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Bayesian learning from multi‑way 
EEG feedback for robot navigation 
and target identification
Christopher Wirth 1,2*, Jake Toth 1 & Mahnaz Arvaneh 1

Many brain‑computer interfaces require a high mental workload. Recent research has shown that 
this could be greatly alleviated through machine learning, inferring user intentions via reactive brain 
responses. These signals are generated spontaneously while users merely observe assistive robots 
performing tasks. Using reactive brain signals, existing studies have addressed robot navigation tasks 
with a very limited number of potential target locations. Moreover, they use only binary, error‑vs‑
correct classification of robot actions, leaving more detailed information unutilised. In this study a 
virtual robot had to navigate towards, and identify, target locations in both small and large grids, 
wherein any location could be the target. For the first time, we apply a system utilising detailed EEG 
information: 4‑way classification of movements is performed, including specific information regarding 
when the target is reached. Additionally, we classify whether targets are correctly identified. Our 
proposed Bayesian strategy infers the most likely target location from the brain’s responses. The 
experimental results show that our novel use of detailed information facilitates a more efficient and 
robust system than the state‑of‑the‑art. Furthermore, unlike state‑of‑the‑art approaches, we show 
scalability of our proposed approach: By tuning parameters appropriately, our strategy correctly 
identifies 98% of targets, even in large search spaces.

Brain-computer interfaces (BCIs) read and interpret signals directly from the brain, allowing severely disabled 
people the possibility of controlling assistive  robots1–4. There is a performance bottleneck in many BCIs, as users 
are required to control each low-level action in order to achieve a high-level goal. For example, users may need 
to consciously generate brain signals to move a cursor, prosthesis, or assistive robot, step-by-step to a desired 
location. Indeed, BCI navigation systems have existed for wheelchairs and robots for well over a  decade5–7. How-
ever, these systems generally require the user to take active control of individual actions such as each change in 
direction. This places a high mental workload on the user.

Machine learning provides the potential to alleviate this mental burden. Recent studies have shown the possi-
bility of using “cognitive probing” - monitoring reactive brain signals in response to certain machine  actions8, and 
using these signals as feedback for reinforcement learning (RL), thus allowing robots to learn to perform  tasks9,10. 
These studies have mostly been based on distinguishing correct actions from erroneous ones, by detecting 
error-related potentials (ErrP) - characteristic signals that are spontaneously produced in the brain in response 
to an error recognised by the  human11,12. Indeed, previous studies achieved encouraging results for robot path 
planning using ErrP detection combined with  RL13–17. However, there are other options for route planning 
without the need for human intervention. In outdoor scenarios, satellite navigation is available. For smaller 
scale or indoor scenarios, there are myriad methods for robot path planning without the need for information 
from  EEG18–23. One thing that cannot be inferred without input from the human, is which target they wish the 
robot to travel towards. Arguably, therefore, “target identification” is the more important piece of information 
to learn from the EEG.

A few studies have begun to tackle this problem. Chavarriaga and Millán used EEG-based RL to choose 
between whether a target was on the left or the right of the machine’s current  location24. Some have indicated 
the possibility of using EEG rewards to infer which specific location, from a subset on a grid, was the target. In a 
recent study, Schiatti et al. had the machine converge upon optimal routes to each potential target via Q-learning, 
and then implemented a second layer of Q-learning to choose between possible  targets16. However, in this 
paradigm, the robot received an environmental reward and stopped automatically when the target was reached, 
assuming that there was an external way to know the target was correct, rather than inferring this information 
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purely from EEG responses to the observed actions. Iturrate et al. showed that it is possible to converge on targets 
without the need for such external validation - their approach similarly used Q-learning to find optimal routes, 
and then compared feedback rewards with expected Q-values13. However, it has been stated that Q-learning 
suffers from poor  scalability14 and, indeed, these studies each had only a small subset of potential target loci in 
relatively small areas. Iturrate et al. recently stated, “It is then an open question how the proposed [brain-machine 
interface] paradigm may generalize across tasks or scale to more complex scenarios”14. Furthermore, all of these 
studies used binary classification of robotic actions, classifying each movement simply as correct or erroneous.

A small number of recent studies have shown that it is feasible to obtain more detailed information from 
reactive brain signals than simply whether an action was correct or  erroneous9,25. Building on this, our recent 
work showed that it is possible to subclassify different types of navigational errors against each  other26, and to 
subclassify different correct navigational actions against each  other27. Most recently, we showed the possibility 
of performing a detailed 4-way single-trial EEG classification of all of these navigational  actions28.

This paper, for the first time, proposes 4-way EEG-based learning for robot navigation and target identifica-
tion, rather than binary EEG classification used in previous studies. The 4 classes of movements were: towards 
the target but not reaching it, reaching the target, moving from an off-target location to a location even further 
away from the target, and stepping directly off the target location. In this study, the user’s intended target will 
be inferred from reactive brain signals, generated spontaneously as the user merely observes the robot’s actions. 
Importantly, the target could be any location in the space.

In order to infer the target location, a machine learning system is implemented. In this case, we observe that 
the task can be framed as a probabilistic problem. We therefore propose a learning strategy of Bayesian infer-
ence, utilising prior knowledge of classification contingency tables to contextualise EEG responses, and build a 
probabilistic model in order to learn the most likely target location. This allows for a simple, scalable solution. 
Furthermore, as we are making the reasonable assumption that the path from one location to another does not 
need to be learned via EEG, this system is inherently faster than state-of-the-art methods requiring EEG-based 
route planning, in which a process (e.g. Q-learning) must be undertaken to learn the map, before target acquisi-
tion can begin.

