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Trapped lee waves, and resultant turbulent rotors downstream, present a haz-
ard for aviation and land-based transport. Though high-resolution numerical
weather prediction models can represent such phenomena, there is currently
no simple and reliable automated method for detecting the extent and char-
acteristics of these waves in model output. Spectral transform methods have
traditionally been used to detect and characterise regions of wave activity in
model and observational data; however, these methods can be slow and have
their limitations. Machine-learning (ML) techniques offer a new and potentially
fruitful method of tackling this problem. We demonstrate that a deep-learning
model can be trained to accurately recognise and label coherent regions of
lee waves from vertical velocity data on a single level from a high-resolution
numerical weather prediction (NWP) model. Using transfer learning, wave char-
acteristics (wavelength, orientation, and amplitude) can be extracted from the
trained segmentation model. The use of synthetic wave fields with prescribed
wave characteristics makes this transfer learning possible without the need to
characterise real complex wave fields. Addition of noise to the synthetic data
makes the models more robust when applied to more complex and noisy NWP
data. The collection of trained models produced provides a valuable tool to inves-
tigate the prevalence and nature of lee wave activity, as well as a new way for
forecasters to detect resolved waves. The deep-learning model was more capable
and quicker at detecting and characterising lee waves than a spectral technique
was. This work is just one example of how already established ML techniques
can be used to detect and characterise complex weather phenomena from NWP
model output and observational data, and how the careful use of synthetic data
can reduce the requirements for large volumes of hand-labelled training data for
ML models.
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1 INTRODUCTION

Deep learning, a type of machine learning (ML), is the dis-
cipline of training deep neural networks to autonomously
extract nonlinear relationships between large quantities
of data to produce a given prediction. One such task that
deep learning can be applied to is segmentation; that is,
an image classification problem where each pixel within
an image is classified as belonging to a specific predefined
class. An example of a deep- learning architecture for such
segmentation is a U-Net, a type of convolutional neural
network first described for the segmentation of medical
imagery, for cell detection, and shape measurement (Ron-
neberger et al., 2015). U-Nets are used for pixelwise pre-
dictions that can take the form of segmentation masks
(Boolean 0/1) and classification (discrete) and regression
(continuous) problems.

Since its introduction, the U-Net architecture has been
used for image segmentation problems in a wide range of
fields, including within Earth sciences. Examples include
a land-cover classification from high-resolution satellite
imagery over Beijing, identifying regions of buildings,
water, roads, vegetation, and a separate classification for
shadows, and “other” (Zhang et al., 2018), recognition
of regions of clouds within photographs of the sky (Dev
et al., 2019), and estimation of gravity-wave momentum
fluxes at 100 hPa from low-resolution winds, temperature,
and specific humidity at lower levels in the atmosphere
using a 29-year reanalysis data set Matsuoka et al. (2020).

By using deep-learning methods to automate tasks tra-
ditionally only capable of being undertaken by humans
or complex algorithms, ML models can be used on
unseen data to analyse and identify features, such as haz-
ardous weather phenomena. In addition, the application
of deep-learning models to a large dataset—such as an
archive of numerical weather prediction (NWP) model
output—provides the opportunity to improve the under-
standing of weather phenomena by being able to analyse
large datasets for cases of interest, a task that would be
unfeasible by hand. Meteorological data, of which there
are often large volumes on long time-scales, offer a prime
data source for typically data-hungry ML techniques.

Trapped lee waves are one potential application where
features are often difficult to identify by traditional means
and where deep-learning methods offer the potential for
new insights. Mountain waves (orographically generated
internal gravity waves) are caused by the forced ascent
of stably stratified air over orography (Durran, 2003).
Depending on the vertical atmospheric profile, the waves
may become vertically trapped within a layer of the
atmosphere and can propagate horizontally in excess of
100 km beyond the mountain with horizontal wavelengths
typically between 5 and 35 km (American Meteorological

Society, 2012; Ralph et al., 1997). These types of mountain
waves are known as trapped lee waves (or lee waves for
short).

Lee waves with a sufficiently large amplitude can
induce strong downslope winds from topography and
flow separation, where air close to the surface is trans-
ported aloft (Vosper et al., 2006). The flow separation
causes low-level turbulent vortices near the surface. These
regions of strong turbulence, where the flow at low lev-
els may be reversed compared with the background flow,
are called rotors (Doyle and Durran, 2002). The turbu-
lence and large wind shears associated with rotors on the
lee side of a mountain are particularly hazardous for air-
craft, especially during take-off and landing (Darby and
Poulos, 2006). Gusts associated with waves can be prob-
lematic for road transport, and Vosper et al. (2013) noted
that a number of wind-related incidents to high-sided vehi-
cles have occurred in the lee side of the Pennine Hills in
northern England. The turbulence that caused the crash
of a commercial aeroplane over Mount Fuji in 1966 was
attributed to mountain waves (International Civil Avia-
tion Organization, 1968). Pilots need to be aware of lee
waves and rotors: Ágústsson and Ólafsson (2014) discussed
the severe turbulence experienced by an aircraft near Ice-
land in 2008, and the occurrence of strong turbulence
hazardous to air traffic at Mount Pleasant Airfield on
the Falkland Islands motivated the rotor study by Mobbs
et al. (2005). Hence, forecasting centres are interested in
identifying and communicating these risks accurately.

Lee waves can sometimes be observed during daylight
hours in visual satellite imagery, with characteristic striped
cloud patterns, caused by condensation of water vapour
in air that has risen and cooled in the peak of the wave.
When clouds are not present, or at night, visual satellite
imagery cannot be used to observe lee waves. In place
of using satellite imagery to detect the presence of grav-
ity waves, these waves can be identified in output data
from NWP models run at high enough spatial resolu-
tion to resolve the waves. For example, the Met Office’s
UKV model configuration (a high-resolution deterministic
NWP model over the UK, which has a horizontal reso-
lution of ∼1.5 km in mid-latitudes; Tang et al., 2013) has
resolved lee waves since the dynamical core was upgraded
in 2015, with improved numerical stability allowing the
use of “reduced off-centring in the temporal discretiza-
tion” (Elvidge et al., 2017). Hence, the model more readily
supports short wavelength gravity waves, without the need
for “computationally expensive dynamics settings” (Sheri-
dan et al., 2017).

Lee waves are visible in the model output from a range
of fields; however, vertical velocity just above the height
of the topography is particularly helpful, as the back-
ground values of vertical velocity of atmospheric motion
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F I G U R E 1 Example of the UKV 700 hPa vertical velocity
analysis data, at 0000 UTC on February 1, 2022. The dashed box
shows the region used for training data. Several lee wave patterns
over Ireland, Wales, northern England, and Scotland can be
discerned by eye. These regions are labelled to aid the reader
unfamiliar with the geography. [Colour figure can be viewed at
wileyonlinelibrary.com]

not associated with gravity waves are typically small and so
the wave signal is clearer. Figure 1 shows an example of the
UKV vertical velocity model output at 700 hPa over the UK
where lee waves have been resolved. The striped vertical
velocity pattern associated with waves, and their dominant
orientation and wavelength, can be seen by eye, but there is
also no operational method to automatically retrieve these
characteristics from the NWP output. Typically, spectral
techniques are used to detect and measure wave charac-
teristics, such as the Fourier transform, wavelet transform
(e.g., Hindley et al., 2015), or the S-transform (e.g., Hindley
et al., 2019; Stockwell et al., 1996). However, these meth-
ods assume an idealised mathematical representation of
waves (such as planar, monochromatic waves) and cannot
acquire a knowledge of “real-world” wave characteristics,
where the physical scales, orientations, and frequencies of
waves may vary within one wave cycle. An ML method
to recognise and characterise the patterns of waves could
provide a powerful and computationally inexpensive tool
to post-process NWP output and remote-sensing observa-
tions for wave detection and characterisation. Knowledge
of the characteristics of lee waves, in forecasts and from
a climatological perspective, can help aid understanding
of the relationship between waves, the orography, and the
meteorology, as well as make it possible to build automatic
early-warning systems for rotor activity.

This work demonstrates the application of a U-Net
deep-learning model to recognise and segment regions of
lee wave activity from high-resolution NWP model output.

The trained model is then retrained using synthetic data
to diagnose characteristics about the real waves seen in
the UKV data. An overview of the methodology is given
in Section 2; the results are presented in Section 3; and
conclusions are given in Section 4.

