
This is a repository copy of Adaptive Application Behaviour for Robot Swarms using 
Mixed-Criticality.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/204459/

Version: Published Version

Proceedings Paper:
Signer, Sven and Gray, Ian orcid.org/0000-0003-1150-9905 (2023) Adaptive Application 
Behaviour for Robot Swarms using Mixed-Criticality. In: Proceedings of the Third 
Workshop on Agents and Robots for reliable Engineered Autonomy. Third Workshop on 
Agents and Robots for reliable Engineered Autonomy, 01 Oct 2023 EPTCS . , POL , pp. 
71-82. 

https://doi.org/10.4204/EPTCS.391

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A. Ferrando, R.C. Cardoso (Eds.): Third Workshop on

Agents and Robots for reliable Engineered Autonomy 2023 (AREA’23)

EPTCS 391, 2023, pp. 71–82, doi:10.4204/EPTCS.391.9

© S. Signer & I. Gray

This work is licensed under the

Creative Commons Attribution License.

Adaptive Application Behaviour for Robot Swarms using

Mixed-Criticality

Sven Signer

Department of Computer Science
University of York

York, United Kingdom

sven.signer@york.ac.uk

Ian Gray

Department of Computer Science
University of York

York, United Kingdom

ian.gray@york.ac.uk

Communication is a vital component for all swarm robotics applications, and even simple swarm

robotics behaviours often break down when this communication is unreliable. Since wireless com-

munications are inherently subject to interference and signal degradation, real-world swarm robotics

applications will need to be able handle such scenarios. This paper argues for tighter integration of

application level and network layer behaviour, so that the application can alter its behaviour in re-

sponse to a degraded network. This is systematised through the implementation of a mixed-criticality

system model. We compare a static application behaviour with that of an application that is able to

alter its behaviour in response to the current criticality level of a mixed-criticality wireless protocol.

Using simulation results we show that while a static approach is sufficient if the network conditions

are known a priori, a mixed-criticality system model is able to adapt application behaviour to better

support unseen or unpredictable conditions.

1 Introduction

Swarm robotics platforms usually rely on wireless communications, which by their nature can be unre-

liable and exhibit unpredictable timing characteristics. The standard approach is to use best-effort pro-

tocols with sufficient redundancy so that all important traffic can be conveyed. Conventional protocols

such as WiFi, ZigBee, and Bluetooth offer good throughput and robustness, but they rely on features like

random backoff and retransmissions which can be disqualifying when attempting to build high-criticality

systems that rely on timing correctness. There are similarly a range of swarm-oriented protocols such

as Glossy [7], and the related Low-Power Wireless Bus [6] and Blink [17] which all remain topology-

agnostic by flooding the network with packets and retransmissions in order to maximise connectivity at

the expense of throughput and power-efficiency.

Accordingly there has been a more recent trend towards protocols which are timing-aware, such as

WirelessHART [5] and AirTight [3]. These approaches require a priori information about the system,

but compensate by allowing for greater timing confidence. They still, however, suffer from the inherent

unreliability of wireless links.

This work combines ideas from these timing-aware protocols and from the real-time systems do-

main to argue for application-level adaptive behaviour to support reliability in the presence of errors and

unreliable communications. If a swarm robotics platform employs a wireless protocol that can provide

feedback as to whether communication reliability requirements are currently being met, the application

can be designed to adapt its own behaviour in order to recover connectivity if packet delivery rates fall

below a predefined threshold. This paper argues for the use of a mixed-criticality approach, in which the

application switches between two behaviour modes depending on the network conditions.



72 Adaptive Application Behaviour for Robot Swarms using Mixed-Criticality

2 Application Adaptivity and Mixed Criticality Systems

A common claim is that robot swarms achieve fault tolerance and redundancy through the size of the

swarm. However as is well-understood in the research, communication failures are particularly prob-

lematic and can actually be compounded by increasing swarm size [2]. Swarm applications must be

designed with the reliability of communications as a priority. Robotic swarm programming models like

Buzz [10] allow for developers to discuss higher level concepts such as moving groups of robots as one,

but frameworks which tie reliability requirements from the application developer to the reliability state

of the running system are less formalised.

