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ABSTRACT

We call a semigroup S right noetherian if it satisfies the ascending chain condi-
tion on right ideals, andwe say that S satisfies ACCPR if it satisfies the ascending
chain condition on principal right ideals. We investigate the behavior of these
two conditions with respect to ideals and ideal extensions, with a particular
focus on minimal and 0-minimal one-sided ideals. In particular, we show that
the property of satisfying ACCPR is inherited by right and left ideals. On the
other hand, we exhibit an example of a right noetherian semigroup with a
minimal ideal that is not right noetherian.

ARTICLE HISTORY

Received 21 July 2022
Revised 22 December 2022
Communicated by Eric
Jespers

KEYWORDS

Ascending chain condition;
one-sided ideal; semigroup;
semigroup act

2020MATHEMATICS

SUBJECT CLASSIFICATION

20M10; 20M12

1. Introduction

A finiteness condition for a class of universal algebras is a property that is satisfied by at least all finite
members of that class. Ascending chain conditions are classic examples. A poset P satisfies the ascending
chain condition if every ascending chain

a1 ≤ a2 ≤ · · ·

eventually stabilizes. Ascending chain conditions on ideals of rings, introduced by Noether in the
landmark paper [19], have played a crucial role in the development of ring theory, appearing in
major results such as Hilbert’s basis theorem, Krull’s height theorem and the Noether-Lasker theorem.
Analagous conditions naturally arise in semigroup theory. A right ideal of a semigroup S is a subset
I ⊆ S such that IS ⊆ I. We call S right noetherian if its poset of right ideals (under containment) satisfies
the ascending chain condition, and we say that S satisfies ACCPR if its poset of principal right ideals
satisfies the ascending chain condition. Right noetherian semigroups have received a significant amount
of attention; see for instance [1, 6, 9, 18, 20]. Semigroups satisfying ACCPR have been considered in
[15, 16, 21].

A related semigroup finiteness condition arises from the notion of a right congruence, that is, an
equivalence relation ρ on a semigroup S such that (a, b) ∈ ρ implies (ac, bc) ∈ ρ for all a, b, c ∈ S.
We call a semigroup strongly right noetherian if its poset of right congruences satisfies the ascending
chain condition.1 The study of such semigroups was initiated by Hotzel in [8], and further developed
in [11, 12, 17]. As the name suggests, strongly right noetherian semigroups are right noetherian [17,
Lemma 2.7]. The converse, however, does not hold. Indeed, unlike the situation for rings, the lattice of
right ideals of a semigroup is not in general isomorphic to the lattice of right congruences. For example,
the lattice of right ideals of a group is trivial, whereas its lattice of right congruences is isomorphic to its

CONTACT Craig Miller craig.miller@york.ac.uk Department of Mathematics, University of York, York, YO10 5DD, UK.
1Strongly right noetherian semigroups are also known in the literature as ‘right noetherian’, and the term ‘weakly right
noetherian’has been used to denote semigroups that satisfy the ascending chain condition on right ideals.
This article has been corrected with minor changes. These changes do not impact the academic content of the article.
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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lattice of subgroups. Consequently, every group is trivially right noetherian, but a group is strongly right
noetherian if and only if it satisfies the ascending chain condition on subgroups.

For any finiteness condition, it is natural to investigate the behavior of the condition with respect
to substructures, quotients and extensions. In particular, for a semigroup finiteness condition P , the
following questions arise. For a semigroup S and an ideal I of S:

1. does I satisfy P if S satisfies P?
2. does the Rees quotient S/I satisfy P if S satisfies P?
3. does S satisfy P if both I and S/I satisfy P?

The purpose of this article is to study the finiteness conditions of satisfying ACCPR and of being right
noetherian, with (1)–(3) as our guiding questions.

The paper is organized as follows. In Section 2 we provide the necessary preliminary material. In
particular, we collect some known results regarding the properties of satisfying ACCPR and being right
noetherian, including some equivalent formulations of these conditions. The main results of the paper
are contained in Sections 3 and 4. In Section 3 we consider the property of satisfying ACCPR, while
Section 4 is concerned with the property of being right noetherian. These two sections follow the same
format: they split into two subsections, the first concerning ideals in general and the second focusing on
(0-)minimal ideals.

2. Preliminaries

2.1. Ideals and related concepts

Let S be a semigroup. We denote by S1 the monoid obtained from S by adjoining an identity if necessary
(if S is already a monoid, then S1 = S). Similarly, we denote by S0 the monoid obtained from S by
adjoining a zero if necessary.

Recall that a right ideal of S is a subset I ⊆ S such that IS ⊆ I, and the principal right ideals of S
are those of the form aS1, a ∈ S. Dually, we have the notion of (principal) left ideals. An ideal of S is a
set that is both a right ideal and left ideal of S, and the principal ideals of S are the sets S1aS1, a ∈ S.
Principal (one-sided) ideals determine the five Green’s relations on a semigroup. Green’s relationR on
S is given by

aR b ⇔ aS1 = bS1.

Green’s relations L and J are defined similarly, in terms of principal left ideals and principal ideals,
respectively. Green’s relationH is defined asH = R ∩ L, and finally we have D = R ◦ L (= L ◦ R =

L∨R). It is clear from the definitions that Green’s relations are equivalence relations on S. Moreover,R
is a right congruence on S and L is a left congruence on S.

It is easy to see that the following inclusions between Green’s relations hold:

H ⊆ L, H ⊆ R, L ⊆ D, R ⊆ D, D ⊆ J .

It can be easily shown that every right (resp. left, two-sided) ideal is a union of R-classes (resp. L-
classes, J -classes). A semigroup with no proper right (resp. left) ideals is called right (resp. left) simple.
A semigroup is simple if it has no proper ideals. Clearly any right/left simple semigroup is simple.

A right (resp. left, two-sided) ideal I of S is said to beminimal if there is no right (resp. left, two-sided)
ideal of S properly contained in I. It turns out that, considered as semigroups, minimal right (resp. left)
ideals are right (resp. left) simple [3, Theorem 2.4], and minimal ideals are simple [3, Theorem 1.1]. A
semigroup contains at most one minimal ideal but may possess multiple minimal right/left ideals. The
minimal ideal of a semigroup S is also known as the kernel, and we denote it byK(S). If S has a minimal
right (resp. left) ideal, thenK(S) exists and is equal to the union of all the minimal right (resp. left) ideals
[3, Theorem 2.1]. A completely simple semigroup is a simple semigroup that possesses both minimal
right ideals and minimal left ideals. A semigroup has both minimal right ideals and minimal left ideals
if and only if it has a completely simple kernel [3, Theorem 3.2].
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For semigroups with zero, the theory of minimal ideals becomes trivial, so we require the notion of
0-minimality. Suppose that S has a zero element 0. For convenience, we will usually just write the set
{0} as 0. We say that S is right (resp. left) 0-simple if S2 	= 0 and S contains no proper right (resp. left)
ideals except 0, and S is called 0-simple if S2 	= 0 and 0 is its only proper ideal. A right (resp. left, two-
sided) ideal I of S is said to be 0-minimal if 0 is the only proper right (resp. left, two-sided) ideal of S
contained in I. A 0-minimal ideal I of S is either null or 0-simple [4, Theorem 2.29] (a semigroup T is
null if T2 = 0). If I is a 0-minimal ideal of S containing a 0-minimal right ideal of S, then I is the union
of all the 0-minimal right ideals of S contained in I [4, Theorem 2.33]. A completely 0-simple semigroup
is a 0-simple semigroup that possesses both 0-minimal right ideals and 0-minimal left ideals.

For any 0-minimal right ideal R of S, since R2 is a right ideal of S contained in R, it follows by 0-
minimality that either R is null or R2 = R. Similarly, for any a ∈ R we have either aR = 0 or aR = R.
If R is a 0-minimal right ideal such that R2 = R, we say that R is globally idempotent. In contrast to the
situation for 0-minimal two-sided ideals, globally idempotent 0-minimal right ideals need not be right
0-simple; see the remark immediately after Lemma 2.31 in [4].

