods” section. Lastly, a changepoint 
detection logic was devised to isolate posture changepoints in time through discerning instances when the point 
estimate was reset. Each changepoint marked the end of an inactivity segment whose duration was equal to the 
value of the point estimate preceding the changepoint.

By coherently weaving together these methodologies, the KIDS framework was poised to effectively estimate 
the temporal bounds of postural inactivity. With the problems and strategic plan now clearly outlined, the fol-
lowing discussion will elucidate the intricacies of each of the four methodological steps.

Bayesian inference (Step 1).  Bayesian inference offered a means to probabilistically determine the duration of 
postural inactivity based on the observed embeddings up to each point in time.

(3)ADR
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[

o1 o2 o3

]

= rs

[

x1 x2 x3

]



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18027  | https://doi.org/10.1038/s41598-023-44567-9

www.nature.com/scientificreports/

The Bayesian inference method employed in this work was largely adapted from a previous  study41, which 
reported a probabilistic mechanism for evaluating all possible hypotheses on the length of homogeneous data 
segments, constructed from discrete observations sharing similar statistical attributes. In the present work, this 
method was employed to infer the number of consecutive time steps over which the three-dimensional embed-
dings manifested similar statistical attributes. This inferred quantity was referred to as the current segment run 
length, , highlighting the emphasis on evaluating only the length of the current segment of postural inactivity 

at each time step ⇓tk.
While this method determined the length of the current segment, the inference of  nonetheless considered 

all past observations in the probabilistic decision-making, including those observations from previous segments. 
This was a primary advantage over the previously reported threshold- and classification-based approaches, 
which were characterised by a generally limited temporal span for decision-making due to their operation on 
a sample or window basis.

While a comprehensive elucidation of this Bayesian method can be found online in Supplementary Methods 
titled “Bayesian inference of current segment run length”, a succinct overview of its constituent steps is nonethe-
less provided here to provide a high-level understanding of its underlying operational mechanics depicted in 
Fig. 7.

At the initial time step, ⇓t0 , the method was presented with two primary inputs: the three-dimensional 
embedding time series, and the predictive probability distribution describing their spatial distribution. The 
distribution was modelled as a multivariate Gaussian process, with a mean vector and a precision matrix as 

model hyperparameters. By the end, at ⇓tT , the method yielded two outputs. Firstly, the posterior probability 
distribution over  given all observed embeddings. This posterior described the probabilities for all T + 1 
hypotheses on , from  to . The other output was a set of T + 1 predictive distributions corresponding 
to all possible hypotheses on the number of past embeddings that could contribute to modelling the spatial 

distribution of the embeddings at ⇓tT . These models vary from the completely agnostic model (given ) to 
the complete-history-aware model (given ).

Moving on to the mechanics of the Bayesian inference, there were notably two types of eligible changes in the 
current segment run length at each time step; either a reset to zero or a linear incrementation from the length 
at the previous time step. To this end, the Bayesian inference evaluated two types of posterior probabilities on 

 at each time step, ⇓tk . The first type was the changepoint probability, , which corresponded to a single 

hypothesis suggesting a changepoint occurring at ⇓tk . The second type comprised the growth probabilities, 

, which corresponded to all hypotheses suggesting linear incrementations from previous hypotheses on .
The computation of the aforementioned probabilities relied on the predictive distribution in the embedding 

space, given previously observed embeddings. Since both changepoint and growth probabilities corresponded 
to different hypotheses on , it was imperative to have a unique predictive distribution congruent with each 
hypothesis. Each predictive distribution took into account a certain number of the most recently observed 

embeddings as dictated by the hypothesis on . At each time step, the current embedding, o(⇓tk) , was presented 
to each of these predictive distributions. The resulting set of predictive probabilities then played a pivotal role 
in guiding the Bayesian inference, aiding in the determination of which hypotheses regarding  held greater 
plausibility and which ones were comparatively less tenable. Consequently, the more plausible predictive distri-
butions effectively captured the evolving spatial distribution of the embedding time series.

However, the Bayesian inference did not operate on the predictive distributions directly. Instead, each predic-
tive distribution’s (mean and precision) hyperparameters were implicitly defined by constructing a conjugate 
probability distribution over both hyperparameters simultaneously. This conjugate distribution was also modelled 
as a multivariate process. The role of the conjugate model was to communicate the prior belief about the spatial 
distribution of the embeddings to the Bayesian inference, before the inference of .

