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ABSTRACT

Autonomous vehicles (AV) have the potential to improve road trans-

port, but faults in the autonomous driving software can result in

serious accidents. To assess the safety of AV driving software, we

need to consider the wide variety and diversity of situations that

it may encounter. Explicit situation coverage has previously been

presented, but its usefulness has received a little empirical scrutiny.

In this study, we evaluate a situation coverage based safety test-

ing approach by comparing the performance of random and situa-

tion coverage-based test generation in terms of its ability to detect

seeded faults in our ego AV at a road intersection under diverse

environmental conditions. Our results suggest that this implemen-

tation of situation coverage, at least, does not provide an advantage

over random generation.
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1 INTRODUCTION

The revolution of autonomous technology and its potential benefits

have driven the development of autonomous vehicles (AV) in the

past decades. However, though autonomous vehicles have been

developed, fully autonomous vehicles are still not safe enough for

public use. The main obstacle comes from safety concerns. A ’safe’

AV should be capable of following traffic laws and avoiding any

road hazards independently and efficiently [15]. However, for a
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completely autonomous vehicle, human driver restrictions must

be updated in accordance with AV safety concerns[10]. Moreover,

the level of automation of a vehicle and its development can affect

regulation-making [17], such as whether the human driver should

monitor the surrounding environment throughout the journey or

take control when it is an emergency [9].

In other words, AVs safety can be affected by numerous pub-

lic and practical factors, including automation level definition,

regulation-making, and vehicle types, road and traffic rules, and

even weather conditions. As autonomous vehicles become more

prevalent in public use, the potential for diverse failures increases.

Assessing their safety is intricate due to the potential for widespread

harm and the uncertain nature of interactions between pedestrians

and autonomous vehicles.

To evaluate the safety of autonomous vehicles, we must pay

close attention to the wide variety of situations they may encounter

on the road. Because of this, testing for AV software differs from

testing for conventional software. In simulation-based testing, cov-

erage criteria [3] provide systematic ways to efficiently handle

the vast number of possible inputs by searching the input space,

which input should be selected, and when to stop testing. With the

positive aspect of coverage criteria in mind, we consider coverage

criteria-based testing for AVs’ verification and validation (V&V).

Recently, Scenario Coverage [19], Situation Coverage [2, 7], and

Requirements Coverage [2] have been used as a coverage-based

testing approach for AVs by many researchers.

However, it is hard to test AV software as AV can face a wide

range of diverse external situations (obstacles, human) in an un-

structured environment. To cover dynamic scenarios arising from

the interaction of AV and its environment, a situation coverage

approach is introduced by Alexander et al. [2]. Situation coverage

[2] is a coverage criterion adapted to the testing of autonomous

system. The fundamental idea is to identify potential environmen-

tal factors the system may encounter, to determine how they can

change, and to make sure that both individual factors and their

combinations are tested. Situation coverage, in its simplest form, is

a measurement of the percentage of some potential circumstances

that have been put to the test by some test set. Like other coverage

criterion, situation coverage can be used to evaluate the adequacy

of a test set and to guide automated test generation. For example,

consider a scenario in which two people carrying a huge transpar-

ent glass and a courier robot both travel through the same hallway

at the same time. With the use of its object detecting algorithm, the

courier robot can identify the two people. However, because the

glass is transparent, the robot might see it as a space between two

people and attempt to cross it, colliding with it in the process. This
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type of external circumstance may not even be addressed if the

aforementioned autonomous system has been tested using a system

coverage technique because it may not have been designed to deal

with that by system component. Situation coverage is a promising

coverage criterion, but more empirical research is needed to assess

it.

There is a little existing work on situation coverage but only in

narrow domains. For example, Zendel et.al.’s VITRO approach [20]

only concerns itself with static scene and non-interactive videos for

testing computer vision. It uses low geometric discrepancy sampling

to make tractable subsets of situations but the published work

doesn’t rigorously evaluate its testing power. Andrew et. al. [5],

[6], [4] explore several coverage criteria over their situation spaces-

some of their criteria make tractable test sets but they perform no

evaluation of actual fault finding power. Lesage and Alexander [16]

established the SASSI approach, which specifies general guidelines

for employing heuristic search to verify the safety of a cobot system.

SASSImethod is based on situation coverage approach byAlexander

et al. [2] that propose the safety centric coverage metrics based

on the observed situation in an industrial environment. However,

although SASSI is ostensibly a situation coverage approach, the

empirical work in [16] relies on a heuristic search that is guided not

by situation coverage but by a measure of safety problems (łsafety

artefactsž, in their terms) encountered. It will thus be hard to argue,

in a safety case, that the results of the SASSI method give us any

certain degree of confidence in the thoroughness of the testing.