Let R be a globally idempotent 0-minimal right ideal of S. For any s ∈ S, the set sR is either 0 or a
0-minimal right ideal of S [4, Lemma 2.32]. Thus, the set SR, the (two-sided) ideal of S generated by R,
is a union of 0-minimal right ideals of S. Let AR denote the union of {0} and all the null 0-minimal right
ideals of S contained in SR, and let BR denote the union of all the globally idempotent 0-minimal right
ideals of S contained in SR. We call AR the null part of SR, and BR the globally idempotent part of SR. We
note that AR may equal 0. We provide a structure theorem describing SR in terms of AR and BR; in order
to do so, we first recall a couple of definitions.

Let S be a semigroup with 0 that is the union of subsemigroups Si (i ∈ I). If Si ∩ Sj = 0 for all i, j ∈ I,
i 	= j, we say that S is the 0-disjoint union of Si (i ∈ I). If, additionally, SiSj = 0 for all i, j ∈ I, i 	= j, we
say that S is the 0-direct union of Si (i ∈ I).

Theorem 2.1. [5, Theorem 6.19] Let S be a semigroup with a globally idempotent 0-minimal right ideal
R. Then:

1. SR is a 0-disjoint union of AR and BR;
2. AR is a null semigroup and an ideal of S;
3. BR is a 0-simple semigroup and a right ideal of S;
4. a subset of BR is a (0-minimal) right ideal of BR if and only if it is a (0-minimal) right ideal of S.

Let S be a semigroup with 0. The right socle of S is the union of 0 and all the 0-minimal right ideals
of S. We denote the right socle by �r(S), or just �r when there is no ambiguity. It turns out that �r is a
(two-sided) ideal of S [5, Theorem 6.22].

Let Ar = Ar(S) denote the union of 0 and all the null 0-minimal right ideals of S, and let Br = Br(S)
denote the union of 0 and all the globally idempotent 0-minimal right ideals of S. We call Ar the null
part of �r , and Br the globally idempotent part of �r . Of course, if S has no 0-minimal right ideals then
�r = Ar = Br = 0.

Theorem 2.2. [5, Theorem 6.23] Let S be a semigroup with 0. Then:

1. �r is a 0-disjoint union of Ar and Br ;
2. Ar is a null semigroup and an ideal of S;
3. Br is a right ideal of S;
4. either Br = 0 or there exists a set {Ri : i ∈ I} of globally idempotent 0-minimal right ideals of S such

that Br is the 0-direct union of the 0-simple semigroups BRi (i ∈ I).

The above definitions and results regarding 0-minimal right ideals have obvious duals for 0-minimal
left ideals, and we use analogous notation (AL, BL, �l(S), etc.).
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Given an ideal I of S, theRees quotient of S by I, denoted by S/I, is the set (S\I)∪{0}withmultiplication
given by

a · b =

{

ab if a, b, ab ∈ S\I,

0 otherwise.

Let J be a J -class of S. The principal factor of J is defined as follows. If J = K(S) then its principal factor
is itself. Otherwise, the principal factor of J is the Rees quotient of the principal ideal S1xS1, where x is
any element of J, by the ideal (S1xS1)\J. The principal factors of S are the principal factors of itsJ -classes.
Asmentioned above, ifK(S) exists then it is simple; all other principal factors are either 0-simple or null.

2.2. Acts

Semigroup acts play the analagous role in semigroup theory as that of modules in the theory of rings.
We provide some basic definitions about acts; one should consult [10] for more information.

A (right) S-act is a non-empty set A together with a map

A × S → A, (a, s) �→ as

such that a(st) = (as)t for all a ∈ A and s, t ∈ S. A subset B of an S-act A is a subact of A if bs ∈ B for all
b ∈ B and s ∈ S. Note that S itself is an S-act via right multiplication, and its subacts are precisely its right
ideals. For clarity, a right ideal I of S will be written as IS when we are viewing it as a subact (including
the case I = S).

Given an S-act A and a subact B of A, the Rees quotient of A by B, denoted by A/B, is the S-act with
universe (A\B) ∪ {0} and action given by: for all a ∈ A/B and s ∈ S,

a · s =

{

as if a, as ∈ A\B,

0 otherwise.

A subset X of an S-act A is a generating set for A if A = XS1, and A is said to be finitely generated (resp.
principal) if it has a finite (resp. one-element) generating set. Thus, the principal right ideals of S are
precisely the principal subacts of SS.

Note that when we speak of a right ideal I of a semigroup S being generated by a set X, we mean that
X generates I as an S-act, i.e. I = XS1.

We call an S-actA is noetherian if the poset of subacts ofA (under containment) satisfies the ascending
chain condition, and we say that A satisfies ACCP if the poset of principal subacts satisfies the ascending
chain condition. In particular, the S-act SS is noetherian (resp. satisfies ACCP) if and only if S is right
noetherian (resp. satisfies ACCPR).

Given an S-act A, we define an equivalence relationRS on A by

aRS b ⇔ aS1 = bS1.

Notice that RS on the S-act SS coincides with Green’s relation R on S. We denote the RS-class of an
element a ∈ A by Ra. There is a natural partial order ≤ on the set ofRS-classes of A given by

Ra ≤ Rb ⇔ aS1 ⊆ bS1.

It is easy to see that the poset of RS-classes is isomorphic to the poset of principal subacts of A via the
isomorphism Ra → aS1.

We call an S-act A simple if it contains no proper subact. If an S-act A has a zero 0 (that is, 0s = 0 for
all s ∈ S), we say that A is 0-simple if {0} is its only proper subact. Notice that the simple subacts of SS
are precisely the minimal right ideals of S, and, if S has a zero 0, the 0-simple subacts of SS are precisely
the 0-minimal right ideals of S.
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2.3. Foundational results

In this subsection we establish some foundational results, many of which will be required later in the
paper. Some of these results are folklore but we provide proofs for completeness. We begin by presenting
some equivalent characterizations of the property of satisfying ACCP.

Proposition 2.3. Let S be a semigroup and let A be an S-act. Then the following are equivalent:

1. A satisfies ACCP;
2. the poset ofRS-classes of A satisfies the ascending chain condition;
3. every non-empty set of principal subacts of A contains a maximal element.

Proof. (1)⇔(2) follows from the fact, established above, that the poset ofRS-classes of A is isomorphic
to the poset of principal subacts of A.

(1)⇒(3). Suppose for a contradiction that there exists a non-empty set F of principal subacts of A
with no maximal element. Pick any a1S

1 ∈ F . Since a1S
1 is not maximal, there exists a2S

1 ∈ F such
that a1S

1 � a2S
1. Continuing in this way, we obtain an infinite ascending chain

a1S
1 � a2S

1 � · · ·

of principal subacts of A, contradicting the fact that A satisfies ACCP.
(3)⇒(1). Consider an ascending chain

a1S
1 ⊆ a2S

1 ⊆ · · ·

where ai ∈ A. By assumption, the set {aiS
1 : i ∈ N} contains a maximal element, say amS

1. Then we
must have that anS

1 = amS
1 for all n ≥ m. Thus A satisfies ACCP.

Corollary 2.4. The following are equivalent for a semigroup S:

1. S satisfies ACCPR;
2. every non-empty set of principal right ideals of S contains a maximal element;
3. the poset ofR-classes of S satisfies the ascending chain condition.

We now provide several equivalent formulations of the property of being noetherian for acts. For this
result, recall that an antichain of a poset is a subset consisting of pairwise incomparable elements.

Theorem 2.5. Let S be a semigroup and let A be an S-act. Then the following are equivalent:

1. A is noetherian;
2. every subact of A is finitely generated;
3. every non-empty set of subacts of A contains a maximal element;
4. A satisfies ACCP and contains no infinite antichain of principal subacts;
5. the poset ofRS-classes of A satisfies the ascending chain condition and contains no infinite antichain.

Proof. The proof that (1), (2), and (3) are equivalent is essentially the same as that of the analogue for
modules over rings; see [13, Section 10.1]. (4) ⇔ (5) follows from the fact that the poset ofRS-classes
of A is isomorphic to the poset of principal subacts of A.

