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Abstract

A stochastic differential equation with coefficients defined in a scale of Hilbert spaces

is considered. The existence, uniqueness and path-continuity of infinite-time solutions

are proved by an extension of the Ovsyannikov method. These results are applied to a

system of equations describing non-equilibrium stochastic dynamics of (real-valued)

spins of an infinite particle system on a typical realization of a Poisson or Gibbs point

process in R
n. The paper improves the results of the work by the second named

author “Stochastic differential equations in a scale of Hilbert spaces”, Electron. J.

Probab. 23, where finite-time solutions were constructed.
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1 Introduction

The purpose of this work is to study an infinite-dimensional stochastic differential

equation (SDE)

dξ(t) = f(ξ(t))dt+Φ(ξ(t))dW (t), (1.1)

with the coefficients f and Φ defined in a scale of densely embedded expanding Hilbert

spaces (Xα)α∈A, where A ⊂R is an interval, and W is a cylindrical Wiener process on

a fixed Hilbert space H. That is, f and Φ are Lipschitz continuous maps Xα → Xβ

and Xα → Hβ := HS(H, Xβ), β > α, respectively, but are not in general well-defined

in any fixed Xα, with the corresponding Lipschitz constants Lαβ becoming infinite as

|α− β| → 0. Here HS(H, Xβ) stands for the space of Hilbert-Schmidt operators H → Xβ .

Equation (1.1) cannot be treated by methods of the classical theory of SDEs in Banach

spaces (see e.g. [11] and [16]), because its coefficients are singular in any fixed Xα.

Some progress has been achieved in the case where

Lαβ ∼ (β − α)−q as |α− β| → 0, (1.2)

with q = 1
2 . Under this condition, a strong solution with initial value in Xα exists in Xβ up

to a finite time Tαβ ∼ (β − α)1/2, see [8]. This work generalizes the Ovsyannikov method

for ordinary differential equations, see e.g. [18, 4, 9], in which setting it is sufficient to

assume that q = 1.
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SDE in a scale of Hilbert spaces. Global solutions

It has been noticed in [9] that, in case of 0 < q < 1, a solution of the differential

equation
d

dt
u(t) = f(u(t)), u(0) ∈ Xα,

with f as in (1.1), exists in any Xβ , β > α, with infinite lifetime. In the present paper, we

build upon the ideas of [9], which enable us to generalize the results of [8] and prove

the existence and uniqueness of a global strong solution ξ of equation (1.1) in any Xβ,

β > α, with initial value ξ(0) ∈ Xα, provided (1.2) holds with 0 < q < 1
2 . Moreover, we

show that ξ is p-integrable for any p < q−1 and has a continuous modification, which also

solves (1.1).

The structure of the paper is as follows. In Section 2 we introduce the framework

and notations and formulate our main existence and uniqueness result. In Section 3 we

obtain technical estimates, which play crucial role in what follows. Sections 4 and 5 are

devoted to the proof of our main existence and uniqueness result and derivation of a

growth estimate of the solution, respectively.

In Section 6, we consider an infinite system of coupled SDEs in S:= R of the form

dσx(t) = fx(σ̄)dt+Φx(σ̄)dWx(t), x ∈ γ, σ̄ = (σx)x∈γ , (1.3)

where γ ⊂M = R
d is a locally finite (countable) set (configuration) and W = (Wx)x∈γ is

a collection of independent Wiener processes in S. We assume that the drift and diffusion

coefficients fx and Φx have the form

fx(σ̄) =
∑

y∈γ

ϕxy(σx, σy), Φx(σ̄) =
∑

y∈γ

Ψxy(σx, σy), (1.4)

where the mappings ϕxy : S × S → S and Ψxy : S × S → S satisfy uniform Lipschitz

conditions and have finite range, that is, ϕxy ≡ Ψxy ≡ 0 whenever |x− y| ≥ r for a

fixed r > 0. The latter condition implies that, for any x ∈ γ, both sums in (1.4) have

finite number nx of non-zero elements. The numbers nx, x ∈ γ, can be interpreted as

vertex degrees of the geometric graph γr with the vertex set γ and the set of edges