A base conjugate model was constructed before observing any embeddings and utilised at ⇓t0 . This same base 
model also applied to the changepoint hypothesis at each time step, since this particular hypothesis assumed 
. However, for the other “growth” hypotheses for , other conjugate models were incrementally created using 
Bayesian inference, serving as modified versions of the original base model given the observed embeddings 
dictated by their respective hypotheses.

The construction of the base conjugate model depended on which dimension reduction method was employed 
in the second stage of the framework. If UMAP was used, the conjugate model’s probability distribution was 
set to be a non-informative prior distribution due to the unsupervised nature of the method and the ambiguous 
embedding topology evident in its egg-like structure. The non-informative prior was intentionally designed to 
spread widely (almost flat) over the mean-precision hyperparameter space such that no particular combination was 
favoured in any way. In such a case, the Bayesian inference was instructed to objectively construct the posterior 
distribution over the hyperparameters prominently based on the observed UMAP embeddings.

In contrast, if ADR was used for dimension reduction in the second stage of the framework, it was feasible 
to assign an informative prior distribution to the conjugate model, leveraging the consistent geometrical con-
figuration of the ADR embeddings. The informative prior guided the Bayesian inference on the likely topology 
of the ADR embeddings, rendering higher probability density to the plausible mean-precision combinations in 
the hyperparameter space.

The implementation of the Bayesian inference method outlined above had a distinct difference from that 
presented in the original  paper41. The original paper employed univariate predictive distributions and demon-
strated their use in the inference of either the mean or the precision of uni-dimensional time series. However, 
this stage of the KIDS framework adapted the original method to support the multivariate inference of both 
the evolving mean vector and precision matrix for the three-dimensional embedding time series. A thorough 
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delineation of the implementation can be found in Supplementary Methods titled “Bayesian inference of current 
segment run length”.

The Bayesian inference method provided a robust mechanism to discern the duration of periods of sustained 
postural inactivity within the embedding time series. With this foundation, the next methodological step made 
a critical transition in transforming the multitude of outcomes encoded in the posterior distribution over  
into a singular, most probable estimate at each time step.

Figure 7.  Graphical illustration (a) coupled with explanatory text (b) about the Bayesian inference mechanism 
used to infer the posterior probability distribution over the duration of the current period of postural inactivity 
at each time step.
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Probabilistic point estimation (Step 2).  The aforementioned Bayesian inference method produced a posterior 

distribution over , conditioned on the observed embeddings until time step ⇓tk . It is important to empha-
sise that  was treated as a discrete random variable in this context. Each possible value that this variable 
could assume under the posterior distribution corresponded to a unique hypothesis. The objective then shifted 
towards pinpointing a singular, most probable estimate for . Consequently, the use of probabilistic point esti-
mation was proposed to determine the best estimate, denoted as , according to some probabilistic  sense42. 
To this end, the least mean squares (LMS) estimator was employed to determine   by minimising the mean 

squared error, conditioned on the sequence of observed embeddings, o(⇓t1:k):

Utilising the LMS estimator in Eq. (4) brought forth the advantage of striking an optimal trade-off between 
bias and variance. This methodological step culminated in producing a vector, encapsulating (T + 1) LMS esti-
mates of   throughout the time series.

However, a subtle artefact which surfaced in the posterior distribution over  during specific posture 
transitions had an effect on the computed LMS estimates. Notably, while the majority of posture transitions 
involved an immediate surge in the changepoint probability in tandem with the commencement of the transition 
motion, certain instances of posture transitions were associated with a slightly slower inference response. In these 
instances, the “growth” hypothesis probability dwindled over time, and this wane was offset by a corresponding 
rise in the changepoint probability spanning a few time steps. Such an artefact led the LMS estimates to exhibit 
a gradual reset to zero over a few time steps from the actual commencement of the posture transition motion. 
Further analysis revealed two consequences of this behaviour in regard to the performance of the KIDS frame-
work. Firstly, the magnitude of change in  was diluted across the transitions that had this artefact, making 
changepoints harder to be detected later within the framework. Secondly, it distorted the posterior distribution 
over  nearer to the detected changepoints, which caused significant underestimations in the duration of 
postural inactivity for these instances, even if their corresponding changepoints were detected. These observa-
tions motivated the employment of an “enhancement step”, delineated in the ensuing methodological step, to 
rectify these artefacts and to ensure the fidelity of the proposed framework outcomes. The added value of this 
enhancement step was identified through an ablation analysis at the end of “Methods” section, encompassing 
the four variants of the KIDS framework.