(1) ⇒ (4). ClearlyA satisfies ACCP. Suppose for a contradiction that there exists an infinite antichain
{aiS

1 : i ∈ N} of principal subacts of A. For each n ∈ N, let An be the subact {a1, . . . , an}S
1. Clearly

An ⊆ An+1. We cannot have An = An+1, for otherwise we would have an+1 ∈ aiS
1 for some i ≤ n,

and hence an+1S
1 ⊆ aiS

1, contradicting the fact that aiS
1 and anS

1 are incomparable. Thus, we have an
infinite strictly ascending chain
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A1 � A2 � · · ·

of right ideals of S, contradicting the assumption that A is noetherian.
(4) ⇒ (1). Suppose that A is not noetherian but does satisfy ACCP. We need to construct an infinite

antichain of principal subacts of A. Since A is not noetherian, there exists an infinite strictly ascending
chain

A1 � A2 � · · ·

of subacts of A. Choose elements a1 ∈ A1 and ak ∈ Ak \Ak−1 for k ≥ 2. Then certainly akS
1 is not

contained in any ajS
1, j < k, since ajS

1 ⊆ Aj and ak ∈ Ak\Aj.
Consider the infinite set P1 = {aiS

1 : i ∈ N} of principal subacts of A. Since A satisfies ACCP, P1
contains a maximal element, say ak1S

1, by Proposition 2.3. Now consider the infinite set P2 = {aiS
1 :

i ≥ k1 + 1}. Again, P2 contains a maximal element, say ak2S
1. Then ak2S

1 is not contained in ak1S
1

since k1 < k2, and ak1S
1 is not contained in ak2S

1 since ak1 is maximal in P1. Similarly, the infinite set
P3 = {aiS

1 : i ≥ k2 + 1} contains a maximal element, say ak3S
1, and ak1S

1, ak2S
1 and ak3S

1 are pairwise
incomparable. Continuing this process ad infinitum, we obtain an infinite antichain {akiS

1 : i ∈ N} of
principal subacts of A, as required.

From Theorem 2.5 we deduce a number of corollaries.

Corollary 2.6. [18, Proposition 3.1 and Theorem 3.2] The following are equivalent for a semigroup S:

1. S is right noetherian;
2. every right ideal of S is finitely generated;
3. every non-empty set of right ideals of S contains a maximal element;
4. S satisfies ACCPR and contains no infinite antichain of principal right ideals;
5. the poset ofR-classes of S satisfies the ascending chain condition and contains no infinite antichain.

Corollary 2.7. Let S be a semigroup. Any S-act A with finitely manyRS-classes is noetherian.

Corollary 2.8. Any semigroup with finitely manyR-classes is right noetherian.

Corollary 2.9. Let S be a semigroup, and let A be an S-act (with 0) that is the union of (0-)simple subacts
Ai, i ∈ I. Then A satisfies ACCP. Furthermore, A is noetherian if and only if I is finite.

Proof. It is clear that A satisfies ACCPR. The (0-)simple subacts of A are clearly principal and form an
antichain (under containment), so the second statement follows from Corollary 2.6.

Corollary 2.10. Let S be a semigroup (with 0) that is the union of (0-)minimal right ideals Ri, i ∈ I, of S.
Then S satisfies ACCPR. Furthermore, S is right noetherian if and only if I is finite.

The next result states, for both the properties of being noetherian and satisfying ACCP, an act has the
property if and only if both a subact and the associated Rees quotient do.

Proposition 2.11. Let S be a semigroup, let A be an S-act, and let B be a subact of A. Then A is noetherian
(resp. satisfies ACCP) if and only if both B and A/B are noetherian (resp. satisfy ACCP).

Proof. Suppose that A is noetherian (resp. satisfies ACCP). Since any ascending chain of (principal)
subacts of B is also an ascending chain of (principal) subacts of A, it follows that B is noetherian (resp.
satisfies ACCP). Now consider an ascending chain

C1 ⊆ C2 ⊆ · · ·
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of (principal) subacts of A/B. Let θ : A → A/B be the quotient map, and set Dn = Cnθ
−1 for all n ∈ N.

Then we have an ascending chain

D1 ⊆ D2 ⊆ · · ·

of (principal) subacts of A. Since A is noetherian, there existsm ∈ N such that Dn = Dm for all n ≥ m.
Then Cn = Dnθ = Dmθ = Cm for all n ≥ m. Hence, A/B is noetherian (resp. satisfies ACCP).

Conversely, suppose that both B andA/B are noetherian (resp. satisfy ACCP). Consider an ascending
chain

A1 ⊆ A2 ⊆ · · ·

of (principal) subacts of A. If An ∩ B = ∅ for all n ∈ N, then each An is a subact of A/B, and hence the
above chain must eventually stabilize sinceA/B is noetherian. Assume then that there exists i0 ∈ N such
that Ai0 ∩ B 	= ∅. Setting Bn = An ∩ B and Cn = (An ∪ B)/B for all n ≥ i0, we obtain ascending chains

Bi0 ⊆ Bi0+1 ⊆ · · · and Ci0 ⊆ Ci0+1 ⊆ · · ·

of B and A/B, respectively. Since B and A/B are noetherian, these chains eventually stabilize, and thus
there existsm ≥ i0 such that Bn = Bm and Cn = Cm for all n ≥ m. Then we have that

An = (An\Bn) ∪ Bn = (Cn\{0}) ∪ Bn = (Cm\{0}) ∪ Bm = (Am\Bm) ∪ Bm = Bm

for all n ≥ m. Hence, A is noetherian.

We now focus on the semigroup conditions of being right noetherian and of satisfying ACCPR. Every
free semigroup satisfies ACCPR, but a free semigroup is right noetherian if and only if it is monogenic:

Proposition 2.12. [18, Proposition 3.5] Let X be a non-empty set. The free semigroup X∗ on X satisfies
ACCPR, but X∗ is right noetherian if and only if |X| = 1.

Since every free semigroup satisfies ACCPR, this property is certainly not closed under quotients. On
the other hand, the property of being right noetherian is closed under quotients:

Lemma 2.13. [18, Lemma 4.1] Let S be a semigroup and let ρ be a congruence on S. If S is right noetherian,
then so is S/ρ.

The property of being right noetherian is not in general inherited by ideals; see [18, Remark 6.10].
Going in the other direction, if both an ideal and the associated Rees quotient are right noetherian, then
so is the ideal extension:

Proposition 2.14. [18, Corollary 4.5] Let S be a semigroup and let I be an ideal of S. If both I and S/I are
right noetherian, then so is S.

Recall that an element a of a semigroup S is regular if there exists b ∈ S such that a = aba, and S
is regular if all its elements are regular. The property of being right noetherian is inherited by regular
subsemigroups:

Proposition 2.15. [18, Corollary 5.7] Let S be a semigroup with a regular subsemigroup T. If S is right
noetherian then so is T.

The corresponding statement for the property of satisfying ACCPR also holds:

Proposition 2.16. Let S be a semigroup with a regular subsemigroup T. If S satisfies ACCPR then so does T.
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Proof. Consider an ascending chain

a1T1 ⊆ a2T
1 ⊆ · · ·

of principal right ideals of T. Then clearly we have an ascending chain

a1S1 ⊆ a2S
1 ⊆ · · ·

of principal right ideals of S. Since S is right noetherian, there exists m ∈ N such that anS
1 = amS

1 for
all n ≥ m. Therefore, for any n ≥ m there exists sn ∈ S such that an = amsn. Since T is regular, there
exists x ∈ T such that am = amxam. Then we have that

an = amxamsn = am(xan) ∈ amT,

and hence anT
1 = amT

1. Thus T satisfies ACCPR.

3. Semigroups satisfying ACCPR

In this sectionwe consider the relationship between semigroups and their (one-sided) ideals with respect
to the property of satisfying ACCPR. We first consider ideals in general, and we then focus on minimal
and 0-minimal ideals.

3.1. General ideals

It turns out that, unlike the property of being right noetherian, the property of satisfyingACCPR is closed
under ideals. In fact, we show that this property is closed under the more general class of (m, n)-ideals,
introduced by Lajos in [14].

Let m, n ∈ N. An (m, n)-ideal of a semigroup S is a subsemigroup A of S such that AmSAn ⊆ A.
Notice that any one-sided ideal is an (m, n)-ideal. (1,1)-ideals are also known as bi-ideals, which were
introduced by Good and Hughes in [7].

Theorem 3.1. Let S be a semigroup, and let A be an (m, n)-ideal of S for some m, n ∈ N. If S satisfies
ACCPR, then so does A.

