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Abstract—In recent years the mixed criticality systems model
has been adapted for use in shared-medium communication pro-
tocols, but it has not seen deployment into swarm robotics. This
paper discusses ongoing work in the application of such a model
to this domain, and argues for the benefits of such an approach. In
many applications, reliability of communications is essential for
the correct and safe operation of the robots. Given the inherently
unreliable nature of wireless inter-robot communications, this
paper argues for the application of timing- and criticality-aware
communication protocols to be able to provide more reliable
task-level performance of swarm robotics applications. In this
work we define two illustrative swarm applications with two
tasks at different criticality levels. Using simulation results we
show that in the presence of wireless faults, standard best-
effort protocols will cause application errors unpredictably, but a
mixed-criticality wireless protocol can maintain important tasks
at the cost of less important ones for longer.

Index Terms—real-time wireless, mixed-criticality, swarm com-
munication

I. INTRODUCTION

Distributed autonomous systems rely on wireless commu-

nications to implement their functionality. If such systems

are to be deployed in high-integrity environments, such as

autonomous vehicles, then it is necessary to be able to reason

about the performance of the system in situations where

such communications are not reliable. Existing approaches

in the field of swarm robotics rarely consider timing-aware

communication, instead relying on mechanisms such as self-

organisation and emergence for information propagation [1].

Failed communications can be corrected through retransmis-

sions, but these also reduce available bandwidth and can cause

further transmission failures. A standard best-effort protocol

like WiFi does not allow the system integrator to analyse

system performance ahead of time.

This paper argues that by implementing timing-aware com-

munications protocols and by adopting a mixed criticality

system model, it becomes possible to provide hard timing

guarantees within a specified fault model, and to reason about

system degradation in a controlled way when that model is

exceeded. Our results show this translates into better task-level

performance for an example swarm robotics application.

Section II begins by defining a motivating problem for

this work to address. We then introduce mixed criticality

in Section III and examine existing wireless protocols in
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Fig. 1. k robots, each having a velocity V and an LED colour. Task TLED

requires all nodes to show the same colour. Task TPOS requires all nodes to
move with the same velocity. At any given time, both conditions should be
satisfied.

section IV. We define our system model (Section V) and our

experiment in Section VI, followed by results (Section VII),

limitations (Section IX) and conclusions.

II. MOTIVATING PROBLEM

Consider an autonomous wireless swarm robotics platform

in which the robots have two tasks:

• TLED: Communicate to form a consensus about what

LED colour to display. Each agent may choose to ask

the swarm to display a different colour at any time, for

example as a response to external stimuli.

• TPOS : Coordinate to maintain a circle formation. Each

agent may choose to adjust the formation and the others

must maintain relative positioning.

This system has two metrics of quality: timing error for

task TLED, and positional error for task TPOS . The system

is trying to minimise both errors. Errors are discussed in

more detail in Section VI. Communications are wireless, and

so any given transmission has a probability of successful

transmission, which decreases as traffic volume increases (due

to collisions) and decreases as inter-agent distance increases

(see Section V). A naive approach to this problem simply has

each robot communicate with every other robot for either task,

retransmitting if a transmission fails. However, this means that

as the robots get further from each other, transmissions begin

to dominate the available bandwidth and errors increase.



If we now introduce the constraint that TPOS is a high-

integrity task that must be guaranteed to avoid the potential

for injury, we need to be able to guarantee a given level of

performance for TPOS . This guarantee becomes impossible (or

at least incredibly pessimistic) due to unbounded interference

from the rest of the system.

III. MIXED CRITICALITY SYSTEMS

Given the problem introduced in Section II, this work argues

that future autonomous swarm robotics systems should be

viewed as a mixed criticality system (MCS). The MCS system

model was initially motivated by the expectation of deadline

overruns caused by imprecise timing analysis, however in a

swarm robotics system a common source of issues is that

of wireless communication delays. Even in an otherwise

well-formed network, transient faults can cause unpredictable

sporadic delays to task execution.

In traditional automotive or avionics systems, criticality

levels are kept insulated from each other on dedicated control

units and networks to make it easier to demonstrate that lower-

criticality tasks cannot interfere with the execution of higher-

criticality tasks. In the motivating example from Section II,

this is not possible due to the shared communication medium.