(This is likely to be true of any testing technique that use a measure

of łfailure badnessž or similar as its fitness function).

Hawkins et.al [11] and Tahir and Alexander [18] evaluated situ-

ation coverage approach that is łCan a situation generation testing

method based on situation coverage approach outperform a ran-

domly generation one in terms of fault detection?ž . Though the task

environment of [11] and [18] were different with different seeded

faults, they got almost same result. They concluded that the situ-

ation coverage does not achieve significant benefits over random

situation generation but coverage directed generation does cover

a greater proportion of the situation space in the same amount of

compute time.

In this paper, we will use slightly different fault set on Tahir et.al.

[18] approach and test whether situation coverage based search

approach does add additional value to random generation or not.

From Tahir’s work, it appeared that situation coverage was less

effective than random testing in finding seeded faults. However,

Tahir’s seeded faults were rather coarse-grained and perhaps thus

quite easy to find. Our conjecture in this paper is that situation

coverage testing will do better than random testing when the seeded

faults are more difficult to find.

2 DEFINING SYSTEMATIC SITUATION
COVERAGE FOR SAFETY TESTING

Situation coverage is a test coverage criterion that considers both

the external and internal situations in which the autonomous sys-

tem has been tested. When we claim that the tests are sufficient, it

means that the system has been thoroughly tested across a wide

range of situations. By systematizing this process and incorporating

actual situation coverage metrics, we can enhance and improve

the process, allowing for more accurate and valid claims about the

adequacy of testing efforts [2].

Taking an illustration from a previous report by one of the au-

thors [2] "For instance, systematic situation coverage may create a

straightforward criterion that provides us with a manageable space to

assess the safety of AV. The requirement could be that the road map

contains all potential intersections and that there are car,bike,HGV

and pedestrians present with a variety of sorts and behavioral charac-

teristics. We can now provide the requirement that "the ego AV must

interact with each entity type at each junction shape," giving us a total

of 15*4=60 test cases. In a situation set, this kind of safety coverage

metrics may help us uncover flaws that other coverage criteria could

have overlooked" .

Figure 1: Example of situation coverage [2]

It is possible to assess situation coverage measures through em-

pirical evaluation, although relying solely on this approach may

not be sufficient to substantiate safety-critical claims. One way to

achieve this is by introducing faults into the AV and then evaluating

the effectiveness of situation coverage guided testing in identifying

the corresponding system behavior resulting from these faults [2].

3 OVERVIEW OF SITCOV AV TESTING
FRAMEWORK

To achieve situation coverage, Tahir and Alexander [18] created an

automatic test suite generator called the SitCov AV-testing frame-

work. This framework progressively generates tests, using situation

coverage metrics to determine which situations have already been

covered and how frequently each situation has been generated.

Based on this information, the test suite generator generates the

next set of situations in order to cover more of the situation space. It

also aims to achieve a close-to-uniform distribution in cases where

situations are repeated, provided that all situations have been cov-

ered at least once.

3.1 Situation hyperspace

Tahir and Alexander [18] refers to the surrounding environment

around the ego AV as situation hyperspace. This situation hyper-

space has been built methodically so that the SitCov AV-testing

framework can systematically navigate through it to generate in-

teresting and challenging situations for our ego AV using situation

coverage-based generation to ensure the SitCov AV-testing frame-

work executes good coverage of the situation hyperspace. The

SitCov AV-testing framework employs a selection process that in-

volves choosing situation elements from various sources, including

environmental conditions and intersection axes. These elements
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are then combined to create a discrete situation in which the au-

tonomous vehicle (AV) simulation is executed within the CARLA

platform [18].

Figure 2: Situation Hyperspace (from [18])

3.2 SitCov AV testing Approach

The process of generating discrete situations from the situation

hyperspace is driven by SitCov AV testing approach. This is accom-

plished by keeping track of how frequently each bin of the situation

elements from the environmental conditions and intersection axes

is utilized during the generation process. The counts of each bin

represent the number of times it has been selected for a discrete

situation generation simulation run. In simpler terms, bins of situ-

ation elements (e.g., precipitation in environmental conditions or

intersection situation labels) that have been generated fewer times

than others have a higher probability of being chosen by the SitCov

AV-testing approach for the next simulation run. The block diagram

of the SitCov AV-testing illustrates the visible steps involved in the

process in figure 2.