Proof. Assume for a contradiction that there exists an infinite strictly ascending chain

a1A
1 � a2A

1 � · · ·

of principal right ideals of A. Then clearly we have an ascending chain

a1S
1 ⊆ a2S

1 ⊆ · · ·

of principal right ideals of S. Since S satisfies ACCPR, there exists N ∈ N such that aNS
1 = apS

1 for all
p ≥ N. Now, we have aN+m+j ∈ aN+m+j+1A for each j ∈ {1, . . . , n}, aN+m+n+1 ∈ aNS, and aN+i ∈

aN+i+1A for each i ∈ {0, . . . ,m − 1}. Thus, we have

aN+m+1 ∈ aN+m+2A ⊆ aN+m+3A
2 ⊆ · · · ⊆ aN+m+n+1A

n ⊆ aNSA
n

⊆ aN+1ASA
n ⊆ aN+2A

2SAn ⊆ · · · ⊆ aN+mA
mSAn ⊆ aN+mA,

where the final containment follows from the fact that A is an (m, n)-ideal of S. But then aN+mA
1 =

aN+m+1A
1, contradicting the assumption.

Corollary 3.2. Let S be a semigroup and let I be a right/left/two-sided ideal of S. If S satisfies ACCPR, then
so does I.

It was noted in Section 2 that the property of satisfying ACCPR is not closed under quotients.
However, we shall see that this property is closed under Rees quotients. First note that, given an ideal
I of S, we have both the semigroup Rees quotient S/I and the S-act Rees quotient SS/IS (with the same
universe).



COMMUNICATIONS IN ALGEBRA® 3003

Lemma 3.3. Let S be a semigroup and let I be an ideal of S. Then S/I satisfies ACCPR if and only if SS/IS
satisfies ACCP.

Proof. Since I is an ideal of S, for any a, b ∈ S\I we have that aS1 ⊆ bS1 if and only if a(S/I)1 ⊆ b(S/I)1.
From this fact the result readily follows.

Corollary 3.4. Let S be a semigroup and let I be an ideal of S. If S satisfies ACCPR, then both I and S/I
satisfy ACCPR.

Proof. We have that I satisfies ACCPR by Corollary 3.2. Since SS satisfies ACCP, the quotient SS/IS
satisfies ACCP by Proposition 2.11, and hence S/I satisfies ACCPR by Lemma 3.3.

Corollary 3.5. Let S be a semigroup and let I be an ideal of S. Then S satisfies ACCPR if and only if S/I
satisfies ACCPR and (the S-act) IS satisfies ACCP.

Proof. If S satisfies ACCPR, then S/I satisfies ACCPR by Corollary 3.4. Since SS satisfies ACCP,
the subact IS satisfies ACCP by Proposition 2.11. The converse follows from Proposition 2.11 and
Lemma 3.3.

Recall that a principal factor of a semigroup is either theminimal ideal (if it exists) or theRees quotient
of a certain ideal by another ideal. Thus, Corollary 3.4 yields:

Corollary 3.6. If a semigroup S satisfies ACCPR, then so do all its principal factors.

We shall show that the converse of Corollary 3.4 does not hold. To this end, we introduce the following
construction.

Construction 3.7. Let S be a semigroup and let A be an S-act. Let {xa : a ∈ A} be a set in one-to-one
correspondence withA and disjoint from S, and let 0 be an element disjoint from S∪{xa : a ∈ A}. Define
a multiplication on U = S ∪ {xa : a ∈ A} ∪ {0}, extending that on S, by

xas = xas and sxa = xaxb = u0 = 0u = 0

for all s ∈ S, a, b ∈ A and u ∈ U. With this multiplication,U is a semigroup, and we denote it by U(S,A).
Notice that {xa : a ∈ A} ∪ {0} is a null semigroup and an ideal of S.

Proposition 3.8. Let S be a semigroup, let A be an S-act, and let U = U(S,A). Then U satisfies ACCPR if
and only if S satisfies ACCPR and A satisfies ACCP.

Proof. Let I = {xa : a ∈ A} ∪ {0}. By Corollary 3.5, we have that U satisfies ACCPR if and only if
U/I satisfies ACCPR and IU satisfies ACCP. Clearly U/I ∼= S0 satisfies ACCPR if and only if S satisfies
ACCPR. It is easy to show that, for any a, b ∈ A, we have 0U1 = 0 � xaU

1, and xaU
1 ⊆ xbU

1 if and
only if aS1 ∈ bS1. Thus, the poset of principal subacts of IU has the form P ∪ {0}, where P is isomorphic
to the poset of principal subacts of A. It follows that IU satisfies ACCP if and only if A satisfies ACCP.
This completes the proof.

We now show that the converse of Corollary 3.4 does not hold.
Let S be a semigroup that satisfies ACCPR with an S-act A that does not satisfy ACCP. (For example,

we can take A to be any semigroup that does not satisfy ACCPR and S to be a free semigroup with a
surjective homomorphism θ : S → A. We turn A into an S-act by defining a · s = a(sθ) for all a ∈ A
and s ∈ S. We have that S satisfies ACCPR by Proposition 2.12, and it is straightforward to show that A
does not satisfy ACCP.) The semigroup U = U(S,A) does not satisfy ACCPR by Proposition 3.8. On
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the other hand, the ideal I = {xa : a ∈ A} ∪ {0} certainly satisfies ACCPR (indeed, any null semigroup
satisfies ACCPR by Corollary 2.10), and the Rees quotient U/I ∼= S0 satisfies ACCPR since S satisfies
ACCPR.

We now consider conditions on an ideal I such that converse of Corollary 3.4 does hold.
Given a semigroup S, we say that an element a ∈ S has a local right identity (in S) if there exists s ∈ S

such that a = as; i.e. a ∈ aS. If S is a monoid or a regular semigroup, then clearly every element has a
local right identity.

Proposition 3.9. Let S be a semigroup, let I be an ideal of S, and suppose that every element of I has a local
right identity in I. Then S satisfies ACCPR if and only if both I and S/I satisfy ACCPR.

Proof. We show that the S-act IS satisfies ACCP. The result then follows fromCorollary 3.5. So, consider
an ascending chain

a1S
1 ⊆ a2S

1 ⊆ · · ·

of principal subacts of IS. Then for each n ∈ N, we have that

an = an+1S
1 ⊆ an+1IS

1 ⊆ an+1I,

using the fact that an+1 has a local right identity in I. Therefore, we have an ascending chain

a1I
1 ⊆ a2I

1 ⊆ · · ·

of principal right ideals of I. Since I satisfies ACCPR, there exists m ∈ N such that anI
1 = amI

1 for all
n ≥ m. Thus anS

1 = amS
1 for all n ≥ m.

Proposition 3.10. Let S be a semigroup, let I be an ideal of S, and suppose that there is no infinite antichain
of principal right ideals of I. Then the following are equivalent:

1. S satisfies ACCPR;
2. both I and S/I satisfy ACCPR;
3. I is right noetherian and S/I satisfies ACCPR.

Proof. (1)⇒(2) is Corollary 3.4.
(2)⇒(3). Since I satisfies ACCPR and has no infinite antichain of principal right ideals, it is right

noetherian by Corollary 2.6.
(3)⇒(1). Assume for a contradiction that S does not satisfy ACCPR. Then there exists an infinite

strictly ascending chain

a1S
1 � a2S

1 � · · ·

of principal right ideals of S. We cannot have ai ∈ S\I for any i ∈ N, for then we would have an infinite
ascending chain

ai(S/I)
1 ⊆ ai+1(S/I)

1 ⊆ · · ·

of principal right ideals of S/I. Thus ai ∈ I for all i ∈ N.
Consider the set {aiI

1 : i ∈ N} of principal right ideals of I. By assumption, this set does not contain
an infinite antichain. Also, we cannot have aiI

1 ⊆ ajI
1 for any i > j, for then we would have aiS

1 = ajS
1.

Thus, there exist i1, j1 ∈ N with i1 < j1 such that ai1I
1 � aj1I

1. Hence ai1 ∈ aj1I.
Now consider the set {aiI

1 : i ≥ j1}. By a similar argument as above, there exist i2, j2 ∈ N with
j1 ≤ i2 < j2 such that ai2I

1 � aj2I
1. Now, we have

ai1 ∈ aj1I ⊆ (ai2S
1)I = ai2(S

1I) ⊆ ai2I,
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and hence ai1I
1 � ai2I

1. Continuing this process ad infinitum, we obtain an infinite strictly ascending
chain

ai1I
1 � ai2I

1 � ai3I
1 � · · ·

of principal right ideals of I, contradicting the fact that I is right noetherian. Hence, S satisfies ACCPR.