Enhancement of the LMS estimates (Step 3).  The enhancement step was incorporated into the KIDS frame-
work to address the aforementioned inference artefact: the progressive reset of  to zero during specific posture 
transitions. Addressing this artefact was imperative for the subsequent steps within the framework in order to 
promote a robust detection of posture changepoints and prevent inadvertent underestimation of the durations 
of postural inactivity periods.

To counteract the effect of the inference artefact, a moving filter, spanning a width of three time steps, was 
proposed. As this artefact was characterised by consecutive progressive drops in the value of  over a few time 
steps, the primary objective of this filter was to reinforce the magnitude of change in  during the transitions 
marked by the artefact. The realisation of this objective culminated in a new sequence of “enhanced LMS esti-
mates”, denoted by . Here, the strategy was to amalgamate the consecutive drops in the LMS estimates 
(spanning multiple time steps) into a single pronounced dip between adjacent time steps, described mathemati-
cally in Eq. (5):

The following illustrative scenario elucidates the operation of the moving filter. If there were two sequential 
drops in the LMS estimates, characterised by values , , and , the resultant enhanced sequence would 
be manifested as , , and . By employing this moving filter, the sequential drops were translated to 
one sheer dip of 30 time steps between  and . Consequently, the changepoint event was accentuated, 
rendering it significantly more conspicuous for the ensuing changepoint detection logic. Notably, while the 
changepoint was discerned at , a single time step post the initiation of the posture transition motion, the 
proposed filter crucially obviated the larger risk of completely overlooking the changepoint event.

Changepoint detection logic (Step 4).  Embedded within the enhanced LMS estimates was invaluable informa-
tion concerning the durations of postural inactivity and the temporal locations of sleep posture changepoints. 
The quintessential aim of this ultimate step was to pinpoint the exact time steps wherein  exhibited a pro-
nounced dip in its value. A changepoint detection logic was meticulously crafted to accomplish this aim. This 
logic produced a timeline of binary decisions, with positive outcomes signifying the detected changepoints. 
Subsequently, by leveraging the time step corresponding to the changepoint and the value of the enhanced LMS 

(4)

(5)
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estimate that immediately preceded it, the start and end timestamps of each postural inactivity period were 
determinable.

The operation of the changepoint detection logic was bifurcated into two consecutive steps. The first step 
aimed at the exhaustive identification of all changepoints, whilst the second step equipped end-users, such as 
reporting clinicians, with the flexibility to selectively discard changepoints of insignificant relevance to their 
practice.

The first step entailed a critical stipulation: the decision-making process should be invariant to the scale of , 
meaning that the dips from  and  ought to be treated equivalently, regardless of whether 

ζb ≫ ζa . A mere thresholding of the magnitude drop, , in the linear scale would fail to meet the 
scale-invariance criterion. A more viable proposition entailed the implementation of the threshold on the loga-
rithmic scale of , thus grounding the decision-making of the changepoint detection logic on percent change 
or multiplicative factors. A reference drop of log10 2 ≈ 0.3 on the logarithmic scale corresponded to a 50% 
decrease in  in the linear scale. Since this halving borderline was reasonably poised to provide the sought 
binary decisions, it was incorporated into the changepoint detection logic as the triggering criterion for detecting 
posture changepoints. Consequently, a changepoint was flagged when the consecutive difference expression, 
, surpassed the threshold of 0.3.

Subsequent to the exhaustive identification of changepoints in the first step, the second step introduced an 
additional layer of decision-making for selective reporting of changepoints and their respective postural inactivity 
segments. For instance, in sleep medicine, provocative sleep postures could bring adverse health implications 
when sustained for long periods. Therefore, it would be more reasonable to offer the capability of selecting only 
the changepoints that were associated with sufficiently long periods of inactivity. Additionally, from a purely 
methodological perspective, transition motions in between sleep postures were found to repeatedly trigger mul-
tiple changepoints as the human participant made few posture adjustments before settling into the new posture. 
Motivated by the irrelevance of these transitionary posture adjustments to the main problems addressed by the 
KIDS framework, which were primarily oriented about sleep posture changes and sustained postural inactivity, 
the logic was extended to discard changepoints for which their preceding enhanced LMS estimate fell short of 
twenty time steps, a condition supported by histograms of the differences in the enhanced LMS estimate before 
and after all detected changepoints across assorted participant datasets. An example of such a histogram can be 
found online in Supplementary Fig. S6.