3.3 Reproducing Tahir’s Results

To reproduce SitCov AV-testing approach, we utilized Scenario Run-

ner [8], which is an API integrated with CARLA. This combination

allowed us to develop specific scenarios for testing autonomous

vehicles. Our focus was on generating intersection scenarios as

Tahir and Alexander [18] did, so we modified the intersection class

in Scenario Runner to support AV-testing test suites. By leverag-

ing Python, we reproduced situation hyperspace using dictionaries

and lists to generate situation coverage-based scenarios on a T-

intersection, see figure 3.

To assess the effectiveness of SitCov AV-testing approach, Tahir

and Alexander [18] chose a modular pipeline autonomous driving

(AD) algorithm for the ego AV during simulation runs. The modu-

lar pipeline for autonomous driving contains the following main

phases: perception, local planning, and continuous control are the

first three.

In CARLA, the local planner stage was already developed to

determine the best route between two points on the map using the

Figure 3: SitCov AV Testing Approach (from [18])

Figure 4: SitCovAV-TestingApproach inCARLAand Scenario

Runner

roads and observing traffic laws. The continuous controller stage,

which Tahir used directly for the ego AV and other vehicle (OV)

controllers, is a PID controller for lateral and longitudinal control

of the ego vehicle. This controller was also already developed in

CARLA.

The perception stage is a further stage that the ego AV employs

for its autonomous driving whereas the OV does not. In this in-

stance, the ego AV’s perception sensor is limited to the camera.

To detect the approaching OV, locate its position in the dash-cam

feed (images) of the ego AV, and apply emergency brakes (AEBs) if

the OV is too close, Tahir uses a very deep Single-Shot multi-box

Detection (SSD) Convolutional Neural Network (CNN) pre-trained

on 350,000 images of the MS COCO data set, the SSD mobile net

[13], [1], [12]. This pre-trained SDDmobilenet CNN is implemented

using the Tensorflow Object Detection API [14].
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4 RE-EVALUATING TAHIR’S METHOD WITH
NARROWER FAULTS

The perception stage of the ego AV in the CARLA environment

is influenced by three key parameters. These parameters relate to

how the AV processes images captured by the ego dash-cam. By

modifying them, we can seed faults into the AV’s software. The

three parameters are as follows:

(1) Probability Detection Threshold for Object Detection: This

threshold determines the minimum probability value out-

putted by the SSD Mobilenet CNN for detecting a car in the

images received from the ego AV’s dash-cam in CARLA. As

we focus on vehicle to vehicle (V2V) pairwise testing with

an OV, our concern lies specifically with the probability of

detecting cars in the received images. Setting this parameter

for probability detection is crucial as it determines the mini-

mum probability value that the ego AV considers as a valid

detection of an OV in the image. Selecting an excessively

high value could lead to missed detections and potential col-

lisions in extreme weather conditions like heavy rain or fog,

where the probability of detecting the OVmay be lower even

if it is present in front of our ego AV. Our seeded fault-1 is

setting the Probability of Object Detection Threshold to a

relatively lower value of 0.80. In contrast, Tahir’s [18] ego

AV required a higher probability threshold of 0.95 to detect

the OV in front of it.

(2) Centering Limits Parameters: These parameters evaluatewhether

the OV detected by the SSD Mobilenet CNN is positioned

close to the center of the received image. If the detected

OV is too far from the center, the activation of Automatic

Emergency Brakes (AEBs) is withheld, even if the OV is in

close proximity to the ego AV. Tahir [18] established very

strict boundaries for the centering limits parameters, which

means that AV will only classify an object in front of it as a

potential danger if it is precisely positioned in the center of

the image captured by the AV’s dash-cam. This approach dis-

regards the potential hazard even if the object is dangerously

close to the AV. During our experiment, we seeded fault-2

by setting values part-way between the default values and

Tahir’s fault-2 values.

(3) Object detection distance threshold: To determine the distance

of the OV from the image, we employ a computer vision tech-

nique that analyzes the percentage of the image feed occu-

pied by the detected OV. As the OV gets closer to the ego AV,

a higher percentage of the ego AV’s image will contain the

OV. Once the percentage exceeds a certain threshold value,

the ego AV initiates the application of Automatic Emergency

Brakes (AEBs) to avoid a collision. In Tahir’s [18] conducted

experiment on seeded fault-3 , he established a remarkably

low threshold for the distance parameter in object detection.