In order to test both efficiency and scalability, we investigate our strategy’s effectiveness in both small ( 9 × 1 , 
i.e. 9 spaces) and large ( 20 × 20 , i.e. 400 spaces) grids using EEG data recorded from 10 participants. Further-
more, we investigate the trade-off between speed and accuracy, using an adjustable parameter to control the level 
of evidence that must be accumulated before converging on a particular target.

Our proposed methodology moves the research area forward in two key ways: 

1. The use of more detailed EEG information allows the possibility of more efficient learning.
2. The Bayesian learning method, assuming a known map of possible locations, allows the system to be scalable.

Experimental design
Dataset
In the present study, we used real EEG data from our previous  work27,28. Ten healthy adults (4 female, 6 male, 
mean age 27.30 ± 8.31) had merely observed a virtual robot navigation paradigm. Written informed consent 
was provided by all participants before testing began. All procedures were in accordance with the Declaration 
of Helsinki, and were approved by the University of Sheffield Ethics Committee in the Automatic Control and 
Systems Engineering Department. The brain signals were recorded at 500Hz, at electrode positions Fz, Cz, Oz, 
Pz, C3, C4, PO7, and PO8, using an Enobio 8 headset. The paradigm consisted of a cursor, representing the 
virtual robot, moving left and right in a 1-dimensional space on a screen, made up of 9 locations, as shown in 
Fig. 1. The robot’s stated goal was to reach, and correctly identify, a target location. However, erroneous move-
ments (such as that illustrated in Fig. 1) and erroneous target identifications occurred with preset probabilities.

Figure 1.  The experimental paradigm observed by participants. Stills are shown from a subsection of a single 
run. The 9 × 1 grid is shown. In the first (leftmost) still, the blue cursor is in position 6, and the target - denoted 
by a bullseye symbol - is one place to the right in position 7. In the second still, the robot moves one step to the 
left, to position 5. This is a move further away from the target (FA condition). Following this, in the third still, 
the robot moves back from position 5 to position 6 - this is a move towards the target (TT condition). In the 
fourth still, the robot moves right from position 6 to position 7. As the target is in position 7, this is a move in 
which the target is reached (TR condition). However, in the fifth still, the robot continues to move right, and 
steps off the target (SO condition) to position 8. In the sixth still, the robot moves left, back to position 7 - a 
move that once again reaches the target (TR condition). Finally, in the seventh still, the robot correctly identifies 
the target by drawing a yellow box around its current location, which is the target locus. It is also possible for 
incorrect loci to be erroneously identified as the target.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16925  | https://doi.org/10.1038/s41598-023-44077-8

www.nature.com/scientificreports/

The target symbol was placed in a random location in the grid at the beginning of each run. The cursor, 
represented by a blue square, was placed 2 or 3 steps away, either on the left or right. Every 2 seconds, the robot 
performed one of the following actions: If the robot was not currently on the target, there was a 70% chance it 
would move towards the target (this would result in reaching the target if it started 1 step away), a 20% chance 
the robot would move further from the target, and a 10% chance the robot would erroneously identify its current 
location as the target, by drawing a yellow box around it. If the robot was on the target, there was a 67% chance 
it would correctly identify its location as the target by drawing the yellow box, but a 33% chance it would step 
off the target.

Each run ended as soon as the robot identified a location as the target, whether this was correct or erroneous. 
There was then a 5 second period in which the screen was blank before the next run began. Participants were 
told that they could move and blink freely in the interim periods, but asked to refrain from movement or blink-
ing during runs. Runs continued in this manner for blocks of approximately 4 minutes. Participants were given 
inter-block breaks of as long as they chose, and observed blocks until they reported a reduction in concentration. 
Eight participants observed six blocks each, and a further two participants observed two blocks each.

Workflow
As the classification and simulations in this study were subject-specific, we can consider the workflow for each 
participant to be independent of the other participants. With this in mind, the steps taken for a given participant 
were as follows:

• Observation: the participant observed the experimental paradigm. Their EEG responses to the four different 
movement action conditions, and two different target identification conditions (correct and false targets), 
were recorded.

• EEG data preprocessing: EEG trials of each different class were preprocessed.
• Training and test data separation: Within each class, 85% of trials were randomly selected as the training set. 

The remaining 15% of trials were designated as the test set.
• Training the classifiers: The participant’s training trials were used to build classification models for 4-way 

classification of movement actions, and binary classification of target identification actions.
• Simulations: Offline simulations were run. In these simulations, after each action was performed by the 

robot, a trial was retrieved from the participant’s appropriate test set (i.e. an EEG response to the same class 
of action, as previously observed by the participant). The classification of these trials provided information 
that the navigation strategies could use to guide them toward the correct target.

We expand upon each of these steps in the coming sections.

Simulations using real EEG
The goal of this study was to simulate a real-time implicit human-machine interaction. In order to achieve 
this, while being able to explore a variety of scenarios, running through each a large number of times, we used 
previously-recorded real EEG data as feedback for the robot. This approach has recently proven useful in explora-
tory  studies29.

Of the ten participants who observed the paradigm, two did not produce enough artefact-free trials in each 
of the four movement classes, and were excluded. Therefore, simulations were performed using EEG generated 
by the remaining eight participants. Subject-specific classifiers were trained. For this purpose, 85% of each par-
ticipant’s EEG trials from each class were randomly selected as training samples, with the remaining 15% being 
reserved as test samples. The number of training and test trials in each class, for each participant’s model, are 
shown in Supplementary Tables 1–4.