2 METHODOLOGY

Previous work by Sheridan et al. (2017) has shown that the
characteristics and impacts of lee waves in the operational
Met Office UKV model is in agreement with observations.
Using NWP model data provides spatially dense and con-
tinuous coverage over a long time period, regardless of
meteorological or daylight conditions, unlike the use of
satellite imagery to observe lee waves from wave clouds.
Visible or infrared satellite imagery is an unreliable indica-
tor of lee waves because it requires cloud to be coincident
with lee wave motion; and even then, higher level cloud
may mask the lee wave cloud patterns. By using NWP
model output, most lee wave cases can be identified with-
out biasing the sample to conditions with suitable cloud
cover.

The approach used here to detect lee waves using a
neural network relied on having some explicit “truth” data
as a target. This is known as supervised learning. In this
case, the truth data were a hand-labelled mask of each
vertical velocity snapshot containing the location of wave
packets that the ML model tries to predict. Though human
labellers are good at differentiating between waves and
other sources of vertical motion (e.g., convection), pre-
cisely identifying where the boundary of the wave packets
is is difficult by eye when labelling the data. For example,
in Figure 1, it is not a trivial task to decide for every
pixel, especially those on the edge of a wave region, which
pixels contain a wave and which do not. Therefore, it is
important to assess whether the trained neural network
has learned to recognise what lee waves look like rather
than learning the precise boundaries of wave regions in the
hand-labelled masks.

2.1 Data

The Met Office have archived the output of their opera-
tional UKV model since 2018, and a subset of this archive
of hourly data was used to train and test a model to learn
to identify and characterise the patterns of lee waves. Ver-
tical velocity analysis data over Britain and Ireland on the
700 hPa surface from the Met Office UKV output were
obtained from January 1, 2018, until June 30, 2022, and
data from January, February, and July 2021 were labelled
by hand. The 700 hPa data have been used before for lee
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(a) (b)

F I G U R E 2 Overview of labelling process for an example of test-set data. (a) Vertical velocity data without coastline overlaid, and
hand-drawn regions of wave activity outlined. (b) Produced segmentation mask: white (0), no waves; black (1), waves. [Colour figure can be
viewed at wileyonlinelibrary.com]

wave detection from model data over the UK, such as by
Vosper et al. (2013). The 700 hPa surface is above the height
of the orography in the UK, and so incorrectly interpolated
values of vertical velocity within the data due to the cho-
sen pressure surface intersecting with the orography are
avoided.

The model data were regridded from their native
variable-resolution grid—1.5 km on the inner domain and
4 km on the boundaries; details in Tang et al. (2013)—to a
2 km regular grid prior to archival. Although some detail
may have been lost in the regridding from 1.5 km to
2 km, characteristics such as wavelength were more eas-
ily diagnosed on a regular fixed-resolution grid than on a
variable-resolution grid. The concept of effective resolu-
tion suggests that at least six grid points are needed in order
to represent a wave, and so waves with wavelength over
12 km should be detectable (Sheridan et al., 2017).

The data were split into sets, one used for training and
the other to test the skill of the trained model after training.
The training and test vertical velocity slices were labelled
to produce binary segmentation masks with 0s for pix-
els with no waves, and 1s for pixels where there was a
wave. The wider forecast area was cropped to 512 × 512 px2

(1,024 × 1,024 km2) to create square training data, but the
cropped area still contained the entirety of Britain and
Ireland (shown by the dashed box in Figure 1). Binary
segmentation masks of 512 × 512 px2 were created using
a custom Jupyter notebook utilising Matplotlib interactive
notebook functionality. A 512 × 512 px2 array containing 0
everywhere was created. Then, the human labeller drew

around the regions they wished to label as a wave (regions
in red in Figure 2a). Pixels within each hand-drawn shape
(closed by drawing a line from the last point to the first)
were then changed to 1 from 0 in the mask array. When
done, the binary mask containing 0s for regions with
no waves and 1s for regions containing waves was saved
(Figure 2b).

Training data comprised pairs of 335 vertical velocity
cross-sections at 700 hPa from January 1–18, 2021, cov-
ering different times of day, and corresponding binary
segmentation masks. Some examples containing no wave
activity were excluded from the training set so that the
number of samples with and without waves was similar, in
order not to encourage the model to never predict waves.
Despite these measures, there was still a class imbalance
in the training set where 10% of pixels were labelled as
waves. Two test datasets were created, one from February
2021 and one from July 2021. These test sets contained
vertical velocity cross-sections and segmentation masks
from 0900 UTC each day within the respective month.
The purpose of the July set was to check that the trained
model had not learned to identify waves only within win-
ter months. Some 16% of pixels were labelled as waves in
the February test set, and 3% of pixels were labelled as
waves in the July test set. Although there could be some
variation between months on the range and scale of waves,
this should be unimportant because the model was being
trained to recognise the pattern of waves.

For wave characteristic prediction, creating a
dataset from model output with pixelwise true wave
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CONEY et al. 217

F I G U R E 3 Example synthetic
normalised vertical velocity input data
generated for lee wave characteristic
learning, at different standard deviations of
normally distributed noise and output wave
characteristics that the model was tasked to
predict. For wavelength and orientation
learning, the amplitude was set to 1. For
amplitude learning, this value varied
between 1 and 5. [Colour figure can be
viewed at wileyonlinelibrary.com]

m
·s

characteristics would be exceedingly difficult, and per-
haps impossible to do correctly. This is often a challenge
in supervised learning applications. To work around this,
synthetic data were created with explicitly known wave-
length, orientation, and amplitude, with characteristics
selected to mimic the gravity waves seen by eye in the
UKV data.

The synthetic data were generated by placing
non-intersecting ellipses of differing sizes at random loca-
tions within an image of 512 × 512 px2 (Denby, 2023).
Each ellipse contained a Gaussian wave packet of reg-
ular cosine waves with an orientation chosen from a
uniform distribution between 0◦ and 180◦ to ensure all
orientations were covered equally. Wavelength was cho-
sen at random from a chi-squared distribution with two
degrees of freedom. Wavelengths up to 80 km were used,
so the synthetic data more than spanned typical lee wave
wavelengths of 5–35 km (American Meteorological Soci-
ety, 2012), with the chi-squared distribution ensuring that
there were more examples of waves in the typical range of
wavelengths than there were exceeding 35 km, and that
all wavelengths were positive. The amplitude decays to
the edge of the wave packets to simulate waves decaying,
as seen in the vertical velocity NWP model data. For each
example of synthetic data, a number of wave packets with
different orientations, amplitudes, and wavelengths were
produced. For wavelength and orientation prediction,
amplitudes were kept constant in all wave packets. For
amplitude prediction, synthetic wave amplitude varied in
the range 1–5 m⋅s−1, consistent with waves observed in
the UKV data.

Pixelwise random Gaussian noise from the normal dis-
tribution with mean zero and standard deviation 𝜎 was
also added to the data in order to train models that were
more robust to realistic gravity waves embedded alongside
other sources of vertical atmospheric motion. 𝜎 took val-
ues between 0 and 1. The noise array was then added to

the synthetic data to produce noisy data. Several examples
of the noisy data for 𝜎 = 0.25, 0.5, 1, and an example with-
out noise (𝜎 = 0) are shown in Figure 3. This ensured a
range of noisy data, from 𝜎 = 0 with no noise through to
𝜎 = 1 where the amplitude of the waves is the same as the
amplitude of the noise.

It is highly likely that, in reality, the non-wave sources
of vertical motion (“noise”) in the UKV data are correlated
to the waves. More complicated methods of approximating
this distribution in the UKV data may produce better syn-
thetic data, and better models; but, for simplicity, Gaussian
noise was used here.

2.2 Network architecture and model
training

The basis of the deep-learning models used here is the
U-Net, a type of neural network commonly used for seg-
mentation problems, which takes two-dimensional data
and makes pixelwise predictions. A U-Net consists of
two main parts, an encoder and a decoder. The encoder
(or backbone) can extract spatially complex patterns by
coarse-graining the input data with increasing depth in the
network and compositing learned features. The number
of channels (the scalar values at a single spatial loca-
tion) is increased through the encoder to maintain infor-
mation capacity, to account for the data being spatially
coarse-grained in the encoder. The decoder uses the pat-
terns extracted by the encoder and upsamples the data
while reducing the number of channels (decreasing the
depth), so that a prediction can be made for each pixel. In
addition, the upsampled data are combined with data from
the encoder at the same level (skip-connections). These
skip-connections allow the U-Net to retain high spatial
fidelity by combining the up-scaled values in the decoder
with more spatially dense values from the encoder. Finally,
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F I G U R E 4 Overview of the U-Nets
used. The encoder and decoder parts are
shown, as well as the head of the model for
making final predictions based on the
features extracted. The full model is
available in the Supporting Information.
[Colour figure can be viewed at
wileyonlinelibrary.com]

the head is where the remaining pixelwise learnt spa-
tial features are further manipulated through pixelwise
transforms to produce predictions per pixel.

