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Abstract 

Ageing is associated with a greater risk of muscle and bone disorders such as sarcopenia and 

osteoporosis. These conditions substantially affect one’s mobility and quality of life.  In the 

past, muscles and bones are often studied separately using generic or scaled information that 

are not personal-specific, nor are they representative of the large variations seen in the elderly 

population. Consequently, the mechanical interaction between the aged muscle and bone is 

not well understood, especially when carrying out daily activities. This study presents a 

coupling approach across the body and the organ level, using fully personal-specific 

musculoskeletal and finite element models in order to study femoral loading during level 

walking. Variations in lower limb muscle volume/force were examined using a virtual 

population. These muscle forces were then applied to the finite element model of the femur to 

study the variations in predicted strains. The study shows that effective coupling across two 

scales can be carried out to study the muscle-bone interaction in elderly women. The 

generation of a virtual population is a feasible approach to augment anatomical variations 

based on a small population that could mimic variations seen in a larger cohort. This is a 

valuable alternative to overcome the limitation or the need to collect dataset from a large 

population, which is both time and resource consuming.



 

 

1 Introduction 

Ageing is associated with a combination of both muscle and bone loss. This is particularly 

relevant in countries such as UK, which faces an increasingly ageing population with rising 

cost of medical care. In particular, osteoporosis related fragility hip fracture is a major public 

health issue, which disproportionally affect post-menopausal women due to age and hormonal 

related bone loss, making bones weaker and more prone to fracture. This is of particular 

concern with the femur, which is the largest bone of the body and connects to the hip joint to 

provide mobility.  

In the past, the mechanical changes of muscle and load-bearing bone due to ageing were 

often studied separately owe to limitations in computational power and available data. This 

limited our ability to understand the mechanical interaction between muscles and load-bearing 

bones, especially in a large elderly population. Multiple studies have pointed to an association 

between muscle loss (e.g. sarcopenia) and fall history in epidemiological studies (1–4). These 

results demonstrated the strong mechanical interactions between these two structures in order 

to enable movements.  

The ability to explore intra-personal muscle variations across multiple subjects is important in 

order to investigate how individual anatomical parameters (such as muscle size, length, path 

of action) affect kinematics and forces resulting at bones and joints. Previously, 

anthropometric parameters (e.g., body mass or body mass index) have been used to explain 

the variation in muscle anatomy. Recent study found large variations in muscle volume, length, 

physiological cross-sectional area in eleven post-menopausal women between body sides 

and across the cohort (5). However, more than half of these variations remained unexplained. 

In addition, elderly individuals are known to experience muscle loss at very different rate and 

extent, which can substantially affect the ability of the muscles to produce force. Muscle 

strength loss at an older age has been explained by a number of factors, such as a reduction 

in muscle mass (6) and an increase in the percentage of muscular fat with a reduction in 



 

 

physiological cross-sectional area of the muscle (6–8). These factors can be generalised by a 

general reduction in muscle volume and hence the force produced by the muscle (assuming 

a linear relationship between muscle volume and muscle force). These variations will affect 

the estimated isometric force and consequently the loads exerted on femur, hip and knee 

joints. A series of sensitivity analysis was conducted in order to understand how muscle forces 

would affect the strain predictions on the femur during level walking in five postmenopausal 

women (9). Results from this initial study indicated substantial differences in the predicted 

strains across the cases. These findings suggest that intra-personal variations (muscle 

anatomy/force and bone strength) are substantial and should be further investigated in a larger 

population.  

This study aims to investigate how muscle variability (muscle volume and hence muscle 

forces) affects femoral loading in a large virtual population using the previously developed 

personalised body-organ coupling procedure (9). The variation in muscle forces was 

estimated at the body level, using a fully subject-specific musculoskeletal model, and data 

collected during gait analysis. The effect of muscle volume/force variation on the mechanical 

response of the femoral neck was then investigated using finite element modelling in order to 

identify the amount of variation in predicted femoral neck strain and any influential muscles 

during level walking.  

