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IMPROVING AUDIOVISUAL ACTIVE SPEAKER DETECTION

IN EGOCENTRIC RECORDINGS WITH THE DATA-EFFICIENT IMAGE TRANSFORMER

Jason Clarke, Yoshihiko Gotoh, and Stefan Goetze

Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom

ABSTRACT

Future augmented reality devices have the capacity to enhance

human perception and provide assistive functions in complex com-

munication scenarios. Active speaker detection (ASD) systems

that are robust to egocentric data are critical to this. Egocentric

ASD is challenging due to overlapping speech, single-channel

recording, and dynamic scenes. A novel module that uses a

data-efficient image transformer (DeiT) to extract features encap-

sulating the acoustic properties of each scene, and a positional

conditioning mechanism is proposed. The module is evaluated in

conjunction with TalkNet, an existing ASD architecture, on two

audiovisual datasets: Ego4D (egocentric) and AVA-ActiveSpeaker

(exocentric), achieving 29% and 0.38% relative improvement in

mean Average Precision (mAP), respectively, while retaining a

parameter efficient build. A qualitative analysis is also presented,

implicitly demonstrating that contextual information is leveraged.

Index Terms— Active speaker detection, context modelling,

data-efficient image transformers

1. INTRODUCTION

The ability to determine the identity of an active speaker in

a communication scenario is a fundamental aspect of human

social interaction. Audiovisual diarization aims to identify and

associate speech segments with the relevant identities present in

an audiovisual signal. Audiovisual ASD is a critical component

of modular audiovisual diarization frameworks. The objective

of these frameworks is to detect all active speakers present in

an audiovisual scene given contiguous bounding boxes of faces

and the corresponding audio. This binary classification is often

performed at a video-frame level of temporal granularity [1–4].

Future applications of ASD in the context of augmented re-

ality revolve around data acquired from the egocentric perspective.

Egocentric refers to video or audio recorded from the first-person

perspective, typically by wearable devices such as smart glasses.

Despite this, most existing ASD methods are designed for, and

evaluated using, benchmarks consisting of conventional exocentric
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audio and video captured by microphones and static cameras in rel-

atively favourable recording environments [4,5]. The Ego4D [6]

egocentric audiovisual dataset and benchmark suite has provided

a suitable framework to study ASD for egocentric data in detail.

Such data introduces a notably arduous set of challenges: (i) acous-

tic signal level differences between the signal of the camera wearer

and their interlocutors due to distance differences to the micro-

phone; (ii) generally low signal-to-noise-ratio (SNR) for speech

signals; (iii) significant visual distortion from motion blurring

induced by the dynamics of the camera wearer’s head movement;

(iv) adverse lighting conditions; and (v) prevalent occurrences of

overlapping speech due to highly spontaneous conversations.

For ASD systems which scrutinise the activity of a single

candidate speaker in isolation, these challenges prove partic-

ularly difficult [6, 7]. To mitigate similar difficulties present

in exocentric datasets, such as the standard ASD benchmark

AVA-ActiveSpeaker [4], recent research in the domain has opted

for approaches which leverage information from the context,

e.g. provided by the wider image of each video-frame [1,2,8–11].

Specifically, most work has focused on leveraging information

provided by the facial regions of visible interlocutors surrounding

the candidate speaker. This is typically done in two ways: either by

determining the activity of all candidate speakers within a frame

simultaneously [2, 9, 10], or simply by using them as a source

of contextual information [1]. Other literature has taken a step

further by incorporating the position [8] and physical size of each

speaker’s head [11] within the image. This is based on the heuris-

tic that the active speaker is more likely to be located in the center

of the image and having a larger head size than inactive speakers.

Beyond these features, an intuitively relevant piece of contex-

tual information has previously been overlooked. By modelling

each video-frame holistically, the specific environment in which

the scene encapsulates can act as a relevant prior; the acoustic

properties of the environment can be inferred from the whole

image of each video frame. This is in addition to other features

which can only be inferred from viewing extended portions of the

whole image (beyond conventional facial crops of speakers), such

as the body language and orientation of the visible interlocutors

surrounding the candidate speaker.

