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Abstract

Image registration and fusion are challenging tasks needed in manufacturing, including in high-quality steel production for

inspection, monitoring and safe operations. To solve some of these challenging tasks, this paper proposes computer vision

approaches aiming at monitoring the direction of motion of hot steel sections and remotely measuring their dimensions in

real time. Automated recognition of the steel section direction is performed first. Next, a new image registration approach is

developed based on extrinsic features, and it is combined with frequency domain image fusion ofoptical images. The fused

image provides information about the size of high-quality hot steel sections remotely. While the remote sizing approach keeps

operators informed of the section dimensions in real time, the mill stands can be configured to provide quality assurance.

The performance of the developed approaches is evaluated over real data and achieves accuracy above 95%. The proposed

approaches have the potential to introduce an enhanced level of autonomy in manufacturing and provide advanced digitised

solutions in steel manufacturing plants.

Keywords Vision measurement · Steel manufacturing · Camera calibration · Sizing

Introduction

The development of the new generation of Industry 5.0 is

based on a digital transformation of Industry 4.0. In the past

years, Industry 4.0 has introduced advanced intelligent man-

ufacturing technologies based on artificial intelligence and

data analysis to enable an increase in production and the

enhancement of operation efficiency (Barari et al., 2021;
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Qian et al., 2021). Different from the automation of Industry

4.0, Industry 5.0 aims to enhance safety in human-computer

cooperation and optimise the overall performance of human-

computer (Leng et al., 2022) systems. These objectives are

also valid for high-quality steel production.

High-quality steels are essential in industrial sectors such

as aerospace, oil and gas production. High-quality steels

are produced via a rolling process during which the steel

acquires the desired shape, size and desired mechanical prop-

erty. Introducing autonomy in the monitoring and control of

the steel rolling process is essential for improving the effi-

ciency of the whole production. Achieving a high-quality

standard for the pure metal pieces called ingots, as well as

the steel sections manufactured from ingots, is important.

However, despite the technological advances, many steel

rolling plants nowadays are still relying on human operators

to manually control and monitor the manufacturing rolling

process. It has been shown that the long-term exposure to

a high-temperature, intense light environment in steel facto-

ries could cause injuries, particularly to human eyes (Hoyos

and Zimolong, 2014). In order to address such and related

challenges, this paper presents approaches that can be used

for remote monitoring and sizing of steel sections.
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Fig. 1 Overall diagram of the steel production process. This paper

focuses on the starting and the final stages of the production, and pro-

vides computer vision techniques for autonomous sizing and hot steel

section direction recognition. These stages are indicated in the upper

left part with the dashed lines, and respectively, in the upper right part

with the dashed lines, for the section sizing

A monocular real-time measurement algorithm is pro-

posed in our previous work (Wang et al., 2020, 2019). A

fast structural random forest algorithm detects edges of steel

sections, and the detected edges are further enhanced by a

regression algorithm to suppress edge detection noises and

increase the measurement accuracy. The steel section dimen-

sions are then calculated based on the regression results in

the image plane and the results are next converted from the

image plane to the physical plane to represent real sizes.

However, the monocular camera measurement system

depends significantly on the camera calibration. Due to safety

concerns and unwillingness to disrupt the rolling process, the

camera calibration becomes extremely difficult in remote

sizing of hot steel sections when the monitoring cameras

are positioned at dozens of metres’ distance from the rolling

mills (Wang et al., 2019). In addition, in such remote sizing

cases there are requirements for a certain estimation accu-

racy to be achieved which is required to be less than 2.5 mm

error for the estimated hot steel sections. In order to achieve

accurate remote sizing, instead of using one camera, a two

camera measurement system is proposed in this work.

The developed framework and measurement system com-

prises of two GoPro� cameras. Due to glares emitted from

the high-temperature steel sections, the two cameras need to

be carefully configured, especially for working at a fast shut-

ter speed. This helps to reduce significantly the edge blur

caused by glares in the input image. The overall diagram of

the steel rolling system is shown in Fig. 1. The cameras are

situated about 2.5 ms apart from each other and are above the

steel rolling plant. The cameras are aligned approximately

with respect to their image planes.

Ingots are reheated and moved to the rolling line, where

steel sections are processed by a few mills to change their

size and shape. Dimension measurement during the rolling

process plays a key factor for quality assurance and is per-

formed wherever necessary. In the considered industrial case

study, sections are measured after the last mill. Laser range

finder measurements are provided only at the last mill and

these measurements are used as ground truth to assess the

performance of the developed computer vision remote siz-

ing measurement system.

In addition, the positioning of the ingots in the mills is an

important factor determining the quality of the steel. In par-

ticular, the top and bottom ends of the ingots are of different

sizes and impurity contents. The hot steel sections have to

be directed with their bottom ends toward the blooming mill

first. Currently, human operators take part of the monitoring

process and make decisions whether the ingots are placed

correctly - with the leading side upfront. A computer vision

pattern recognition system can replace human operators in

such repetitive tasks. It can not only increase the accuracy and

reliability of the decision making process, but can also pro-

tect the operators from potential eye injuries that the intense

glares could cause.
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Initial computer vision results for remote sizing with edge

detection approaches, preliminary results for image registra-

tion and image fusion are reported in Wang et al. (2019,

2020), Lin et al. (2021) where a checkerboard is only used

at the beginning of the process, for the camera calibration.

Contributions

This paper presents an innovative approach for remote siz-

ing of objects with optical camera data. An image registration

approach based on extrinsic image features is proposed which

includes a virtual checkerboard and copes efficiently with

measurement errors due to environmental conditions and

variations of section dimensions and the different heights

at which measurements are taken.