{{x, y} : x, y ∈ γ, |x− y| < r}. A natural approach to the study of system (1.3) is to

consider it as a single equation in a Hilbert or Banach space of sequences. However,

for general configurations γ, the corresponding vertex degrees of the graph γr are

unbounded, which implies that the system (1.3) cannot be controlled in a single Banach

space. This is in contrast to the case where γ = Z
d (or any bounded degree graph),

which has been well-studied, see e.g. [17] and more recent developments in, [1, 2, 21]

and references therein. However, under mild conditions on the density of γ (holding

for e.g. Poisson and Gibbs point processes in R
n), it is possible to apply the approach

discussed above and construct a solution in the scale of Hilbert spaces Sγ
α of weighted

sequences (σx)x∈γ such that
∑

x∈γ |σx|
2
e−α|x| <∞, α > 0. This approach was first used

in [8] where local solutions of the above system were constructed.

The study of the system (1.3) is motivated by applications in statistical mechanics. It

can be used for constructing and studying stochastic dynamics of countable systems of

particles randomly distributed inM (which can in general be any metric space). Each

particle is characterized by its position x ∈M and an internal parameter (spin) σx ∈ S.

Two spins σx and σy are allowed to interact via a pair potential if the distance between

x and y is no more than a fixed interaction radius r, that is, they are neighbors in the

geometric graph γr. Equilibrium states of such systems are described by “annealed” and

“quenched” Gibbs measures on Γ(M,S) and Sγ , respectively. Here Γ(M,S) is the space

of configurations {(x, σx)}x∈γ with marks (see e.g. [15]) and Sγ stands for the Cartesian

power of S.
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SDE in a scale of Hilbert spaces. Global solutions

The questions of the existence, uniqueness and multiplicity of the above Gibbs

measures were considered in [7, 12, 13, 14]. The methods of the present paper and

forthcoming work [10] will allow to construct non-equilibrium stochastic dynamics

associated with these measures and study its ergodic properties. In particular, the

results of Section 6 are used in a forthcoming paper [10] for the construction of a

mixed-type jump diffusion dynamics in Γ(M,S).

The study of such dynamics is motivated by a variety of applications, in particular in

modelling of non-crystalline (amorphous) substances, e.g. ferrofluids and amorphous

magnets, see e.g. [29], [27, Section 11], [6] and [12, 13]. Observe that the configuration

space Γ(M,S) possesses a fibration-like structure over the space Γ(M) of position

configurations γ, with the fibres identified with Sγ , see [12]. Thus the construction of

spin dynamics of a quenched system (in Sγ) is complementary to that of the dynamics in

Γ(M). The latter has been discussed by many authors, see e.g. [25, 26, 20, 5, 3, 19] and

references given there.

Finally, in Section 7 we give two further examples of the maps satisfying condition

(1.2).

For a discussion of the relationship of our construction with the results on SDEs in

nuclear spaces ([22, 23]) see [8].

2 Setting and main results

In this section we introduce the general framework we will be using below. Let

us consider a family B of Banach spaces Bα indexed by α ∈ A := [α∗, α
∗] with fixed

0 ≤ α∗, α
∗ <∞, and denote by ‖·‖Bα

the corresponding norms. When speaking of these

spaces and related objects, we will always assume that the range of indices is [α∗, α
∗],

unless stated otherwise.

Definition 2.1. The family B is called a scale if

Bα ⊂ Bβ and ‖u‖Bβ
≤ ‖u‖Bα

for any α < β, u ∈ Bα, α, β ∈ A,

where the embedding means that Bα is a dense vector subspace of Bβ .

We will use the following notations:

B :=
⋃

α∈[α∗,α∗)
Bα, B :=

⋂
α∈(α∗,α∗]

Bα.

Definition 2.2. For two scales B1, B2 (with the same index set) and a constant q > 0 we

introduce the class GLq(B1,B2) of (generalized Lipschitz) maps g: B1 → B2 such that

(1) g(B1,α) ⊂ B2,β for any α < β;

(2) there exists constant L > 0 such that

‖g(u)− g(v)‖B2,β
≤ L

|β − α|q ‖u− v‖B1,α
(2.1)

for any α < β and u, v ∈ B1,α.