This work argues that in order to address this issue, a swarm robotics system with unreliable com-

munications should be viewed as a Mixed Criticality System (MCS), and that such a characterisation

can be used to explicitly guide the system’s behaviour at times of overload or error. The MCS model is

a commonly-deployed system model in the domains of high-integrity or safety-critical systems, and is

used to provide guarantees on the behaviour and timing of the system in the presence of unreliability. In-

formally, the developer provides a description of their system, along with an “importance” for each task,

and the guarantees that are required to support these tasks at each criticality level. If the system enters a

state when it can no longer guarantee the “important” parts, then a graceful degradation is codified into

the model.

The original formulation of MCS [15] was aimed at CPU scheduling problems and defined the system

to have two criticality levels: LO and HI. Each task/process/job is designated either LO criticality or HI

criticality: HI tasks perform safety-critical functions and are required for safety assurance, whereas LO

tasks are less important and may occasionally fail or miss their deadlines. The response time analysis of

CPU scheduling requires tasks to be assigned an estimate of their worst-case execution time (WCET) a

priori, but determining this value proves difficult in practice. If a task’s WCET comes from estimation

or measurement it may be optimistic (i.e. not a true worst-case time). This could result in important

tasks missing their deadlines if the true WCET at runtime is larger than the assumed value. A task’s

WCET may also come from a safe, analytical approach which is guaranteed to cover the worst-case but

in practice this might be very pessimistic. This could lead to the application designer falsely believing

that the system is not schedulable without greater hardware resources, which may in turn be infeasible

for other reasons (cost, energy use, etc).

The key insight of the MCS model is that the optimistic execution times will be correct most of the

time, and the true worst-case is usually only seen in rare situations. Tasks are therefore assigned two

estimates of their worst-case execution time, a LO WCET and a HI WCET. A system can proceed at the

LO criticality level most of the time, assuming that tasks will exhibit their expected LO WCETs. How-

ever, when any task exceeds its LO WCET, the system enters the HI criticality state and stops executing

any LO tasks. This means that to guarantee the safety of a system in the presence of unreliability, it is

necessary to prove only that the HI tasks will not exceed their HI WCET times. The application adapts

its behaviour based on the current state of the system by dropping less important activities and focusing

on only the most important system guarantees.

Prior work has applied mixed-criticality scheduling to wireless networks by assuming that it is the

level of interference (i.e. the assumed maximum number of retransmissions required within a time pe-

riod) that varies by criticality level [3]. This paper takes this idea and applies it to both the transmission

of packets in a wireless communications swarm, but also to the behaviour of that swarm. Instead of

treating criticality as just a feature of the scheduling and communications layer, this work argues that

the application itself can respond to such changes usefully, based on developer-provided criticality re-

quirements, in order to preserve the performance of the overall swarm. Such a characterisation can be



S. Signer & I. Gray 73

exploited to allow for applications which assume communications will mostly operate well, and so be-

have accordingly, but can respond appropriately when, for whatever reason, communicating tasks start to

fail to meet their deadlines. In Section 6 we describe an example of such an application, with Section 6.1

describing how the application modifies its own behaviour based on feedback from the network layer.

3 Prior Work

In existing research, unrealistic assumptions are often made about the reliability of wireless communica-

tions, such as assuming perfect transmission within a given radius. Prior research has shown that imper-

fect communication results in swarm behaviours breaking down [12], and so it is therefore not always

appropriate to simply ignore the communications medium and rely on TCP to transmit data ‘eventually’.

The MCS system model has been applied to industrial wireless communications [16] to show that

such an approach can give more reliable timing bounds by adapting the network routing based on the

system’s criticality level. This work provides better timing bounds, but is restricted to considering the

communications layer only.

Our previous work has argued for the use of an MCS wireless protocol in swarm robotics applica-

tions [13]. The system initially operates in LO criticality mode, and if the level of successful message

transmissions degrades past some threshold this is detected and the network switches to HI criticality

mode. The result of this change is typically to drop or deprioritise less important traffic. While this

allows the application designer to preserve some behavioural elements in the presence of partial network

degradation, it is inherently limited to preserving a subset of the full behaviour, and will eventually fail

if network conditions continue to degrade.