3.2. Minimal and 0-minimal ideals

In the remainder of this section we focus on minimal and 0-minimal (one-sided) ideals. Recall that the
minimal ideal of a semigroup S, if it exists, is denoted byK(S).

Proposition 3.11. Let S be a semigroup with at least one minimal right ideal, and let K = K(S). Then S
satisfies ACCPR if and only if S/K satisfies ACCPR.

Proof. ClearlyK, being the union of all the minimal right ideals of S, satisfies ACCPR by Corollary 2.10.
Consider a ∈ K. Then a ∈ R for someminimal right idealR of S. Clearly aK is a right ideal of S contained
in R, so aK = R by the minimality of R, and hence a ∈ aK. Thus every element of K has a local right
identity. The result now follows from Proposition 3.9.

We now consider semigroups satisfying ACCPR with minimal left ideals.

Theorem 3.12. Let S be a semigroup that satisfies ACCPR. Then S has a minimal left ideal if and only if S
has a completely simple kernel.

Proof. If S has a completely simple kernel, then, as established in Section 2, S has minimal left ideals.
Now suppose that S has aminimal left ideal. ThenK = K(S) is the union of all theminimal left ideals

of S. We shall prove thatK has an idempotent, and thenK is completely simple by [5, Theorem 8.14].
Let L be a minimal left ideal of S, and consider the set {aS1 : a ∈ L} of principal right ideals of S. This

set contains a maximal element, say xS1. Since Lx is left ideal of S contained in L, we have that L = Lx
by the minimality of L. Thus x = yx for some y ∈ L, and hence xS1 ⊆ yS1. Since xS1 is maximal in the
set {aS1 : a ∈ L}, we conclude that xS1 = yS1. Then y = xs for some s ∈ S1, and hence

y2 = y(xs) = (yx)s = xs = y.

Thus, L ⊆ K has an idempotent, as required.

Corollary 3.13. Let S be a semigroup. Then S satisfies ACCPR and has a minimal left ideal if and only if
S has a completely simple minimal idealK and S/K satisfies ACCPR.

Proof. The forward implication follows from Theorem 3.12 and Corollary 3.5. Conversely, since S has
a completely simple minimal ideal, it certainly has a minimal left ideal, and S satisfies ACCPR by
Proposition 3.9, since every element ofK has a local right identity.

The following result is an analogue of Theorem 3.12 for 0-minimal ideals.

Theorem 3.14. Let S = S0 be a semigroup that satisfies ACCPR and has a 0-minimal ideal I. Then I
contains a globally idempotent 0-minimal left ideal of S if and only if I is completely 0-simple.

Proof. (⇒) Suppose that I contains a globally idempotent 0-minimal left ideal L of S. Since L2 = L,
therefore I2 	= 0 and hence I is 0-simple. We shall prove that I contains an idempotent, and then it is
completely 0-simple by [5, Theorem 8.22].
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Recall that for any a ∈ L, either La = L or La = 0. Consider the set

P = {aS1 : a ∈ L, La = L}

of principal right ideals of S. By the 0-minimality of L, we have L = S1a for each a ∈ L. Since L = L2,
there exist b, c ∈ L such that bc ∈ L, and hence L = S1(bc) = (S1b)c = Lc. Thus P is non-empty. Since
S satisfies ACCPR, P contains a maximal element, say xS1. Then x ∈ L and L = Lx. Thus x = yx for
some y ∈ L, and hence xS1 ⊆ yS1. Since (Ly)x = L(yx) = Lx = L, we cannot have Ly 	= 0, so Ly = L
and hence yS1 ∈ P. Since xS1 is maximal in P, we conclude that xS1 = yS1. Then, as in the proof of
Theorem 3.12, we have y2 = y, so I contains an idempotent, as required.

(⇐) If I is completely 0-simple, then it has a globally idempotent 0-minimal ideal L. We have that

SL = SL2 = (SL)L ⊆ IL ⊆ L,

and SL 	= 0 since L2 = L, so SL = L by the 0-minimality of L. Thus, L is a left ideal of S. Clearly any
left ideal of S contained in L also a left ideal of I, so it follows from the 0-minimality of L in I that L is
0-minimal in S.

Corollary 3.15. Let S be a 0-simple semigroup. Then S satisfies ACCPR and has a 0-minimal left ideal if
and only if S is completely 0-simple.

Proof. Suppose that S satisfies ACCPR and has a 0-minimal left ideal L. Since S is 0-simple, we have that
L2 	= 0 by [4, Lemma 2.34], and hence L must be globally idempotent. It follows from Theorem 3.14
that S is completely 0-simple.

The converse clearly holds.

Corollary 3.16. Let S = S0 be a semigroup with a globally idempotent 0-minimal left ideal L. If S satisfies
ACCPR, then the globally idempotent part BL of LS is completely 0-simple.

Proof. By the left-right dual of Theorem 2.1, BL is a left ideal of S. Therefore, since S satisfies ACCPR,
BL satisfies ACCPR by Corollary 3.2. Also by the left-right dual of Theorem 2.1, BL is 0-simple and
has globally idempotent 0-minimal left ideals (of itself). Hence, by Corollary 3.15, BL is completely 0-
simple.

Recall that the left socle �l = �l(S) of a semigroup S with 0 is the 0-disjoint union of Al and Bl,
which are the null part and globally idempotent part of �l, respectively. Note that since Al is an ideal of
S, we may view it as a subact of SS.

Theorem 3.17. Let S = S0 be a semigroup, and let �l = �l(S). Then the following are equivalent:

1. S satisfies ACCPR;
2. Bl is either 0 or the 0-direct union of completely 0-simple semigroups Bi (i ∈ I), the S-act Al

S satisfies

ACCP, and S/�l satisfies ACCPR.

Proof. (1)⇒(2). Suppose that Bl 	= 0. Then, by the left-right dual of Theorem 2.2, there exists a set
{Li : i ∈ I} of globally idempotent 0-minimal left ideals of S such that Bl is the 0-direct union of the
0-simple semigroups Bi = BLi (i ∈ I). Each Bi is completely 0-simple by Corollary 3.16. The subact Al

S

of SS satisfies ACCP by Proposition 2.11, and S/�l satisfies ACCPR by Corollary 3.4.
(2)⇒(1). Let T denote the Rees quotient S/Al. Since Al

S satisfies ACCP, by Corollary 3.5 it suffices

to prove that T satisfies ACCPR. Notice that Bl is (isomorphic to) an ideal of T. Since Bl is either 0 or
the 0-direct union of completely 0-simple semigroups, it satisfies ACCPR by Corollary 2.10, and every
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element of Bl has a local right identity. Now, T/Bl ∼= S/�l (by the Third Isomorphism Theorem), so
T/Bl satisfies ACCPR by assumption. Hence, by Proposition 3.9, T satisfies ACCPR, as required.

If S = S0 has no null 0-minimal ideals then �l(S) = Bl, so by Theorem 3.17 we have:

Corollary 3.18. Let S = S0 be a semigroup without null 0-minimal ideals, and let �l = �l(S). Then the
following are equivalent:

1. S satisfies ACCPR;
2. �l is either 0 or the 0-direct union of completely 0-simple semigroups, and S/�l satisfies ACCPR.

We shall find some necessary and sufficient conditions for a semigroup S = �l(S) to satisfy ACCPR,
but first we provide the following lemma.

Lemma 3.19. Let S = S0 be a semigroup such that S = �l = �l(S), and let �r = �r(S). Then the
following statements hold.

1. If Al 	= 0, then {a, 0} is a 0-minimal right ideal of S for each a ∈ Al\{0}.
2. Ar = Al, Br ⊆ Bl, and Br is an ideal of S.
3. �r is the 0-direct union of Ar and Br .
4. S/�r ∼= Bl/Br .