The variation of the U-Net used here was the “Dy-
namic U-Net” implemented in the Python library fastai
(Howard and Gugger, 2020). This uses a model designed
to extract patterns from data (a Resnet34, pretrained on
the ImageNet dataset; Deng et al., 2009; He et al., 2016) as
an encoder, which means that the part of the model dedi-
cated to extracting patterns from data is already trained to
do this. Fastai is a wrapper for the Python deep-learning
library PyTorch (Paszke et al., 2019). Fastai allows an
approach to deep learning that is understandable and easy
to access for a user with limited experience with deep
learning, yet it still produces accurate deep-learning mod-
els. A simplified overview of the U-Net used in this study
is shown in Figure 4.

2.3 Segmentation

The segmentation model (referred to as SEGMODEL
from this point) takes the two-dimensional regridded
700 hPa vertical velocity field as an input and outputs a
two-dimensional Boolean mask of the same shape, con-
taining a prediction of where gravity waves are present.
Supervised learning was used to train SEGMODEL, and so
labelled data were needed, as described in Section 2.1. The
labelled training set was divided randomly into a train set
(80% of the data) and a validation set (20% of the data),
during training. This prevented overtraining by stopping
training while the trained model performed similarly on
the train and validation set. The test set was only used
to assess how well the trained SEGMODEL performed at
segmenting lee waves on data not used during training.

The training data were augmented using the built-in
fastai augmentation functions, including flipping, rotation

(up to 360◦ and a probability of 0.9 of any rotation being
applied), and zooming (up to 20× and probability of 0.5
of any zoom being applied) of the data. The vertical
velocity data were normalised to have a mean of 0 and
standard deviation of 1. Augmentation of the data min-
imises overfitting of the model during training (Shorten
and Khoshgoftaar, 2019). By augmenting the data, the
model was exposed to waves at a range of wavelengths and
orientations during training, beyond the original train-
ing data. For example, by rotating the lee waves data,
the model can learn waves at a variety of angles, not
just the waves in the typical southwesterly flow over the
UK. Zooming should allow the model to learn to recog-
nise waves of longer wavelengths than those available
in the training data. Waves are generated through the
same mechanism regardless of the orientation, so rotat-
ing the data during training should not affect learning
negatively.

Cross-entropy loss, which prefers models with a high
degree of confidence in their predictions, was used as the
loss function as it is well suited for Boolean prediction
problems such as this (Jadon, 2020), rather than other met-
rics such as the Jaccard score, used later for model evalua-
tion. To prevent overtraining, training continued until the
validation loss appeared to be increasing again, using the
built-in fastai early stopping callback, with an epoch win-
dow (patience) of five epochs. Once the SEGMODEL was
trained, its performance was assessed using the unseen test
dataset, consisting of 28 examples of vertical velocity data
and hand-labelled lee waves from February 2021 and 31
examples from July 2021.

2.4 Wave characteristics

Given that the neural network has learned to recognise
lee waves during training, then it should also have learned
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something about the wave characteristics. By fine-tuning
only the layers in the “head” on synthetic wave data with
known characteristics, a model can be produced that pre-
dicts a wave characteristic instead of a segmentation. This
is an efficient way of training networks to extract multiple
characteristics and, if successful, supports the hypothesis
that the original model was learning some properties of the
waves.

Three copies of the trained SEGMODEL were taken:
WLMODEL to predict wavelength; ORIENTMODEL to
predict wave orientation; and AMPMODEL to predict
wave amplitude. In each of the copies, the weights in the
encoder and decoder were frozen. Only the weights of
the layers in the “head” of the copies (labelled as such in
Figure 4), consisting of nonlinear scaling functions, 1 × 1
and 3 × 3 convolutional layers, were trained (fine-tuned)
on the synthetic data (see Section 2.1) to predict the
desired characteristic. In general, these layers in the
“head” transform U-Net feature vectors into predictions.
By freezing the weights of the spatial-feature-extracting
“encoder” in the model, the contextual information about
waves in UKV data that the SEGMODEL had learned was
retained.

2.4.1 Wavelength and orientation

The wavelength network WLMODEL was trained to pre-
dict the wavelength in kilometres, whereas the orientation
network ORIENTMODEL predicted the sine and cosine
of a wave’s orientation so that the orientation could be
recovered using the arctangent. By predicting the sine
and cosine of the orientation (the direction of wave prop-
agation, perpendicular to the wave-fronts) rather than
the wave direction in degrees, the discontinuity of angles
around 0◦ and 360◦ was avoided. Orientation was pre-
dicted in the range (−90◦,+90◦] because waves with ori-
entation 180◦ apart look identical. Lee waves are often
quasi-stationary, and even for propagating waves the direc-
tion and speed cannot be calculated with single time
snapshots of data. Since the wave characteristics were not
available in the UKV training data, synthetic data were
created to retrain these models, as outlined in Section 2.1.
We created 550 examples of data, with explicitly known
orientation and wavelength. We used 500 examples as
training data (with a 80%/20% train/validation split) and
an additional 50 examples were used as test data. In
a similar vein to training the SEGMODEL, the altered
models WLMODEL and ORIENTMODEL were trained
using the early stopping callback, with an epoch win-
dow (patience) of 5. The loss function used was the
mean-squared error, as these tasks are regression rather
than classification.

2.4.2 The S-transform

The neural-network-predicted wave characteristics (wave-
length, orientation, amplitude) were compared against
characteristics derived using an established spectral anal-
ysis technique: the one-dimensional S-transform (Stock-
well et al., 1996). The S-transform provides time–frequency
or distance–wavelength localisation of signals present in
input data and is thus ideally suited for the measurement
of gravity wave packets. The S-transform therefore pro-
vides an existing spectral technique with which to compare
the predictive skill of the neural networks, but note that
the S-transform measurements should not necessarily be
taken as “truth”. The S-transform is being used here as a
means of verifying that the ML models are producing wave
characteristics that are realistic and reasonable in line with
an existing technique for deriving characteristics of gravity
waves.

Here, the two-dimensional S-transform application
developed by Hindley et al. (2016) and Hindley et al. (2019)
is used, which provides the dominant local spectral prop-
erties (wave amplitude, wavelength, orientation) at every
pixel of the input image, but then restricted to those
regions recognised as waves by the SEGMODEL. This gives
undue credit to the S-transform, which does not segment
waves into wave and non-wave regions as the SEGMODEL
does.

One feature of the S-transform application of Hindley
et al. (2019) used here is that it can be tuned to pro-
vide improved performance for waves present in a given
dataset. Specifically, the analysis first computes the fast
(discrete) Fourier transform and selects the N elements
(number of frequency voices) with the largest spectral
power for further localisation analysis. The larger the
number of frequencies N, the higher the fidelity of the
analysis but the longer the run time. For images containing
simplified large-scale monochromatic waves, only small
values of N are required, but higher N values can be useful
for images with numerous small-scale waves with com-
plex structures. Second, a scaling parameter c can be used
to tune the spectral sensitivity of the S-transform. From a
default of c = 1, increasing c improves spectral localisation
at the expense of spatial localisation, whereas decreasing c
achieves the opposite.

The S-transform was applied to the synthetic and NWP
vertical velocity data with three different numbers of fre-
quency voices (N = 15, 80,150) to determine the most
appropriate value to capture all relevant waves in the data.
A scaling parameter of c = 0.25 was used for this ini-
tial test, as used in previous studies (Hindley et al., 2020;
Wright et al., 2017). Later, the value of c was adjusted to cal-
culate an optimal value to use for further analysis. Using
N = 15 frequency voices resulted in a cut-off in the output
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T A B L E 1 Comparison of R2 least-squares correlation coefficient for wavelength and orientation derivation using S-transforms with
scaling parameter c = 0.25, three values for the number of frequency voices N used in the spectral analysis, and machine-learned
WLMODEL and ORIENTMODEL versus known truth on synthetic data without noise.