This work presents a novel method to leverage the contextual

information provided by the full-scene image of each video frame

using a pretrained DeiT [12] and a positional conditioning mech-

anism. TalkNet, an existing ASD architecture which detects the



speech activity for a single candidate speaker in isolation (and is

therefore naive to any contextual information) is used as a baseline

to test the efficacy of said extension. This work finds that the pro-

posed extension yields significant improvement upon the TalkNet

baseline on the egocentric dataset Ego4D as well as a modest

improvement on the AVA-ActiveSpeaker exocentric benchmark.

Contributions:

1. A novel context modelling extension for audiovisual ASD

to disambiguate acoustically challenging scenes in egocen-

tric data, all trained models and code are publicly available1.

2. Experiments on both Ego4D and AVA-ActiveSpeaker

datasets which demonstrate the efficacy of the proposed

extension: 29% and 0.38% relative improvement compared

to the TalkNet baseline are acheived, respectively.

3. Qualitative analysis of the performance, including an

ablation study and simulations to demonstrate how the

proposed extension manages populated audiovisual scenes.

The remainder of this work is organised as follows: Section 2

provides the necessary theoretical background and motivates the

architectures used for this work. Section 3 describes the proposed

method to model the context provided by each full-scene image.

Section 4 provides an overview of datasets used and implemen-

tation details. Section 5 discusses experimental results, first a

comparison with the state-of-the-art in both ego- and exocentric

data, then a qualitative analysis, and Section 6 concludes the paper.

2. RELATED WORK

The two architectures fundamental to this work will be introduced

in the following, i.e. the audiovisual ASD system with relevant no-

tation and a technical description of the TalkNet audiovisual ASD

baseline architecture. Then, the DeiT architecture [12] is briefly

introduced and motivated as a context modelling mechanism to

assist in disambiguating acoustically challenging environments.

2.1. Notation and Overview

Fig. 1 shows the audiovisual ASD system to determine the video-

frame-wise speech activity of a candidate speaker S who is visibly

present uninterrupted in a set V = {V1,...,VT} of consecutive

video frames Vt∈R
C×H×W with time index t∈{1,...,T} and

C, H, and W being the channels, height, and width dimensions

of each full-scene image, respectively. First, contiguous bounding

boxes encapsulating the facial region of the candidate speaker

VS = {V1
S, ...,V

T

S } are extracted from each full-scene image.

These contiguous bounding boxes are typically referred to as

streams or tracklets. A temporally corresponding audio signal

A = {a1, ...,aTA} is used in conjunction with VS to infer the

speech activity of the candidate speaker S. It is worth noting that

A has a time index tA ∈{1,...,TA} which is distinct from t, to

account for the discrepancy in modality sampling rates.

1https://github.com/sap-shef/full_scene_ASD

Fig. 1. Overall framework of an audiovisual ASD system.

Unsupervised and supervised approaches exist for ASD. For

example, one such unsupervised approach assumes the active

speaker for segment A is the speaker whose VS and A have the

highest audio-visual alignment [13, 14]. This is based on the

assumption that speech present in the audio signal must belong

to one of the speakers visibly present in the field of view (FoV).

Another approach is based on the premise that the faces that

co-occur most frequently with pre-diarized speaker identities

can be matched together [15]. This is based on the assumption

that speaker identities can be robustly diarized beforehand; it

therefore cannot be applied causally. Comparatively, supervised

approaches formulate the task as a binary classification prob-

lem [1, 2, 4, 7, 10, 11], with fewer assumptions. Adversities

encountered when dealing with in the wild data often make the

aforementioned assumptions invalid. Thus, recent literature has

observed the paradigm shift to supervised approaches.

2.2. TalkNet Baseline

This paper proposes a novel approach to enhance the performance

of ASD in the context of acoustically challenging scenes in

egocentric video by injecting contextual information from each

full-scene image. To evaluate the proposed approach, TalkNet [7]

is chosen as an existing baseline system that performs ASD

without any contextual information.