Consequently, his autonomous vehicle (AV) will only per-

ceive an object in its surroundings as a potential hazard if it

is within an extremely close proximity, specifically 1 meter

away. This adjustment of the distance threshold parameter,

to a distance of 1.5 meters in our experiment, means that the

AV will solely consider objects within this minimal range as

potential dangers.

To gain a clearer understanding of the faults set, please refer to

table 1.

5 RESULT: SITUATION COVERAGE VERSUS
RANDOM GENERATION

In the course of Tahir’s experiment involving a hard fault set, it

was observed that the fault revealing capability of a random gener-

ation method exhibited better performance in contrast to a situa-

tion coverage-based approach. Interestingly, when the system was

operating under a fault-free condition, both methods yielded an

equivalent number of failures. When three distinct fault sets were

introduced, the random approach found a comparatively higher

number of failures compared to the situation coverage approach

[18].

In light of these findings, we proceeded to conduct two addi-

tional experiments: one without any faults and another under the

condition of three narrower fault sets. The objective was to compre-

hensively assess and compare the performance of both approaches,

with an underlying hypothesis that the situation coverage-based

method would perform better. The results of these two experiments

are presented herein.

5.1 Experiment 1 — Performance of the two
situation generation methods with no faults
seeded

In our first set of tests, we compare the results of our SitCov AV-

testing framework’s intersection situation generation to those of

random generation when no faults have been seeded. We conducted

three sets of runs for this experiment, and the figure below illus-

trates the intersection situation along with the distributions of

failures for both the SitCov and random generation methods under

a no-seeded fault condition.

Figure 5: SitCov vs Random-No Fault Seeded

Based on Figure 5, we observe that the total number of failures is

nearly similar for both the SitCov and random generation methods.

In the second run of the experiment, the number of failures is

significantly higher for the random generation method compared

to SitCov. However, in runs 1 and 3, the failure numbers were

approximately equal for both situation generation methods. This

peculiar behavior of the random generation method is likely due

to the uneven distribution of situations produced by the random

generation process.
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Table 1: Re-evaluating SitCov AV testing with narrower faults

Fault ID Parameter Normal Case Value Tahir’s Fault Value Our Fault Value

\Fault-1 Probability of object detection threshold 0.70 0.95 0.80

\Fault-2 Centering limit parameters 0.02-0.98 0.3-0.6 0.2-0.8

\Fault-3 Object detection distance threshold 2.5 1 1.5

5.2 Experiment 2 — Performance of the two
situation generation methods with faults
seeded

In our second test set, we conducted a comparison between the re-

sults of our test cases, which incorporated slightly different seeded

faults, and Tahir’s test cases. Considering that our fault sets were

designed with the assumption that the SitCov method would out-

perform randomly generated situations, the figure below illustrates

that, contrary to our expectations, the randomly generated method

demonstrated better fault revealing capabilities in both Tahir’s and

our fault sets.

Figure 6: SitCov vs Random- Fault Seeded(Our test case vs

Tahir’s [18]

As seen in Figure 6, fault 1 is triggered the most in both test case

even with relatively lower value in our case, which tells us that

the parameter Probability of Object Detection Threshold, that we

tinkered as a part of our fault 1 seeding, is extremely important for

autonomous driving. Regarding Fault 2, which involves centering

limits parameter, our experiments indicate that the fault revealing

capabilities of our SitCov AV-testing framework versus random

generation are comparable in both test cases. However, when it

comes to Fault 3 in our case, an intriguing outcome arises in our

SitCov case. The number of failures is surprisingly lower than the

no-fault condition, with a count of 27. This peculiar behavior could

be attributed to the utilization of a relatively simple algorithm and

the presence of just one RGB-camera sensor on our ego AV.

6 CONCLUSION AND FURTHER STEPS

In conclusion, our research has examined the effectiveness of the

SitCov AV testing framework in generating detecting seeded faults.

Our observations indicate that SitCov did not perform well when

compared to random generation in both our fault sets and Tahir’s

fault sets.

It may still be worth conducting further research on SitCov

methods, particularly by expanding the situation hyperspace with

additional axes. By incorporating more dynamic obstacles and sce-

narios, such as different types of roads, diverging and merging

collisions, and the inclusion of pedestrians and cyclists, the situa-

tional complexity in AV testing can be enhanced. By expanding the

situation hyperspace in these ways, it may be true that the SitCov

AV testing approach has the potential to yield valuable insights and

improve the overall effectiveness of AV testing. Future research

should focus on incorporating these additional dimensions and

conducting experiments to assess its performance.
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