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ABSTRACT 

Research into thermodynamic modelling allows for product and process optimisation of Portland cement 
clinkers. Due to the magnitude and chemistry of clinker production, there is a great challenge in modelling 
such a complex system. The CALPHAD (CALculation of PHAse Diagrams) approach provides a method 
in overcoming this challenge, by constructing a model, step-by-step with increasing complexity, i.e., 
starting with the pure solids and liquid to modelling binary and ternary melts, and moving on to higher-
order systems, and with the possibility to eventually embed mobility. This approach has had great success 
in the metals industry and has allowed for production optimisation for a variety of alloys. In this project, 
we have developed a thermodynamic database for the CaO-Al2O3-SiO2-Fe-O-MgO system. This provides 
a much-needed update to the underlying thermodynamic data. In addition, prediction calculations made 
with our thermodynamic database are compared against technical clinkers analysed by XRD, XRF, and 
SEM-EDX. Future work will include developing further extensions to the thermodynamic database to 
include other elements such as sulfur to further model clinker diversity. 
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1. Introduction 

There is an immediate need to make Portland cement (PC) more environmentally friendly by optimising 
the clinker production process. There are huge potentials in the research of the high temperature chemistry 
within the cement kiln (Ludwig and Zhang (2015)), plenty of which related to efficiency has already been 
realised. Research into new clinker chemistries are mostly “trial and error” and would be aided by a 
thermodynamic model of the clinker production process, and with the growing pool of raw materials 
targeted for use in clinker manufacture. Thermodynamic models and databases have greatly aided the 
metals industry in material development, which have been rapidly developed using the CALPHAD that 
provides a step-by-step approach to rapidly develop thermodynamic databases through the calculation of 
phase diagrams. The effectiveness of the CALPHAD approach has been studied by De Noirfontaine et al. 
(2012), who reviewed the models of the CaO-Al2O3\-SiO2 system and carried out calculations in the 
clinkering zone. Barry and Glasser (2000), and Tazuddin et al. (2018) used commercial thermodynamic 
databases to carry out clinker predictions for synthetic clinkers and Tazuddin et al. (2020) was also able to 
study the effect of minor elements on clinker phase formation. Furthermore, Hanein et al. (2020) developed 
a stoichiometric thermodynamic database for PC and C$A clinkers and Meyer et al. (2016) developed a 
kiln simulator (KilnSimu) from a thermodynamic model with great success. As a part of this work, a 
thermodynamic database for the CaO-Al2O3-SiO2-Fe-O-MgO system was developed. This includes the 
modelling of the main clinker phases: alite, belite, aluminate and ferrite. This database serves as a single 
source of thermodynamic data for the solid, liquid, solid solutions and the melt phases specifically created 
for PC clinkers. In this paper, we present the results of the clinker predictions resulting from the Scheil 
cooling calculations (Scheil (1942)) using the developed thermodynamic database. These values are 
compared with the analysis of 27 technical clinkers that were also analysed as part of this project. Finally, 
the power of the modelling work is presented through the comparisons of the calculated MgO content in 
the belite phase against the energy dispersive X-Ray (EDX) analysis of the clinkers. 
 
2. Thermodynamic Modelling and Clinker analysis 

The thermodynamic database for the CaO-Al2O3-SiO2-Fe-O-MgO system that was developed in this work, 
made use of the latest 3rd generation CALPHAD function for the solid and liquid phases and the associate’s 
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model for the melt phase. Novel fitting methodologies were used to fit the relevant parameters in the binary, 
ternary, and higher order systems; details on this approach are discussed in the CaO-SiO2 assessment carried 
out by Abdul et al. (2022). Modelling of the full thermodynamic system was found not to be necessary and 
instead only the PC relevant ternary systems were modelled and combined to give the final database, this 
includes: CaO-Al2O3-SiO2 (which contains C3A, C2S and C3S), CaO-Al2O3-Fe-O (which contains ferrite) 
and CaO-MgO-SiO2 (which contains the substitution of MgO into C2S). The thermodynamic database was 
used to carry out Scheil cooling calculations from 1500°C for a given clinker oxide composition. Scheil 
cooling is a set of equilibrium calculations that describes the rapid cooling of a melt like that which occurs 
in the cement kiln. This results in the calculated values of the precipitated clinker phases, which can be 
compared against experimental XRD data. Figure 1 presents a graph of a Scheil cooling precipitation that 
was conducted using the present thermodynamic work. The calculated values match closely with the values 
from Barry and Glasser (2000).  
 

 

Figure 1 Accumulated phase fraction from the Scheil cooling calculation from 1450°C for the Barry and Glasser 

(2000) clinker composition (wt %): CaO 69, Fe2O3 3.6, SiO2 22, Al2O3 5.4. (left) Results of the presently developed 

database. (right) Results of Barry and Glasser using MTDATA. Abbreviations are as follows, “AC2S”: α-C2S, 

“APC2S”: α’-C2S, “RC3S”:C3S (rhombohedral). 

A total of 27 clinkers were received from industrial partners and analysed using X-ray diffraction (XRD) 
Rietveld analysis, X-ray fluorescence (XRF) analysis on molten beads XRF, and SEM-EDX mapping 
analysis, the methodology and full dataset is presented in a future paper. The EDX mapping analysis was 
carried out at various resolutions. High resolution (approx. 0.1µm step size) was used for characterisation 
of the ferrite phases and lower resolution (approx. 0.2µm step size) but large area analyses were used for 
belite characterisation respectively. In addition, Shim et al. (2021) collated the XRD and XRF analysis of 
50 clinkers from literature, this provides a comparison of “historical” clinkers against the modern clinker 
dataset. 
 