TalkNet follows the paradigm of comprising an audio encoder,

a video encoder, modality fusion, and a temporal modelling mecha-

nism [1,2,4,8–11,16]. The audio encoder embeds 13-dimensional

Mel frequency cepstral coefficients (MFCCs) using a ResNet-34
with squeeze and excitation layers [17], in conjunction with a static

receptive field and a dynamic MFCC window step [7]. The dyan-

mic MFCC window step accounts for the discrepancy in modality

sampling rates and dynamic input sizes. The video encoder uses

a ResNet-18 to model the spatial features of the candidate speaker

followed by a video temporal convolution module that consists



Fig. 2. Left: Crisp image; visual features are indicative of speaker

activity, e.g. open mouths resolvable. Right: Blurred image where

it is difficult to resolve such features. Blurring occurs across

both candidate speaker, and contextual speakers (surrounding

interlocutors). Images from Ego4D dataset [6].

of depth-wise separable convolutions across the temporal dimen-

sion [18]. For modality fusion, two cross-attention mechanisms

perform audiovisual synchronization by aligning the two modal-

ities followed by embedding-dimension concatenation. To model

the interframe dynamics of an encoded input stream TalkNet

makes use of the self-attention mechanism. This enables TalkNet

to infer from the full stream for temporal context when classifying

the activity of each audio and video frame as well as permitting

dynamic sequence lengths of input. Maximising the windows

of temporal context has been shown to be beneficial to ASD

performance [7,8] and the duration of a stream is often variable.

As a result of its strong modality synchronisation capabilities

and the long windows of temporal context it can infer from,

TalkNet retains competitive performance in exocentric ASD de-

spite being several years older and assuming a parameter-efficient

approach relative to more recent work [1,10,11,16]. Additionally,

TalkNet does not require significant architectural modification

to incorporate the proposed visual context modelling extension.

This ensures that its original mechanism for the candidate speaker-

specific visual features and audio is not significantly disrupted by

the proposed extension. These factors make it the optimal choice

as a baseline framework.

2.3. Data Efficient Image Transformers

Several challenges exist for ASD systems in the context of ego-

centric video. From an audio perspective, noisy environments and

frequent occurrences of overlapping speech make it difficult to

determine whether speech present in the audio signal emanates

from the candidate speaker in question, or, whether speech is

present in the audio signal at all [19,20]. Additionally, the visual

degradation which inevitably occurs due to the dynamics of the

camera wearer’s head movement poses a challenge from a visual

perspective. This motion often results in significant distortion

to the candidate speakers’ face crop, rendering the fine-grained

details typically associated with speech activity as unreliable; it is

difficult to recognise an open mouth or cheek posture [21] under

such distortion. To mitigate these challenges, other contextual

information provided by the full-scene image can be leveraged.

Using the full-scene image, a system can be informed of potential

overlapping speech and noisy environments by identifying other

visible persons and inspecting the scene background, respectively

(cf. Fig. 2). Furthermore, inferring from a full-scene image holis-

tically is advantageous because the scene-level information is less

susceptible to visual distortion. For example in Fig. 2, elementary

features such as the interlocutor position, body language, and the

environment the scene encapsulates can still be discerned even

under the presence of aberration. To leverage robust scene-level

information, this work proposes the use of a DeiT [12] as a means

of modeling the visual context provided by each full-scene image

to assist audiovisual ASD.

The DeiT is a type of vision transformer [22] that leverages

self-attention to process images. Unlike convolutional neural net-

works, vision transformers can capture long-range dependencies

and global features in images, with weaker inductive biases [23].

However, vision transformers require a large amount of data

and computing resources to train, which limits their adoption in

lightweight ASD architectures. The DeiT addresses this issue by

using a teacher-student strategy that relies on a distillation token,

which ensures that the student learns from the teacher through

attention. Pretrained on the ImageNet-1K dataset [24], the DeiT

can be finetuned with modest resources for a wide range of tasks.