Proof. By the left-right dual of Theorem 2.2, Bl is either 0 or the 0-direct union of 0-simple semigroups
Bi (i ∈ I). Consider x ∈ Ar ∩ Bl. Since either x = 0 or x belongs to a 0-simple semigroup, we have
x ∈ J2x , where Jx denotes theJ -class of x. We have Jx ⊆ Ar sinceAr is an ideal, and hence x ∈ (Ar)2 = 0,
so x = 0. Thus Ar ∩ Bl = 0, and hence Ar ⊆ Al. Since Al is an ideal of S and Bl is a left ideal of S, it
follows that AlBl = 0. Since S = Al ∪ Bl and (Al)2 = 0, we conclude that AlS = 0. Therefore, if Al 	= 0
then {a, 0} is a 0-minimal right ideal for each a ∈ Al \{0}. Thus, Al ⊆ Ar , and hence Ar = Al. Then
0 = Ar ∩ Br = Al ∩ Br , so Br ⊆ Bl.

If Br = 0, then it is clear that Br is an ideal of S and that statements (3) and (4) hold, so wemay assume
that Br 	= 0. Let

J =
{

j ∈ I : Bj ∩ Br 	= 0
}

.

Consider b ∈ Bj ∩ Br , b 	= 0. We have that Bj ⊆ SbS since Bj is 0-simple, and hence Bj ⊆ �r as �r is an
ideal. We must have that Bj ⊆ Br , for otherwise we would have b ∈ Ar (using the fact Bj is 0-simple and
Ar is an ideal). It follows that Br is the 0-direct union of Bj, j ∈ J.

Now, Br is a right ideal of S by Theorem 2.2, so to prove that it is an ideal, it suffices to show that it
is a left ideal. So, let s ∈ S and b ∈ Br . If s ∈ Al, then sb ∈ AlS = 0. Suppose that s ∈ Bl. We have that
s ∈ Bi and b ∈ Bj for some i ∈ I, j ∈ J. If i = j, then sb ∈ Bj ⊆ Br . If i 	= j, then sb ∈ BiBj = 0. Thus Br

is an ideal of S.
Since Ar and Br are both ideals of S, and Ar ∩ Br = 0, it follows that ArBr = BrAr = 0. Thus �r is

the 0-direct union of Ar and Br .
Since Br ⊆ Bl and Br is an ideal of S, it is certainly an ideal of Bl. Observing that the universe of S/�r

is (Bl\Br) ∪ {0}, it is easy to see that S/�r ∼= Bl/Br .

Theorem 3.20. Let S = S0 be a semigroup such that S = �l = �l(S), and let �r = �r(S). Then the
following are equivalent:

1. S satisfies ACCPR;
2. Bl is either 0 or the 0-direct union of completely 0-simple semigroups;
3. �r is either a null semigroup or the 0-direct union of a null semigroup and completely 0-simple

semigroups, and either �r = S or S/�r is the 0-direct union of completely 0-simple semigroups.
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Proof. (1)⇒(2) follows immediately from Theorem 3.17.
(2)⇒(3). By Lemma 3.19, Ar = Al, Br ⊆ Bl, and �r is the 0-direct union of Ar and Br . If Br = 0,

then �r = Ar is a null semigroup. If Br 	= 0, then Bl 	= 0, so Bl is the 0-direct union of completely
0-simple semigroups Bi (i ∈ I). As in the proof of Lemma 3.19, there exists a set J ⊆ I such that Br is the
0-direct union of Bj, j ∈ J. By Lemma 3.19, we have that S/�r ∼= Bl/Br . Thus, if �r 	= S then S/�r is
(isomorphic to) the 0-direct union of Bi, i ∈ J\I.

(3)⇒(1). We have that S/Ar ∼= Br is a 0-direct union of completely 0-simple semigroups, and hence
satisfies ACCPR by Corollary 2.10. Therefore, to prove that S satisfies ACCPR, by Corollary 3.5 it suffices
to show that Ar

S is noetherian (as an S-act). If Ar
S = 0 then it is obviously noetherian. Otherwise, by

Lemma 3.19, we have thatAr
S is the union of 0-simple subacts {a, 0} (a ∈ Ar

S), and henceA
r
S is noetherian

by Corollary 2.9.

4. Right noetherian semigroups

In this section we consider right noetherian semigroups. Paralleling the previous section, this section
splits into two parts, the first of which deals with ideals in general, and the section concerns minimal
and 0-minimal ideals.

4.1. General ideals

As mentioned in Section 3, unlike the property of satisfying ACCPR, the property of being right
noetherian is not closed under ideals. The following result provides a condition under which ideals,
and more generally (m, n)-ideals, inherit the property of being right noetherian. In what follows, a right
ideal I of a semigroup A is decomposable (in A) if I = IA.

Proposition 4.1. Let S be a semigroup, let A be an (m, n)-ideal of S, and suppose that every right ideal of
A is decomposable in A. If S is right noetherian, then so is A.

Proof. Let I be a right ideal of A. Then I = IA by assumption. This implies that I = IAm = IAn. Since
S is right noetherian and IS1 is a right ideal of S, there exists a finite set X ⊆ I such that IS1 = XS1. For
each x ∈ X choose yx ∈ I such that x ∈ yxA

m, and let Y = {yx : x ∈ X}. We claim that I = YA. Clearly
YA ⊆ I. Now consider a ∈ I. Then a = bv for some b ∈ I and v ∈ An, and b = xs for some x ∈ X and
s ∈ S1. Now, x = yxu for some u ∈ Am. Therefore, we have that

a = yx(usv) ∈ Y(AmS1An) ⊆ YA,

using the fact that A is an (m, n)-ideal of S. Thus I ⊆ YA, and hence I = YA, as desired.

Corollary 4.2. Let S be a semigroup, and suppose that A is a left ideal of S such that every element of A is
regular in S. If S is right noetherian, then so is A.

Proof. Let I be a right ideal of A. For any a ∈ I there exists b ∈ S such that a = aba. Since A is a left
ideal, we have ba ∈ A, so a ∈ IA. Thus I = IA is decomposable. Hence, by Proposition 4.1, A is right
noetherian.

By Propositions 2.14 and 4.1 we have:

Corollary 4.3. Let S be a semigroup, let I be an ideal of S, and suppose that every right ideal of I is
decomposable. Then S is right noetherian if and only if both I and S/I are right noetherian.

Recall that a semigroup is strongly right noetherian if its poset of right congruences satisfies the
ascending chain condition. The following result, due to Kozhukhov, describes the non-null principal
factors of a strongly right noetherian semigroup.
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Proposition 4.4. [11, Lemma 1.3]Any (0-)simple principal factor of a strongly right noetherian semigroup
is completely (0-)simple and has only finitely manyR-classes.

From Proposition 4.4 and Corollary 2.10 we immediately deduce:

Corollary 4.5. Every non-null principal factor of a strongly right noetherian semigroup is right noetherian.

Corollary 4.6. Let S be a semigroup with an ideal I such that for everyJ -class J ⊆ I the principal factor of
J is either simple or 0-simple. If S is strongly right noetherian, then I is regular and hence right noetherian.

Proof. The ideal I is a union ofJ -classes. For everyJ -class J ⊆ I, its principal factor is either completely
simple or completely 0-simple by Proposition 4.4. It follows that element of I is regular (in I), so I is a
regular semigroup. Hence, by Proposition 2.15, I is right noetherian.

A semigroup is said to be semisimple if each of its principal factors is simple or 0-simple. If a semigroup
has a null principal factor, then the non-zero elements of that principal factor are not regular. Thus
regular semigroups are semisimple. This fact, together with Corollary 4.6, yields:

Corollary 4.7. Let S be a strongly right noetherian semigroup. Then S is semisimple if and only if it is
regular, in which case every ideal of S is right noetherian.

Remark 4.8. Ideals, indeed kernels, of strongly right noetherian (regular) semigroups need not be
strongly right noetherian; see [17, Example 6.5 and Proposition 6.6].

We end this subsection with some results that will be useful in the next subsection.

Lemma 4.9. Let S be a semigroup and let I be an ideal of S. Then S/I is right noetherian if and only if the
S-act SS/IS is noetherian.

Proof. It can easily seen that a subset of S/I is a right ideal of S/I if and only if it is a subact of SS/IS, and
that finite generation is preserved in both directions.

Corollary 4.10. Let S be a semigroup and let I be an ideal of S. Then S is right noetherian if and only if
S/I is right noetherian and (the S-act) IS is noetherian.