Least squares linear regression coefficient R2 (three decimal places)

Characteristics Wavelength Orientation: sin Orientation: cos Amplitude

WLMODEL 0.997

ORIENTMODEL 0.961 0.979

AMPMODEL 0.997

S-transform (N = 15) 0.042 0.198 0.071

S-transform (N = 80) 0.969 0.974 0.941

S-transform (N = 150) 0.968 0.974 0.940

wavelength, with shortest wavelengths of 50 km, whereas
frequency voices of N = 80 and above resulted in a cut-off
around 10 km. Given that the horizontal spacing of the
vertical velocity data is 2 km, a cut-off of 10 km is an appro-
priate limit for the smallest wavelength that can be reliably
measured.

To measure the ability of the ML models and
S-transform to reconstruct the waves, the least-squares
correlation coefficient R2 with the ML wavelengths on
the synthetic data was computed. The R2 values for
the three sets of S-transform characteristics and the
machine-learned characteristics were compared against
the true values and are given in Table 1. From these tests
a value of N = 80 or 150 frequency voices gave a similarly
good correlation against the true wavelength and orienta-
tion, but 80 frequency voices was computationally cheaper
and so is used in the remainder of the article.

2.4.3 Wavelength and orientation model
selection

The synthetic data were much simpler than the original
UKV data they were attempting to replicate, as the syn-
thetic data did not contain other sources of vertical veloc-
ity, nor superposition of waves. Since the SEGMODEL
could detect where gravity waves are, it must be able to
extract the salient features of gravity waves, irrespective of
whether there are other physical processes creating verti-
cal velocity variations. Originally, the synthetic data were
noiseless, as it was thought that the SEGMODEL had
retained sufficient learning from its initial training to han-
dle the vertical velocities in the UKV data not associated
with lee waves when predicting characteristics. However,
the wavelengths predicted by the model trained on noise-
less data produced unrealistically long wavelengths on the
UKV data. To address this, seven more wavelength models
were trained on noisy data at a range of standard deviations

𝜎 in [0.125, 0.25, 0.375, 0.5, 0.6, 0.8, 1]. Some examples of
the noisy data are shown in Figure 3.

The performance of all the ML models and the
S-transforms were compared for different noise levels.
Figure 5shows the performance of the eight ML wave-
length models and three S-transforms with 80 frequency
voices and c = 0.25, c = 1, and c = 4. The best-performing
ML model in each case was the model that was trained
on the data most similar in noise level to the correspond-
ing test set at lower values of 𝜎. At values of 𝜎 > 0.5 the
picture is less clear, with RMSEs higher than for values
of 𝜎 ≤ 0.5. Models trained with noise performed better on
data without noise than the model trained with no noise
performed on data with noise, suggesting that adding noise
during training allows the model to better generalise to
different levels of noise. Over a range of noise amplitudes
(𝜎 = 0.125–0.5), the models are fairly robust at accurately
predicting the wavelength from data with different noise
levels within this range, as shown by the plots in Figure 5.
The model trained on noise 𝜎 = 0.125 has R2

> 0.8 for
all apart from the noisiest synthetic data. This suggests
that the WLMODEL trained on no noise was overfitted to
the training data (expecting a specific level of noise) and
rapidly decreases in skill compared with models trained
with some noise. The addition of noise to the training
data seems to have mitigated this overfitting. Though the
Gaussian noise in the synthetic data is relatively simplistic
compared with the correlated non-wave sources of verti-
cal velocity in the UKV data, the trained models were all
exposed to the non-wave sources of vertical velocity during
the training of the SEGMODEL.

At 𝜎 < 0.5 the S-transform wavelengths showed good
correlation with the true wavelengths, with R2

> 0.8.
However, the S-transform results consistently had a
worse least-squares correlation coefficient than the
best-performing ML model, which is likely due to the lim-
ited frequency voices (and thus orientations) of using the
discrete Fourier transform to calculate the S-transform
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CONEY et al. 221

F I G U R E 5 Comparison of the root-mean-squared error
(RMSE; smaller values better) and least-squares regression
coefficient R2 (larger values better) performance of wavelength
derivation techniques compared with the truth (three S-transforms
with 80 frequency voices and different scaling parameters c; and
eight machine-learning (ML) models) on synthetic data with
different levels of noise. Then, all are applied to synthetic data with
those levels of noise. The number after “ML” indicates the 𝜎 of the
noise the model was trained on. [Colour figure can be viewed at
wileyonlinelibrary.com]

(Hindley et al., 2019), which results in a slightly less “exact
fit” for the input waves.

Figure 6 shows a comparison of the orientation deriva-
tion techniques on the synthetic data. Owing to the circu-
lar nature of the data, the two methods used in Figure 6 to
analyse the accuracy of the predictions are the Euclidean
distance and the least-squares regression coefficient R2

for the cosine of the orientation. The Euclidean distance
metric E between the angles 𝜃 and 𝜙 is defined as

E(𝜃, 𝜙) =
√
(cos 𝜃 − cos𝜙)2 + (sin 𝜃 − sin𝜙)2.

For example, a pair of angles 90◦ out of phase with each
other would have E =

√
2, and a pair of angles 30◦ apart

would have E = 2 −
√

3 ≈ 0.27. The R2 plotted is of the
cosine of the angles to avoid discontinuity around −90◦
and +90◦.

F I G U R E 6 Comparison of the Euclidean distance (smaller
values better) and least-squares regression coefficient R2 (larger
values better) performance of orientation derivation techniques
compared with the truth (both machine-learning [ML] and
S-transforms as in Figure 5). [Colour figure can be viewed at
wileyonlinelibrary.com]

There is a smaller difference between the ML and
S-transform techniques in Figure 6 than in Figure 5, with
the S-transform c = 1 performing better than some of the
ML models in the synthetic test data. The skill of an ML
model for wave orientation decreases more rapidly when
applied to data with other noise levels compared with
the wavelength models. That said, the orientation mod-
els trained on any noise are more robust to other noise
levels than the orientation model trained on noiseless
data. The model trained on noisy data with 𝜎 = 0.25 has a
least-squares coefficient > 0.8 for data up until 𝜎 = 0.6, so
is robust to a range of noise amplitudes.

From these tests, the WLMODEL trained on data with
noise 𝜎 = 0.125 was used to predict UKV wavelengths, and
the ORIENTMODEL trained on data with noise 𝜎 = 0.25
was used to predict UKV orientation. To select which c to
use in the S-transform, local variations in wavelength with
c = 0.25 were found to be too large, whereas choosing c = 1
resulted in a spatially smoother wavelength field. Setting
c = 4 resulted in oversmoothing that produced inaccurate
wavelength estimates. Hence, c = 1 was used for future
comparisons in synthetic and model data.
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T A B L E 2 Comparison between the U-Net and S-transform,
and the time taken for the two methods to produce wave
characteristics, for each example in the UKV February 2021
test set.

Method Mean time taken (s) 𝝈 (s)

U-Net 12.1 2.61

S-transform 150.9 12.3

2.4.4 Amplitude

A neural network (fine-tuned in the same way as already
described herein for wavelength and orientation) was used
to extract the amplitude of the waves from the UKV data.
The neural network was trained on synthetic data but
with wave packets of variable amplitudes in between 1
and 5 m⋅s−1. The synthetic data had a small amount of
noise (𝜎 = 0.0625) added, which resulted in a smoother
amplitude model prediction over the UK, compared with a
model trained on synthetic data without additional noise.
The amplitude of observed waves and the synthetic data
decays towards the edge of each wave packet, so the model
was trained to predict this smooth envelope. On the syn-
thetic test data, the trained amplitude model scored an R2

of 0.999.

3 RESULTS

This section presents the results of the segmentation
model SEGMODEL against the hand-labelled truth,
and the results of the wave characteristics models
(WLMODEL, ORIENTMODEL, and AMPMODEL), with
the wavelength, orientation, and amplitude output com-
pared against those from the S-transform. The ML models
ran significantly faster than the S-transform on the UKV
test data. For example, it took an 1 hr 10 min for a stan-
dard laptop CPU to produce the S-transformed data for
the 28 examples in the February UKV test set, whereas it
took the same laptop 5.5 min to produce the wave mask,
wavelength, orientation, and amplitude for the same set, a
speed-up of 12.7×. Table 2 shows the mean and standard
deviation of the time taken for the two methods to produce
wave characteristics for each example of the February 2021
test data.