As mentioned in “Discussion” section, a potentially “weaker” changepoint event might occur in the rare case 
where the wrist joint orientation does not change significantly across two consecutive sleep postures, especially 
if the intermediate posture transition was brief. While this particular case only happened once, the changepoint 
was detected nevertheless. However, following this weak changepoint event, it was found that the LMS estimates 
started to increase linearly, but not from zero. Instead, they increased from the last LMS estimate before the 
changepoint. This rare pattern was caused mainly by the brief transition in posture, which, in return, activated an 
auto-corrective behaviour within the Bayesian inference method. This behaviour led the method to mistakenly 
perceive the embedding at the changepoint as an anomaly within a larger coherent segment of embeddings, i.e. 
a larger inactivity segment. While this auto-correction does not affect the temporal segmentation of the inactiv-
ity segment terminated at the weak changepoint event, it would lead to an overestimation of the duration of the 
subsequent inactivity segment. To prevent this overestimation, an upper limit was imposed on the duration of 
postural inactivity, equivalent to the elapsed time steps since the previous changepoint. This adjustment ensured 
that the duration of postural inactivity was not overestimated.

With this step, the strategic plan devised within the ultimate stage of the KIDS framework was concluded. 
Within the overarching Methods Section, a multitude of techniques was delineated which included design 
choices, rendering different variants of the proposed framework. A summary of all hyperparameters employed 
in the framework can be found in Supplementary Table S1. The ensuing section compares the performance of 
these variants and develops a good understanding of the added value of the design choices that were made.

Ablation analysis
The KIDS framework, which spanned three pivotal stages, comprised several methods. While the foundations 
of these methods were grounded in logical principles, it was nevertheless important to recognise certain design 
choices that emerged from two main sources of variation.

The first source of variation stemmed from a design choice within the second stage of the KIDS framework, 
specifically during the dimension reduction step. Therein, two distinct methods of dimension reduction were 
examined: UMAP and ADR. While ADR rendered better embedding topology in comparison to that of UMAP, 
the qualitative visual appraisal alone did not inform the implications this design choice would have for the 
performance of the framework.

The second source of variation arose from the framework’s third stage, wherein an enhancement step was 
introduced with the objective of enhancing the fidelity of the LMS estimates derived from the inferred Bayesian 
posterior, particularly during specific transitionary motions in between sleep postures. While this step facilitated 
the refinement of estimated durations of postural inactivity, further evidence was still required to validate its 
positive contribution to the overall performance of the framework.

In light of these methodological variations, an ablation analysis was conducted to develop a more profound 
comprehension of the contributions of these two constituent design choices, namely the transition from UMAP 
to ADR and the incorporation of the enhancement step, to the framework. This ablation analysis was structured 
to critically assess the KIDS framework both in the presence and absence of these design choices, hence cast-
ing light on their intrinsic effects on its performance. Four variants of the framework, labelled from I to IV, 
evolved from this analysis: KIDS with UMAP sans the enhancement step (I), KIDS with UMAP coupled with 



20

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18027  | https://doi.org/10.1038/s41598-023-44567-9

www.nature.com/scientificreports/

the enhancement step (II), KIDS with ADR excluding the enhancement step (III), and KIDS amalgamating ADR 
with the enhancement step (IV).

The performance metrics for all variants (I–IV), aggregated across the five human participants (P1–P5), 
are succinctly captured in Table 2. These metrics provided insights into the variants across the two interrelated 
problem domains: the sleep posture change detection (Problem Domain 1) and the temporal segmentation of 
postural inactivity (Problem Domain 2). An important finding was the superior performance of ADR-based 
variants, namely KIDS (III) and (IV), over their UMAP-based counterparts across both problem domains. 
Furthermore, it was confirmed that the synergetic use of ADR with the enhancement step indeed rendered the 
best-performing variant of the framework not only from a (qualitative) visualisation perspective but also in terms 
of the (quantitative) performance metrics. In contrast, the least effective variants were contingent on the problem 
domain, with KIDS (I) and (II) yielding the least performance metrics in the second and first problem domains, 
respectively. Besides these metrics, Supplementary Figs. S3–S6 provide visual insights into the performance of 
all four variants, demonstrated on the dataset of participant (P1).