Proof. If S is right noetherian, then so is S/I by Lemma 2.13. Since SS is noetherian, the subact IS is
noetherian by Proposition 2.11. The converse follows from Lemma 4.9 and Proposition 2.14.

Recalling Construction 3.7, an argument similar to the proof of Proposition 3.8 yields:

Proposition 4.11. Let S be a semigroup, let A be an S-act, and let U = U(S,A). Then U is right noetherian
if and only if S is right noetherian and A is noetherian.

4.2. Minimal and 0-minimal ideals

From now on we focus on minimal and 0-minimal ideals. We begin by exhibiting an example of a right
noetherian semigroup with a kernel that is not right noetherian.

Example 4.12. Let S be the semigroup defined by the presentation

〈a, b | ab2 = b, aba = a2b〉.
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Corresponding to the above presentation, we have a rewriting system on {a, b} consisting of the rules
ab2 → b and aba → a2b. It is straightforward to check that this rewriting is complete (i.e. noetherian
and confluent) and hence yields the following set of normal forms for S:

{ai, biaj, bjaib : i > 0, j ≥ 0};

that is, the set of all the words over {a, b} that do not contain ab2 or aba as a subword. For more
information about rewriting systems, one may consult [2] for instance.

Let A = 〈a〉 ∼= N. We have that

ai(biaj)bj+1 = aibi+1 = b,

and hence ai(biajb)bj = b. Thus, S\A is the J -class of b. Since S\A is an ideal of S, we conclude that it
is the kernelK = K(S).

(1) S is right noetherian.
Since S/K ∼= N ∪ {0} is right noetherian, by Corollary 4.10 it suffices to prove thatKS is noetherian.

So, let IS ⊆ KS be a subact of SS. We shall prove that IS is finitely generated. Let i0 ∈ N be minimal such
that bi0 ∈ IS. If there exist j ∈ N such that bi0−1aj ∈ IS, let j0 be theminimal such j and setY = {bi0−1aj0};
otherwise, let Y = ∅. If there exist k ∈ N such that bi0−1akb ∈ IS, let k0 be the minimal such k and set
Z = {bi0−1ak0b}; otherwise, let Z = ∅. We claim that IS is generated by {bi0}∪Y ∪Z. So, let s ∈ IS. There
are two cases to consider.

Case 1: s = biaj for some i > 0 and j ≥ 0.
If i ≥ i0, then s = bi0bi−i0aj ∈ bi0S1. Suppose then that i < i0. Now bi+1 = sbj+1, so i + 1 ≥ i0 and

hence i = i0 − 1. It follows that j ≥ j0, and hence s = bi0−1aj0aj−j0 ∈ YS1.
Case 2: s = biajb for some i ≥ 0 and j > 0.
If i ≥ i0, then s ∈ bi0S, so assume that i < i0. We have that bi+1 = sbj ∈ IS, so i = i0 − 1 and j ≥ k0.

Thus s = bi0−1ak0baj−k0 ∈ ZS1.

(2)K is not right noetherian.
We claim that the infinite set {(bai)K1 : i ≥ 0} is an antichain of principal right ideals ofK, and hence

K is not right noetherian by Corollary 2.6. Indeed, consider baiu where u ∈ K.
Suppose first that u = bman for some m ≥ 1 and n ≥ 0. If i < m, then baiu = bm−i+1an and

m − i + 1 ≥ 2. If i ≥ m, then baiu = bai−m+n+1b.
Now suppose that u = bmanb for somem ≥ 0 and n ≥ 1. Ifm = 0, then baiu = bai+nb. If 1 ≤ m ≤ i,

then

baiu = bai−m+1banb = bai−m+1+nb2 = bai−m+nb.

Finally, ifm > i then baiu = bm−i+1anb.
In any case, in view of the normal form for K, we conclude that baiu 	= baj for any j ∈ N. It follows

that (bai)K1 and (baj)K1 are incomparable whenever i 	= j.

The next two results show that in a right noetherian semigroup with minimal one-sided ideals, the
kernel is also right noetherian.

Proposition 4.13. Let S be a semigroup with at least one minimal right ideal, and let K = K(S). If S is
right noetherian, then K has finitely manyR-classes (of itself), and hence K is right noetherian.

Proof. The kernelK is the union of all the minimal right ideals of S. By [3, Theorem 2.4], each of these
minimal right ideals is a minimal right ideal of K. Moreover, due to their minimality, they form an
antichain of principal right ideals of S. Hence, by Corollary 2.6,K is the union of finitely many minimal
right ideals. Hence, by Corollary 2.10,K is right noetherian.

Proposition 4.14. Let S be a semigroup with at least one minimal left ideal, and letK = K(S). If S is right
noetherian, then K is completely simple and right noetherian (and hence has finitely manyR-classes).
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Proof. Since S satisfies ACCPR, the kernelK is completely simple by Theorem 3.12. SinceK is a regular
subsemigroup of S, it is right noetherian by Proposition 2.15, and hence K has finitely manyR-classes
by Corollary 2.10.

Corollary 4.15. Let S be a semigroup with a minimal one-sided ideal, and let K = K(S). Then S is right
noetherian if and only if both K and S/K are right noetherian.

Proof. The forward direction follows from Lemma 2.13 and Propositions 4.13 and 4.14, and the reverse
implication follows from Proposition 2.14.

The remainder of this section concerns semigroups with zero. The following example demonstrates
that a right noetherian semigroup can have a right/left socle that is not right noetherian.

Example 4.16. (1) Let S be any right noetherian semigroup, let A be a noetherian S-act (such as SS),
and let U = U(S,A). Then U is right noetherian by Proposition 4.11. For each a ∈ A, the set {xa, 0} is a
null 0-minimal left ideal of U, and �l(U) = {xa : a ∈ A} ∪ {0}. If A is infinite, then �l(U) is not right
noetherian; indeed, any infinite null semigroup is not right noetherian by Corollary 2.10.

(2) Let S be the free commutative semigroup on two generators y and z. Let A = {ai : i ∈ Z} be the
S-act with action given by ai · y

jzk = ai+j−k. It is easy to see that A has no proper subacts, and hence A is
noetherian. Since S is right noetherian, we have thatU = U(S,A) is right noetherian by Proposition 4.11.
We have that R = {xa : a ∈ A} ∪ {0} is a null 0-minimal right ideal of U, and �r(U) = R is not right
noetherian.

The following result provides a necessary and sufficient condition for a 0-minimal right ideal to be
right noetherian.

Theorem 4.17. Let R be a 0-minimal right ideal of a semigroup S. Then R is right noetherian if and only
if the set {a ∈ R\{0} : aR = 0} is finite.

Proof. For each a ∈ R, we have either aR = 0 or aR = R. Thus, if a, b ∈ R\{0} with a ⊆ bR, then
bR = R. It follows that R satisfies ACCPR. Thus, by Corollary 2.6, R is right noetherian if and only if it
has no infinite antichain of principal right ideals. Now, for any a, b ∈ R\{0} with a 	= b, the principal
right ideals aR1 and bR1 are incomparable if and only if b /∈ aR and a /∈ bR if and only if aR 	= R and
bR 	= R if and only if aR = bR = 0. The result now follows.

Completely 0-simple semigroups have the following well-known representation, due to Rees. Let G
be a group, let I and J be non-empty sets, and let P = (pji) be a J × I matrix over G0 in which every row
and column contains at least one element of G. The Rees matrix semigroup with zero over G with respect
to P is the semigroupM0(G; I, J;P) with universe (I × G × J) ∪ {0} and multiplication given by

(i, g, j)(k, h, l) =

{

(i, gpjkh, l) if pjk ∈ G

0 otherwise,
0(i, g, j) = (i, g, j)0 = 02 = 0.

The 0-minimal right ideals of M0(G; I, J;P) are the sets Ri = ({i} × G × J) ∪ {0} (i ∈ I). From
Theorem 4.17 we deduce:

Corollary 4.18. Let S = M0(G; I, J;P) be a completely 0-simple semigroup. Then a 0-minimal right ideal
Ri = ({i} × G × J) ∪ {0} of S is right noetherian if and only if the set {(g, j) ∈ G × J : pji = 0} is finite.