The images provided by two optical cameras are registered

first and then fused using several types of Discrete Wavelet

Transforms (DWTs) (Sundararajan, 2016). A detailed com-

parison is made to evaluates the performance of the image

fusion algorithms for remote sizing of the steel sections. The

paper also considers the ingot direction recognition prob-

lem at the very beginning stage of the whole rolling process.

A solution aimed at automating the ingots monitoring pro-

cess and reducing the involvement of human operators is

proposed. Although the approach presented is applied to

industrial tasks, it can also be applied to other areas such

as forestry.

The main contributions of this work can be summarised

as follows:

i) A new two-camera-based approach for hot steel section

remote sizing is proposed, which incorporates efficient

image fusion methods. The approach is robust to environ-

mental changes, including high temperature, evaporation

and other sources of noise. It achieves high precision

results for non-contact measurements in medium-range

distances.

ii) A new image registration approach is proposed which

uses extrinsic features from a virtual checkerboard and

this approach also improves the system’s robustness

against environmental changes.

iii) An efficient image recognition approach is developed for

ingot direction recognition, offering a new perspective on

automating the recognition of steel ingot orientation.

iv) The proposed framework has been validated using real-

world data collected from a high-quality steel manufac-

turing plant, demonstrating the efficiency of the proposed

approach and its potential for industrial applications. The

achieved remote sizing accuracy is above 95% with a tol-

erance range of 2 mm, representing a significant technical

advance in the process of remotely measuring the steel

sections.

Section “Related Work” gives an overview of related

works. The ingot direction recognition approach is given

in Section “The Proposed Approach for Ingots Direction

Recognition”. Section “The Proposed Approach for Remote

Sizing of Steel Section” elaborates the proposed two-camera

sizing system. Section “Performance Validation and Evalu-

ation” analyses the performance of different fusion results.

Section “Conclusions” summarises the results and discusses

directions for future work.

Related work

Computer vision technologies play a critical role in Industry

4.0 by providing a high level of automation of the pro-

duction for real-time evaluation and processing, improving

productivity and reducing waste. Recent data suggest that

oganisations report up to 12% increases in manufacturing

production, factory utilisation, and labour productivity after

investing in smart factory projects (Lu et al., 2016). Technolo-

gies introducing autonomy are developing rapidly and are

expected to grow in long term, with adopters already reaping

the benefits of increased profit margins while non-adopters

lag behind (Meindl et al., 2021). Robotics inspection systems

can operate faster and with enhanced automation compared

with human operators, as faults and exceptions are easily

identified. Kuo proposes a deep learning-based method for

foreign object detection in the graphic card assembly line,

which can effectively detect and mark foreign objects (Kuo

and Nursyahid, 2022).

Management structures constructed with computer vision

systems enable safe cooperation between robots and human

operators, increasing their efficiency. In addition, the Indus-

trial Internet of Things (IIoT) provides connectivity between

activities at different levels from the bottom to the top. Vision

based technologies can further enhance the functionality and

usability of sensors which reduces the IoT bandwidth needs.

The IoT combined with vision based technologies continues

to play a crucial role in industrial automation and intelligent

manufacturing, bringing new opportunities and challenges

for sustainable development of enterprises (Javaid et al.,

2022).

In the steelmaking process, accurate real-time non-contact

steel detection and measurement can guarantee high quality,

can help avoiding hazards and financial loss. Vision-based

systems have been widely applied for detecting defects on

steel surfaces, as demonstrated in the work of Luo and He

(2016). Zhou developed an online approach based on feature

line reconstruction of stereo vision with high measurement

accuracy for estimating the diameter of hot forgings (Zhou

et al., 2018). However, this method requires high ambient

lighting and accurate camera calibration.
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Fig. 2 These four images show a hot steel section moving on the mill.

The images a and c given on the left column are captured with the left

camera. The images b and d shown at the right column are taken by the

right camera. Feature points extracted by the SURF method are shown

with a green plus sign with a circle on images a and b. Feature points

extracted by the FAST method on images c and d are visualized with a

green plus sign

Similar to industrial applications where remote sizing

is necessary, there is a demand in forestry for non-contact

tree size estimation. A single camera method was developed

in Putra et al. (2021), where data collected in advance are used

for camera calibration. In Eliopoulos et al. (2020), remote

measuring of the diameter and height of trees with binocular

cameras is presented, achieving a measurement accuracy of

1–2 cm error at 1–5 ms from the measured trees.

Methods for image registration

Image matching, also known as image registration, is the pro-

cess of establishing the correspondence of pixels from two

or more images. This involves finding geometric relation-

ships, and the multiple scenes are combined into a single

integrated image (Zitova and Flusser, 2003). In order to

understand well the changes in a scene or an object over a

long period of time, images are captured from various sensors

at different times and from multiple viewpoints. The image

registration process is mainly divided into four stages: feature

detection, feature matching, transform model estimation, and

transformation (Zitova and Flusser, 2003). Image registration

methods have been an active area of research and a wealth of

methods have been developed for medical purposes (Brock

et al., 2017; Guan et al., 2018). Some registration algorithms

also use deep learning (Boveiri et al., 2020; Chen et al., 2021).

However, deep learning methods require large datasets, and
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the learning process of the networks still needs improvement,

especially under challenging environmental conditions.

There is a range of methods for feature extraction from

images in an automatic way (Mutlag et al., 2020). These

feature points are often corner points or reference points

of an object, which can describe the shape and position of

the object. Traditional image feature extraction algorithms

such as the scale invariant feature transformation (SIFT)

focus on extracting key points, image’s corner points or

edge features(Dalal and Triggs, 2005). Based on SIFT, many

other algorithms were developed with highly accurate per-

formance, such as the Speeded Up Robust Features (SURF)

method, which reduce the amount of calculation and speed up

the feature extraction process so that it can meet the real-time

requirements (Bay et al., 2006; Tafti et al., 2018). In addition

to traditional feature detection methods, feature extraction

algorithms based on convolutional neural networks (Dar-

gan et al., 2019) have also become popular in recent years.