3.1 Lee wave segmentation

Figure 7 shows two examples of lee wave segmentation
on vertical velocity data: one example of test data from
February 2021 (Figure 7a) and another from July 2021

(Figure 7b). These results show that the model has learned
typical patterns of gravity waves during training. The SEG-
MODEL is skilful at recognising waves and is capable of
ignoring non-wave sources of vertical velocity. This is evi-
denced in Figure 7a, which shows an occasion where there
are large regions of waves in the data, which the SEG-
MODEL has recognised as waves. The area to the north
of Ireland where the vertical velocity patterns look very
different is likely to be convection and not wave activity,
as there is precipitation in the model associated with it.
The SEGMODEL correctly did not classify these regions as
lee waves. Figure 7b shows an example where waves are
apparent over Ireland, with smaller regions with wave-like
features elsewhere.

Two test sets were used to analyse the performance of
the trained SEGMODEL. One was from February 2021 and
one was from July 2021. This was to check that the model
was able to recognise waves from throughout the year.
There are typically fewer waves in summer months, so
the results from the two months are presented separately.
As a reference, the output from a baseline “model” that
always returned no waves everywhere (the ZEROS model)
are presented alongside the results from SEGMODEL.

Four metrics of model performance on the test sets
are summarised in Table 3: the pixel accuracy, Jaccard
score, precision score, and recall score. The pixel accuracy
is the percentage of pixels that were correctly identified
by the model, compared with the hand-labelled truth. The
Jaccard score (or intersection over union) is given by

Jaccard score =

(
|P0∩T0|
|P0∪T0|

+ |P1∩T1|
|P1∪T1|

)

2
,

where Pi is the model’s prediction and Ti is the
hand-labelled truth for the ith class of pixel (i = 0: no
wave; i = 1: wave). The Jaccard score is computed for each
class by the area of overlap divided by the area of the union
of the model’s prediction and the truth. Then, the mean
of these is taken to find the Jaccard score for the example
of test data. The score shows how similar the prediction is
to the hand labels, and therefore how good the model is.
Although it is feasible to have used the Jaccard score as a
loss function, the model was trained using cross-entropy
owing to its good performance as a loss function in seg-
mentation tasks (Jadon, 2020). The precision score is
the number of true positives (correctly identified waves)
divided by the number of true positives plus the number
of false positives, and the recall score is the number of true
positives divided by the number of true positives plus the
number of false negatives (Pedregosa et al., 2011).

Table 3 shows that on the February 2021 test set the
trained SEGMODEL performed at 95% pixel accuracy. In
this test set, only 16.9% of pixels were labelled as waves,
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CONEY et al. 223

(a) (b)

F I G U R E 7 Two examples of the SEGMODEL-predicted lee wave segmentation over the UK. Vertical velocities at 700 hPa are shown
in filled contours, with wave regions predicted by the model shown by the black line contour. The dotted line contour shows the
hand-labelled waves. (a) An example from the test set in February 2021. Against the “truth” data, the segmentation achieved a pixel accuracy
of 94% and a Jaccard score of 0.87. (b) An example of data from July 2021 containing waves segmented by the model with a pixel accuracy of
97% and a Jaccard score of 0.78. [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Performance on the February 2021 and July 2021
test sets, by the SEGMODEL U-Net and ZEROS (a model that
never predicts waves).

Model
Pixel
accuracy (%)

Jaccard
score Precision Recall

February 2021 test set

SEGMODEL 95.0 0.78 0.87 0.70

ZEROS 84.4 0.42 0.0 0.0

July 2021 test set

SEGMODEL 98.0 0.66 0.48 0.42

ZEROS 97 0.49 0.0 0.0

even though this was from a winter period with higher
wave activity. The ZEROS model “performs” well in the
pixel accuracy metric in the February test set, reflecting
the small amount of wave activity compared with the
background. The SEGMODEL has a Jaccard score of 0.78
compared with ZEROS with a Jaccard score of 0.42 in this
set. The SEGMODEL is demonstrating skill by detecting
waves in plausible locations compared with never pre-
dicting waves. Gravity waves have, by their very nature, a
decaying amplitude envelope that makes defining a hard
edge to a gravity wave envelope a poorly defined problem,
which in turn means that exactly achieving a Jaccard score
of 1 would be difficult. The precision and recall scores

indicate a reasonable ratio between the number of cor-
rectly identified pixels and those incorrectly identified by
the SEGMODEL. The ZEROS model scores 0 for both of
these metrics since it did not correctly identify any waves.

On the July 2021 test set, Table 3 shows that waves
occurred very infrequently from the pixel accuracy of
the ZEROS model. However, the difference in Jaccard
score shows that the SEGMODEL outperforms the ZEROS
model by localising waves when they occurred. This infre-
quency of wave occurrence is reflected in the precision and
recall scores.

3.2 Lee wave characteristics

Having demonstrated the accuracy of the lee waves pre-
diction network, the segmentation U-Net model is next
utilised to infer lee wave characteristics: wavelength, ori-
entation, and amplitude. These predicted characteristics
were then restricted to regions containing waves using the
predicted wave masks from earlier.

As discussed in Section 2.4, transfer learning was
used to fine-tune the final layers of the SEGMODEL
network to learn wavelengths (WLMODEL), orientation
(ORIENTMODEL), and amplitude (AMPMODEL) of the
waves. Figure 8 shows one such example of the predicted
characteristics.
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(a) (b)

(c) (d)

Lee wave test data: Characteristics prediction 2021-02-14 T0900 UTC
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F I G U R E 8 Example of lee wave characteristic prediction with (a) vertical velocity and predicted lee wave regions (black line contour),
(b) predicted wavelength for lee wave regions (model trained on data with noise 𝜎 = 0.125), (c) predicted wave amplitude for lee wave
regions, and (d) orientation of lee waves for lee wave regions (perpendicular to wave-fronts) (model trained on data with noise 𝜎 = 0.25). The
two inset regions in (a) demonstrate the difference in wavelength, amplitude, and orientation in Scotland and Ireland for this particular case.
[Colour figure can be viewed at wileyonlinelibrary.com]

The predicted characteristics were compared against
a spectral technique, the S-transform, in order to have a
method to compare characteristic predictions against. The
following subsections will deal with each characteristic in
turn.

3.2.1 Wavelength

The ML model and S-transform approaches were con-
trasted both on synthetic wavelength data samples (where
the true wavelength value is known) and UKV simulation

output (where the true value is not known). If the ML
approach works well on the synthetic data compared
with an S-transform, then this gives confidence that the
ML-derived wavelengths from UKV data are reasonable.
Though the S-transform-derived wavelengths cannot nec-
essarily be regarded as “truth”, they can be used to ensure
that the ML model is consistent with the S-transform and
produces physically realistic wavelengths.

Figure 9a,b shows a two-dimensional histogram for the
synthetic test dataset, comparing the ML model predic-
tions and S-transform (N = 80 frequency voices and c =
1) derived wavelengths against the true wavelengths. The
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(a) (b)

(c) (d)

(e) (f)
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F I G U R E 9 Synthetic data: comparison between true characteristics, machine learning (ML) model prediction, and S-transform
characteristics for the synthetic test dataset (with 80 frequency voices and a scaling parameter c = 1). (a, c, e) Histogram of truth versus
ML-derived characteristic from the test dataset. (b, d, f) Histogram of true characteristic versus S-transform from the test dataset. The black
line in (a)–(f) is the line y = x. [Colour figure can be viewed at wileyonlinelibrary.com]
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(a) (b) (c)
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F I G U R E 10 One selected example of machine-learned wavelengths against S-transform wavelength from UKV data, from
February 14, 2021, 0900 UTC: (a) 700 hPa UKV vertical velocities and recognised lee wave regions; (b) WLMODEL (normally distributed
noise, standard deviation 𝜎 = 0.125 in training data) derived wavelengths; (c) S-transform wavelength (N = 80 frequency voices, scaling
parameter c = 1). [Colour figure can be viewed at wileyonlinelibrary.com]

ML wavelengths compare well against the synthetic wave-
lengths, with R2 = 0.996. There is a high density of points
along the y = x line in Figure 9a. The S-transform-derived
wavelengths compare with the truth favourably, though
less so than the ML wavelengths, which is reflected in
the lower R2 value of 0.889 and the slightly larger scat-
ter of points about the y = x line in Figure 9b. The
S-transform-derived wavelengths are too small at wave-
lengths greater than 80 km, which is not seen in the
ML-derived wavelengths.