 



 

 

2 Methods 

This section is split into several parts. First, the participant information and data acquisition 

details were described. This then leads to the description of personalised musculoskeletal 

models at the body level and the creation of a virtual population of musculoskeletal models. 

Maximum isometric muscle forces were extracted from this virtual population to be used as 

input for the finite element model. The second half of this section describes the generation of 

a personal-specific finite element model of the femur. The femur’s biomechanical responses 

were simulated and evaluated at two critical time points of the gait cycle through a sensitivity 

analysis using different muscles forces from the virtual population. This approach provides an 

elegant coupling between the body and the organ level using individual specific data collected 

from multiple modalities as well as various engineering techniques across different scales. 

The general workflow is presented in Figure 1. 

 

Figure 1. Body-organ coupling pipeline showing the body-level musculoskeletal model (a), 
the organ-level finite element model of the femur (c), an example joint contact forces of the 
virtual population (b), the combined model with boundary conditions applied to the femur (d) 

and a typical simulation result showing tensile strain distribution (e). 

 

2.1 Participants and data acquisition  



 

 

This study used retrospective data collected as part of an EPSRC funded study (MultiSim and 

MultiSim2, EP/K03877X/1 and EP/S032940/1), which involved eleven post-menopausal 

women (69±7 year, 159±3 cm, 66.9±7.7 kg). Inclusion criterion was having a bone mineral 

density T-score at the lumbar spine or total hip (whichever was the lower value) less than or 

equal to -1. Those who were obese (BMI>35) or underweight (BMI<18) were excluded. Ethics 

approval was obtained through the Health Research Authority of East of England 

(Cambridgeshire and Hertfordshire Research Ethics Committee, reference 16/EE/0049). Each 

participant was scanned in CT (GE LightSpeed 64 VCT) from the hip to the knee. The CT scan 

settings were tube current of 120 mA, tube voltage of 100 kVP, and a resolution of 

0.742x0.742x0.625 mm3.  Full lower limb MRIs were collected using a Magnetom Avanto 1.5T 

scanner (Siemens). A T1-weighted sequence was used with a voxel size of 1.1x1.1x5.0 mm3 

for the long bones and 1.1x1.1x3.0 mm3 for the joints. Each participant was also invited to the 

gait lab to collect 3D gait analysis data including marker trajectories and ground reaction 

forces. 

2.2 Baseline musculoskeletal models 

The 3D gait analysis data and MRI scans of the lower limb were used to build baseline 

monoliteral musculoskeletal models (Figure 1a). These included four body segments (pelvis, 

femur, tibia, foot) articulated by an ideal ball-and-socket joint for the hip, and two ideal hinges, 

one for the knee and one for the ankle respectively, as well as 43 lower limb muscles. These 

43 lower limb muscles corresponded to the lower-limb muscles included in state-of-the-art 

OpenSim model gait2392 in the literature (10). Out of these, 23 muscles can be reliably 

segmented and an online repository containing personalised muscle volume and lengths has 

been created (5)1. 

                                                           
1 Available from the online repository (https://doi.org/10.15131/shef.data.9934055.v3), comprising of all eleven 

older women enrolled. Note that in this study, for ease of comparison, each of the Adductor magnus, Gluteus 

maximus and Gluteus medius muscles have been split into 3 bundles. 

https://doi.org/10.15131/shef.data.9934055.v3


 

 

From these eleven women, one participant (70.5 yr, 61.4 kg, 164 cm, BMI 22.8, T-score of -

2.2) was selected to build a fully subject-specific musculoskeletal model (SSMM) and subject-

specific finite element model of the femur (described later on). The SSMM was generated 

using personalised bone geometries and segment inertia generated from MRI (11). The joint 

axes were determined via morphological fitting to the articular surface of the segmented bone 

geometries. The same set of muscles in gait2392 was included in the SSMM; but their origin, 

insertion and via points were personalised based on the MRI scans. The personalised muscle 

information (origin and forces) were later used in the finite element simulation of the femur. 