Encouraging results in accuracy and computing speed are

reported in Zheng et al. (2017). The methods mentioned

above extract intrinsic feature points in images. However,

if the noises present in images dominate and in combination

with low lighting conditions, such algorithms cannot extract

enough feature points. In the proposed framework, extrinsic

feature points will be used in the image registration (match-

ing) and fusion to cope with these challenges.

After detecting feature points from images, these feature

points should be matched to each other. Feature matching can

be performed in a number of ways one of which is by cal-

culating Euclidean distances (Brock et al., 2017) of feature

points in a pair of images. In addition to the spatial relation-

ship between features, different feature descriptors (Tafti et

al., 2018) and similarity metrics (Czolbe et al., 2021; Tong et

al., 2019) are used to evaluate the results with respect to the

matching accuracy and this is followed by other tasks such

as image fusion (Ma et al., 2019). To register the images,

the transform model between images need to be estimated.

Next, the corresponding features obtained from the previous

step are used to calculate the model. The choice of the trans-

form model depends on the prior knowledge of the image

acquisition process and the expected image distortion.

In the process of steel rolling, the challenging low-level

illumination conditions are challenging for computer vision

systems. The sparse feature points generated by conven-

tional approaches lead to inaccurate matching results, as

shown in Fig. 2. In this figure, the green points represent

the feature points detected by SURF and FAST (Features

from Accelerated Segment Test) algorithms (Tafti et al.,

2018). Advantages of FAST algorithms consist in their effi-

ciency in feature detection, which makes them suitable for

real-time applications, including manufacturing. However,

an improvement of the registration accuracy can be achieved

based on extrinsic features thanks to a virtual checkerboard

which is proposed in this paper.

Methods for image fusion

Image fusion aims to generate a high-quality image, with

quality that is better than those of the separate images (Jin

et al., 2017; James and Dasarathy, 2014). Different fusion

algorithms can be broadly divided into transform domain

fusion methods and spatial domain fusion methods in pixel-

level image fusion (Hall and Llinas, 2001).

Generally, the spatial domain fusion method directly uses

the intensity level of image pixels for image fusion. For

example, the simple average, minimum, maximum, max-

min and weighted average methods keep the pixels with low

or high intensity at the same position of two images. More

advanced methods include hue intensity saturation, Brovey

transform, principal component analysis and guided filtering

methods (Khan et al., 2021). Image registration is also often

performed in the frequency domain (Tong et al., 2019).

The proposed approach for ingots direction
recognition

The steel mill transports the hot steel sections during the

forming process and transfers them onto another production

line. The top and bottom ends of the ingot are different. If the

top and bottom directions are reversed, the piece of material

becomes unusable. Therefore, in order to inspect the sections

autonomously, the orientation of the ingot needs to be recog-

nized remotely. The following subsections present the main

stages of the proposed approach for recognising the front and

end parts of the hot steel sections.

Edge detection

In order to extract the cross-section of the ingot, the edge

information is first obtained. Canny-based edge extrac-

tion (Canny, 1986; Song et al., 2017; Dollár et al., 2021;

Dollár and Zitnick, 2014) is a feature extraction method that

can represent the edge features of the original image and sig-

nificantly reduce the amount of image information that needs

to be processed. The specific implementation can be divided

into four steps: Gaussian filtering, calculating the gradient

strength and direction, non-maximum suppression, and dou-

ble threshold detection to classify the edges into strong and

weak edges. Non-maximum suppression and double thresh-

old detection are used to find local maximum points and

these are classified as part of strong edges and weak edges.

An example of the original image and the image with the

extracted edges is shown in Fig. 3.
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Ingot contour segmentation

After the edge detection stage is completed, the next step is

to classify these edges and to extract the edges belonging to

the steel section. Many edge feature points provided by the

edge operators do not belong to the steel section, as shown in

Fig. 3b. Since these isolated edge points are due to oxides and

sediments on the surface of ingots, the surface texture has a

complex shape and the pixel intensity distribution is uneven.

A significant portion of the misidentified edges is due to

the texture of the steel material and strong lighting condi-

tions (with temperature around and above 1000◦ C) inside

the rolling mill. Therefore, a filter based on the SUZUKI

contour algorithm (Suzuki, 1985) is employed to help define

the hierarchical relationship between boundaries.

Figure 4a shows with dots the detected edge points. The

different colors represent different contour groups based on

contour algorithm classification. After that, only the promi-

nent parent edges remain, which represent the contour of

ingot as shown in Fig. 4b.

Cross-section Extraction

After the edge points are filtered, the sections are extracted

by the Hough gradient method (Nixon and Aguado, 2020) as

described in Algorithm 1. Algorithm 1 has two parts: find-

ing the centre of the circle and finding the length of the circle

radius. First, the circle centre is initialized by the voting space

Vc. Next, the traversal of all the edge points is performed,

and this traversal is expanded forward along the gradient

direction. This removes all points that pass through the cor-

responding voting space Vc(a, b) + 1, where (a, b) is the

position of the corresponding point. Finally, the voting space

Vc(a, b) is sorted, and the point with a higher number of

votes is more likely to be the centre of the circle.

Let C be the circle centre, and let initialize the radius

voting space Vr (r) for the circle centre, where r is the radius.

Next, we calculate the distance r from the edge points to the

centre of the circle. Finally, the Vr space is sorted in order

to get the radius of the cross section of cylinder ingots. The

extracted edges are used as inputs for the section extraction

with the Hough gradient method. One such result shown in

Fig. 5. The range of the green box in the figure is the minimum

bounding rectangle of the steel section determined by the

previous edge detection.