The AirTight protocol [3] considered in that work, being purely a point-to-point protocol, is imprac-

tical for real swarm robotics applications. We therefore introduce a model (Section 4) and simulation

implementation (Section 5) for a new protocol that can provide mixed criticality behaviour over broadcast

transmissions.

The work in this paper extends this idea to consider the how the application’s overall behaviour can

adapt to criticality. Specifically, we enable an application to observe the network layer’s criticality level,

so that the application can modify its own behaviour in response to current network conditions (Sec-

tion 6.1).

4 Communication Model

This paper argues for a closer integration of an application implementation with a mixed-criticality net-

work MAC layer, specifically by allowing the application to be aware of the MAC layer’s current crit-

icality mode. This allows the application to detect when the network is no longer able to guarantee

reliable message delivery due to communication faults, enabling it to adjust its behaviour to prevent

further degradation. We compare the effect allowing a robot to use this criticality mode information to

locally adjust its cohesion factor against simply using a static cohesion factor, as described in Section

6.1.

We consider a network of N homogeneous robot nodes in which all transmissions are assumed to be

broadcasts that should reliably reach each other node. The network provides multiple buffers of config-

urable priority and criticality such that the application designer can determine the order of transmissions.

In each transmission slot, the node chooses to transmit the first message from the highest priority non-

empty buffer at, or above, the current criticality level.



74 Adaptive Application Behaviour for Robot Swarms using Mixed-Criticality

The network layer observes the number of “failed” transmissions, defined as transmissions after

which it cannot prove that all nodes have received its last message. If the number of failed transmis-

sions within a busy-period exceed a predefined threshold, the network switches to HI criticality mode.

Messages in LO criticality buffers are discarded if the node enters HI criticality mode. Time sensitive

messages in HI criticality buffers can optionally be assigned a maximum time-to-live (TTL), such that

they expire and are not retransmitted after a given time period has elapsed since they were first queued.

5 Communication Implementation

In order to implement the behaviour described by the model in Section 4, we introduce an implementation

of AirTight [8] modified to use broadcast transmission rather than point-to-point links. AirTight is a slot-

based real-time, mixed criticality protocol which can guarantee the time-sensitive transmission of a set

of traffic flows using ahead of time analysis under a given fault rate assumption.

The network runs using time-division multiplexing over 10ms time slots. There is a periodic slot

table assigned a priori, such that the slot table is of length N and each node has exactly one exclusive

transmission slot. It is assumed that background clock synchronisation takes place such that nodes agree

on the current slot.

Each node maintains a bit-field of length N−1, where each bit encodes whether the node successfully

received a transmission in the last occurrence of the corresponding slot in the slot table (excluding the

node’s own transmission slot). This bit-field is included in the header of each transmission as a type of

delayed acknowledgement, such that each receiving node can determine if its own last transmission was

received by the sender.

For each transmission buffer, the node maintains a further bit-field of length N −1 in which each bit

encodes whether confirmation of successful delivery has been received from a corresponding other node.

Upon reception of a frame, a node can thereby set the transmitting node’s bit in its last transmission

buffer’s bitfield if the received header indicates that the transmission was received. Once all bits have

been set, the message at the head of the buffer has been delivered to all other nodes. The message can

then be removed from the buffer and the bit-field is cleared.

The node keeps two counters: a counter of the length of the current busy-period, and a counter

of the number of retransmissions. The busy-period counter is incremented on all transmissions, whilst

the retransmission counter is incremented whenever the node rebroadcasts a frame that had previously

been transmitted. If the number of retransmissions exceeds a given threshold, the node switches to HI

criticality mode.

During its assigned transmission slot, a node broadcasts a single frame from the highest priority non-

empty buffer at or above the current criticality level. If no such frame exists the counters are reset and,

if the node was in HI criticality mode, it switches back to LO. The node then broadcasts a no-op frame

such that the bit-field used for delayed acknowledgements is always transmitted. The real-time timing

analysis of this implementation is future work but can be based on the structure of the original AirTight

analysis.