This paper demonstrates that the DeiT can autonomously extract

contextual information from full-scene images for ASD.

3. CONTEXT MODELLING

This section describes the proposed method to extend TalkNet [7],

which does not consider visual context, with a visual context

modelling module. The proposed extension aims to improve ASD

performance by injecting contextual information to compensate

for audible and visual noise inherent to egocentric data. The

upper part in Fig. 3 shows the extension and the lower part shows

the baseline architecture, the latter is identical to its original

implementation (as described in Section 2.2).

The baseline architecture first encodes a stream of the local

visual features of the candidate speaker VS and the audio signal A
yielding video and audio representations FV∈R

T×d and FA∈
R
T×d, respectively. Here d denotes the embedding dimension.

The embedded modalities are then concatenated to FAV∈R
T×2d.

The extension extracts information from the corresponding stream

of full-scene images V and conditions the embedded representa-

tions by the position of the candidate speaker within each full-

scene image PS={p1
S,...,p

T

S }, given pt

S=[x1,y1,x2,y2]∈R
4×1

where x1, y1, x2, and y2 denote the upper left and lower right coor-

dinates of the bounding box (shown as orange dots in Fig. 3). This

positionally conditioned representation of each full-scene image

FC ∈R
T×dc is then concatenated with FAV along the embed-

ding dimension, yielding an embedded representation of the full



Fig. 3. Visual context modelling extension (upper part) and

TalkNet [7] baseline (lower part) for ASD.

stream FACV∈R
T×(2d+dc) from each input. As per the baseline

architecture, to infer from the full temporal context, self-attention

is then applied across the entire embedded stream. Finally, the

network classifies each video frame within the embedded stream

as either being representative of an active speaker or not.

3.1. Full-Scene Feature Extraction

Most ASD systems use contextual information only from the

faces of other visible interlocutors surrounding the candidate

speaker [1,2,9]. This can work well in some situations, like when

the audio signal emanates from one of the non-distorted faces

in the FoV [2]. However, this approach is not robust to the chal-

lenges of egocentric video. For example, if the candidate speaker’s

face is blurred by camera motion, the faces of the surrounding

interlocutors are also likely to be blurred. This makes it difficult to

leverage useful contextual information that indicates the identity

of the active speaker. Therefore, in the context of egocentric data,

this kind of contextual information is susceptible to the same

affliction it is trying to mitigate, as demonstrated in Fig. 2. More-

over, this approach restricts the amount of information the model

can extract from the visual context regarding the audio signal.

It is limited to being informed of the possibility of overlapping

speech. If multiple interlocutors are visible, this would increase

the likelihood that the audio signal contains overlapping speech.

A more informed approach would exploit information regarding

the specific environment each full-scene image encapsulates and

identify potential sources of audible sound. To this end, this work

proposes to model each full-scene image holistically using a DeiT.

First, each full-scene image within a stream is stratified

into a mosaic of fixed-size patches where a single patch is

Φ∈R
C×

H

PH
×

W

PW given PH and PW denoted the total number of

patches in each image in height and width direction, respectively.

Each patch is spatially flattened and projected into a vector

Φemb∈R
dc (where dc refers to the model dimension of the DeiT)

via linear layers, resulting in a matrixVt

emb∈R
P×dc for each full-

scene image in the stream. The matrices of all the images in the

stream are stacked along the temporal dimension, forming the ten-

sor Vemb∈R
T×P×dc . Subsequent transformer blocks comprising

self-attention and feed-forward layers with residual connections

are then used to autonomously extract information about each

image within the stream, yielding a tensor E∈R
T×P×dc .