The cyan box shows the minimum bounding rectangle of

the circle detected by the Hough circle detection, while the

blue circle and red dot represent respectively the detected cir-

cle and its centre. The circular cross-sections extracted from

the algorithm are shown in Fig. 6. Due to the presence of

sediment and oxides during the placement of ingots, there is

a visible difference between the top and bottom of the steel

ingots. The top row represents the top of the ingots, which

Algorithm 1 Hough gradient method for estimating the cen-

tre and radius of the circular steel section
Input: The results of Canny Ek , the gradient direction θ of each point

in Ek .

Output: Circle Centers C and radius R.

1: Estimate the location of the center of the circle

2: Initialize the centre voting space Vc, a and b are the width and height

of the region of interest.

3: for i = 1, · · · , a do

4: for j = 1, · · · , b do

5: Extend forward along the gradient direction θ(i, j) of the point

Ek(i, j)

6: Every time meet a point :Vc(i, j)+ = 1

7: end for

8: end for

9: Sort the voting space Vc(i, j) and get C

10: Estimated radius

11: Initialize Circle radius Voter Vr

12: for m = 1, · · · , k do

13: rm = |C Em |
14: Vr (r)+ = 1

15: end for

16: Sort Vr , the larger the value, the more likely it is the radius

appears darker in colour compared with its surroundings and

exhibit a brain-like pattern due to the presence of oxides.

In contrast, the bottom of the ingots exhibits a smoother

and brighter surface with relatively higher temperatures and

fewer oxides compared with the top side.

Image classifier of ingot directions

After the steel sections are segmented, the top and bot-

tom images of each ingot constitute the patterns that need

to be recognised. All other end images are compared to

these patterns using the structural similarity index measure

(SSIM) (Wang et al., 2004), which is a one of the best mea-

sures for evaluating the similarity between two images. When

the algorithm detects the section, the section end Isection is

compared to Itop and Ibot with the SSIM which is calculated

as described in Algorithm 2. The direction of a section is

determined based on SSIM value.

Algorithm 2 SSIM Direction Recognition

Input: Itop, Ibot , Isection

Output: The direction of section Isection

1: Calculate the SSIMs between Isection and Itop, Ibot

2: SSI Mtop = SSI M(Itop, Isection)

3: SSI Mbot = SSI M(Ibot , Isection)

4: if SSI Mtop >= SSI Mbot then

5: The direction of Isection is T O P

6: else

7: The direction of Isection is BOT

8: end if
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Fig. 3 Figure a shows the original image, Figure b shows the Features Extracted by Canny Detector

Fig. 4 Figure a shows feature points detected by the Canny edge detector on the surface of the ingot. Figure b shows results after filtering and the

minimum bounding rectangle

The proposed approach for remote sizing of
steel section

Before cutting hot steel sections into different shapes and

sizes, they are moving on mills situated at different height

with respect to the ground. This creates challenges to com-

puter vision systems. Also a monocular measurement system

is not able to deal with the plane difference due to the lack

of depth information. Although, there are attempts to recon-

struct depth, e.g. with deep learning methods and monocular

data, the factory environment poses significant challenges to

deep learning algorithms which require significant amounts

of data for training and testing (Luo et al., 2018).

Achieving accurate vision-based measurements of the hot

steel sections at distances between 10 and 30 ms with one

camera is difficult. When the object of interest which is sized

remotely has a certain thickness or is not in the same plane as

the camera calibration plane, the estimated object sizes vary

significantly from the actual object sizes. In contrast, tradi-

tional binocular cameras can obtain image depth by using

the parallax effect and after calibration. However, the cam-

era placement and environmental light conditions have an

additional impact on the object sizing accuracy.

Binocular imaging systems are more accurate than monoc-

ular ones and hence a binocular camera solution is proposed

in this paper. A key advantage of the proposed approach

is that it is adaptive to the changes of the measurement

plane. After acquiring the images from two cameras, each

image pair are registered first. However, due to the chang-

ing lighting conditions in the factory and height of the mills,

image registration based on intrinsic feature points from the

images becomes unreliable. Furthermore, the large baseline

of the two cameras leads to a significant difference in the

estimated position of the object of interest in the images,

which further increases the image registration difficulty. The

approach proposed in this paper overcomes these difficulties
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Fig. 5 Cross section extraction

by performing the image registration with extrinsic feature

points from a checkerboard positioned close to the mills.

The checkerboard is part of the camera calibration process

and also it enhances the image registration process. The next

Section “Image registration” describes this process in detail.

Image registration

The image registration process is given succinctly in Algo-

rithm 3. The transformation matrix TRL is calculated by

matching the corner points of the checkerboards that are part

of images IL and IR and the two images are registered suc-

cessfully. In Algorithm 3 CR denotes a corner point from the

checkerboard of the right image and CL represents a corner

point from the checker board of the left image. The following

Section “Image registration evaluation” describes in detail

how the image registration process is evaluated.

Algorithm 3 Image Registration

Input: Images IL , IR

Output: The registered right image IRr

1: Extract the corner points CL , CR of checkerboards in IL , IR

2: Calculate the geometric transformation TRL ,which transform

CR → CL

3: Apply TRL to IR :TRL (IR) = IRr

Image registration evaluation

To evaluate the quality of image registration, first extract

the steel section and its edges in the images. After the steel

section edges are obtained, the edges in the region close to

the checkerboard are selected to be evaluated. The region of

interest (ROI) in which the steel section is situated is deter-

mined automatically.

One way to automatically select the ROI around the steel

section is based of the y coordinate at the highest point of

the checkerboard and the lowest y coordinate of the checker-

board. Next, the highest and lowest y coordinate values are

expanded with a preset pixels which is set to 10 pixels in the

experiment.