In the simulation phase, two different grids were used. Firstly, the virtual robot navigated in a 1-dimensional 
space made up of 9 squares. Secondly, the virtual robot navigated in a 2-dimensional space made up of 400 
squares, arranged in a 20× 20 square. The EEG data were originally recorded in an offline session, while partici-
pants observed the 1-dimensional version of this paradigm, as described in the above subsection, ‘Dataset’. The 
2-dimensional version was designed such that the same movement classifications (as described in further detail 
in the Methods section, ‘Multi-way classification of robotic actions’) remained valid, i.e. it was not possible for 
the robot to perform a move that resulted in it remaining the same distance from the target. The target could be 
randomly positioned in any location (i.e. any square in the grid) at the start of each run. The robot began the 
run at a randomly selected location a minimum of 2 moves away from the target, with no maximum distance 
imposed other than the boundaries of the space. Each action consisted of either (a) a discrete movement from the 
robot’s current square to an adjacent square, or (b) identifying the robot’s current square as the target location.

Three navigation strategies were tested, namely our proposed “Bayesian Inference”, “Random”, and “React”. 
The precise details of these navigation strategies are described in the Methods section, ‘Navigation strategies’. For 
all strategies, at the start of each run, an initial action was selected at random. Then, for the “React” and “Bayes-
ian Inference” strategies, after each action was performed by the robot, a test EEG trial from a participant who 
had previously observed the experiment was retrieved. The trial was selected randomly from the test trials of 
the appropriate class, e.g. if the robot had moved towards the target, the trial would be one which was recorded 
when the participant had, similarly, observed the robot moving towards the target. The trial was then classified 
as if it were being processed in real time (as described in the Methods section, ‘Multi-way classification of robotic 
actions’). The classification output provided by the trained model was used to inform future actions of the robot 
(as described in the Methods section, ‘Navigation strategies’). Note that, as in any EEG study, some trials were 
misclassified. Test data classification accuracy, for each class and each participant, is shown in Supplementary 
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Tables 5, 6, and detailed contingency tables of these classifications are shown in Supplementary Tables 7–38. The 
process described here continued, using one randomly selected pre-observed EEG trial from the same participant 
after each robot action, until the navigation strategy determined that the target had been reached. At this stage, 
the run ended, and statistics were recorded denoting the number of steps the robot had taken during the course 
of the run, and whether the correct target location had been identified. Each navigation strategy was run 1000 
times per participant on each grid size.

Methods
Multi‑way classification of robotic actions
For each participant, a four-way classification model was trained to distinguish four classes of observed 
movement:

• “TT condition”: Towards target (but not reaching it),
• “TR condition”: Target reached,
• “FA condition”: Further away (when moving from an already off-target location, to a location further away 

from the target),
• “SO condition”: Stepped off target.

Distance to the target was calculated as the minimum possible number of steps from the robot’s current position 
to the target. The robot could not move diagonally. Therefore, for example, from position [2, 2] in a 2-dimen-
sional grid, with a target at position [5, 5], the distance to the target would be 6 steps (3 horizontal + 3 vertical). 
From this position, there would be two possible “TT condition” movements (to [2, 3] or [3, 2], each reducing 
the distance to 5 steps), and two possible “FA condition” movements (to [2, 1] or [1, 2], each increasing the 
distance to 7 steps).

Classification of movement actions, — hereafter specified as “movement classification” — was achieved via 
a 2-stage binary tree. Firstly, EEG trials were classified as responses to either correct (TT and TR condition) or 
erroneous (FA or SO condition) movements. They were then subclassified as one of the specific conditions. All 
classifiers used stepwise linear discriminant analysis (SWLDA), which has previously been shown to be successful 
in classifying event related  potentials30. The SWLDA algorithm is shown in Supplementary Fig. 1, and has been 
previously described in detail in our related work, in which it has proven successful with small and imbalanced 
classes due to its ability to select a small, highly discriminative feature  set28. The inputs were time domain EEG 
samples from 200ms to 700ms relative to the robot’s action, from the 8 electrodes. Data were bandpass filtered, 
downsampled to 64Hz, and baseline corrected to a period from −200ms to 0ms, relative to the robot’s action. 
For the first stage of classification (error vs correct), a passband of 1 to 10Hz was used, as low frequencies have 
generally proven fruitful in error detection  studies12. For the second stage (subclassification), a passband of 1 to 
32Hz was used, as the inclusion of information at higher frequencies has previously proven successful in subclas-
sifying similar navigation  observations27. These data preprocessing steps are visualised in Supplementary Fig. 2. 
Grand average time domain data showing a comparison of EEG responses to correct vs erroneous movements, 
as well as each of the subclassifications, are shown in Fig. 2.

Additionally, binary classification of target identification actions — hereafter referred to as “TI classification” 
— was carried out for each participant, in attempt to gather further information about whether the identified 
location was the correct target. For all EEG trials in which the robot identified its current location as the target, 
a classification model was built to classify correct target identifications — hereafter referred to as the “CTI” 
condition, against false ones — the “FTI” condition. EEG trials were processed in a similar manner to observed 
movement trials, and were extracted from 200ms to 700ms relative to the yellow box appearing around the 
robot’s location. Trials for this model were filtered between 1 and 10Hz. Similarly to the movement classification, 
an SWLDA classifier was used. This TI classification was used as an extra layer of feedback to the robot in the 

Figure 2.  Grand average time domain EEG data generated as subjects observed virtual robot movements. 
(a) shows a comparison of responses to correct movements (black, lower peak) to erroneous movements (red, 
higher peak). (b) shows a comparison of responses to the two correct movements - the TT condition (blue, 
lower peak), and the TR condition (orange, higher peak). (c) shows a comparison of responses to the two 
erroneous movements - the FA condition (green, lower peak), and the SO condition (purple, higher peak).
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simulated experiments, giving the robot a chance to undo a target identification, if the TI classification output 
indicated that it was false.