This work uses the most commonly deployed form of MCS

in which the system has two criticality levels, LO and HI,

although many refinements have been made since [2]. In the

basic model, each task is assigned to one of these levels,

resulting in a set of LO tasks and a set of HI tasks. Each task

also has a WCET value (C) for each criticality level. A task’s

LO WCET (CLO) might come from a simple measurement-

based approach and so therefore may be optimistic. Its CHI

on the other hand might come from an analytical approach

and so is safe, but pessimistic. For all tasks, CLO < CHI .

Whilst this approach was initially developed in the context

of tasks executing on a CPU, it can be applied to wireless

communications [3]. This paper shows that by thinking of

the overall behaviour of a robot swarm in terms of criticality

levels, the system performance can be gracefully degraded (for

example as communication becomes less reliable) in a way

that allows key functionality to be retained for longer.

IV. RELATED WORK

Ad-hoc mesh networking is a well-studied problem in

the field of autonomous systems. Early work such as BAT-

MAN [4] looked at the problem of communicating nodes

with a topology that is not known a priori. However it only

provided limited support for mobility and little control over

traffic prioritisation.

Real-Time Wireless Multi-hop Protocol (RT-WMP) [5] was

a major expansion to the research space through the intro-

duction of a real-time wireless protocol that could support a

limited form of end-to-end guarantees on a multi-hop wireless

network. RT-WMP includes a significant consensus phase

in which nodes can coordinate to determine which has the

most important traffic and over what routes it should be sent.

This leads to predictable performance, but causes significant

bandwidth overheads and requires nodes to expend a lot of

power when compared to simpler protocols. Some of these

problems have been later addressed through Beluga [6] which

exploits flow periodicity to reduce coordination overheads,

although this work still assumes fixed traffic flows and cannot

support support simultaneous transmissions in different parts

of the network.

WirelessHART [7] is an extension of the HART protocol

focused on wired communication in industrial automation and

process control. It uses time-division multiple access (TMDA)

at the physical layer with centralised route planning. This

allows it to achieve excellent levels of predictability, but in

some situations it suffers from poor utilisation because it also

cannot support simultaneous transmissions.

Glossy [8], and the wireless protocols that build upon it

such as the Low-Power Wireless Bus [9] and Blink [10], use

a different approach that assumes no network topology infor-

mation is available. Instead, all packets are flooded through

the network using simultaneous retransmissions within a sin-

gle timeslot. With sub-microsecond clock synchronisation,

the frames interfere constructively rather than destructively.

Since network topology is not considered, Glossy requires

transmission slots sufficiently large for such a flood to reach

all nodes in the network. While this is acceptable for networks

with a small number of maximum hops, it prevents efficient

operation in larger networks. Further, the protocol cannot

handle simultaneous transmissions.

AirTight [11] is a decentralised mixed-criticality protocol

that provides real-time guarantees that are resilient to network

interference. Access to the network is mediated by a slot

table that is assigned ahead-of-time, but each node uses

local scheduling decisions to determine which frame is sent

during an assigned transmission slot. Unlike CPU scheduling

applications, where the criticality level influences the worst

case execution time, AirTight assumes that the size of a frame

is constant. Instead, it is the level of interference a task must

be able to endure that varies by criticality level. A “criticality-

aware” fault model bounds the maximum level of interference

for a given criticality level. The protocol then guarantees that

the worst-case response times computed at a given criticality

level will not be exceeded so long as the actual number of

transmission failures experienced does not exceed the value

predicted by the fault-model for that criticality level. If, at

runtime, the failure bound computed by the fault model at a

given criticality level is exceeded, the system moves to the next

higher criticality level. Nodes in high criticality mode drop

low criticality transmissions in order to increase the number

of slots available for the high criticality flows. AirTight allows

simultaneous transmissions [12], both from spatially separated

nodes on the same channel, and through the use of multiple

channels.

Inter-robot wireless communication in the field of swarm

robotics often defaults to protocols such as WiFi, ZigBee, and

Bluetooth. These all can offer potentially very high throughput

with excellent robustness, but they rely on protocol or MAC-

layer features like random backoff and retransmissions, and



result in priority inversion (where high-importance flows can

be interrupted or blocked by low-importance flows). Addi-

tional robustness is sometimes added at the application layer,

such as through distributed data structures that are resistant

to imperfect communication [13], but these are typically not

suitable for timing critical data. Prior work [14] illustrates how

realistic, i.e. imperfect, communications can prevent swarm

robotics applications from functioning correctly.

This paper will explore how swarm applications can fail

due to wireless communication without timing awareness, and

discuss how the application of AirTight and a mixed criticality

system model can aid robustness.