We will write GLq(B) := GLq(B1,B2) if B1 = B2 =: B.

Remark 2.3. g ∈ GLq(B1,B2) generates a map B1 → B2.

Observe that (2.1) implies the linear growth condition

‖g(u)‖B2,β
≤ K

|β − α|q
(
1 + ‖u‖B1,α

)
, u ∈ B1,α, (2.2)

for some constant K and any α < β. Without loss of generality we assume that K = L.

In what follows, we will use the following three main scales:
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(1) the scale X of separable Hilbert spaces Xα;

(2) the scale H of spaces

Hα ≡ HS(H, Xα) := {Hilbert-Schmidt operators H → Xα} , (2.3)

for a fixed separable Hilbert space H;

(3) the scale Z
p
T of Banach spaces Zp

α,T of predictable random processes u : [0, T ] → Xα

with finite norm

‖u‖Zp
α,T

:= sup
t∈[0,T ]

(
E ‖u(t)‖pXα

)1/p
,

defined on a suitable filtered probability space P := (Ω,F , {Ft}t≥0, P ).

Our aim is to construct a strong solution of equation (1.1), that is, a solution of the

stochastic integral equation

u(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

Φ(u(s))dW (s), t ∈ [0, T ], (2.4)

with coefficients acting in the scale X. Here W (t), t ≤ T , is a fixed cylindrical Wiener

process in H (cf. (2.3)) defined on the probability space P. We suppose that u0 is an

F0-measurable p-integrable Xα-valued random variable, for a fixed α ∈ [α∗, α
∗) and

p ≥ 2.

The following theorem states the main result of this paper.

Theorem 2.4 (Existence and uniqueness). Assume that f ∈ GLq(X) and Φ ∈ GLq(X,H)

for some q ∈ (0, 12 ). Then, for any p ∈
[
2, q−1

)
and T > 0, the following holds:

(1) equation (2.4) has a unique solution u ∈ Z2
α∗,T ;

(2) u ∈ Zp
β,T for any β > α;

(3) for any β > α, the solution u ∈ Zp
β,T has a continuous Xβ-valued modification that

satisfies (2.4).

The proof is given in Section 4 below. We will show that the map u 7→ T (u), where

T (u)(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

Φ(u(s))dW (s), t ∈ [0, T ], (2.5)

has a unique fixed point in Zp
β,T for any β > α, by Picard iterative process.

From now on, we keep random variable u0 fixed and assume without loss of generality

that it takes values in Xα∗
(otherwise, we can always re-define the parameter set A). We

also fix p ∈
[
2, q−1

)
and an arbitrary T > 0 and write Zp

β instead of Zp
β,T .

Remark 2.5. Let us observe that if ξ ∈ Zp
α and α < β then Φ(ξ(t)), t > 0, is a predictable

Hβ-valued process because Φ : Xα → Hβ is continuous by inequality (2.1). Inequality

(2.2) shows that
√

E

∫ T

0

‖Φ(ξ(s))‖2Hβ
ds ≤ C1

(
1 + ‖ξ‖Z2

α

)
≤ C2

(
1 + ‖ξ‖Zp

α

)
<∞

for some constants C1, C2 > 0, because ξ ∈ Zp
α ⊂ Z2

α. Thus the stochastic integral

∫ t

0

Φ(ξ(s))dW (s), t ≤ T, (2.6)

is unambiguously defined as a square integrable and almost surely continuous Xβ-valued

martingale, see e.g. [16], [28].

Remark 2.6. The solution u satisfies (2.4) as element of the space Z2
α∗,T . That is,

in a more explicit form, the first part of Theorem 2.4 states that sup0≤t≤T E‖u(t) −
T (u)(t)‖Xα∗

= 0.
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3 Main estimates

In this section, we derive certain estimates of the map T defined by formula (2.5).

We fix q ∈ (0, 12 ) and arbitrary p ∈
[
2, q−1

)
.