Navigation strategies
In this study, we assumed that the robot knew the map perfectly - it knew the shortest path between any two 
locations. As discussed in the Introduction, we could imagine that the robot had a satellite navigation system 
for any route it might need to take and, if a pre-existing map could not be utilised, a preliminary phase of robot 
path planning could be employed without the need for user  input18–23. However, the robot did not know which 
location was the target - this is what the robot needed to learn from the EEG information. Given this assumption, 
three navigation strategies were used.

Proposed Bayesian inference
Kruschke and Liddell describe Bayesian analysis as “reallocation of credibility across possibilities”31. In this 
case, each location on the grid represented a possible target. At the start of each run, each location could be 
considered to have an equal probability of being the target, but as we gathered more information in the form of 
EEG responses to the robot’s actions, we could infer that some locations are more credible targets than others. 
As such, we deemed Bayesian inference to be an appropriate strategy for this scenario of learning to navigate 
and identify targets.

Let us present the action performed by the robot at time step t as Ut , where t ∈ [1, 2, .., l] and l denotes the last 
time step in a given run. Ut can be considered as the control state of the model representing that the robot either 
moved to a neighbouring location, or identified its current location as the target. Subsequently, St represents the 
participant’s interpretation, at time step t, of what has occurred as a result action Ut . In this study, for movement 
actions St ∈S =[TT, TR, FA, SO], and for target identification actions S =[CTI, FTI]. This interpretation was 
not seen directly by the robot, and so can be considered as the hidden state of the model. However, the partici-
pant’s interpretation of Ut could be reflected in the recorded EEG signals. Thus, EEG signals resulting from inter-
pretation St were classified, providing observation Ot ∈O as the classification output at time step t. In this study, 
each observation was represented as a binary vector with length equal to the number of possible classification 
outputs. For movement actions, Ot =O (1)= [1 0 0 0] represented a classification output of TT, Ot =O (2)= [0 1 
0 0] represented TR, Ot =O (3)= [0 0 1 0] represented FA, and Ot =O (4)= [0 0 0 1] represented SO. For target 
identification actions, Ot =O (1)= [1 0] represented CTI, and Ot =O (2)= [0 1] represented FTI.

Figure 3a shows a representation of the way that each action Ut influenced the participant’s interpretation St , 
which lead to a classifier output Ot . The probability of each grid location being target was updated as explained 
below, thus influencing the following action. Depending on the classification output and the updated prob-
abilities, the following action would be either identifying the current location as the target or making the next 
movement action.

Defining the next movement action: Let’s define P(T t
i,j) as the probability of a given grid location (i, j) being 

the target at time step t. Similarly, P(T t
c ) is defined as the probability that the robot’s current location is the target. 

At the start of each run, these probabilities were equal to P(T1
i,j) = 1/(n × m) for every location of a grid with 

n rows and m columns. When a new classification output Ot was observed following a robot action Ut , P(T t+1
i,j ) 

at time step t + 1 were updated according to Bayes  theorem32, using (1) and (2);

In (2), PA(Ot |Ti,j) was calculated using the likelihood matrix A , representing the likelihood of observations 
given the hidden states. In this study, for the movement actions A ⊂ R

4×4 , whereas for the target identification 
actions, A ⊂ R

2×2 . The elements of A were calculated as

In fact, using A the robot could estimate the reliability of each classification output. A was subject-specific. The 
robot was not allowed to have prior knowledge based on test data. Therefore, for each participant, A was calcu-
lated using leave-one-out cross validation on the classification training EEG data, as this was deemed the closest 
possible approximation to the model based on all training data. Subsequently, PA(Ot |Ti,j) was extracted from A , 
by retrieving the value in the column corresponding to Ot , and the row corresponding to what the participant’s 
perception St would have been, if (i, j) were the target. P(Ot ) could be also calculated using A , as the sum of the 
elements in the column corresponding to Ot , divided by the sum of all the elements of A. In other words, Ot 
could be calculated using the following equation:

where k was the total size of S which is 4 for the movement actions and 2 for the target identifications.

(1)P(T t+1
i,j ) =

P(T t
i,j|Ot )

∑m
j=1

∑n
i=1 P(T t

i,j|Ot )
,

(2)P(T t
i,j|Ot ) =

PA(Ot |Ti,j)P(T t
i,j)

P(Ot )
.

(3)A(i, j) = P(O (i)|S (j)).

(4)P(Ot ) =

∑k
j=1 P(Ot |S (j))

∑k
i=1

∑k
j=1 P(O (i)|S (j))

,
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Figure 3b shows an example of how the probabilistic model was updated using the proposed Bayesian infer-
ence strategy, after an individual movement action.

After calculating P(T t+1
i,j ) for all the grid locations, the robot identified the location with the highest prob-

ability of being the target, and then calculated the shortest path to reach it. The virtual robot then took the first 
step on this path as Ut+1 . If multiple locations were tied for the highest probability, one was selected at random.

Theoretically, our proposed approach could be extended, such that Ot could represent the likelihood of each 
class, rather than being binary. For example, if Ot were to equal [0.75 0.25 0 0], i.e. a 75% probability of class 1 and 
a 25% probability of class 2, then instead of selecting the values of PA(Ot |Ti,j) being extracted from a single col-
umn in A , the values would be calculated as a weighted average of 0.75 × column 1 of A and 0.25 × column 2 of A.

Identifying the current location as target: In order to determine whether the robot’s current location c was the 
target, after the target location probabilities had been updated following each movement action, algorithm 1 was 
run. stringency is a predefined variable to determine the level of certainty the system required before identifying 
the robot’s current location as the target. In this study, values between 0.1 and 0.9 were used.

According to algorithm 1, there were two scenarios in which the robot could select a target: 

(a) The current movement classification output Ot represented TR and a lower probability threshold was met.
(b) The current movement classification output Ot did not represent TR but a higher probability threshold was 

met.