The implementation of the simulation plugin, communications layer, and other artefacts associated

with this paper can be found in our code repository 1.

1https://github.com/yorkrobotlab/argos3-airtight



S. Signer & I. Gray 75

6 Exploration Application

We consider an autonomous wireless swarm robotics platform in which a swarm of robots should collab-

orate to explore an unknown area. The environment is partitioned into a two-dimensional grid. Robots

should visit each cell in the grid and detect if there is an object present in that cell, building a map of

clear/occupied cells in the area. It is assumed that obstacles are stationary, such that it is unimportant

when a robots visits the cell, or whether a cell is visited multiple times by one or more robots. Each

robot has its own local copy of the map, which it should complete for all accessible cells2. Robots can

communicate the sensed values for a given cell over the network, allowing other robots to insert this

value into their map without needing to visit the cell.

For a concrete instantiation we consider a set of 10 Pi-Puck [9] robots exploring a 6x6m grid of

10x10cm square cells. Pi-Puck robots only have simple infrared range-finder sensors that determine the

distance to the closest object within a short range, but are unable to determine the nature of any detected

object. Therefore, to avoid falsely detecting other robots as an obstacle in the environment, robots must

maintain a minimum separation. Each robot is assumed to be able to determine its own location, which it

must communicate to the other robots to avoid such near-collisions. Robots cannot store their complete

location history, so they cannot retrospectively determine that incorrect data may have been sensed where

position messages have been lost or delayed. These position messages are therefore intuitively subject

to soft real-time constraints, since robots must learn the positions of other robots before the minimum

separation distance is violated.

The robot behaviour is loosely inspired by an existing algorithm [14], but adapted to the much simpler

Pi-Puck robots and to much reduced communication ability. It is implemented by picking and driving

towards a target cell, which is always chosen as one of the nine cells within a 3x3 grid centred on the

robot’s current position. A new target cell is chosen once the current target is reached, or the robot

encounters an obstacle such that it deems the current target to be unreachable. The target cell is selected

as the cell for which the sum of the following weights results in the smallest value.

• Diagonal movements are assigned a weight of +1.

• The cell the robot is currently in is assigned a linearly increasing weight the longer it remains in

that cell, and the cell it was in immediately previously is assigned a weight of +1.

• An avoidance score of +1000 if the cell is known to contain an obstacle.

• An attraction score of -10 if it is an unexplored cell.

• A separation score of 400000, 200000, 100000, 4, 1, 0.25, or 0.1 respectively if the distance to the

closest target cell of another robot, counted as a number of cells, between 0 and 6.

• An alignment score, given by the dot product of the robot’s forwards vector and the vector from

it’s current position to the potential target.

• An attraction score equal to the distance to the closest reachable unexplored cell, counted as a

number of cells.

• Optionally, a cohesion force of 8d3, where d is the distance to the computed centroid of all robots

using the most recent position information the robot has received. This force is applied according

to the rules defined in Section 6.1.

2The positioning of obstacles in the environment may render some cells inaccessible.



76 Adaptive Application Behaviour for Robot Swarms using Mixed-Criticality

6.1 Robot Cohesion

Figure 1: Visualisation of exploration state after 95s when applying constant cohesion (left) compared

with no cohesion (right) under perfect network conditions. Explored cells are shown in grey if empty or

black if containing/bordering an obstacle; unexplored cells are shown in red when bordering explored

cells, else in green.

The effect of adding a cohesion element to the target cell selection depends on the environmental

factors encountered by the robots. Under perfect communication, robot cohesion reduces the overall

application performance. This can be intuitively understood by considering that robots that disperse

maximally will not block each other and can greedily explore new cells. The closer the robots are pulled

together, the more often robots may need to change direction (for example by revisiting already explored

cells) in order to avoid violating the minimum separation constraint. As shown in Figure 1, this may

result in robots towards the rear of a group being surrounded by already explored cells.

With a communication model that deteriorates with distance, the performance of a solution where

robots disperse decreases, since robots are unable to receive the sensing information of other robots.