Algorithm 4 Registration Evaluation

Input: Region of interest from the image IRO I

Output: A Quality Index of Registration Q R

1: Select region of interest near the checkerboard

2: Create polygons Pr ,l with Edges in the RO I

3: Calculate Q R based on Pr ∩ Pl

The polygons Pl,r from Algorithm 4 consist of the upper

and lower limits of the region of interest and the left and

right margins of the steel section. After Pl,r polygons are

created, the quality of registration index Q R is calculated by

evaluating the overlapped area between two polygons. The

smaller the Q R values are, the better the image registration

is.

Figure 7a shows the overlaid registered image and the

original left camera image. The left camera image is shaded

in green and the registered image is shaded in magenta both

on a) and b). The regions with light gray color represent the

overlapped areas from the two images. On b) the detected

polygons Pr and Pl are also visualised. The overlapped area

between two polygons over the polygon for left image Pl

form the quality index Q R of registration and this is described

with the equation:

Q R = 1 −
Pr ∩ Pl

Pl

. (1)

In order to give a direction to this quality of registration index,

we consider Q R to be positive when Pl is on the left of Pr

and vice versa.

The following Section “Embedding the Height Informa-

tion in the Registration Results” describes the how the prior

height information can incorporated to further improve the

image registration results.

Embedding the height information in the
registration results

The accuracy of the registered image can be further improved

by adjusting the height of the checkerboards from the

ground. Using real checkerboards with different heights

would require collecting many data. Since this is quite a

demanding process, a virtual checkerboard is created by

interpolation and extrapolation, which only needs to collect

the checkerboard data twice at the beginning equipment set-

ting process.

When a camera captures an image, the checkerboard is

projected from the three-dimensional to the two-dimensional
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Fig. 6 Sample images for ingot direction recognition. First row shows ingot top samples, and the second row shows ingot bottom samples

Fig. 7 Input Steel Section Images and DWT Fusion Results: a Registered Images; b Polygons Pr and Pl

image plane and the definite ratio point of division between

different height checkerboards is also a linear projection in

the image plane according to the following formula about the

steel section

P

(

(x1, y1) + λ (x2, y2)

1 + λ

)

=
P (x1, y1) + Pλ (x2, y2)

1 + λ
, (2)

where P is the projection transformation, λ ∈ N
+ is the

ratio of division, x1, y1 are the coordinates of corner points

of lower checkerboard, x2, y2 are the coordinates of corner

points of higher checkerboard.

Therefore, the interpolation and extrapolation process can

be realized by directly inserting and extending data points

between the checkerboard’s corresponding points at different

heights. The interpolation process is applied to improve the

registration process results and it is described in Algorithm 5.

After the interpolation, combined with the previous regis-

tration quality index Q R , the registration result is updated

automatically.

The Q R index serves as an indicator for the position-

ing of the virtual checkerboard relative to the measurement

plane. Positive values of the Q R index suggest that the virtual

checkerboard is positioned too high, requiring the algorithm

to adjust its coordinates according to the height of the steel

section. Conversely, negative values imply that the virtual

checkerboard is too low in relation to the measurement plane.

Ideally, for optimal positioning, the Q R value should be close

to 0.

Algorithm 5 Refining the Image Registration Result with the

Virtual Checkerboard
Input: CL L , CL H , CRL , CRH

Output: The adjust registered image IRr

1: Interpolate n set of corner points of checkerboards CLi ,CRi

2: for k = 1, · · · , n do

3: Calculate Q R i for CLi ,CRi

4: end for

5: Find the IRr with maximum |Q R |

The next Section “Image Fusion” describes how the two

registered images from the left and right cameras can be fused

with different wavelet transform methods.

Image fusion

Thanks to the virtual checkerboard and image registration

algorithm, the images from the two cameras are registered

with high accuracy. After the image registration, the positions

of the steel section parts taken by the left and right cameras in

the image can completely coincide. Next, the images taken
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Fig. 8 Input Steel Section Images and DWT Fusion Results: a Left Camera Image; b Right Camera Image; c FFT Fusion Results; d DWT Fusion

Results

by two cameras are fused in order to bring together the com-

plementary information from the two separate images. From

the fused image the steel section size is calculated remotely

- first in the image plane and next the result is converted

into the physical plane. Image fusion algorithms based on a

Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) and

discrete wavelet transforms (DWT) (Pajares and de la Cruz,

2004; Sundararajan, 2016) are implemented and validated

over video data collected from the Liberty Speciality factory

in the UK (Fig. 8).

FFT

The left and right images are first transformed in the fre-

quency domain with the discrete FFT (Gao et al., 2021).

Then, the fusion step is completed by operating on the mag-

nitude and phase map of the images in the frequency domain.

The two dimensional (2D) FFT F[k, l] of an image I [m, n]
of size m × n is given by:

F[k, l] =
1

M N

M−1
∑

m=0

N−1
∑

n=0

I [m, n]e− j2π

(

k
M

m+ l
N

n
)

. (3)

The result of the Fourier transform F[k, l] can be expressed

by the amplitude ‖F[k, l]‖ and phase � F[k, l], M and N

characterise the respective image size. The FFT process of

fusing two images I1 and I2 in the frequency domain is given

as Algorithm 6.