Muscle length parameters were linearly scaled from gait2392 values in order to maintain their 

ratio to musculotendon length. Maximal isometric forces (Fmax) of 23 lower limb muscles were 

personalised using MRI-segmented muscle volume (available from the aforementioned online 

repository). The Fmax of the remaining 14 muscles (not available as they cannot be repeatably 

measured, e.g. Gluteus minimus, Peroneus longus, etc.) were linearly scaled from gait2392 

values based on body mass of the participant. 

2.3 Virtual population  

One hundred variations of SSMM representing a virtual population of individuals were 

generated (12). First, the mean and standard deviation of 23 muscle forces of the eleven 

women from the online repository were used to generate normal distributions of Fmax, 

representing a virtual population of older women. Independent random sampling of each 

muscle force distribution was then carried out in order to create 100 sets of Fmax for each of 

the 23 muscles. These were then used to characterise muscle properties of each variation of 

the SSMM described in the previous section. A convergence study was carried out in order to 

determine the number of sampling points to ensure less than 10% error in the normalised 

overlap of the resulting joint contact force (JCF) curve bands (example shown in Figure1b). 

This is to remove any anomalies that lead to a JCF pattern outside of the normal range. 

2.4 Dynamic simulations and data analysis 



 

 

Hip, knee, and ankle joint angles, and moments were computed from the baseline SSMMs 

using the OpenSim 3.3 (13) inverse kinematics and inverse dynamics tools relying on 

MATLAB API (v9.1, R2021b, Mathworks, USA). OpenSim recommended good practice was 

followed. One hundred runs of static optimisation (where the sum of muscle activations 

squared was minimised) and joint reaction analysis were carried out in order to estimate the 

individual muscle (maximum isometric) forces and associated normalised JCFs for each 

virtual case (Figure 1b). Ideal moment generators (reserve actuators) were included for each 

degree of freedom in order to provide joint torque when muscle forces could not balance the 

external moments, although these ideal moment generators were made unfavourable to 

recruit by assigning them a unitary maximum force.  

Maximum isometric muscle forces and resultant JCFs estimated by the SSMMs were 

extracted at two specific gait time points, corresponding to the first peak (P1) and the second 

peak (P2) of hip JCFs during one full gait cycle. These forces were then used as loading 

conditions to simulate the mechanical response of the femur using finite element modelling, 

as described below.  

2.5 Finite element model of the femur  

For the one selected patient in Section 2.2, the right full femur was segmented from the CT 

scans using Mimics 20.0 (Materialise, Belgium). The segmented femur was then automatically 

meshed with 10-node tetrahedral elements (ICEM CFD 15.0, ANSYS Inc.) using an averaged 

element size of 3mm (849,069 degrees of freedom), following the mesh convergence study 

reported in a previous study (9) using the same MultiSim cohort. Heterogeneous, elastic 

isotropic material properties were estimated from the CT attenuation and mapped onto the 

finite element mesh following a validated material-mapping protocol (Bonemat v3, Rizzoli 

Institute) (14–16) (Figure 1c). The European Spine Phantom was used for bone density 

calibration. Note that CT scans were required here in order to provide personalised element-

based Young’s modulus estimation. Such information cannot be obtained through MRI scans.  



 

 

2.6 Static femoral loading during gait and data analysis 

Using the finite element model of the femur generated above, muscle isometric forces 

estimated from the virtual population (representing 100 virtual elderly women) were applied to 

the model in order to investigate the effect on predicted femoral strain and mechanical 

behaviour. In order to apply muscle isometric forces to the femoral model, the orientation of 

the muscle and joint forces were transformed from the MRI to the CT scans’ reference frame 

using the Iterative Closet Point (ICP) algorithm (17). Eighteen muscle forces were applied to 

the external surface of the finite element model of the femur as point loads (Figure1d). More 

details are described in Altai et al. (2021) (9). Each muscle’s attachment point was estimated 

by the SSMM. Forces were then applied to the nearest surface node on the finite element 

mesh. Relaxed kinematic constraints were applied at the distal end of the femur to prevent 

rigid body motion and were chosen to replicate the basic movements involved in walking 

considering the equilibrium of forces estimated by the SSMM. The most distal node of the 

medial condyle was completely fixed, while only the anterior-posterior and superior-inferior 

displacements of the most distal node at the lateral condyle was constrained (Figure1d). An 

extra node in the patella groove was constrained antero-posteriorly (9, 18, 19). Hip and knee 

joint reaction forces (predicted by the finite element model) were used to verify that the 

imposed boundary conditions were appropriate and statically equivalent to applying the hip 

and knee JCFs estimated from the SSMM. 