In extreme cases, this could effectively result in each robot needing to explore the entire area. There

is therefore a trade-off in which some amount cohesion is useful to preserve communication, but too

much cohesion decreases performance by limiting the exploration ability. The optimal level of cohesion

depends on the properties of the wireless medium, which in a real scenario may not be known a priori.

In this paper, we argue for application adaptation based on the state of the network, by applying

cohesion weighting on target cell selection using a mixed-criticality approach. While the network layer

is in LO criticality mode the robots can disperse to maximise their exploration potential, before being

pulled back towards each other if/when the network changes to HI criticality mode. Once the network

has recovered, the robots can then resume exploring. This results in an equilibrium that allows the robots

to adapt their behaviour to the encountered conditions. We compare the effects of the following four

ways of applying the cohesion weighting:

• No cohesion: The cohesion weight is completely disabled.

• Constant cohesion: A cohesion weight is always applied.

• Half cohesion: The cohesion weight is always applied but is computed using half of the true

centroid distance.

• Mixed criticality: The application applies a cohesion weighting when the network protocol has

been in HI criticality mode at any point within the last three seconds.



S. Signer & I. Gray 77

Figure 2: The running “physicalised simulation” of an earlier experiment on the Pi-Puck robots. The

simulation shows the LED synchronisation breaking down as the robot separation increases.

7 Simulation Setup

7.1 Simulation Framework

Our simulation setup is based on the popular ARGoS robot simulator [11]. An extended version of a

custom networking plugin [13] implements the network simulation capabilities. Each simulation step

is assumed to correspond to a network level transmission slot in which a robot can attempt to send or

receive a single message. A simulated transmission model controls which messages are successfully

received.

In order to partially validate our simulation framework, we have implemented a “physicalised sim-

ulation” of our earlier experiments using real Pi-Puck robots (Figure 2). By this we mean an imple-

mentation on physical robots, but where some key components are still simulated. Specifically, we use

Pi-Puck robots communicating over IEEE 802.15.4 provided by XBee modules, whilst simulating the

packet loss by artifically discarding some messages according to the packet delivery rates provided by

the transmission model. Since this still relies on a simulated transmission model, the results between

the full simulation and physicalised simulation are very similar. Due to the logistical challenges of run-

ning larger scale experiments with physical robots, we have not yet implemented such a physicalised

simulation for the current experiments.

7.2 Robot Configuration

Each robot is configured with two network buffers, for position messages and cell status message. A

position message contains the robots target location, while a cell status message encodes a single cell

to be either clear or containing an obstacle. Since the focus of these experiments is on the effect of

application level behaviour changes based on the network criticality level, we configure both buffers as

HI criticality to prevent criticality changes having an impact at the network level. Positional data is time

sensitive to ensure the minimum robot separation is preserved, and so this buffer is configured with the

higher priority. Positional messages are set to be retried for a maximum of 0.8s to prevent old position

data filling up transmission buffers, whilst cell status messages are set not to expire since these are not

time sensitive.



78 Adaptive Application Behaviour for Robot Swarms using Mixed-Criticality

7.3 Arena Generation

We randomly generate 100 simulated arenas, comparing the exploration performance of each cohesion

and transmission model configuration combination across these arenas. The robots are placed first, by

distributing them within a 1.8m by 1.8m square centred around a random point in the area, whilst en-

suring each robot placed at least 30cm away from the next closest robot. We then distribute up to 17

obstacles across the arena, again requiring a minimum separation from each other obstacle and each

robot starting position.

7.4 Transmission Model

Packet delivery is determined by a simulated transmission model in which successful or unsuccessful

delivery is determined independently for each transmission and each potential receiving node. The packet

delivery rate is assumed to be fixed to a maximum of 95% for distance of less than 0.5m, after which

the packet delivery rate is inversely proportional to the square distance between the nodes, subject to an

additional constant scaling factor (k). By modifying this scaling factor, the effect of the packet delivery

rate on the application behaviour can be observed.