Figure 10 shows the S-transform and the ML-derived
wavelengths for one example of UKV test data. The wave-
lengths predicted by the WLMODEL are reasonable, and
relative wavelengths observed by eye correspond appro-
priately in both the ML prediction and the S-transform.
For example in Figure 10 there is a region of longer wave-
lengths over the south of Ireland compared with shorter
wavelengths over Scotland, which is predicted as such
by the WLMODEL. The WLMODEL prediction shows
a smoother field with greater variation in wavelength
over the UK, but longer wavelengths than those pro-
duced by the S-transform. The S-transform wavelengths
are, by comparison, more uniform compared with the
ones from the WLMODEL. The sharp boundaries between
regions in S-transform-derived wavelengths are a prod-
uct of the S-transform reproducing a clean wave field.
However, this results in unrealistic discontinuities in the
S-transform wavelengths. For example in Figure 10c, there
is a discontinuity in wavelength over the south of Ire-
land according to the S-transform that is not seen by eye
in Figure 10a.

Figure 11 shows a histogram for the UKV Febru-
ary 2021 test set, comparing the WLMODEL predic-
tions against the S-transform. The histogram only shows

F I G U R E 11 A histogram of the WLMODEL wavelengths
against the S-transform wavelengths for the UKV test set. [Colour
figure can be viewed at wileyonlinelibrary.com]

locations where the SEGMODEL predicts wave activ-
ity in the first place. Overall, the WLMODEL produces
physically reasonable wavelengths (typical lee wave wave-
lengths are in the range 5–35 km; American Meteorologi-
cal Society, 2012).

The WLMODEL wavelengths are slightly longer than
the S-transform wavelengths. The range of wavelengths is
smaller in the WLMODEL output than the S-transform.
Overall, the WLMODEL gives reasonable indications
of wavelength on the UKV data, compared with the
S-transform. On the UKV data, whereas the WLMODEL
wavelengths are typically longer than the wavelengths
derived using the S-transform technique, the longest
ML-derived wavelengths are less than 50 km compared
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(a) (b) (c)

F I G U R E 12 Comparison of the ORIENTMODEL-predicted wave orientation, S-transform orientation, and UKV 700 hPa wind
direction. The black arrows show the direction of wave propagation/wind direction and are therefore perpendicular to the wave-fronts. Wind
direction is the closest variable in UKV to compare predicted wave orientation with. [Colour figure can be viewed at wileyonlinelibrary.com]

with the longest S-transform wavelengths being over
70 km. These longer S-transform wavelengths can occur in
unrealistic locations (e.g., e one case occurs in a region less
than 50 km in diameter). This is despite good correlation
in the synthetic test data.

3.2.2 Orientation

The angle predictions from the ORIENTMODEL and
S-tranform were combined with the output from the
original segmentation model, so that orientation predic-
tions were only produced for regions containing waves.
Figure 9c,d compares the performance of ORIENT-
MODEL (𝜎 = 0.25) and S-transform (80 frequency voices
and c = 1) derived orientations on the synthetic test set.
Figure 9c shows that the S-transform-derived orientations
compare well with the true orientation, with some seem-
ingly random scatter across the axes. Figure 9d shows that
the ML-derived orientations also compare well with the
truth, but with greater spread towards 0◦. Both methods
of deriving orientation line up well along the y = x line in
each subplot.

In simple flows the wave crests would be expected to
be perpendicular to the wind direction, and so wind direc-
tion can be used as a proxy for wave orientation. Owing to
the three-dimensional nature of the orography and the fact
that the waves are not monochromatic, this assumption
is not perfectly true; however, the UKV wind direction at
700 hPa is still useful as an independent sanity check on
the derived wave orientations.

Figure 12 shows an example of wave orientation
(the ORIENTMODEL and S-transform) alongside UKV
wind direction. ORIENTMODEL has done a good job

of predicting the angle of the waves by eye. Neither tell
the full picture, as the wind direction is not necessar-
ily the same as the orientation of a wave. For example,
regions with regular wave-like structures, such as those
over Scotland, Wales, southeast England, and southwest
England have plausible predicted orientations. However,
waves with less structure, such as those over Ireland, have
predicted orientations that are less convincing by eye. The
S-transform in this case has not captured fully the change
in orientation over Scotland and has the orientation more
northerly than the ORIENTMODEL, which by eye seems
to have captured the northwest–southeast orientation bet-
ter.

Figure 13a shows the ORIENTMODEL orientation
against the UKV wind direction for the test set. The data
contain a high degree of scatter, though there is a relation-
ship by eye between the ML orientation and wind direc-
tion. The least-squares correlation coefficient R2 = 0.116
is low, however. Figure 13a does show that, in general,
as the ORIENTMODEL orientations veer the wind direc-
tion veers as well, though not quite along the y = x line.
Figure 13b compares the S-transform orientation against
the wind direction. This plot is also noisy, though by eye
shows correlation against the wind direction. As already
stated, the wind direction is not necessarily a good pre-
dictor for the wave orientation, and the fact that the data
in Figure 13 do not follow a 1:1 line may actually be for
a good physical reason; for example, because there is a
preferential orientation of many of the mountain ranges
over the UK. Finally, Figure 13c compares the ORIENT-
MODEL predictions against the S-transform. A positive
trend is shown by eye, approximately along the y = x line.
The discontinuity in the S-transform-measured orienta-
tions around 0◦ and 90◦ is due to its formulation using
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F I G U R E 13 Histograms comparing the ORIENTMODEL orientation, S-transform orientation (N = 80, c = 1), and UKV wind
direction at 700 hPa for the February 2021 test set in degrees from north (0◦). In each case the line y = x is plotted in black. [Colour figure can
be viewed at wileyonlinelibrary.com]

the discrete fast Fourier transform. When orientated in
exactly the x or y directions, wave numbers in the orthogo-
nal direction are equal to zero, corresponding to an infinite
wavelength, which is just the signal mean in that direction
and is therefore not able to be localised. This is not a limita-
tion for the ML approach. The data contain a high amount
of scatter, but they do show some relationship between the
ML-derived orientation and S-transform, suggesting that
the output from the ORIENTMODEL is reasonable. How-
ever, it also suggests that deriving wave orientation is hard
for both traditional spectral methods and ML methods.

3.2.3 Amplitude

Figure 8c shows the wave amplitude predictions by the
ML model for 0900 UTC on February 14, 2021. The largest
amplitudes tend to be over hilly areas, such as in Scotland.
The amplitude predictions produced are reasonable when
compared by eye with the vertical velocities in Figure 8a.
An alternative approach using pixelwise wavelengths to
retrieve amplitudes by selecting the maximum vertical
velocity within a region of the size of the wavelength for
each pixel resulted in unrealistic large local variations
in amplitude. This meant that there were large regions
containing unreasonably large amplitudes. The neural net-
work approach as described here produces amplitudes that
are more consistent and smoothly varying over the length
scale of the gravity wave envelopes seen visually in the
vertical velocity data.

Figure 9e,f compares the ML and S-transform ampli-
tudes with the true amplitudes for the synthetic data. The
ML model performs well, with an R2 = 0.997, whereas
the S-transform amplitudes had R2 = 0.729 compared with
the truth. Figure 14 compares the AMPMODEL-derived

F I G U R E 14 Histogram comparing the machine-learning
(ML)-derived amplitudes against those from the S-transform for the
February 2021 UKV test set. [Colour figure can be viewed at
wileyonlinelibrary.com]

amplitudes against the amplitudes from the S-transform.
The amplitudes are well correlated, with a Spearman
𝜌 = 0.750, and mainly focused around the y = x line. At
smaller amplitudes (≈0.5 m⋅s−1), the ML model overesti-
mates amplitude slightly compared with the S-transform,
whereas at higher ML amplitudes (>2 m⋅s−1) there is a
higher spread of S-transform-predicted amplitudes.

4 CONCLUSIONS

A U-Net has been trained to identify regions of lee waves
over Britain and Ireland from vertical velocity model data,
and the final layers of the network have subsequently been
fine-tuned separately to predict wavelength, orientation,
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and amplitude of the waves. Spectral techniques (e.g., the
S-transform) do not permit the creation of a pixelwise wave
mask as has been done here.