For each virtual subject, peak principal strains (e1 and e3) at the femoral neck were predicted 

at two time points (Peak1 and Peak2) corresponding to the first and second peak of the hip 

JCF curve. The predicted strains were averaged across the surface nodes using a circle of 

3mm radius, to follow the continuum hypothesis avoiding local effects of the load (20, 21). The 

predicted strains were then compared to the previously published yield strain limit: 0.73% and 

1.04% for tensile and compressive strain, respectively (22). The location of the peak strains 

within the femoral neck region was also analysed. And finally, the peak strain energy density 

(SED) was computed at Peak1 and Peak2. The femoral neck was chosen as the region of 



 

 

interest as fracture often occurs here during a sideway fall (23, 24). This area is also away 

from the subtrochanteric region where hip muscles attach to the femur (and hence the 

locations of applied muscle forces). 

The relation between the muscle forces estimated by the SSMM and the femoral neck strains 

predicted by the finite element models was investigated using Pearson’s product-moment 

correlation. The correlation was considered to be moderate when correlation coefficient (r) is 

above 0.3 and strong when r is above 0.5, under the hypothesis of a p-value below a 

significance threshold of 0.05. The statistical analysis was carried out in MATLAB API (v9.1, 

R2021b, Mathworks, USA).    

All simulations were performed on the high-performance computing cluster at the University 

of Sheffield (ShARC) using ANSYS Mechanical APDL 19.1 (Ansys Inc., PA, USA). For each 

virtual subject, the computing time used to solve the static finite element model was less than 

one minute for each selected gait time point. 

 

2.7 Results 

Across the 100 virtual subjects, the range of hip joint contact forces (normalised by body 

weight, BW) predicted by baseline SSMMs (using OpenSim) varied by up to 0.8 of the BW at 

Peak1 and 3.1 of the BW at Peak2, as shown in Figure 2.  



 

 

 

Figure 2. Hip JCFs as predicted by the SSMM for the 100 virtual subjects. The two selected 
time points of the level walking cycle (Peak1 and Peak2) are indicated by dashed lines. 

 

Using the finite element model of the femur, the principal strains from the 100 virtual subjects 

were predicted at Peak1 and Peak2 after applying muscles forces. At Peak1, the absolute 

maximum first and third principal strains (median ± SD) at the femoral neck were predicted to 

be 0.37 ± 0.016 % and 0.41 ± 0.016 %, respectively. At Peak2, the absolute maximum first 

and third principal strains were predicted to be 0.22 ± 0.038 % and 0.27 ± 0.044 %, 

respectively (Figure 3). There is a wider variation in the predicted principal strains at Peak2 

compared to Peak1. The predicted maximum strain energy density (SED, mean ± SD) at the 

femoral neck was 4.57 ± 0.46 GPa at Peak1 and 10.73 ± 4.43 GPa at Peak2. The above 

information is summarised in Table 1. 



 

 

                  

Figure 3. Distribution of the predicted maximum first principal strains (A) and absolute 
maximum third principal strain (B) at Peak1 and Peak2 of one gait cycle, for 100 virtual 
subjects. 

 

For all subjects, potential failure (e.g. bone fracture) was predicted to occur under tension. 

The maximum first principal strains were consistently predicted at the superior-anterior aspect 

of the femoral neck region in the finite element model for all cases (Figure 4).  

                 

Figure 4. Example distribution of the absolute maximum first (e1) and third principal (e3) 
strains predicted by the finite element model, shown in anterior and posterior views, with 
enlarged views for the femoral neck region (i.e. the region of interest). 