PDR =
0.95

1+(k ·X)2

Where:

X =

{

0 d ≤ 0.5

d −0.5 d > 0.5

0 1 2 3 4 5 6 7 8
Distance [m]

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

et
 D

el
iv

er
y 

Ra
te

k=
k= ¼
k= ½
k= 1

Figure 3: Transmission model defining packet reception probability in relation to distance, for scaling

factors k = 1
8
, k = 1

4
, k = 1

2
, and k = 1.

This is a simple model that cannot capture the true complexity of real-world wireless communica-

tions. Prior research [1, 4] has shown that observed packet delivery rates do not correlate as strongly

with distance in real-world experiments. Nonetheless, observed results broadly show that there exists a

safe distance cutoff up to which the communication is generally reliable. Baccour et al. describes this as

the “connected” region [1], which is followed by “transitional” and “disconnected” regions where packet

delivery first becomes intermittent and then mostly unsuccessful. This fits well with the mixed criticality

system model, which inherently assumes that the system will operate under its optimistic assumptions

most of the time, before encountering some kind of state change that requires rectification.

The implementation here does not rely on specific details of the transmission model, and the criti-

cality response merely assumes that moving closer to other nodes is likely to improve packet reception

rates. We therefore believe the simulation results should be broadly applicable regardless of the selected

transmission model.



S. Signer & I. Gray 79

8 Results

0 200 400 600 800 1000 1200
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Coverage over Time for Transmission Model k=

No Cohesion
Half Cohesion

Constant Cohesion
Mixed Criticality

0 200 400 600 800 1000 1200
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Coverage over Time for Transmission Model k= ¼

No Cohesion
Half Cohesion

Constant Cohesion
Mixed Criticality

Figure 4: Coverage over time across the four cohesion modes for transmission model scaling factors k =
1
8

and k = 1
4
. Line shows median value; shaded region shows interquartile range across 100 simulation

runs.

With the transmission model scaling factor configured for the most gradual dropoff in packet delivery

rates, k = 1
8
, the simulation results in Figure 4 shows that not applying a cohesion force results in the

highest performance. At this low dropoff rate the robots can adequately communicate across the entire

arena such that there is no advantage to moving as a cohesive group. The mixed criticality configuration

can spend a significant proportion of its runtime in LO criticality mode (where no cohesion is applied)

and thus displays better performance than the half cohesion or constant cohesion configurations.

When the transmission model scaling factor is increased to k = 1
4

a maximal dispersion of the nodes

begins to impede communication between the nodes, creating an advantage to applying some level of

cohesion. The mixed criticality and half cohesion configurations perform similarly to each other. The

no cohesion configuration starts to suffer from the aforementioned communication issues, while the

performance of the constant cohesion configuration is still reduced from applying a stronger cohesive

force than necessary.

0 200 400 600 800 1000 1200
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Coverage over Time for Transmission Model k= ½

No Cohesion
Half Cohesion

Constant Cohesion
Mixed Criticality

0 200 400 600 800 1000 1200
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Coverage over Time for Transmission Model k= 1

No Cohesion
Half Cohesion

Constant Cohesion
Mixed Criticality

Figure 5: Coverage over time across the four cohesion modes for transmission model scaling factors

k = 1
2

and k = 1. Line shows median value; shaded region shows interquartile range across 100 simulation

runs.



80 Adaptive Application Behaviour for Robot Swarms using Mixed-Criticality

A further increase of the transmission model scaling factor to k = 1
2
, shown in Figure 5, causes the

no cohesion configuration to break down. The performance of the half cohesion configuration is also

decreased, showing a fairly wide spread depending on runtime circumstances. The mixed criticality

configuration is able to adapt to the conditions, yielding the highest performance for this transmission

model.

At the maximum tested dropoff rate, with the transmission model scaling factor set to k = 1, the

mixed criticality mode and constant cohesion modes perform very similarly, with the low packet deliv-

ery rates causing the mixed criticality configuration to spend large proportions of its time in HI criticality

mode where cohesion is applied. The half cohesion and no cohesion modes both show poor performance,

with the half cohesion mode no longer resulting in a sufficiently tight formation to maintain communi-

cation between the nodes.