Figure 3.  Formulation of the proposed Bayesian inference strategy. (a) shows the general case. Robot actions 
lead to interpretations by the user. These resulted in EEG signals which were given classification outputs. These 
observations, along with existing target location probabilities and the likelihood matrix A , determined updated 
target location probabilities. Probabilities informed the next robot actions. (b) shows an example of how the 
Bayesian inference strategy updated the target location probabilities after one movement action, thus influencing 
future actions. The action Ut was that the robot moved from location (1, 5) to (1, 6). The user saw that this 
resulted in the robot moving towards the target. The classifier correctly produced the observation representing 
the TT condition. Values from the appropriate column were extracted from A and used to update probabilities. 
If any of locations 1-4 were the target, the action would have represented the FA condition. For location 5, the 
action would have represented the SO condition. For location 6, the action represented the TR condition. For 
locations 7 (the actual target), 8, and 9, the action would have represented the TT condition. All probabilities 
were updated accordingly. The robot would then go on to select the next action, Ut+1 . Depending on the latest 
classifier output Ot and the updated target location probabilities, action Ut+1 would either be to select the 
current location as the target, or to perform another movement action.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16925  | https://doi.org/10.1038/s41598-023-44077-8

www.nature.com/scientificreports/

At the lowest stringency value of 0.1, this meant a movement classification output of TR resulted in the target 
being identified as long as the probabilistic model believed there to be more than a 10% chance of the current 
location c being the target. Alternatively, without a movement classification output of TR, the current location c 
would still be identified if it was considered more than twice as likely to be the target as all other loci combined. 
As stringency increased, the required probabilities — and thus the strength of evidence that had to be accumulated 
in support of a given location being the target, either with or without a classification output of TR — increased. 
The proposed Bayesian inference strategy allowed the possibility of deselecting targets. Following a target iden-
tification action, if the TI classification output was FTI, the target was deselected. Thereafter, all probabilities 
P(T t

i,j) were updated using (1) and (2), with the likelihood matrix of target identification actions, A ⊂ R
2×2 . The 

run continued until a target identification action was followed by a TI classification output of CTI.
Examples of paths taken by the robot when following the Bayesian inference strategy, in small and large grids, 

and with stringency values of 0.1 and 0.9, are shown in Supplementary Fig. 3.

React
The next strategy, React, used EEG classifications to inform immediate moves, but did not involve any broader 
learning. This strategy effectively put 100% trust in the most recent EEG classification output.

If the classifier had not identified the robot’s current location c as the target, the robot would move to a neigh-
bouring location, selected at random from a list of eligible neighbours of the robot’s current location. For the first 
action of each run, all neighbours were eligible. After action Ut , a pre-recorded EEG trial from the appropriate 
class was processed, and classification output Ot was produced by the trained model. If Ot suggested that the 
action was the TT condition (moving towards the target but not reaching it), then the robot’s previous position 
would be ruled out from the list of eligible neighbours. Locations were only ruled out for a single action, as the 
most recent classification output superseded previous ones. If Ot suggested that the action was an erroneous 
movement (FA or SO condition), the list of eligible neighbours would be reduced to only the previous position, 
and therefore action Ut+1 would be to move back to the robot’s previous location, undoing the error. Finally, if 
Ot suggested the target had been reached (TR condition), then the robot’s position c would be identified as the 
target location.

When the yellow box was drawn to identify the target, TI classification was performed in order to classify the 
identification as either correct (CTI) or false (FTI). If the classification output was FTI, the identification would 
be undone, and the run would continue. The run would end when a movement action received a TR movement 
classification output, then the yellow box was drawn around the robot’s location, and the TI classification output 
was CTI.

Random
As a performance baseline, a random strategy was implemented. For each action, with probability of 1/(n × m) 
(i.e. 1/9 on the 9 × 1 grid, 1/400 on the 20× 20 grid), the robot’s current position c would be identified as the target 
location. Otherwise, a neighbouring position would be selected at random, and the robot would move there. 
The process would repeat until the target was identified, at which point the run would end. While this strategy 
did not require EEG input, 1000 runs were still simulated for each participant.

Assessing the effect of detailed EEG information
In this study, our proposed Bayesian inference strategy made use of detailed EEG information. We implemented 
4-way classification of movement actions, as opposed to the state-of-the-art approach using binary classification. 
Furthermore, we included the classification of target identification actions.

In order to investigate the effect of TI classification, we compared our proposed Bayesian inference strategy 
to an equivalent system which had the TI classification feature switched off. In this case, each run ended as soon 
as the first target identification action was performed.

We also compared the proposed system to one using state-of-the-art, binary error vs correct movement clas-
sification. The binary system was equivalent to the Bayesian inference strategy, with two key changes. Firstly, 
the likelihood matrix A for movement classifications was reduced from a 4 × 4 matrix (TT, TR, FA, and SO) to a 
2 × 2 matrix (correct and erroneous movements). Secondly, as specific TR classification outputs were no longer 
available, the target would simply be identified if P(T t

c )>
stringency+0.1

stringency+0.2
 . For both of these alternative systems, 

1000 simulations were run for each participant, and for each of the small and large grids, with stringency values 
ranging from 0.1 to 0.9.

Results
Evaluation of navigation strategies in small and large grids
Navigation strategies were compared using two metrics, namely PTCI and MNS. To assess accuracy, we calculate 
the percentage of targets correctly identified (PTCI). Higher PTCI represents greater accuracy. To assess speed, 
we calculate the mean normalised number of steps (MNS) taken to achieve correct target identifications. Steps 
are normalised to represent the efficiency of the path taken, accounting for the fact that the virtual robot starts 
each run a variable number of steps away from the target.