Corollary 4.19. Let S = M0(G; I, J;P) be a completely 0-simple semigroup where G is infinite. Then a
0-minimal right ideal Ri = ({i} × G × J) ∪ {0} of S is right noetherian if and only if pji ∈ G for all j ∈ J.
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Remark 4.20. Let S = M0(Z; I, I;P) where |I| = 2 and P =

(

1 0
0 1

)

. Then S is strongly right

noetherian by [12, Corollary 2.2], but neither of its two 0-minimal right ideals are right noetherian by
Corollary 4.19.

Although the right socle of a right noetherian semigroup need not be right noetherian itself, it is
necessary that the globally idempotent part of the right socle be right noetherian.

Proposition 4.21. Let S = S0 be a right noetherian semigroup. Then S has finitely many 0-minimal right
ideals. Moreover, if S has a globally idempotent 0-minimal right ideal, then the globally idempotent part Br

of �r = �r(S) is a union of finitely many 0-minimal right ideals of itself, and hence Br is right noetherian.

Proof. The set of 0-minimal right ideals of S, if non-empty, is an antichain of principal right ideals of S.
Therefore, since S is right noetherian, it has finitely many 0-minimal right ideals by Corollary 2.6.

Now suppose that S has a globally idempotent 0-minimal right ideal. By Theorem 2.2, there exists a
set {Ri : i ∈ I} of globally idempotent 0-minimal right ideals of S such that Br is the 0-direct union of
the BRi (i ∈ I). Then I is finite, and it follows from Theorem 2.1(4) that each BRi is a union of 0-minimal
right ideals of itself. It then clearly follows that Br is a union of finitely many 0-minimal right ideals of
itself. Hence, by Corollary 2.10, Br is right noetherian.

Corollary 4.22. Let S = S0 be a semigroup, and let �r = �r(S). Then the following are equivalent:

1. S is right noetherian;
2. S has finitely many 0-minimal right ideals and S/�r is right noetherian.

Proof. (1)⇒(2) follows immediately from Proposition 4.21 and Lemma 2.13.
(2)⇒(1). The right socle �r contains only finitely many right ideals of S; equivalently, �r

S contains
only finitely many subacts of SS. Thus �r

S is noetherian. Since S/�r is right noetherian, we have that S
is right noetherian by Corollary 4.10.

Corollary 4.23. Let S = S0 be a semigroup without null 0-minimal ideals, and let �r = �r(S). Then the
following are equivalent:

1. S is right noetherian;
2. �r is a union of finitely many 0-minimal right ideals of itself, and S/�r is right noetherian;
3. both �r and S/�r are right noetherian.

Proof. (1)⇒(2). We have �r = Br , so �r is a union of finitely many 0-minimal right ideals of itself by
Proposition 4.21. By Lemma 2.13, S/�r is right noetherian.

(2)⇒(3) follows from Corollary 2.10, and (3)⇒(1) follows from Proposition 2.14.

The following result is an analogue of Proposition 4.14 for 0-minimal left ideals.

Proposition 4.24. Let S = S0 be a semigroup with a globally idempotent 0-minimal left ideal L. If S is
right noetherian, then the globally idempotent part BL of LS is completely 0-simple and right noetherian
(and hence has finitely manyR-classes). Moreover, L is right noetherian.

Proof. Since S satisfies ACCPR, BL is completely 0-simple by Corollary 3.16. Therefore, BL is right
noetherian by Proposition 2.15, and hence BL has finitely many R-classes by Corollary 2.10. Since L
is contained in BL, which is regular, L is right noetherian by Corollary 4.2.

We now characterize the property of being right noetherian in terms of the left socle.
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Theorem 4.25. Let S = S0 be a semigroup, and let �l = �l(S). Then the following are equivalent:

1. S is right noetherian;
2. Bl is either 0 or the 0-direct union of finitely many completely 0-simple semigroups that each have finitely

manyR-classes, the S-act Al
S is noetherian, and S/�l is right noetherian.

3. both �l and S/�l are right noetherian.

Proof. (1)⇒(2). By Corollary 4.10, Al
S is noetherian and S/�l is right noetherian. Suppose that Bl 	= 0.

Then, by the left-right dual of Theorem2.2, there exists a set {Li : i ∈ I} of globally idempotent 0-minimal
left ideals such that Bl is a 0-direct union of Bi (i ∈ I), where Bi = BLi . By Proposition 4.24, each Bi is
completely 0-simple and has finitely manyR-classes. For each i ∈ I, let ei be a non-zero idempotent in
Bi. We cannot have ej ∈ eiS for any i 	= j, for that would imply that eiej = ej, contradicting the fact
that BiBj = 0. Thus, {eiS

1 : i ∈ I} is an antichain of principal right ideals of S, and hence I is finite by
Corollary 2.6.

(2)⇒(3). We have that �l/Al
∼= Bl is right noetherian by Corollary 2.10. Therefore, since Al

S is

noetherian, �l is right noetherian by Corollary 4.10.
(3)⇒(1) follows from Proposition 2.14.

Corollary 4.26. Let S = S0 be a semigroup without null 0-minimal ideals, and let �l = �l(S). Then the
following are equivalent:

1. S is right noetherian;
2. �l is either 0 or the 0-direct union of finitely many completely 0-simple semigroups that each have finitely

manyR-classes, and S/�l satisfies ACCPR.

We now find several equivalent characterizations for a semigroup S = �l(S) to be right noetherian.

Theorem 4.27. Let S = S0 be a semigroup such that S = �l = �l(S), and let �r = �r(S). Then the
following are equivalent:

1. S is right noetherian;
2. Al is finite, and Bl is either 0 or the 0-direct union of finitely many completely 0-simple semigroups that

each have finitely manyR-classes;
3. �r is either a finite null semigroup or the 0-direct union of a finite null semigroup and finitely many

completely 0-simple semigroups that each have finitely many R-classes, and either �r = S or S/�r

is the 0-direct union of finitely many completely 0-simple semigroups that each have finitely many R-
classes;

4. S has finitely manyR-classes.

Proof. (1)⇒(2). Given Theorem 4.25, we only need to prove that Al is finite. By Lemma 3.19, either
Al 	= 0 or {a, 0} is a 0-minimal right ideal of �l for each a ∈ Al\{0}. Since �l is right noetherian, it has
only finitely many 0-minimal right ideals by Proposition 4.21, so Al is finite.

The proof of (2)⇒(3) is essentially the same as that of (2)⇒(3) of Theorem 3.20. (3)⇒(4) is obvious,
and (4)⇒(1) follows from Corollary 2.8.

Corollary 4.28. Let S = S0 be a semigroup such that S = �l(S) = �r(S). Then S is right noetherian if
and only if it is either a finite null semigroup or the 0-direct union of a finite null semigroup and finitely
many completely 0-simple semigroups that each have finitely manyR-classes.

We now present an example to illustrate Theorem 4.27, and to demonstrate that a right noetherian
semigroup can be the union, but not 0-direct union, of its 0-minimal left ideals.
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Example 4.29. Let V be the 0-disjoint union of two completely 0-simple semigroups S and T, each
with finitely many R-classes, and let x be an element disjoint from V . Let U = V ∪ {x}, and define a
multiplication on U, extending that on V , as follows:

sx = x and xv = x2 = tx = 0x = 0

for all s ∈ S, t ∈ T and v ∈ V . It is straightforward to show that U is a semigroup under this
multiplication. It is easy to see that the 0-minimal left ideals ofU are {x, 0} and the 0-minimal left ideals
of S and T. ThusU = �l(U), whereAl = {x, 0} and Bl = V , andU is right noetherian by Theorem 4.27.
The 0-minimal right ideals of U are {x, 0} and the 0-minimal right ideals of T, and �r is the 0-direct
union of {x, 0} and T. On the other hand, U is not the 0-direct union of its 0-minimal left ideals (since
sx = x for all s ∈ S).

Remark 4.30. Let S be any right simple semigroup, and let U = U(S, SS). Then S is right noetherian by
Proposition 4.11. It is easy to see thatU is the union of its two 0-minimal right ideals, I = {xs : s ∈ S}∪{0}
and S0. Thus U = �r(U), where I = Ar and S0 = Br . Since xst = xst for all s, t ∈ S, the semigroup U is
not the 0-direct union of I and S0.
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