V. SIMULATED TRANSMISSION MODEL

In order to demonstrate the use of these models, we em-

ploy an established swarm robotics simulator, ARGoS [15].

The ARGoS simulator provides integrated support for radio

communication through the simple radio interface, but this

assumes perfect communications within a given range and

does not handle packet collisions. In order to better model

realistic communications, we have developed a custom radio

communication plugin using an alternative transmission model

We assume that each simulation step is equivalent to one

transmission slot, such that each node can only send or receive

a single frame during a simulation step. If a robot is able

to ‘hear’ multiple frames within a single slot, we define that

the frames interfere destructively such that no frame can be

correctly decoded.

Our model is such that the effective packet delivery rate of a

link is inversely proportional to the square of the distance be-

tween two nodes, and that successful or unsuccessful delivery

is determined independently for each link and transmission.

We note that is an extremely simple model which does not

capture the true complexity of real wireless communications.

Previous experiments [16]–[19] have produced conflicting

results, but generally show a weak correlation between node

distance and packet reception rates, which is highly dependent

on the specific testing environment.

Attempting to accurately model a wireless radio’s physical

layer and resulting radio performance is beyond the scope

of this paper, however our experiments do not rely on the

specifics of the fault model beyond determining when packets

are received. Rather we use this model to show how swarm

behaviour changes as packet reception rates decrease. There-

fore, we believe the results of the simulation should be broadly

applicable regardless of the simplification to the fault model.

Using this simulation, we compare the performance of

AirTight with two baseline protocols:

• Broadcast: Nodes broadcast each message a fixed number

of times using carrier sensing to reduce collisions.

• Point-to-Point: Nodes transmit messages to each other

node in turn, a CSMA/CA like protocol using carrier

sensing and random backoff between retransmissions

until an acknowledgement is received or a maximum

number of retries has been reached.

EPOS

Fig. 2. Circle formation showing positional error EPOS , the maximum
difference in distance from the circle’s central point of any two nodes.

A. AirTight Fault Model

If arbitrarily many transmissions can fail over an indefinite

time period, it is not possible to provide any timing guarantees.

Therefore, the AirTight protocol [11] requires the number of

failures within a time period to be bounded by a fault model

that is provided ahead of time during response time analysis.

When considering networks with stationary nodes, the orig-

inal AirTight specification considered failed transmission slots

as a result of external interference causing blackout periods.

Here, we instead consider failed transmission due to a reduced

packet delivery rate (PDR), presumably as a result of distance

between nodes.

Since the PDR is simply the delivery probability for a

single packet, and the delivery of each packet is defined to

be independent, our fault model must be probabilistic. The

probability of a given number of failed transmissions occurring

within a busy-period of t transmissions can be modelled using

a simple binomial distribution. For a given criticality level

L, minimum assumed PDR and a desired confidence bound,

the fault model F (L, t) computes a maximum number of

failed transmission slots as the smallest integer m satisfying

inequality 1, in which we ensure the desired confidence bound

is met by accumulating the probability of exactly k failures

occurring for all k ≤ m.

m
∑

k=0

(

t

k

)

·
(

1− pdr(L)2
)k

·
(

pdr(L)2
)t−k

≥ conf(L) (1)

Note that the PDR is squared in the above equation to

account for lost acknowledgements, which are assumed to

occur with the same probability as lost data frames. We do not

consider dependent PDRs, i.e. blackout periods due to external

interference, in this model but note that it would be possible

to extend this fault model to include them. In the most basic

case, an additional fault-model accounting for static blackout

periods with a length and period could simply be summed to

the existing fault-model, albeit at the cost of some pessimism.

VI. EXPERIMENTAL SETUP

Building on the motivating problem in Section II, we

contrive a concrete instantiation. A set of 6 mobile nodes with

multicoloured LEDs are arranged in a circle facing outwards,



1m apart, and pre-programmed to assume the same initial LED

colour. To satisfy tasks TLED and TPOS , all nodes should

show the same LED colour and must move radially outward

at the same speed in order to maintain the circle formation.

The LED colour and movement speed is determined in a

decentralised manner by the nodes. Each node may change

the LED colour for the entire swarm if it has been at least

one second since it last initiated an LED colour change.