DWT-Daubechies Wavelets

Discrete wavelet transforms (DWTs) can provide efficient

image fusion results (Pajares and de la Cruz, 2004) and

we adopt the one-dimensional DWT based on the selected
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Algorithm 6 FFT Image Fusion of Images I1 and I2

Input: FI 1[k, l], FI 2[k, l]
Output: The fused image IF

1: Calculate the magnitude ‖F[k, l]‖ and phase � F[k, l]
2: for k = 1, · · · , M do

3: for l = 1, · · · , N do

4: if ‖FI 1[k, l]‖ > ‖FI 2[k, l]‖ then

5: ‖F[k, l]‖ = ‖FI 1[k, l]‖
6: � F[k, l] = � FI 1[k, l]
7: else

8: ‖F[k, l]‖ = ‖FI 2[k, l]‖
9: � F[k, l] = � FI 2[k, l]
10: end if

11: end for

12: end for

13: Inverse FFT F[k, l] → IF

wavelet basis in the x and y directions of the image to achieve

a two-dimensional DWT. The selection of different wavelet

bases will lead to different fusion effects. Daubechis (DB)

wavelets (Daubechies, 1996; Hermessi et al., 2021) are first

tested with different wavelet coefficients. The DWT method

results are presented with 2, 4 and 16 coefficients and this is

denoted as DB2, DB4, DB8 and DB16, respectively.

DWT-Fejer-Korovkin wavelets

In addition to DB wavelets, Fejer-Korovkin wavelets (FK)

wavelets transform are applied in DWT fusion. The FK

wavelets are denoted as FK4, FK6, FK8 and FK18, respec-

tively, according to different filter coefficients. The FK

wavelets have shown better high-frequency performance than

other waveforms (Olhede and Walden, 2004).

When the image fusion process is completed, the steel sec-

tion edges from the fused image are identified and extracted.

The steel section pixel size can then be measured. Combined

with the camera parameters obtained during the camera cal-

ibration process, the pixel size of the steel section can be

converted to the actual steel width in physical units.

Performance validation and evaluation

The proposed framework has been validated over real images

from the Liberty Speciality Steels industrial plant in the UK

producing high-quality steels.

Ingot direction recognition

Through the above section extraction technology, a total of

2220 end-section images of ingots were extracted from 9

bottom videos and 9 top videos. The results are presented

in Table 1.

Figure 10 shows the confusion matrix for the proposed

SSIM classifier that distinguishes the top from the end part

Table 1 SSIM classification results

Precision Recall Accuracy

Top Sides 1 0.9589 0.9819

Bottom Sides 0.9688 1

Fig. 9 Top side results for the SSIM

of the steel sections. Table 1 shows the precision, recall and

accuracy performance measures for the classification results

of the SSIM classifier, respectively. For the top side of the

steel sections, based on 1329 detected end sections from 20

videos, the evaluated value of the precision is equal to 1,

the calculated recall rate is 0.9589, and the overall classifi-

cation accuracy is 0.9819. Figure 9 shows the results for the

SSIM of the top ingot side and that the SSI Mtop is larger

than SSI Mbot in most cases. Hence, the classifier detects

the top end sides with a high success rate. Out of a total of

1329 images corresponding to the end side of the ingot, 24

are incorrectly classified which corresponds to 1.8% mis-

classification. The analysis of the videos shows that these 24

misclassifications occur in images in which the end side of

the ingot is not well visible. Due to the rising temperature,

the brightness of the ingot in the images increases, leading to

significant changes in the SSIM values. The results show that

the ‘Top Side’ of the ingot has been successfully recognised,

and an early warning can be given to the human operator.

Remote calculation of the size of the steel hot rolling
sections

The whole sizing process is shown in the flow chart pre-

sented in Fig. 11. At the beginning of the process, we have

images of the steel section taken simultaneously by two

cameras in the left and right directions. The two cameras
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Fig. 10 Confusion matrix of the SSIM classifier distinguishing the top

and bottom parts of the steel section

are focused on the area of the movement of the steel sec-

tion but also incorporate different views of the industrial

plant. Next, the two images are registered with the approach

described in the previous sections, and the virtual checker-

board corresponding to the measurement plane of the steel

section is generated as described in Section “Image registra-

tion evaluation”. After that, the whole image is transformed

by computing the geometric transformation between the vir-

tual and the initial checkerboards. Using this algorithm, we

can make the measurement plane coincide with the initial

checkerboard’s height.

As Fig. 12 shows that when the checkerboard is set on the

ground, the cameras use the calibration data on a different

plane from the measurement plane. Therefore, the measured

results will be larger than the actual results in this case. In

order to correct this measurement error, the position of the

checkerboard should be raised to the height consistent with

the steel radius to make the height of the measurement plane

compatible with the steel radius. Through the virtual calibra-

tion plate, the calibration plate’s height can be freely moved

as shown in Fig. 12 (c). Through the measured value via

Algorithm 5, the height of the virtual calibration plate can

also be evaluated, as shown in Fig. 12 (b).

After the image registration is completed, the images taken

by the two cameras are registered together. Knowing the cam-

era internal and external calibration parameters and using the

algorithm from Wang et al. (2019), the pixel size of a steel

section can be transformed to its actual physical size.

In the considered steel production case study, the two

edges of a hot rolling bar (HRB) are scanned by a sliding

window IH×W , with height H and width W . This process

smooths the edge selection process and improves the edge

detection accuracy (Wang et al., 2020). The transformation

equation

⎡

⎣

xw
i j

yw
i j

1

⎤

⎦ = H−1

⎡

⎣

x I
h j

y I
h j

1

⎤

⎦ , H = [K] [R|T] (4)

Fig. 11 Flow Chart of Sizing Process

Fig. 12 Virtual Checkerboard for Image Registration: The Leftmost Image Shows Image Captured when the Checkerboard is on the Floor; The

Middle Image Shows the Checkerboard on Another Height; The Rightmost Image Shows the Virtual Checkerboard at the Desired Height
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Fig. 13 Sizing Results: a Q R is positive and the absolute value |Q R | is large; b Q R is negative and |Q R | is small

Table 2 RMSE of Fig.13a, b a b

RMSE 9.3741 0.9872

converts the x I
i j and y I

i j image plane coordinates into the

[xw
i j , yw

i j , 1] physical plane coordinates. The transformation

is performed with the help of the rotation matrix R, of the

translation matrix T and the K matrix containing the intrinsic

camera parameters. The specific values of R, T and K can

be calculated through the calibration process of the GoPro�

cameras. The calibration was performed using the Camera

Calibration Toolbox in MATLAB� (Bouguet, 2004). The

cameras used for capturing the video had a resolution of 2704

x 2028 and a frame rate of 30 FPS. They employed a linear

Field of View (FOV) mode with a shutter speed of 1/480 s.