Percentage of targets correctly identified (PTCI)
A comparison of the strategies’ PTCI on the small, 9 × 1 grid across the 8 participants is shown in Fig. 4a. The 
Random strategy achieved a mean PTCI of only 6.2% (s.d. 0.7%). The PTCI increased to a mean of 54.9% (s.d. 
21.2%) for the React strategy, and increased further to a mean of 61.5% (s.d. 21.7%) for the proposed Bayesian 
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inference strategy with a stringency value of 0.1. At the highest stringency level of 0.9, a mean PTCI of 98.4% 
(s.d. 1.7%) was achieved.

In the large, 20× 20 grid, the PTCI for the Random and React strategies were effectively negligible, at just 0.2% 
(s.d. 0.1%) and 6.4% (s.d. 4.7%), respectively, as shown in Fig. 4b. Conversely, our proposed Bayesian inference 
strategy retained strikingly high PTCI when scaling to the large grid. At a stringency level of 0.1, a mean PTCI of 
62.0% (s.d. 19.0%) was achieved in the large grid. At a stringency level of 0.9, very nearly all targets were correctly 
identified: the mean PTCI was 98.03% (s.d. 1.8%). Indeed, for one participant at this highest stringency setting, 
100% of the 1000 targets in the large grid were identified correctly.

A 2 (grids: small and large) × 3 (navigation strategies: Random, React, and Bayesian inference with a strin-
gency level of 0.1) repeated measures ANOVA was performed on the PTCI results. The statistical results revealed 
significant main effects of grid size ( p = 0.001 ) and navigation strategy ( p < 0.001 ) on the PTCI. Moreover, a 
significant interaction between the grids and the navigation strategies were observed, regarding PTCI ( p < 0.001).

Post hoc analysis revealed that, after Bonferroni correction, the proposed Bayesian inference strategy sig-
nificantly outperformed both Random ( p < 0.001 ) and React ( p < 0.001 ) strategies in terms of PTCI. The React 
strategy also significantly outperformed the random strategy ( p = 0.001 ). Interestingly, when comparing the 
proposed Bayesian inference strategy with the React strategy, a significant interaction was revealed between 
grid size and navigation strategy ( p < 0.001 ). This shows that the React strategy’s PTCI is much more negatively 
affected by the change from small to large grid than the proposed Bayesian inference strategy. In fact, the pro-
posed Bayesian inference strategy was quite robust to the increase in grid size. Therefore, the proposed Bayesian 
inference strategy not only provided the best target recognition accuracy of all the tested strategies, but was also 
shown to be a scalable approach.

Mean normalised steps (MNS)
Violin plots comparing the strategies’ MNS on the 9 × 1 grid are shown in Fig. 5a. The distributions for these plots 
are based on all runs in which the target was correctly identified, from all participants, combined. Using the 
Random strategy, the MNS was 4.4 (s.d. 0.4). With the React strategy, the MNS, calculated across the averages 
for each participant, was reduced to 3.9 (s.d. 1.5). This reduced further for the Bayesian inference strategy with 
stringency level of 0.1, to 3.3 (s.d. 0.9).

An increase in MNS (i.e. decrease in speed) was observed when expanding to the large grid, as shown in 
Fig. 5b. This is to be expected as there is a change from 1 dimension to 2. With the Random strategy, the increase 
in MNS was very large, to a mean of 72.4 (s.d. 76.4). With both the React and Bayesian inference (stringency = 
0.1) strategies, the change in MNS was much smaller, increasing to 6.4 (s.d. 3.6) and 7.8 (s.d. 3.7), respectively.

A 2 (grids: small and large) × 3 (navigation strategies: Random, React, and Bayesian inference with a stringency 
level of 0.1) repeated measures ANOVA was performed on the MNS results. Greenhouse-Geisser correction was 
applied to this ANOVA, as the sphericity assumption did not hold for MNS data. Again, significant main effects 
of both grid size ( p = 0.031 ) and navigation strategy ( p = 0.040 ) were reported, as well as a significant interac-
tion between grid size and navigation strategy ( p = 0.045 ). This further substantiates the point that, while the 
Random strategy’s MNS was severely affected by an increase in grid size, this change had a significantly smaller 
effect on both the React strategy and the proposed Bayesian inference strategy.

Post hoc analysis, after Bonferroni correction, did not show any significant pairwise differences between 
navigation strategies in terms of MNS.

Figure 4.  PTCI (percentage of targets correctly identified) performance of each navigation strategy on (a) the 
small (9× 1) grid, and (b) the large grid, across the 8 participants. Higher PTCI represents greater accuracy.
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The speed‑accuracy trade‑off
By changing the stringency setting, we can choose to put more focus on either the speed (MNS) or the accuracy 
(PTCI) of the system. There is a trade-off - generally, increasing performance in one of these metrics means 
decreasing performance in the other.

Using the Bayesian inference strategy, we calculated PTCI and MNS, in both small and large grids, with 
stringency values in increments of 0.1 between 0.1 and 0.9. The results of these calculations are shown in Table 1. 
The trade-off is demonstrated by the high correlation coefficients between PTCI and MNS: r = 0.94 in the 9 × 1 
grid and r = 0.95 in the 20× 20 grid ( p = 1.6 × 10

−4 and p = 6.2 × 10
−5 , respectively). A visualisation of this 

trade-off is shown, for both the small and large grids, in Fig. 6 (solid lines).
On average, it was possible to achieve a PTCI of over 90% with a stringency setting of 0.6 in the small grid, 

and 0.5 in the large grid. These settings afforded a mid-range MNS, at an average of 6.9 and 10.9 in the small and 
large grids, respectively. For applications where the very highest PTCI (i.e. the highest accuracy) is required, we 
can achieve this in either the small or large grid by setting the stringency to 0.9. Of course, this does require more 
steps in order to attain the higher threshold of confidence that the target has been reached. With this very high 
stringency value, the MNS increased to an average of 9.6 and 12.6 in the small and large grids, respectively. The 
reward is near-perfect accuracy: In both grids, an average PTCI of over 98% was achieved, with PTCI of over 
95% for every single participant.