For a more granulated perspective on the value contributed by each design choice, Table 3 elucidates the mean 
net change in performance metrics across five strategically devised ablation experiments (AE), each considering 
a unique pair of variants. AE 1 and AE 2 endeavoured to quantify the contribution of switching from UMAP to 
ADR in the dimension reduction stage, under scenarios with and without the enhancement step, respectively. 
Both experiments showcased that mean net change in the metrics was clearly in favour of ADR across both 
problem domains, irrespective of the enhancement step’s deployment. Moving on to AE 3 and AE 4, both experi-
ments were conceived to gauge the effect of the enhancement step on the variants based on UMAP and ADR 
respectively. It was found that the incorporation of the enhancement step was apparently more rewarding for 
ADR-based variants in comparison to their UMAP-based counterparts. Specifically, while the enhancement step 
augmented the performance across both domains for KIDS (IV), it nonetheless bolstered only the segmentation 
performance for KIDS (II). Lastly, AE 5 juxtaposed KIDS (IV) against KIDS (I) to discern the amalgamated ben-
efits of transitioning from UMAP to ADR and the concurrent inclusion of the enhancement step. The resultant 
analysis underscored the substantially high performance of KIDS (IV), evidenced by a mean net improvement 
of 0.08 in the F 1-score and 0.33 in the R coefficient, compared to KIDS (I).

Besides the four-variant comparison outlined above, an additional ablation study was conducted to evaluate 
the effect of bypassing the dimension reduction step entirely within the second stage of the KIDS framework. 
This ablation study was important to explore whether the value of dimension reduction extended beyond intui-
tive visualisation and efficient computational performance. In the absence of low-dimensional embeddings, 
the downsampled hand-to-forearm orientations were fed into the third stage of the framework in the form of 
quaternions. Consequently, the informative prior distribution was adapted to the characteristics of the quater-
nion space. The outcome of this study was a substantial decline in the performance metrics across both problem 
domains, yielding 0.34 and 0.20 for the F 1-score and correlation coefficient, respectively, averaged over the five 
participant datasets. Notably, further implications of omitting dimension reduction include a 25% increase in 
data storage requirements and a 3.37% reduction in computational efficiency.

Table 2.  The comparative performance metrics for the four variants of the KIDS framework across two 
problem domains. The metrics were averaged over five participants (P1–P5). The variants encompassed: 
KIDS with UMAP sans the enhancement step (I), KIDS with UMAP coupled with the enhancement step (II), 
KIDS with ADR excluding the enhancement step (III), and KIDS amalgamating ADR with the enhancement 
step (IV). The metrics unveiled insights into the efficacy of the variants in addressing sleep posture change 
detection (Problem Domain 1) and the temporal segmentation of postural inactivity (Problem Domain 2). 
Notably, the metrics demonstrate the superiority of the simultaneous use of ADR and the enhancement step, as 
evidenced by the bolded scores indicating the highest performance across each metric.

Performance metric KIDS (I) KIDS (II) KIDS (III) KIDS (IV)

Problem domain 1: sleep posture change detection

 F1-score 0.91 0.90 0.97 0.99

 Se 0.93 0.91 0.95 1.00

 PPV 0.89 0.89 0.98 0.98

Problem domain 2: temporal segmentation of postural inactivity

 R 0.63 0.78 0.81 0.96
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Data availability
The datasets generated and/or analysed during the current study are available in the Liverpool Data Catalogue 
 repository43, DOI:https:// doi. org/ 10. 17638/ datac at. liver pool. ac. uk.
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Table 3.  The net change in the performance metrics across five ablation experiments (AE), each of which 
contrasted a unique pair from the four variants of the KIDS framework. The net change in the metrics was 
averaged  over five participants (P1–P5). The variants encompassed: KIDS with UMAP sans the enhancement 
step (I), KIDS with UMAP coupled with the enhancement step (II), KIDS with ADR excluding the 
enhancement step (III), and KIDS amalgamating ADR with the enhancement step (IV). Each experiment 
served to discern the value attributed to the design choices that led to the variants. The performance metrics 
were categorised according to the problem domains: sleep posture change detection (Problem Domain 1) 
and temporal segmentation of postural inactivity (Problem Domain 2). The ablation analysis revealed three 
pivotal observations: (1) the consistently superior performance rendered by ADR-based variants regardless of 
the incorporation of the enhancement step (AE 1 and AE 2), (2) the pronounced benefit of the enhancement 
step particularly for ADR-based variants (AE 3 and AE 4), and (3) the amalgamated gains accrued from the 
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