Given the vectors Ii1 = [x I
i1, y I

i1]
T and Ii2 = [x I

i2, y I
i2]

T

on two HRB edges with x I
i1 = x I

i2, the diameter l of the HRB

is then calculated through

l = ‖P1 − P2‖2 , (5)

where P1 = [xw
i1, yw

i1]
T and P2 = [xw

i2, yw
i2]

T are the physical

plane correspondences to Ii1 and Ii2. Here ‖.‖2 denotes the

Euclidean norm.

Figure 14 shows seven measurement results taken every

100 frames in the same video sequence. The actual diam-

eter of the hot steel section is equal to 190 mm. The blue

data points represent measurements obtained with the vir-

tual checkerboards and the red data points are direct estimates

without using the virtual checkerboard. Figure 13a and 13b

show the sizing results with different checkerboard parame-

ters and how |Q R | evaluates the sizing quality. In Fig. 13a, the

sizing results are underestimated. The Q R values are large

Fig. 14 Sizing Results for Seven Different Frames

and positive, showing that the true size should be much larger

than the estimation. In Fig. 13b, a small negative Q R shows

the true size is slightly smaller than the estimated value.

Image fusion performancemetrics and analysis of
the results

Several performance assessment metrics (Hermessi et al.,

2021; James and Dasarathy, 2014) that do not rely on ref-

erence images are utilised to evaluate the quality of fused

images and these are given below.
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Information entropy H (Singh and Anand, 2018)

H (I ) = −
∑

P log2 P, (6)

where P is the normalized histogram and I denotes the con-

sidered image. Information entropy (Hermessi et al., 2021)

characterises the amount of information contained in an

image. The higher the information entropy, the more informa-

tion the image contains. The unit of entropy when calculated

for the images is bit/pixel.

Standard Deviation SD (Haghighat et al., 2011)

SD =

√

√

√

√

M
∑

i=1

N
∑

j=1

(I (i, j) − µ̄)2 /M N , (7)

where I is the intensity of pixel and it is within the range

[0, 255], µ̄ is the average image intensity over the considered

number of pixels, M and N represents the image size with

respect to the two coordinate axes. The standard deviation

of an image represents the variation of the pixel brightness.

The larger the standard deviation is, the more obvious the

brightness difference between image pixels is, and the greater

the contrast is.

Spatial Frequency SF (Eskicioglu and Fisher, 1995)

SF =
√

(RF)2 + (C F)2, (8)

where RF is the row frequency and C F is the column fre-

quency. The spatial frequency SF combines both frequencies

calculated in columns and rows.

Average Gradient AG (Prewitt, 1970)

AG =
1

(M − 1) (N − 1)

∑

x

∑

y

G (x, y)
√

2
, (9)

where M and N are size of image, G is the gradient magnitude

of image pixels calculated by Prewiit operator. The first-order

difference between the intensity of a pixel and its adjacent

pixels reflects the brightness changes of the image. Images

with a high average gradient will be clearer than images with

small gradient values.

Feature Mutual Information FMI (Haghighat et al., 2011)

F M I = M IF A + M IF B, (10)

where M IF A is the mutual information between Image A and

the fused image F , M IF B is the mutual information between

image B and image F . The F M I evaluates the dependency

between the input images and the fused image. A large F M I

means that the fused image contains more information from

image A and B.

Sum of the Correlation of Differences SCD (Aslantas and

Bendes, 2015)

SC D = r(D1, I1) + r(D2, I2), (11)

where Di is the difference between the input image Ii , i =
1, 2 and the fused image, r (.) denotes the correlation func-

tion.

Edge-based Structural Similarity ESSIM (Chen et al., 2006)

E SSI M = f unction (l (I1, I2) , c (I1, I2) , e (I1, I 2)) ,

(12)

Nessim(I f ) =
(

1 −
E SSI M(I1, I f ) + E SSI M(I2, I f )

2

)

× 1000, (13)

where l(I1, I2) is a function characterising the luminance

difference between images I1 and I2, c(I1, I2) is a function

for the contrast comparison and e(I1, I2) is the function for

the edge comparison between the two considered images.

Compared with the original SSIM, E SSI M uses edge com-

parison to replace the original structural comparison. This

makes the metrics more sensitive to the edge information,

which is more critical for the steel sizing algorithm. Here,

we consider the E SSI M between fused image I f and orig-

inal images I1, I2 as shown in equation (13). The lower the

Nessim value, the better the fusion quality is.

Table 3 presents average results over 4 videos, each con-

taining 100 frames. It also includes results for the fused

images from both cameras with different methods, evalu-

ated with different performance metrics. It is evident that the

FFT and DWT with high-order coefficients give better results

than the same approaches with low-order coefficients. The

FFT gives best results according to the following criteria:

SD, F M I , SC D and E SSI M .