3.  Results and Discussion 

3.1. Clinker prediction 

The difference (in weight %) of the calculated values of the clinker phases using the presently developed 
thermodynamic database, compared against the XRD analysis within the current clinker dataset and the 
dataset of Shim et al. is presented in Fig. 2. The figure shows that the calculated values of the belite, 
aluminate and ferrite phases are in good agreement with XRD values, especially for the clinkers in the 
dataset of Shim et al. There is a slight over-prediction in the alite phase, which is expected as the alite phase 
in the thermodynamic modelling was not modelled as a solid solution like the belite phase, this means the 
effects of MgO are not considered for alite formation. This requires further experimental work to accurately 
model this behaviour. A summary of the average error for the prediction of the 4 main clinker phases 
calculated using different calculation methods is presented in Table 1. The results confirm earlier 
conclusions by Taylor (1997), that the Bogue over-predicts the alite phase and under-predicts the belite 
phase. The modified Bogue is better at predicting the alite and belite phases but has poor prediction of the 
aluminate and ferrite phases. The calculations of Hanein et al. (2020) are generally in agreement with the 
experimental values for all clinker phases. Finally, the results of the thermodynamic database are favourable 
when compared against the previous calculation methods, with equal or better agreement for the prediction 
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of all clinker phases except alite, where values of alite match the predictions of the Bogue equation. 
 

 Figure 2 Violin plots of the error (in weight %) of the calculated values and the experimental XRD values of the 

present clinker dataset (this work) and the dataset of Shim et al (2021). 

 

Table 1 Summary of the error in weight % between the calculated values of the clinker phases compared against the 

experimental XRD values of the present clinker dataset and the collated dataset of Shim et al. (2020). 

Calculation Bogue Modified Bogue Hanein et al. 

(2020) 

This work 

Alite (Present) 3.11 ± 6.95 -1.64 ± 7.38 -3.32 ± 6.32 3.62 ± 7.03 

Alite (Shim et al.) 5.84 ± 7.50 -1.80 ± 8.04 0.911 ± 7.46 4.68 ± 8.63 

Belite (Present) -1.93 ± 6.75 2.18 ± 7.28 2.92 ± 6.26 -2.40 ± 5.69 

Belite (Shim et al.) -3.14 ± 8.10 -0.12 ± 8.75 0.569 ± 7.79 1.63 ± 5.49 

Aluminate (Present) 0.981 ± 2.47 7.45 ± 6.21 3.70 ± 2.15 2.20 ± 2.40 

Aluminate (Shim et al.) -2.10 ± 2.67 3.73 ± 6.04 0.614 ± 4.20 -0.982 ± 2.11 

Ferrite (Present) 0.130 ±1.83 -6.88 ± 9.40 0.130 ± 1.83 0.179 ± 2.15 

Ferrite (Shim et al.) 0.15 ± 2.43 -5.64 ± 8.84 0.152 ± 2.43 0.038 ± 2.49 

 

3.2. Belite and Ferrite substitution 

Whilst the results of the clinker prediction are favourable, further calculations can be done with the 
thermodynamic database, where the previous calculations cannot predict. A cross-plot of the MgO/CaO 
ratios for selected belite clinker phases is presented in Fig. 3 and shows an almost linear relationship 
between the calculated and experimental values, showing good agreement in the prediction of MgO in the 
belite phase using the thermodynamic database. Furthermore, a similar cross-plot for the Al2O3/CaO ratio 
in ferrite, shows excellent prediction in clinkers with an alumina-poor ferrite phase (near C4AF) and 
disagreements in the clinkers with alumina-rich ferrites (near C6A2F). This is due to the use of a simple 
sublattice model for the ferrite phase, which does not account for the substitution of Fe2O3 in other clinker 
phases.  
 
4. Conclusion 

A thermodynamic database was developed in this work, with a specific application of PC clinkers. The 
effectiveness of the developed models was shown through the prediction of real clinkers that were also 
analysed in this work. This resulted in a good prediction for the main clinker phases compared against the 
experimental values and the results are favourable against the more “traditional” calculation methods. 
Furthermore, the modelling of MgO in the thermodynamic database, allowed for the prediction of the 
MgO/CaO ratio in the belite phase, with these in good agreement with the EDX analysis. Similar predictions 
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were also made for the composition of the ferrite phase, which showed excellent predictions for alumina-
poor ferrites. Further improvements in the ferrite model as well as the modelling of Fe2O3 substitution in 
the other clinker phase, would solve the issues with alumina-rich ferrites. The developed thermodynamic 
database shows promising results with regards to clinker phase and clinker substitution predictions. This 
database will be useful to the wider cement research community as it serves as a single open-source database 
for models and thermodynamic data for cement clinker. The thermodynamic database also has potential 
uses for modelling carbonation-hardening cements as it includes a full CaO-Al2O3-SiO2 model. 
Furthermore, the oxygen dependence of iron is modelled in this system; this inclusion will make the 
addition of SO3/SO2 easier. Finally, minor elements like fluorine can be easily added to the current 
thermodynamic model, but the addition of molten salts and resolution of the volatilisation cycle will require 
more work. Future work will include extending the thermodynamic database to include other elements and 
species like SO3, for further modelling of PC and other cement formulations such as calcium sulfo-
aluminate based cements. The thermodynamic model/dataset developed here can also be combined with 
heat transfer and kinetic models to develop advanced thermal kiln models for cement production. 
 

 

Figure 3 Cross-plot of the experimental and calculated values of the (left) MgO/CaO ratio in the belite phase and the 

(right)Al2O3/CaO ratio in the ferrite phase for selected clinkers in the clinker dataset. The dashed line represents the 

y=x relationship, indicating exact agreement. 
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