There was also a high negative correlation between stringency and the standard deviation from the mean 
PTCI ( r = −0.97 , p = 1.4 × 10

−5 in the small grid; r = −0.95 , p = 6.2 × 10
−5 in the large grid). Conversely, 

there was a very high positive correlation between stringency and the standard deviation from the mean MNS 
( r = 0.95 , p = 1.1 × 10

−4 in the small grid; r = 0.78 , p = 0.01 in the large grid). In other words, as we require 

Figure 5.  MNS (mean normalised steps) performance of navigation strategies on (a) a small (9× 1) grid and (b) 
a large (20×20) grid. Violin plots show the smoothed distribution of normalised number of steps to correctly 
identify targets. React and Bayesian strategy distributions are based on data from all participants, combined. 
Lower MNS represents greater speed. The y-axis is plotted on a logarithmic scale. Median values identified by 
white dots.

Table 1.  Percentage of targets correctly identified (PTCI), and the mean normalised number of steps taken 
in order to identify them (MNS), using the Bayesian inference strategy, with various values of the stringency 
variable, on both the small and large grids. Results shown represent mean ± standard deviation across all 
participants.

Stringency

9 × 1 grid 20 × 20 grid

PTCI MNS PTCI MNS

0.1 61.5% ± 21.7% 3.3 ± 0.9 62.0% ± 19.1% 7.8 ± 3.7

0.2 68.6% ± 17.5% 3.8 ± 0.9 77.9% ± 13.8% 9.0 ± 4.9

0.3 77.2% ± 13.2% 4.4 ± 0.9 85.4% ± 10.3% 9.6 ± 5.1

0.4 84.6% ± 10.1% 5.3 ± 1.1 88.4% ± 8.4% 10.3 ± 6.1

0.5 88.8% ± 8.0% 6.2 ± 1.3 91.6% ± 6.3% 10.9 ± 6.1

0.6 92.7% ± 5.2% 6.9 ± 1.7 93.6% ± 5.1% 11.2 ± 6.2

0.7 94.9% ± 3.8% 7.5 ± 1.8 95.5% ± 3.9% 11.3 ± 5.3

0.8 96.4% ± 3.1% 8.5 ± 2.2 96.8% ± 2.8% 12.1 ± 6.2

0.9 98.4% ± 1.7% 9.6 ± 2.8 98.0% ± 1.8% 12.6 ± 6.4
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more evidence in order to identify each target, PTCI gets more consistent across participants. Meanwhile, MNS 
is more consistent across participants when the stringency is lower, and becomes more varied as stringency 
increases. Therefore, if an application were to require consistency across users in either speed or accuracy, these 
features can also be controlled by tuning the stringency parameter.

The effect of classifying the target identification action
As discussed in the Methods section, ‘Assessing the effect of detailed EEG information’, simulations were also 
run with the TI classification feature switched off. The results of these simulations are shown as the dashed lines 
in Fig. 6. Existing state-of-the-art approaches generally use error-vs-correct classification of movements, but do 
not include any classification of target identification actions. Therefore, these simulations allow us to compare 
our more detailed system to state-of-the-art methodology which does not include this additional classification.

Paired Wilcoxon signed-rank tests found the PTCI achieved with TI classification to be significantly higher 
( p < 0.05 ) than that achieved without TI classification at every stringency level in both the small grid and large 
grids. As we might expect, targets are generally identified slightly faster on average without TI classification, 
as no extra steps can be taken after an initial target identification action. This difference in MNS was found to 
be significant ( p < 0.05 ) at all but the highest stringency level in the small grid. However, in the large grid, the 
difference in MNS was only found to be significant at 3 of the 9 stringency levels.

The largest effect size of TI classification occurs at the lowest stringency levels. In these cases, we can reason-
ably expect more false target identifications to occur, as less evidence needs to be accumulated in order to perform 
a target identification action. In the 9 × 1 grid, PTCI of 61.5% (s.d. 21.7%) was achieved with TI classification, 
as opposed to just 30.2% (s.d. 11.4%) without TI classification. In the 20 × 20 grid, 62.0% (s.d. 19.1%) PTCI 
was achieved with TI classification, compared to 39.3% (s.d. 15.4%) without. This indicates that TI classification 
strongly improves the robustness of the system.

Comparison of 4‑way vs binary classification
We compared the efficiency of the system using the proposed 4-way movement classification against one using 
the existing state-of-the-art, binary error vs correct movement classification. The results of the simulations 
using binary movement classification (as discussed in the Methods section, ‘Assessing the effect of detailed EEG 
information’) are shown as the dotted lines in Fig. 6.

Paired Wilcoxon signed-rank tests for each stringency level of each grid revealed that only in the small grid 
with stringency of 0.1 were the PTCIs significantly different ( p < 0.01 ). In this case, 4-way classification achieved 
a higher PTCI.

The more striking effect of 4-way classification is on the speed of the system. As can be seen in Fig. 6, 4-way 
movement classification allows convergence on correct targets in fewer steps, on average, than binary movement 
classification. This difference in MNS was statistically significant ( p < 0.05 ) in 8 out of 9 stringency levels for 
each of the small and large grids.