This reflects real-world tasks such as a swarm responding to

distributed sensing of an environment. When a node proposes

an LED colour change, the swarm must coordinate to change

to the new colour in unison within two seconds. Multiple

such colour changes can be queued to take effect at different

future times. If multiple nodes propose an LED colour change

for the same time, the conflict is deterministically resolved

by a predetermined static priority ordering. The movement

speed for the swarm is determined in an equivalent manner,

except that these events may only be generated once every

five seconds, and take effect after ten seconds. We assume that

each frame is only large enough to contain either exactly one

LED colour change message or one movement speed change

message.

The performance of the system is quantified by measuring

two errors: EPOS , the maximum difference in effective circle

radius of any two nodes, as shown in Figure 2, and ELED,

the number of nodes showing an incorrect LED colour. If all

nodes could communicate perfectly, EPOS and ELED would

remain zero.

In a real application, these changes would be triggered by

local sensing onboard the nodes. For the purposes of this

simulation, we simply assume that after the minimum inter-

arrival period has been reached, there is a uniform probability

of 2% per node per simulation step for LED changes, and a

uniform probability of 1% per node per simulation step for

movement speed changes. New LED colours are chosen as

a uniformly random RGB value, whereas movement speed is

chosen with each node having a bias towards a slower/faster

speed, such that positions will diverge if communication fails.

As in Section II, the task TPOS is a high-integrity task

that should be protected in the event of a system degradation.

The AirTight protocol allows this by setting the packet flows

of TPOS as high-criticality, while those of TLED as low-

criticality. The other two protocols have no notion of criti-

cality1, thus all packets are handled equally.

Since the circle setup results in a constantly increasing

distance between agents, the packet delivery ratio is constantly

decreasing according to our transmission model. Thus, re-

gardless of protocol, communication between the nodes will

eventually fail, causing EPOS to increase indefinitely. The

effectiveness of a protocol can therefore be determined by the

length of time that EPOS remains below a threshold value.

1Note that some carrier sense protocols have the notion of priority that
allows smaller inter-frame times for packets that need low latency. This is not
same as criticality which affects how the system degrades under failures.

Fig. 3. Node setup showing optimal routing and an example of possible
randomised routing.

A. AirTight

An AirTight deployment will analyse the flows and topology

ahead of time to ensure that flows are schedulable [11]. For this

example the protocol is set up with a slot-table of equal length

to the number of nodes, with each node assigned a single

unique transmission slot of 10ms. For each node, there are

LED and movement flows that begin at that node and proceed

around the outside of the circle. We assume that the system

integrator wants to prioritise movement accuracy, so assigns

LED flows to low-criticality and movement instructions to

high-criticality. The overall LED flow is partitioned with

the manually selected per-hop deadlines of 190ms, 310ms,

370ms, 430ms, and 550ms (giving an end-to-end deadline

of 1850ms), whereas the movement flow is partitioned with

the manually selected per-hop deadlines of 1570ms, 1750ms,

1870ms, 1990ms, and 2110ms (giving an end-to-end deadline

of 9290ms). Note that these end-to-end deadlines are within

the timing requirements as specified at the beginning of this

section.

The AirTight protocol in this scenario has the inherent

advantage that it has been pre-programmed with a priori

knowledge of the network topology. To observe its behaviour

when this advantage is removed we also test the AirTight

protocol where the ordering of the nodes has been randomised,

as shown in Figure 3.

The fault model (described in Section V-A) is configured

to require confidence bound of 99% given a minimum PDR

of 96.3% (corresponding to a distance between nodes of 2

metres) in low criticality mode, and a confidence bound of

99.999% given a minimum PDR of 79.2% (corresponding to

a distance between nodes of 3 meters) in high criticality mode.

B. Broadcast

The broadcast protocol is setup to transmit each message 13

times. This number is chosen as the maximum fixed number

of transmissions without exceeding the available bandwidth.

C. Point-to-Point

The point-to-point protocol is setup to transmit each mes-

sage to each other node in turn, until it receives and acknowl-

edgement frame or it has sent the frame 5 times. This maxi-

mum number of transmission was determined experimentally

as a value that suitably balances the need for retransmissions

without causing excessive collisions or triggering a continuous

buildup of frames in the transmission buffers.
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VII. SIMULATION RESULTS

The simulation results for EPOS demonstrate that all pro-

tocols are able to keep EPOS = 0 for at least 30 seconds of

simulation time (see Figure 4). After 60 seconds, both of the

comparison protocols have accumulated small positional errors

in some of the simulation runs, and by 120 seconds both show

an error in the minimum case. The AirTight implementation

with optimal routing maintains EPOS until after 180s. We

note that by 170 seconds the circle radius has exceeded 4m

in all simulation runs, meaning the input assumptions to the

fault model (maximum distance of 3m) have been significantly

exceeded. Thus, the errors that show in later time steps are as

a result of “incorrect” input data rather than a violation of

the protocols timing guarantees. The AirTight implementation

with randomised routing shows a very small but non-zero

maximum error at 90 seconds and larger errors from 120

seconds.