 

For most muscles, no statistically significant correlation (p>0.05) was found between muscle 

volumes (which gave rise to muscle force variations) and the predicted principal strains, as 

shown in Table 2. However, a few muscles showed significant correlation (p<0.05), which is 

described here. At Peak1, the Gluteus medius muscle bundles 2 and 3 had a moderate to 



 

 

strong positive correlation with the principal strains (r in the range of 0.48 to 0.64 for e1 and 

e3, p<0.001). The Gluteus medius muscle bundle 1 also had a moderate to strong positive 

correlation (r = 0.51 and 0.47 for e1 and e3, respectively, p<0.001) at Peak2. At the second 

peak, two other muscles showed strong and moderate negative correlation with the principal 

strains: the Rectus femoris (r = -0.66 and -0.68 for e1 and e3, respectively, p<0.001) and the 

Tensor fasciae latae (r = -0.44 and -0.46 for e1 and e3, respectively, p<0.001).  For illustration 

purpose, Figure 5 shows the Gluteus medius muscle volume (bundles 2 and 3) of the 100 

virtual subjects plotted against the predicted maximum first principal strains. 

                  

Figure 5. Plot between the Gluteus medius muscle (bundles 2 and 3) volume and maximum 
first principal strains at Peak1 for 100 virtual subjects. 

 

2.8 Discussion 

This study investigated the effects of muscle variability (muscle volume and hence muscle 

forces) on femoral loading in a virtual population using a personalised body-organ coupling 

approach. Multibody dynamic models were used to calculate Fmax and JCFs, while finite 

element models of a full femur were used to predict principal strains induced at the femoral 

neck during one normal walking cycle.  



 

 

Changes in individual Fmax caused variations in the estimated JCFs that were broadly similar 

to those reported by previous studies, with some small differences (11, 25, 26). As previous 

studies were mainly based on cadaveric values (not live individuals), leading to differences in 

the definition of the joint axes and muscle paths, and consequently the joint kinematics. In 

addition, some authors varied all muscle forces simultaneously in the same manner, whereas 

sampling was carried out in the current study. These differences in approaches could explain 

the slight differences in results. 

The median values of the peak strain (0.22% at Peak1 and 0.37% at Peak2) predicted for the 

100 virtual subjects was found to be slightly higher than previous studies (27, 28). Kersh et al. 

(2018) (27) reported a median peak strain of less than 0.2% at the femoral neck during walking 

for twenty subjects, and Martelli et al. (2014) (29) reported an average tensile strain of 0.25% 

at the femoral neck during walking based on a single subject. Both the current study and Kersh 

et al. (2018) study predicted the maximum strains at the femoral neck region. The difference 

in predicted strains could be explained by the study design. Kersh et al. (2018) reported values 

of effective strains, which were calculated from the strain energy density and the Young’s 

modulus of each element across the proximal femur. This is different to the peak principal 

strains reported here on the surface of the femur. The number of subjects used in this study 

(100 virtual subjects) was much larger than the previous studies: 20 subjects in Kersh et al. 

(2018) and 1 subject in Martellie et al. (2014). Furthermore, the current study used fully 

personalised musculoskeletal and finite element models, while Kersh et al. (2018) scaled the 

musculoskeletal models from the OpenSim generic model. The MultiSim cohort consisted of 

elderly women in the osteopenia range (T scores ranged from -2.2 to -1.2), while the subjects 

in Kersh et al. (2018) ranged between healthy and osteopenia.  

Although the predicted strain values were different in these studies, the peak strains in all 

cases were notably below the fracture threshold (22). This finding supports the theory that, in 

the absence of trauma, bone fracture is only likely to occur when people with weak bones 

undertake tasks or suffer from accidents that result in high loads.  