Figure 6.  Speed and accuracy trade-off. MNS and PTCI results at various stringency values, from 0.1 (lowest 
point of each line on both axes) to 0.9 (highest point of each line on both axes). Lower MNS represents greater 
speed. Higher PTCI represents greater accuracy. Bold, solid lines represent data generated using the proposed 
Bayesian inference system (with 4-way movement classification, and TI classification, here abbreviated to 
“TIC”). Dashed lines represent data generated using a system without target identification classification. Dotted 
lines represent data generated using a system with binary movement classification (i.e. correct versus error). 
Blue lines represent data from the small, 9 × 1 grid. Red lines represent data from the large, 20× 20 grid. All lines 
show average results across all participants.
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It is also noteworthy that we observed smaller standard deviations in the MNS with 4-way movement clas-
sification than with binary classification. Further paired Wilcoxon signed-rank tests, comparing standard devia-
tions of MNS at different stringency levels between 4-way and binary movement classification, found the 4-way 
approach to have significantly smaller standard deviations in both the small (4-way range: 0.9 to 2.8, binary range: 
1.5 to 13.1, p < 0.01 ) and large (4-way range: 3.6 to 6.4, binary range: 7.5 to 36.3, p < 0.01 ) grids.

Therefore, when using 4-way movement classification, we have seen significant improvements in speed, as 
well as significantly increased consistency of speed between participants.

Discussion and conclusion
This study has presented a scalable approach that makes it possible to use reactive EEG not only to navigate 
towards target locations, but also to accurately identify the correct targets once they have been reached. All 
strategies using EEG correctly identified several times more targets than the Random approach. The EEG-based 
strategies were also capable of identifying these targets in fewer steps than the Random approach. Our proposed 
Bayesian inference strategy, which iteratively updated a probabilistic model to learn the most likely target loca-
tion, proved to be the most efficient of the navigation strategies tested in this study. The Bayesian strategy also 
maintained very high accuracy — here defined as the percentage of targets correctly identified (PTCI) — when 
expanded to a large grid, in which any of 400 spaces could be the target.

For the first time, we have shown a system that uses 4-way classification of EEG responses to robotic move-
ments as feedback for learning-based navigation. This provided contextualised feedback to the robot, including 
specific information regarding when the target location had been reached. Our results demonstrate that such 
detailed classification can lead to a more efficient semi-autonomous robot navigation than can be achieved with 
binary, error vs correct EEG classification alone. We therefore recommend the use of detailed EEG classification 
where possible in reinforcement learning-based BCIs.

Additionally, binary classification was performed on target identification actions, classifying them as either 
correct or false. Reliable classification of target identification actions provides the system with an increased level 
of robustness, due to ability to undo false identifications.

Our proposed Bayesian inference strategy includes an adjustable parameter: stringency. By tuning this param-
eter, we can make the system require a higher or lower threshold of certainty to be met before identifying a target. 
As such, we can amend the strategy to focus on reaching targets more quickly, or identifying them with greater 
accuracy, making this approach applicable in a wide range of scenarios. In the fastest case, targets were correctly 
identified after a mean of 3.3 normalised steps, indicating that a small number of errors can be enough to teach 
the robot. Interestingly, in the most accurate case, an average of more than 98% of targets were identified correctly.

It is clear that the novel Bayesian inference strategy can be considered preferable to the state-of-the-art. At a 
stringency level of 0.1, this strategy performed at comperable speed to the “React” strategy, but correctly identi-
fied significantly more targets, especially in a 2-dimensional space. Within the Bayesian inference strategy, the 
precise stringency setting that would provide optimal performance would depend on the task in question, and the 
user’s preference, regarding whether speed or accuracy were more important. This study provides an exciting step 
forward by creating the possibility of near-perfect accuracy. However, we have investigated the speed-accuracy 
trade-off because the number of steps required to reach this accuracy may still be considered impractical or 
frustrating for some users. In future, we suggest that this work could be extended into a long-term system, in 
which users’ most commonly preferred targets are learned, allowing initial prior knowledge to be utilised from 
the beginning of each run. We postulate that this would be one potential way to increase the speed at which 
highly accurate navigation is achieved.

The methods presented in this study should not be considered the only feasible solutions for semi-autono-
mous, reactive EEG-based tasks. Indeed, further exploration of other learning methodologies would be welcome 
additions to the field. For example, one active area of interest in machine learning is inverse reinforcement learn-
ing (IRL). An alternative approach to this task could be for a user to initially navigate using active EEG-based 
control, and for the machine to learn the user’s preferences via deep IRL techniques such as deep-Q  networks33, 
implicit quantile  networks34, or  rainbow35. These are only a few examples, and this developing field would benefit 
from broad exploration. However, through the methods utilised in this study, we have shown that (a) the use 
of increasingly detailed information from reactive EEG, and (b) the intelligent application of contextualised 
probabilistic modelling improves the performance of semi-autonomous systems.

We have shown the capability for a robot to learn user intentions from reactive EEG signals in a more efficient 
and accurate manner than ever before. These signals are obtained while users simply observe the robot’s actions, 
providing a form of implicit communication, and so reducing the mental workload of the user. Such capability 
could be extremely useful for assistive robotics. Importantly, our system also represents the first demonstration 
that such semi-autonomous BCIs, guided by reactive brain signals, can be scalable. This shows the potential for 
these systems to be utilised in large-scale applications. We have presented robotic navigation as an exemplar in 
this study. However, the principles and techniques could theoretically be generalised and applied to any scenario 
in which BCI users select a number of preferences at varying rates. Therefore, this study represents important 
steps forwards for semi-autonomous BCIs, and for efficient, user-friendly human-machine interaction.

Data availibility
The data used in this study are available for download, under a CC BY-NC-SA 4.0 licence, from: https:// doi. org/ 
10. 15131/ shef. data. 23556 273.
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