According to the fusion performance metrics given in

Table 3, the DWT results achieved with a 16-coefficient

Daubechies wavelet transform have the highest information

entropy, which shows that it contains the most information in

all fusion results. At the same time, according to the indica-

tors related to image contrast and edge sharpness (spatial
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Table 3 Image Fusion

Performance Evaluation Results
Metrics H SD SF AG FMI SCD ESSIM

Left Image 1.4805 53.9503 6.5669 4.3598 – – –

Right Image 1.5052 54.3409 6.3998 4.0942 – – –

FFT 1.5056 56.4264 6.8742 4.8237 0.9663 1.3364 0.1458

DWT-DB Wavelets 2 1.5334 53.3971 7.0793 5.4118 0.9610 0.7495 0.1792

DWT-DB Wavelets 4 1.5492 53.1009 7.0279 5.3707 0.9622 0.7502 0.1791

DWT-DB Wavelets 8 1.5579 52.9425 6.9745 5.3455 0.9609 0.7370 0.1794

DWT-DB Wavelets 16 1.5738 52.6410 6.9257 5.3080 0.9593 0.7375 0.1799

DWT-FK Wavelets 4 1.5185 53.5126 7.1620 5.4216 0.9612 0.7606 0.1712

DWT-FK Wavelets 6 1.5392 53.2564 6.9780 5.3429 0.9626 0.7485 0.1795

DWT-FK Wavelets 8 1.5455 53.1555 7.0109 5.3871 0.9624 0.7548 0.1803

DWT-FK Wavelets 18 1.5628 52.9686 6.9345 5.3159 0.9606 0.7486 0.1780

frequency and average gradient), DWT fusion using a 4-

coefficient Fejer-Korovkin wavelet showed the best results.

For the remaining metrics, the FFT image fusion results show

the best performance. Overall, the FFT fused image contains

more information than the original images. The DWT fusion

with an FK4 wavelet gives results with high contrast, which

benefits the edge extraction process.

In summary, the proposed approach has three main key

elements that are essential for the high-accuracy sizing pro-

cess.

Firstly, the proposed accurate edge detection algorithm

plays a pivotal role for identifying well the edges of the steel

sections within the images. This algorithm is specifically

designed to be highly sensitive to edges, thereby ensuring

that the true boundaries of the steel sections are captured,

even amidst significant noise.

Secondly, the virtual checkerboard serves as an innova-

tive tool that provides high-precision scale conversion from

the image plane to the physical plane. This allows us to

accurately map the dimensions of the image to the corre-

sponding real-world dimensions. This step is critical, as it

ensures that the representation in the image reflects accu-

rately the actual sizes of the steel sections. Furthermore, the

external features from the virtual checkerboard aid in align-

ing the images, which results in high registration accuracy.

By adopting this approach to create consistent calibration

features across different images from cameras, we achieve

precise alignment among the images, a critical prerequisite

for subsequent image fusion and measurement procedures.

Finally, the image fusion method enhances further the

edges and significantly reduces the impact of image noise

from the measurements. By combining the images in a man-

ner that maximises the information content and edge clarity,

we are able to generate a final image that is both clear and

accurate, despite the presence of image noises.

In conclusion, the high accuracy and robustness of our

framework can be attributed to the combination of precise

edge detection, accurate image registration with the virtual

checkerboard, and effective image fusion.

Conclusions

This paper presents a new framework for image registration,

fusion, sizing, and object recognition. It includes a two-

camera system that collects optical images of moving hot

steel sections. The paper also details a proposed recognition

algorithm that introduces autonomy, incorporates the struc-

tural similarity measure, and ensures the correct placement

of the hot steel sections.

The developed image registration approach embeds extrin-

sic features using a virtual checkerboard, making it adaptive

to environmental changes. It also helps in including the height

information at which the two images from the left and right

cameras are collected. The incorporation of the checkerboard

also helps cope with the challenges due to missing features

in the steel sections.

Efficient image fusion with Daubechies wavelets, the Fast

Fourier Transform, and Fejer-Korovkin wavelets algorithms

is achieved with the registered images. A series of perfor-

mance metrics evaluate the quality of the fused image from

the perspectives of information content and edge clarity. The

information content is evaluated with metrics such as entropy,

standard deviation, image feature mutual information, sum

of the correlation of differences, and edge-based structural

similarity. The DWT-DB wavelets 16 create fused images

with the largest entropy, but fast Fourier transform fusion

gives better results among other metrics.

The image edge clarity is evaluated with the spatial fre-

quency and average gradient criteria. The DWT-FK Wavelets

4 fusion gives the best results in spatial frequency and average

gradient metrics.

The performance of the system is evaluated on various

real data with different metrics. We have shown that high
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precision sizing results with a tolerance range of less than

2mm are achieved, which helps with quality assurance of

manufacturing tasks. The achieved remote sizing accuracy is

above 95%(±2mm / 195mm) thanks to the efficient registra-

tion approach with extrinsic image features combined with

accurate image fusion algorithms.

The evaluation of the proposed approach on real data

suggests that it can achieve high precision sizing results.

However, its performance may vary depending on the type

of steel sections or environmental conditions. Moreover, in

the production environment, camera position deviation may

be affected by factors such as vibration, which requires reg-

ular maintenance and recalibration of the system to ensure

accurate measurement results.

The recognition task utilises only two images as reference,

while the remaining data is used for validation purposes.

Therefore, increasing the size of the dataset does not directly

impact the accuracy of the recognition model. However, if

we incorporate image fusion techniques to combine features

from multiple images as reference, having a larger dataset

may potentially lead to further improvement of the results.

For the remote steel section sizing task, the dataset is not

involved in the modeling process but rather used for result

validation. Therefore, the quantity of the data does not sig-

nificantly impact the effectiveness of the method.

Future work includes the development of efficient image

segmentation deep learning methods for pre-segmentation

of regions of interest of target objects to improve the sys-

tem’s robustness against interference. In addition, semantic

segmentation would provide another efficient solution for

measuring multiple objects in an image or different sur-

faces of a complex object. Theoretical quantification of the

impact of different uncertainties such as measurement noises,

occlusions, environmental and other conditions on the final

solutions is another area of current research.
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