3.2. Positional Conditioning

Previous work demonstrates that elementary contextual infor-

mation such as the position of the candidate speaker within

each full-scene image is insightful when detecting active speak-

ers [8,11]. To further build on this idea, the use of a positional

conditioning mechanism is proposed. The goal of this mechanism

is to further enrich the full-scene image embedding obtained by the

DeiT, by conditioning it on the position of the candidate speaker

using a cross-attention mechanism. This is based on the premise

that regions of salience within the full-scene image, as determined

by the DeiT, can be further weighted in terms of their relevance

by the position of the candidate speaker. For example, patches

within the image containing persons will be identified by the DeiT

as salient. However, to leverage information within those patches,

such as the head orientation of the recognised person, the position

of the candidate speaker must be known. Additionally, the dis-

tance of potential sources of audible noise from the camera wearer

relative to the distance to the candidate speaker is also a useful

prior. Relationships such as these can be more easily learnt using

a cross-attention mechanism compared to other, simpler methods.

First, a multilayer perceptron (MLP) is used to embed the

positions of the candidate speaker within each full-scene image

among the stream Ep∈R
T×1×dD . Cross-attention is then applied,

as per (1), where the sequence length of the keys and values is the

patch dimension of E, and the sequence length of the queries is

simply one.

ATT(E)=softmax

(

EpE
⊺

√
dD

)

E (1)

The cross-attention mechanism weights each patch by its

relevance to the task of determining the candidate speaker’s

activity for the corresponding video frame. To obtain the final

context embedding, the patch dimension is collapsed by mean

average, yielding FC∈R
T×dD .

4. EXPERIMENTS

Ego4D. The model is first pretrained on the train fold of the AVA-

ActiveSpeaker dataset [4]. Next, 5 separate runs are trained for

25 epochs on the train fold of the Ego4D audiovisual diarization



dataset. For augmentation, during training, negative sampling [7]

is applied to the audio signal, and standard techniques such as

random flipping, rotating, and cropping are applied to the video

modality. For evaluation, the Cartucho implementation of object

detection mAP [25] is used. This follows the mAP criterion

defined in the PASCAL VOC 2012 competition [26], and is the

same evaluation protocol provided by the Ego4D audiovisual

diarization challenge which ensures evaluatory consistency with

recent literature [6].

AVA-ActiveSpeaker. The model is trained on the AVA-

ActiveSpeaker dataset also for 25 epochs with 5 distinct runs

using the augmentation protocol described above. The optimal

checkpoint is then evaluated using the official evaluatory code

provided by the ActivityNet challenge [27].

4.1. Implementation Details

The PyTorch implementation of the DeiT-tiny-patch16-224 from

the Facebook repository on Hugging Face is used as the pretrained

DeiT. It takes 224×224 colour images as input. The TalkNet base-

line architecture is consistent with its original implementation [7],

it uses 13-dimensional MFCCs as input to the audio encoder with

a receptive field of 189 audio frames with dynamic MFCC win-

dow steps. The video encoder accepts 112×112 images of the can-

didate speaker’s face crop in grey-scale. The embedding dimen-

sions for FA, FV, and FC are 128, 128, and 64, respectively. The

loss function used is the weighted cross entropy loss to compen-

sate for the class bias of the data set, with 3 auxiliary losses: audio,

visual, and contextual. It was determined empirically that a larger

contextual loss weighting relative to the audio and visual loss

contributions yields better results, therefore, the auxiliary losses

were weighted as follows: 0.4, 0.4, and 0.7. The temporal context

the model can infer from is dynamic, ranging from 2 to 300 video-

frames (0.67 to 10 seconds assuming a 30Hz video sampling rate).

Since the test folds of Ego4D and AVA-ActiveSpeaker are unavail-

able, i.e. have not been released by the Ego4D audiovisual diariza-

tion challenge and ActivityNet challenge, respectively, this work

follows other literature [1,7,8,10,16] and uses the validation folds

of each dataset for evaluation. The full model is trained in less than

24 hours using a single V100 and a batch size of 900 video frames.

4.2. Datasets

4.2.1. Ego4D Dataset

Ego4D [6] is a large dataset of over 3000 hours of annotated

video recorded from the egocentric perspective. It covers tasks

from episodic memory to audiovisual diarization. This work,

however, only uses the audiovisual diarization component of the

dataset which comprises 572 distinct video clips. Each video

clip is 5 minutes long, some of which are recorded concurrently.