The constant cohesion configuration is mostly unaffected by the transmission model’s scaling factor.

While this results in comparatively good performance when communications are limited to short ranges,

it cannot take advantage of long communication ranges under good radio conditions. The half cohesion

configuration provides comparatively good performance for the two middling transmission models, but

neither takes full advantage of long communication ranges nor does it cope with very short communica-

tion ranges.

The mixed criticality mode is better able to adjust to different communication dropoff rates, and

can do so in a way that does not require the application layer to understand the specific issues that

are happening at the networking layer. While a static cohesion factor can provide similar levels of

performance for any given transmission model, this requires the transmission characteristics to be known

beforehand and to remain static. For a real-world application this is unlikely to be the case. A static

cohesion factor therefore requires the application designer to make a tradeoff between performance under

good networking conditions and reliability under network degradation. A mixed criticality approach

avoids this tradeoff by allowing the application to observe the true conditions at runtime.

9 Limitations and Future Work

The communication protocol presented in this paper is developed to study the effect of adjusting appli-

cation behaviour based on a network layer criticality level. Compared to a complete protocol it is lacking

in several aspects, most importantly the absence of formal timing analysis that can provide guarantees on

the network performance. In future work we intend to develop a real-time mixed-criticality protocol that

supports network layer and application integration while being suitable for swarm robotics and providing

such timing guarantees.

We also intend to further study the two-way relationship between application behaviour and network

MAC layer. In the implementation provided in this paper, the application is aware of the current network

layer criticality level, and has been programmed that cohesion should be applied only when the network

layer is in HI criticality mode. Beyond this simple rule, however, it could be imagined a more intelligent

application could attempt to predict the effect of its future behaviour on the network. This could allow

the application to either modify its planned behaviour to avoid network issues, or warn the network layer

such that it could prepare for a drop in packet delivery rates.



S. Signer & I. Gray 81

10 Conclusion

In this paper we have presented a mixed-criticality approach to swarm robotics application behaviour.

Mixed criticality is widely applied in real-time CPU scheduling and network protocols, but has so far not

been widely applied to swarm robotics. The parameters controlling a robot’s behaviour may have dif-

ferent optimal values depending on the conditions encountered by the robot. Communication conditions

at runtime can vary from those expected by the application designer in ways that are often opaque to

the application, placing stress on the network and leading to a loss of real-time performance. A mixed-

criticality approach allows a systematic way for the application to both define what is considered of

higher and lower importance, and then respond in a way that prioritises resources appropriately.

Our simulation results show that a swarm robotics application using a mixed-criticality approach to

adjust its behaviour to match the encountered conditions can be made more robust than one that uses a

static configuration. In future work we intend to develop mixed-criticality network protocols targeted at

swarm robotics applications and further study the integration of network and application behaviour.

References

[1] Nouha Baccour, Anis Koubâa, Maissa Ben Jamâa, Denis do Rosário, Habib Youssef, Mário Alves & Lean-

dro B. Becker (2011): RadiaLE: A framework for designing and assessing link quality estimators in wireless

sensor networks. Ad Hoc Networks 9(7), pp. 1165–1185, doi:10.1016/j.adhoc.2011.01.006.

[2] Jan Dyre Bjerknes & Alan FT Winfield (2013): On fault tolerance and scalability of swarm robotic systems.

In: Distributed Autonomous Robotic Systems: The 10th International Symposium, Springer, pp. 431–444,

doi:10.1007/978-3-642-32723-0_31.

[3] Alan Burns, James Harbin, Leandro Indrusiak, Iain Bate, Rob Davis & David Griffin (2018): AirTight: A

Resilient Wireless Communication Protocol for Mixed-Criticality Systems. In: 2018 IEEE 24th Interna-

tional Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 65–75,

doi:10.1109/RTCSA.2018.00017.

[4] Alberto Cerpa, Naim Busek & Deborah Estrin (2003): SCALE: A tool for Simple Connectivity Assessment in

Lossy Environments. Technical Report. Available at https://escholarship.org/uc/item/2g49z78g.