 

 

As shown in Table 2, strong correlations were found between a few muscles and the predicted 

peak principal strains. For the rest of the muscles, no strong correlation was found between 

muscle volumes and the strains, with most correlation coefficients ranged between ±0.2 and 

0 (Table 2). The highest positive correlation coefficient (r = 0.64, p<0.001) was observed 

between the Gluteus medius muscles and the first principal strain at Peak1 (Figure5). This is 

in agreement with previous studies where the Gluteus muscle group was found to contribute 

to most of the loading on the femur during walking (9), as well as when carrying out other tasks 

such as stair ascent, descent and jumping (27). In contrast, the highest negative correlation 

coefficient was observed for the Rectus femoris muscle (r = -0.66, p<0.001 for e1; and r = -

0.68, p<0.001 for e3)  followed by the Tensor fasciae latae (r = -0.44, p<0.001 for e1; and r = 

-0.46, p<0.001 for e3) at Peak2. The observed negative correlations suggest that, around the 

end of the stance phase (toe-off), Rectus femoris and Tensor fasciae latae muscles play a 

role in lowering the bending strains within the femoral neck by reducing the bending moment 

on the proximal femur (30). A recent study reported similar findings to the current study, where 

the Gluteus medius muscle was found to be the most influential muscle for more than 40% of 

the gait cycle, followed by the Rectus femoris (16%), and Tensor fasciae latae (10%) (31). As 

the use of musculoskeletal models coupled with finite element models continues to grow, 

further investigations are necessary to understand the contribution of each particular muscle 

on loading the femoral neck during walking. 

The highest strains were consistently predicted at the femoral neck region for all virtual 

subjects. This is likely because the cortical bone at the middle of the femoral neck (current 

region of interest in this study) is thinner than the rest of the proximal femur. For example, the 

thicker cortex at the trochanteric region can accommodate higher strains than the femoral 

neck due to the fact that most hip muscles are inserted around this area. This could have 

implications in hip fractures due to sideway falls because the thinner cortical bone at the 

femoral neck cannot bear the substantial bending occurs due to the indirect impact on the 

greater trochanter.  



 

 

It is known that muscle forces constitute the largest loads on load-bearing bones (except for 

case of trauma), which in turn facilitate bone growth, development and remodelling (32). The 

‘mechanostat’ theory states that if the imposed force by muscles exceeds a particular 

threshold, then bone formation occurs in favour of bone resorption (32). This is reflected by 

the fact that with smaller Gluteus medius muscle forces, the predicted strains in femur tend to 

be lower. This indicates that the femur could be more affected by changes in major hip muscles 

such as the Gluteus medius during ageing. A general reduction in muscle size and power 

during ageing will lead to a reduction in typical peak voluntary mechanical loading, and 

consequently remodelling of the bone with reduced bone strength (32). This further illustrates 

the important mechanical interplay between muscles and load-bearing bones. 

The current study has a number of limitations. Only 23 of the 43 muscles included in the lower 

limb model were personalised in this study. This was due to the lack of repeatability found by 

Montefiori et al. (2020) (5) when segmenting the remaining muscles. Automated algorithms 

based on machine learning or statistical shape modelling approaches could be developed in 

future to provide faster and more accurate estimations of muscle volumes. This would enable 

further studies on the role of the remaining 14 muscles (such as Psoas muscle) that was not 

included in this study. 

In an attempt to preserve subject-specificity in the muscle parameters, physiological cross-

sectional area was calculated from muscle volume and length, instead of evaluated directly 

from higher resolution MRIs (33). Although muscle volume was altered for each muscle in 

each virtual subject, the specific muscle path remained unchanged. Anatomical variations in 

muscle path could lead to changes in moment arm. A change in muscle volume and 

associated force is also expected to cause variations in resulting kinematics, but this was not 

accounted for in this study. Only the resulting normalised joint contact forces over one gait 

cycle were checked to ensure the results fell within a reasonable range. 

Although a large virtual cohort of 100 subjects were used, this data was based on muscle 

volume measurements obtained from a small cohort of 11 elderly women with no known 



 

 

conditions that affected bone or any neurological disorders. This means the virtual population 

is only representative of elderly women who are relatively healthy in muscle functions. 

Therefore, the cohort may not be representative of those who suffer from muscle loss 

associated with sarcopenia or other musculoskeletal diseases.  