For the lower criticality flow, both comparison protocols

show an initial LED error after approximately 30 seconds,

with the first instance of a median error greater than zero after

60 and 100 seconds for the “point to point” and “broadcast”

protocols respectively. With optimised routing the AirTight

protocol first shows an LED error after 50s, with a non-zero

median first occurring after 90s. With randomised routing the

first LED error occurs almost immediately2, and regular errors

start after 40s.

The AirTight protocol results in both higher median and

maximum LED error values, particularly in later simulation

steps. The protocol has allowed the system designer to pri-

oritise motion control messages in the presence of errors,

resulting in lower positional error at the cApplications:ost of

less critical tasks.

VIII. FLOCKING APPLICATION

The circle problem clearly demonstrates the advantages

that a mixed criticality system model can bring to unreliable

shared-medium wireless communications in a swarm robotics

context. Rather than causing unpredictable application-level

faults, the mixed criticality model can be used to maintain

service for longer in tasks of most importance. To illustrate

this in a more realistic application, we present a flocking

system in which a group of 10 nodes need to communicate to

form and move as a flock. Each node is assumed to know its

own position and orientation through some localisation system.

Every five seconds, node should transmit their location and

orientation to all other nodes such that each can compute it is

own velocity to maintain its position in the flock [20].

We assume that each node is also performing some envi-

ronmental sensing task, that generates up to three data frames

per second that should be sent to an a priori designated sink

node. We again assume that mobility control is the more

important task, and so define this as a low priority flow

in the AirTight implementation. We use the same AirTight

fault model configuration as for the circle problem, but here

define point to point flows from each node to all other

nodes for communication. In the broadcast implementation

the maximum number of retransmissions is reduced to 3, as

this is here the maximum value while ensuring the available

bandwidth is not exceeded. The configuration of point-to-point

implementation is unchanged.

At each simulation time step, we sum the velocity vectors

of all nodes, and compute the mean length of this vector

over each simulation run of 30s. Since these vectors add

destructively if nodes are moving in different directions (i.e.

not as a flock), this value serves as proxy for the stability

of flock. Since the distances between nodes once a flock has

been formed remain relatively small, we further scale down the

packet delivery rate of the fault model presented in section V

by a constant factor. The results present in figure 6 show that

AirTight is able to maintain an almost optimal flock velocity of

approximately 6 cm/s at lower PDR scaling values than the two

baseline comparison protocols. We note that this advantage is,

as in the circle problem, a result of prioritising the positional

information. As shown in figure 7, the performance of the data

collection task under AirTight decreases rapidly when packet

transmission is made less reliable.

2We note that with a starting radius of 1m, the maximum distance between
robots does not exceed the input to fault model. This early error is the other
1% from the requested 99% confidence bound provided to the low criticality
fault model.
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IX. LIMITATIONS AND FUTURE WORK

In order to get the most benefit from the AirTight proto-

col [11], it requires a priori knowledge of the network topol-

ogy and slot tables in order to determine packet routing and

perform schedulability analysis of the flows. This requirement

significantly impacts the ability of AirTight to be applied in

many swarm robotics applications. The illustrated application

in this paper presents a best case scenario since the network

topology remains constant. The degraded performance ob-

served when the node positions are randomised demonstrates

the impact of the network topology not matching the prior

assumptions, which would also occur if robots were permitted

to move in ways that changes the network topology. In order to

be able to apply the AirTight protocol to more general swarm

robotics applications, the protocol must be extended such that

routing can be updated at runtime. We intend to address this

extension in future work.

X. CONCLUSION

In this paper we have demonstrated the value of using

mixed criticality timing-aware wireless protocols in swarm

robotics applications. Wireless communications will always

be subject to error, but protocols such as AirTight allow the

system designer to trade off errors intelligently, according to

the relative importance of the various tasks in the system.

Furthermore, such protocols allow timing behaviour to be anal-

ysed ahead of time, which allows guarantees to be made as to

the timing correctness of a swarm robotics application within

parameters provided by a fault model. In future work we intend

to extended existing real-time protocols like AirTight in ways

that allow it to specifically target swarm robotics applications.
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