[5] International Electrotechnical Commission et al. (2016): Industrial Networks—Wireless Communication Net-

work and Communication Profiles—WirelessHART (IEC 62591: 2016). IEC: Geneva, Switzerland 3, pp.

1–1043.

[6] Federico Ferrari, Marco Zimmerling, Luca Mottola & Lothar Thiele (2012): Low-Power Wireless Bus. In:

Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, SenSys ’12, Association

for Computing Machinery, New York, NY, USA, p. 1–14, doi:10.1145/2426656.2426658.

[7] Federico Ferrari, Marco Zimmerling, Lothar Thiele & Olga Saukh (2011): Efficient network flooding and

time synchronization with Glossy. In: Proceedings of the 10th ACM/IEEE International Conference on

Information Processing in Sensor Networks, pp. 73–84.

[8] J. Harbin, A. Burns, R. I. Davis, L. S. Indrusiak, I. Bate & D. Griffin (2019): The AirTight Protocol for Mixed

Criticality Wireless CPS. ACM Trans. Cyber-Phys. Syst. 4(2), doi:10.1145/3362987.

[9] Alan G. Millard, Russell Joyce, James A. Hilder, Cristian Fleşeriu, Leonard Newbrook, Wei Li, Liam J.

McDaid & David M. Halliday (2017): The Pi-puck extension board: A raspberry Pi interface for the e-puck

robot platform. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.

741–748, doi:10.1109/IROS.2017.8202233.

[10] Carlo Pinciroli & Giovanni Beltrame (2016): Buzz: An extensible programming language for heterogeneous

swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

IEEE, pp. 3794–3800, doi:10.1109/IROS.2016.7759558.



82 Adaptive Application Behaviour for Robot Swarms using Mixed-Criticality

[11] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele Brambilla, Nithin

Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gambardella

& Marco Dorigo (2012): ARGoS: a Modular, Parallel, Multi-Engine Simulator for Multi-Robot Systems.

Swarm Intelligence 6(4), pp. 271–295, doi:10.1007/s11721-012-0072-5.

[12] Mark Selden, Jason Zhou, Felipe Campos, Nathan Lambert, Daniel Drew & Kristofer S. J. Pister (2021):

BotNet: A Simulator for Studying the Effects of Accurate Communication Models on Multi-Agent and Swarm

Control. In: 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 101–109,

doi:10.1109/MRS50823.2021.9620611.

[13] Sven Signer, Alan G. Millard & Ian Gray (2022): Mixed-Criticality Wireless Communication for Robot

Swarms. In: Proceedings of the 9th International Workshop on Mixed Criticality Systems, pp. 20–25. Avail-

able at https://wmc2022.github.io/assets/WMC_2022_Proceedings.pdf.

[14] Vu Phi Tran, Matthew A. Garratt, Kathryn Kasmarik, Sreenatha G. Anavatti & Shadi Abpeikar (2022):

Frontier-led swarming: Robust multi-robot coverage of unknown environments. Swarm and Evolutionary

Computation 75, p. 101171, doi:10.1016/j.swevo.2022.101171.

[15] Steve Vestal (2007): Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution

Time Assurance. In: 28th IEEE International Real-Time Systems Symposium (RTSS 2007), pp. 239–243,

doi:10.1109/RTSS.2007.47.

[16] Changqing Xia, Xi Jin, Linghe Kong & Peng Zeng (2017): Bounding the Demand of Mixed-Criticality

Industrial Wireless Sensor Networks. IEEE Access 5, pp. 7505–7516, doi:10.1109/ACCESS.2017.2654483.

[17] Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari & Lothar Thiele (2017): Adaptive

Real-Time Communication for Wireless Cyber-Physical Systems. ACM Trans. Cyber-Phys. Syst. 1(2),

doi:10.1145/3012005.


	Introduction
	Application Adaptivity and Mixed Criticality Systems
	Prior Work
	Communication Model
	Communication Implementation
	Exploration Application
	Robot Cohesion

	Simulation Setup
	Simulation Framework
	Robot Configuration
	Arena Generation
	Transmission Model

	Results
	Limitations and Future Work
	Conclusion