All finite element models in the current study were created based on a single femur geometry 

from one selected subject. Information of this same subject was also used to generate the 

SSMM of all 100 virtual subjects. Therefore, the variation in femur geometry in combination 

with muscle volume variations was not considered. Collecting fully personalised data for such 

a large number of subjects is challenging. Future work can include generating such variations 

in the finite element models using similar approaches as presented here for the 

musculoskeletal models. 

This study focused on only one gait cycle during level walking, although a ten-meter-long 

walkway was considered during data collection to ensure a natural cadence of the individual 

while walking, and hence minimising variations. It is known that the gait pattern of an individual 

may differ in two sequential gait cycles (34), producing different joint, muscle, and ground 

reaction forces. These changes could induce different strain levels and mechanical responses 

in the femoral neck. The investigation of the gait variability is beyond the scope of the current 

study. However, future studies should consider gait variations across different physiological 

loading conditions and quantify the range of changes in predicted femoral strain. 
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Table 1. Summary of information predicted at Peak1 and Peak2 of one gait cycle for the 100 
virtual subjects. Hip joint contact forces (JCFs) were predicted by the musculoskeletal 
models. The absolute maximum first (e1) and third (e3) principal strains and strain energy 
density (SED) were predicted by the finite element models. 

Mean ± SD Peak1 Peak2 
Hip JCFs 0.8 BW 3.1 BW 
e1 (median ± SD) 0.37 ± 0.016 % 0.22 ± 0.038 % 
e3 (median ± SD) 0.41 ± 0.016 % 0.27 ± 0.044 % 
SED (GPa) (mean ± SD) 4.57 ± 0.46 10.73 ± 4.43 
BW: Body weight of the selected subject 
 

 

Table 2. Correlation coefficients (r) between muscle volume (all from the right side) and the 
predicted absolute maximum first and third principal strains at the two peaks (Peak1 and 
Peak2) of the gait cycle. Blue; positive correlation. Red; negative correlation. White; no 
correlation (p-value >0.05).  

Muscle Peak1 Peak2 

 e1 e3 e1 e3 

Adductor brevis -0.03 -0.03 -0.07 -0.08 

Adductor longus -0.05 -0.01 -0.01 -0.01 

Adductor magnus 1 -0.17 -0.20 0.08 0.08 

Adductor magnus 2 0.08 0.07 0.27 0.27 

Adductor magnus 3 0.04 0.05 -0.06 -0.06 

Biceps femoris long head -0.14 -0.16 -0.14 -0.14 

Biceps femoris short head 0.20 0.16 0.26 0.26 

Gluteus maximus 1 -0.29 -0.26 -0.13 -0.10 

Gluteus maximus 2 -0.04 -0.01 -0.09 -0.10 

Gluteus maximus 3 0.04 0.08 -0.17 -0.17 

Gluteus medius 1 -0.13 -0.24 0.51 0.47 

Gluteus medius 2 0.64 0.63 0.04 0.04 

Gluteus medius 3 0.48 0.52 -0.03 -0.02 

Gracilis 0.03 0.02 0.11 0.10 

Iliacus -0.06 -0.03 -0.10 -0.09 

Gastrocnemius lateralis -0.04 -0.05 0.06 0.05 

Gastrocnemius medialis -0.12 -0.12 0.01 0.00 

Peroneus brevis -0.11 -0.09 -0.05 -0.06 

Rectus femoris -0.23 -0.19 -0.66 -0.68 

Sartorius -0.13 -0.13 -0.02 -0.03 

Semimembranosus 0.09 0.05 0.07 0.07 

Semitendinosus 0.20 0.19 0.21 0.22 

Soleus -0.18 -0.17 -0.09 -0.07 

Tensor fasciae latae -0.23 -0.21 -0.44 -0.46 

Tibialis anterior -0.08 -0.02 0.08 0.06 

Tibialis posterior 0.14 0.11 0.19 0.21 



 

 

Vastus intermedius 0.11 0.12 0.06 0.08 

Vastus lateralis 0.00 -0.03 -0.19 -0.18 

Vastus medialis 0.02 0.01 -0.16 -0.14 
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