The trained segmentation model has a pixel accuracy of
>95% when compared against hand-labelled truth. Despite
being trained with a relatively modest training set of 335
scenes of vertical velocity data covering the whole UK at
2 km resolution, the SEGMODEL U-Net is skilful. The seg-
mentation produced by the SEGMODEL is realistic, and
in coherent regions; for example, those shown in Figure 7.
The segmentation mask produced is on the same resolu-
tion as the NWP data, allowing precise localisation of wave
forecasts. An accuracy closer to 100% would be difficult to
obtain given the subjective nature of labelling waves near
the edges of wave packets.

By using transfer learning, the copies of the trained
SEGMODEL were fine-tuned on synthetic gravity wave
data to estimate wave characteristics of gravity waves in
UKV model output. The characteristics models still retain
learned weights from being trained on the NWP data, with
the synthetic data being used to extract characteristics
from the model instead of a segmentation mask. Origi-
nally, these characteristics models were trained on data
without noise, which, for the wavelength model, resulted
in wavelengths being predicted on the NWP data that were
too long. This has been rectified by training the character-
istics models on noisy data.

On the UKV data, the wavelength model trained with
noise tended to predict shorter wavelengths than with
no noise, but longer than wavelengths derived using an
S-transform. Though the noise used within the synthetic
training data are unlikely to be the same as the background
vertical velocities in the UKV data, these results do suggest
that using noisy synthetic data might help make the ML
models more robust to noise in real-world applications.
How much noise to include in the training data, or how it
should be distributed, remains an avenue to be explored,
though using a small amount of noise such as 𝜎 = 0.125 or
0.25 seems reasonable given models trained on this mag-
nitude of noise perform well across the different levels of
noise in the synthetic data.

The orientation predictions, such as those shown in
Figure 12, demonstrate that the ORIENTMODEL per-
forms well at predicting the orientation of waves. Figure 12
shows that the wind direction at 700 hPa is not sufficient
on its own to show the wave direction, so this method of
deriving the wave orientation from the vertical velocities
could add value to existing forecasts of waves and rotor
activity. Figure 13 shows that the wind direction is less
correlated with the ML (𝜌 = 0.403) and S-transform (𝜌 =
0.437) predictions compared with the S-transform and
ML predictions (𝜌 = 0.623). On the UKV data, the mod-
els trained on noisy data still retain a smooth field, but

with wavelengths and orientation closer to those from the
S-transform. Several wavelength and orientation models
could be run on the data to obtain a measure of the uncer-
tainty between the ML model-derived characteristics.

AMPMODEL produces a smoothly varying prediction
of the wave amplitude, where individual peaks in verti-
cal velocity are smoothed out. The test set, despite being
small, contains cases of large-amplitude waves (velocities
in excess of 3 ms−1; Vosper et al., 2013), as demonstrated in
Figure 8c. Large-amplitude waves have potential impacts
downstream for the formation of rotors, and so success-
fully identifying these is important.

The models described here have been trained on and
applied to two-dimensional vertical velocity NWP data
over Britain and Ireland. Applying the same technique to
other regions of the world would likely require retraining
the models on the new data, as although the wave patterns
would look similar, the other sources of vertical veloc-
ity in the data may not. In addition, this approach used
two-dimensional slices of vertical velocities at 700 hPa,
since lee waves are coherent in UKV model output over
Britain and Ireland at 700 hPa. Using data on other pres-
sure surfaces, or training a model on three-dimensional
data, or with other variables such as vertical profiles of
the Scorer parameter in addition to the vertical velocities,
may produce models that are more skilful than the ones
presented here.

These models provide an easy way to automatically
derive information about waves from NWP model output.
One benefit of using the segmentation and characteristics
tools described is that the perceived severity of lee waves
can be understood, as well as their generation in rela-
tion to the meteorology. One key advantage of the U-Net
is that, once trained, it can be significantly cheaper and
more efficient to run than the S-transform. For the 28
high spatial-resolution images in the February UKV test
set used here, the U-Net can be up to 13 times faster than
the S-transform to produce the wave mask, wavelength,
and orientation measurements.

This efficiency, combined with their realistic out-
put, makes these ML models a powerful new tool for
post-processing NWP model output that can provide
operational forecasters with an indication of where to
expect trapped lee wave activity and the likely wave char-
acteristics. These can aid forecasters when predicting
high-impact wave and near-surface wind events.

The trained models are a potential benefit for forecast-
ers in producing an automatic detection and characterisa-
tion of trapped lee waves directly from operational UKV
model output. Another application of being able to auto-
matically diagnose waves and their characteristics is the
generation of a climatology of lee wave activity over Britain
and Ireland from archived model output. Future work will
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include developing such a climatology of waves from NWP
model output in order to learn more about the prevalence
and characteristics of waves over the UK and to provide
forecasters with guidance on the conditions under which
strong lee wave events are likely to occur.

There are also avenues worth exploring within ML
model development. For example, the effects of feeding
additional data to the model, such as vertical veloci-
ties at different heights, surface winds, orography, or the
Scorer parameter. Incorporating known physical relation-
ships between different variables for lee waves into a
deep-learning model may help a tool such as this one bet-
ter diagnose waves and address some nervousness about
using “black box” machine-learned models such as this
operationally.

Though this work has used U-Nets to create an ML
model capable of identifying and characterising lee waves,
it also highlights the wider potential of these methods
to be used in identifying a wide range of weather fea-
tures and phenomena in high-resolution model data. The
study also offers useful examples of leveraging the max-
imum impact from limited hand-labelled data by sup-
plementing with augmentation and carefully constructed
synthetic datasets. It is also a valuable example of how,
with fine-tuning, an ML model developed to classify fea-
tures can be used to identifying underlying physical char-
acteristics of the features. Though these ideas could easily
be applied to other wave problems in geophysical systems,
they could equally be applied to a range of other types of
feature in the atmosphere.

AUTHOR CONTRIBUTIONS
Jonathan Coney: conceptualization; formal analysis;
investigation; methodology; visualization; writ-
ing – original draft. Leif Denby: conceptualization;
funding acquisition; methodology; software; supervision;
writing – review and editing. Andrew N. Ross: conceptu-
alization; funding acquisition; methodology; supervision;
writing – review and editing. He Wang: conceptual-
ization; methodology; supervision; writing – review
and editing. Simon Vosper: conceptualization; funding
acquisition; methodology; supervision; writing – review
and editing. Annelize van Niekerk: conceptualization;
methodology; supervision; writing – review and edit-
ing. Tom Dunstan: conceptualization; methodology;
supervision; writing – review and editing. Neil Hindley:
software; writing – review and editing.

ACKNOWLEDGEMENTS
Thank you to the three anonymous reviewers for their time
to read and provide feedback on the article. Thanks to Peter
Sheridan, Steve Derbyshire, and the rest of the orography

group at the Met Office for their knowledge of trapped
lee waves, and their representation in Met Office model
output. Thanks to Corwin Wright at the University of
Bath for helpful suggestions about further applications of
this work. This work used JASMIN, the UK collaborative
data analysis facility. Computing work was undertaken in
Python, making use of fastai v2.5.2 (Howard and Gug-
ger, 2020) and PyTorch (Paszke et al., 2019) (which fastai is
built on) for training and interpreting deep-learning mod-
els. Jonathan Coney was supported in this work by the
Leeds-York-Hull Natural Environment Research Council
(NERC) Doctoral Training Partnership (DTP) Panorama
under grant NE/S007458/1, and a CASE award from the
Met Office. The article processing charge was covered by
the UKRI block grant to the University of Leeds.

DATA AVAILABILITY STATEMENT
All the meteorological data were obtained from the Met
Office Managed Archive Storage System (MASS), accessed
through the JASMIN service. The 700 hPa vertical velocity
data and segmentation masks used for training the seg-
mentation model are available on Zenodo: Coney (2023b).
Code to generate the synthetic data, the segmentation
mask maker Jupyter notebook, and code to train and
run models are available on GitHub: Denby (2023) and
Coney (2023a). The S-transform analysis code can be
found in Hindley (2021).

ORCID
Jonathan Coney https://orcid.org/0000-0001-7310-8002

REFERENCES
Ágústsson, H. & Ólafsson, H. (2014) Simulations of observed

Lee waves and rotor turbulence. Monthly Weather Review, 142,
832–849.

American Meteorological Society. (2012) Mountain Wave. https:/
/glossary.ametsoc.org/wiki/Mountain_wave

Coney, J. (2023a) Jdconey/leewavenet: initial release.
10.5281/zenodo.8193019.