All data is recorded monaurally using a variety of wearable

devices. All video is sampled at 30 Hz and uses high-definition

visual resolution. The dataset is stratified as follows: 379 clips

for training, 50 clips for validation, and 133 clips for testing.

The dataset records real-life conversational scenarios, usually

involving multiple speakers, both indoor and outdoor. The dataset

is therefore incredibly diverse and particularly challenging.

4.2.2. AVA-ActiveSpeaker Dataset

The AVA-ActiveSpeaker dataset [4] is the first large-scale standard

benchmark for ASD, with 262 exocentrically recorded Hollywood

movie clips as its source. The dataset is split as follows: 120
training movie clips, 33 validation movie clips, and 109 test movie

clips. Faces are annotated to a video-frame level of temporal

granularity for speaker activity, yielding bounding boxes for 5.3
million faces. The dataset poses various challenges for ASD,

such as occlusions, low-resolution faces, low-quality audio, and

challenging lighting conditions.

5. RESULTS

5.1. Comparison with State-of-the-Art Methods

Primarily the objective of this work is to enhance the performance

of audiovisual ASD in the context of egocentric data. However,

for completeness, it is necessary to assess the performance of the

system in the context of exocentric data as well. To this end the

proposed system is evaluated on the two datasets described in

Section 4.2: the Ego4D audiovisual diarization dataset and the

AVA-ActiveSpeaker dataset.

Table 1. Performance on validation set of the AVA-ActiveSpeaker

dataset. Symbol > refers to a minimum estimate of parameters

present in the model. Cont. Inf. denotes whether the model is

contextually informed. Best performance in bold font.

Model Cont. Inf. mAP [%] Params. [M]

AVA [4] ✗ 82.1 >10.0
Zhang et al. ✗ 83.5 >35.0

ASC [2] ✓ 87.1 23.5
MAAS [9] ✓ 88.1 22.5

UniCon [11] ✓ 92.2 >22.4
TalkNet [7] ✗ 92.3 15.7

Proposed Method ✓ 92.7 21.2
ASDNet [1] ✓ 93.5 51.3

Liao et al. [28] ✗ 94.1 1.00

SPELL [8] ✓ 94.2 22.5
LoCoNet [16] ✓ 95.2 >22.5

When evaluated on the AVA-ActiveSpeaker dataset, as shown

in Table 1, the improvement upon the TalkNet baseline is modest,

resulting in a 0.38% relative improvement in mAP. This might

be for two reasons. Firstly, the challenges the proposed extension

helps to mitigate such as overlapping speech, acoustic noise, and

visual distortion are less prevalent in exocentric data. Secondly,

the baseline performance is already comparable with the current

state-of-the-art, leaving less room for improvement. Furthermore,

due to the subjective nature of the annotation, some disagreement



with the ground-truth ASD labels is likely to occur even with a

perfect ASD system. Therefore, diminishing returns are expected

beyond a certain threshold of improvement.

Table 2. Performance on Ego4D-val [6]. Results reported are

taken from existing literature, except for Liao et al [28]. For

LoCoNet, a minimum number of parameters is stated since the

number of parameters used is variable. All systems shown, exclud-

ing the TalkNet baseline and Liao et al., are contextually informed.

Model Params. [M] mAP [%]

TalkNet [7] 15.7 51.0

Liao et al. [8] 1.00 54.3

LoCoNet [16] >22.5 59.7

SPELL [8] 22.5 60.7

Proposed Method 21.2 65.9

In the context of egocentric data, as shown in Table 2, the

proposed extension significantly improves upon the TalkNet

baseline system, yielding a 29% relative improvement in mAP.