Coney, J. (2023b) UKV Lee Waves 700 hPa vertical velocities and
hand labels. https://doi.org/10.5281/zenodo.7565310

Darby, L.S. & Poulos, G.S. (2006) The evolution of lee-wave-rotor
activity in the lee of Pike’s peak under the influence of a cold
frontal passage: implications for aircraft safety. Monthly Weather
Review, 134, 2857–2876.

Denby, L. (2023) Synthetic Gravity Waves. https://doi.org/10.5281
/zenodo.7576811

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L.
(2009) ImageNet: a large-scale hierarchical image database.
Paper presented at: 2009 IEEE conference on computer vision
and pattern recognition, IEEE. 248–255 https://ieeexplore.ieee
.org/document/5206848

Dev, S., Manandhar, S., Lee, Y.H. & Winkler, S. (2019) Multi-label
cloud segmentation using a deep network. 2019 USNC-URSI
radio science meeting (joint with AP-S symposium), USNC-URSI
2019-proceedings. 113–114.

 1477870x, 2024, 758, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4592 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [15/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7310-8002
https://orcid.org/0000-0001-7310-8002
https://glossary.ametsoc.org/wiki/Mountain_wave
https://glossary.ametsoc.org/wiki/Mountain_wave
https://doi.org/10.5281/zenodo.7565310
https://doi.org/10.5281/zenodo.7576811
https://doi.org/10.5281/zenodo.7576811
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848


CONEY et al. 231

Doyle, J.D. & Durran, D.R. (2002) The dynamics of
mountain-wave-induced rotors. Journal of the Atmospheric
Sciences, 59, 186–201.

Durran, D. (2003) Lee waves and mountain waves. In: Holton, J.R.,
Curry, J.A. & Pyle, J.A. (Eds.) Encyclopedia of atmospheric sci-
ences. Burlington: Elsevier, pp. 1161–1169.

Elvidge, A.D., Vosper, S.B., Wells, H., Cheung, J.C.H., Derbyshire,
S.H. & Turp, D. (2017) Moving towards a wave-resolved approach
to forecasting mountain wave induced clear air turbulence. Mete-
orological Applications, 24, 540–550.

He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual learning for
image recognition. Paper presented at: 2016 IEEE conference on
computer vision and pattern recognition (CVPR), vol. 2016, IEEE.
770–778.

Hindley, N. (2021) nhindley/acp-2020-465: Analysis and figure code
for acp journal article acp-2020-465 hindley et al. (2021). https:/
/zenodo.org/record/4721883

Hindley, N.P., Smith, N.D., Wright, C.J., Rees, D.A.S. & Mitchell,
N.J. (2016) A two-dimensional Stockwell transform for gravity
wave analysis of AIRS measurements. Atmospheric Measurement
Techniques, 9, 2545–2565.

Hindley, N.P., Wright, C.J., Gadian, A.M., Hoffmann, L., Hughes,
J.K. & David, R. (2020) Stratospheric gravity-waves over the
mountainous island of South Georgia: testing a high-resolution
dynamical model with 3-D satellite observations and radioson-
des. Atmospheric Chemistry and Physics Discussions, 2020, 1–50.

Hindley, N.P., Wright, C.J., Smith, N.D., Hoffmann, L., Holt, L.A. &
Alexander, M.J. (2019) Gravity waves in the winter stratosphere
over the Southern Ocean: high-resolution satellite observations
and 3-D spectral analysis. Atmospheric Chemistry and Physics, 19,
15377–15414.

Hindley, N.P., Wright, C.J., Smith, N.D. & Mitchell, N.J. (2015) The
southern stratospheric gravity wave hot spot: individual waves
and their momentum fluxes measured by COSMIC GPS-RO.
Atmospheric Chemistry and Physics, 15, 7797–7818.

Howard, J. & Gugger, S. (2020) Fastai: a layered API for deep learning.
Information, 11, 108.

International Civil Aviation Organization. (1968) BOAC, Boeing 707,
G-APFE, accident at the foot of Mount Fuji, Japan, on 5 march
1966. Tech. Rep. 7. United Kingdom: Board of Trade.

Jadon, S. (2020) A survey of loss functions for semantic segmen-
tation. Paper presented at: 2020 IEEE conference on computa-
tional intelligence in bioinformatics and computational biology
(CIBCB), IEEE. 1–7.

Matsuoka, D., Watanabe, S., Sato, K., Kawazoe, S., Yu, W. & Easter-
brook, S. (2020) Application of deep learning to estimate atmo-
spheric gravity wave parameters in reanalysis data sets. Geophys-
ical Research Letters, 47, 1–10.

Mobbs, S., Vosper, S., Sheridan, P., Cardoso, R., Burton, R. & Arnold,
S. (2005) Observations of downslope winds and rotors in the
Falkland Islands. Quarterly Journal of the Royal Meteorological
Society, 131, 329–351.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. & Chanan,
G. (2019) PyTorch: an imperative style, high-performance deep
learning library. Advances in Neural Information Processing Sys-
tems, 32, 1–12.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.
& Grisel, O. (2011) Scikit-learn: machine learning in python.
Journal of Machine Learning Research, 12, 2825–2830.

Ralph, F.M., Neiman, P.J., Keller, T.L., Levinson, D. & Fedor, L. (1997)
Observations, simulations, and analysis of nonstationary trapped
lee waves. Journal of the Atmospheric Sciences, 54, 1308–1333.

Ronneberger, O., Fischer, P. & Brox, T. (2015) U-net: convolutional
networks for biomedical image segmentation. arXiv. http://arxiv
.org/abs/1505.04597

Sheridan, P., Vosper, S. & Brown, P. (2017) Mountain waves in high
resolution forecast models: automated diagnostics of wave sever-
ity and impact on surface winds. Atmosphere, 8, 24.

Shorten, C. & Khoshgoftaar, T.M. (2019) A survey on image data
augmentation for deep learning. Journal of Big Data, 6, 60.

Stockwell, R., Mansinha, L. & Lowe, R. (1996) Localization of the
complex spectrum: the S transform. IEEE Transactions on Signal
Processing, 44, 998–1001.

Tang, Y., Lean, H.W. & Bornemann, J. (2013) The benefits of the met
Office variable resolution NWP model for forecasting convection.
Meteorological Applications, 20, 417–426.

Vosper, S.B., Sheridan, P.F. & Brown, A.R. (2006) Flow separa-
tion and rotor formation beneath two-dimensional trapped lee
waves. Quarterly Journal of the Royal Meteorological Society, 132,
2415–2438.

Vosper, S.B., Wells, H., Sinclair, J.A. & Sheridan, P.F. (2013) A cli-
matology of lee waves over the UK derived from model forecasts.
Meteorological Applications, 20, 466–481.

Wright, C.J., Hindley, N.P., Hoffmann, L., Alexander, M.J. & Mitchell,
N.J. (2017) Exploring gravity wave characteristics in 3-D using a
novel S-transform technique: AIRS/aqua measurements over the
southern Andes and Drake Passage. Atmospheric Chemistry and
Physics, 17, 8553–8575.

Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P. & Zhang, S. (2018) Urban
land use and land cover classification using novel deep learning
models based on high spatial resolution satellite imagery. Sensors,
18, 3717.

How to cite this article: Coney, J., Denby, L.,
Ross, A.N., Wang, H., Vosper, S., van Niekerk, A.
et al. (2024) Identifying and characterising trapped
lee waves using deep learning techniques.
Quarterly Journal of the Royal Meteorological
Society, 150(758), 213–231. Available from: https:/
/doi.org/10.1002/qj.4592

 1477870x, 2024, 758, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4592 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [15/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://zenodo.org/record/4721883
https://zenodo.org/record/4721883
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597

	Identifying and characterising trapped lee waves using deep learning&##13; techniques 
	1 INTRODUCTION
	2 METHODOLOGY
	2.1 Data
	2.2 Network architecture and model training
	2.3 Segmentation
	2.4 Wave characteristics
	2.4.1 Wavelength and orientation
	2.4.2 The S-transform
	2.4.3 Wavelength and orientation model selection
	2.4.4 Amplitude


	3 RESULTS
	3.1 Lee wave segmentation
	3.2 Lee wave characteristics
	3.2.1 Wavelength
	3.2.2 Orientation
	3.2.3 Amplitude


	4 CONCLUSIONS

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