Additionally, it significantly outperforms the current state-of-the-

art system on the Ego4D dataset, SPELL [8], by 5.2% mAP. This

is whilst using less parameters than SPELL which, unlike the

proposed method, is also not trained in an end-to-end fashion

and is non-causal. These results implicitly validate the hypothesis

of this work; contextual information provided by the full-scene

image is beneficial when determining speaker activity. This is

particularly true in the case of egocentric data.

5.2. Ablation Study

To implicitly determine the kinds of information the context mod-

elling extension learns from, an ablation study is conducted in the

following. In total four adaptations of the context modelling ex-

tension are evaluated with the TalkNet baseline: configuration (i)

full-scene image† + position refers to the proposed extension, but

using full-scene images where all regions except for those includ-

ing face crops have been ablated and replaced with pixel values of

zero; configuration (ii) position-only refers to positional informa-

tion being injected without any full-scene image embeddings; con-

figuration (iii) full-scene image, where the positional conditioning

mechanism has been ablated; and finally, configuration (iv) full-

scene image + position which is the proposed extension to TalkNet,

unmodified. From Table 3 it is clear that to effectively leverage the

contextual information provided by the full-scene image, it is nec-

essary to extract holistic information and condition the embedded

representation on the position of the candidate speaker. Surpris-

ingly, configuration (i) performs the worst. This may be due to the

fact that the majority of the embedded patches in this configuration

simply contain no information, since visible faces only consume a

small minority of area within each full-scene image. This means

the model is inundated with noise and has to learn how to selec-

tively ignore certain patches. This experiment also confirms that

using the full-scene image to capture the acoustic features of the en-

vironment can help identify the active speakers in egocentric data.

Table 3. Ablation study for visual context modelling components

evaluated on Ego4D-val [6]. † indicates ablated full-scene images

only comprising the bounding box regions of visible interlocutors.

Model mAP [%]

full-scene image† + position 60.4
position-only 60.5

full-scene image 61.3
full-scene image + position 65.9

5.3. Qualitative Analysis

Table 4 shows a breakdown of the baseline performance compared

with the proposed method in terms of mAP, stratified by the num-

ber of visible interlocutors in each scene. For all strata, excluding

scenes comprising 3 visible interlocutors, the proposed method

produces a significant improvement. In previous studies [1,2,4,

7,9,28], a clear trend of decreasing performance with increasing

number of visible interlocutors in each scene is apparent. This

trend is consistent with what the baseline system exhibits on the

Ego4D validaiton fold. The proposed method, however, does not

abide by this trend, performance increases with increasing visible

interlocutors beyond 3. This may be because information provided

by visible interlocutors in a scene, such as head orientation, is ben-

eficial when determining speaker activity. The proposed extension

potentially leverages this information allowing it to perform better

in particularly crowded scenes. For this phenomena to overcome

the challenges induced by crowded scenes, there must be a signifi-

cant quantity of visible interlocutors; it is unlikely that all interlocu-

tors are looking at the active speaker at all times. For example, in

a scene comprising 3 visible interlocutors, there is an insufficient

number of visible interlocutors for their gaze to not provide an

ambiguous result. This would explain the dip in performance for

scenes comprising 3 visible interlocutors, observed in Table 4.

Table 4. Effect of number of visible interlocutors in the FoV on the

detection performance in terms of mAP and scenario abundance.
# of Visible interlocutors 1 2 3 4 ≥5

TalkNet 58.1 39.4 22.3 22.6 16.0
Proposed Method 71.9 58.0 20.3 25.1 47.5

Abundance [% of val fold] 46 52 0.70 0.63 0.0072

6. CONCLUSIONS

In this study, a context modelling module to extend an existing

audiovisual ASD system to improve its performance in particular

for egocentric data was proposed. The extension uses a pretrained

DeiT and a positional conditioning mechanism to extract and

leverage contextual information reflecting the acoustic properties

of full-scene images. Experimentation on two ASD benchmarks

demonstrate that the proposed extension achieves 65.9% and

92.7% on egocentric and exocentric data, respectively, signifi-

cantly outperforming all other methods on the Ego4D dataset.
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