Theorem 3.1. Assume that f ∈ GLq(X) and Φ ∈ GLq(X,H). Then T ∈GLq(Z
p).

Proof. Let us fix α < β. Observe that f(u(s)) ∈ Xβ and Φ(u(s)) ∈ Hβ for any u ∈ Zp
α and

s ∈ [0, T ], and the integrals in the right-hand side of (2.5) are well-defined in Xβ .

We first prove the inclusion T (Zp
α) ⊂ Zp

β. Let ξ ∈ Zp
α and introduce the notation

T̂ (ξ)(t) := T (ξ)(t)− u0 =
∫ t

0
f(ξ(s))ds+

∫ t

0
Φ(ξ(s))dW (s). Then, using the Hölder inequal-

ity and well-known formula for the moments of the Ito integral (see e.g. [11, 28]) we

obtain

E

[
||T̂ (ξ)(t)||pXβ

]
≤ 2p−1tp−1

∫ t

0

E ||f(ξ(s))||pXβ
ds

+ 2p−1p

[
p

2(p− 1)

]p/2
tp/2−1

∫ t

0

E ||Φ(ξ(s))||pHβ
ds. (3.1)

An application of estimate (2.2) to the right-hand side of (3.1) above shows that the

estimate

E

[
||T̂ (ξ)(t)||pXβ

]
≤ L̂(T )

(β − α)pq

∫ t

0

E ||ξ(s)||pXα
ds, (3.2)

holds with L̂(T ) = (T p−1 + p
[

p
2(p−1)

]p/2
T p/2−1)2p−1Lp, so that

||T (ξ)||Zp
β
≤ ||u0||Zp

β
+ ||T̂ (ξ)||Zp

β
≤ ||u0||Zp

β
+

p

√
L̂(T )T

(β − α)q
||ξ||Zp

α
<∞, (3.3)

because ||u0||Zp
β
<∞ for any β ≥ α.

Now we shall show that condition (2.1) of Definition 2.2 holds. Introducing notations

f̄(s) := f(ξ1(s)) − f(ξ2(s)) and Φ̄(s) := Φ(ξ1(s)) − Φ(ξ2(s)), s ∈ [0, T ], and applying

arguments as above together with estimate (2.1) we see that

E

[
||T (ξ1)(t)− T (ξ2)(t)||pXβ

]
≤ L̂(T )

(β − α)pq

∫ t

0

E ||ξ1(s)− ξ2(s)||pXα
ds, (3.4)

so that

||T (ξ1)− T (ξ2)||Zp
β
≤

p

√
L̂(T )T

(β − α)q
||ξ1 − ξ2||Zp

α
, (3.5)

and the proof is complete.

Corollary 3.2. For any α < β and all n ∈ N we have T n : Zp
α → Zp

β , where T n stands for

the n-th composition power of T .
Lemma 3.3. For any n ∈ N, α < β and ξ, η ∈ Zp

α we have the estimate

||T n(ξ)− T n(η)||p
Zp

β
≤ nnpq

n!

(
L̂(T )T

(β − α)pq

)n

||ξ − η||p
Zp

α
. (3.6)

Proof. We fix a partition of the interval [α, β] in n intervals [ψk, ψk+1], k = 0, . . . , n − 1,

ψ0 = α, ψn = β, of equal length β−α
n . Then, iterating estimate (3.4) with intervals
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[ψk, ψk+1] in place of [α, β], we obtain

E

[
||T (T n−1

(ξ))(t)− T (T n−1
(η))(t)||pXβ

]

≤ L̂(T )npq

(β − α)pq

∫ t

0

E ||T n−1(ξ(s))− T n−1(η(s))||pXα
ds

≤ · · · ≤
[
L̂(T )npq

(β − α)pq

]n ∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

E ||ξ(s)− η(s)||pXα
dsdtn−1 · · · dt1, (3.7)

and the result follows.

Corollary 3.4. Fix an arbitrary δ ∈ (α, β). Setting η = T (ξ) ∈ Zp
δ and iterating estimate

(3.6) with α replaced by δ we see that, for any m > n,

||T n(ξ)− T m(ξ)||Zp
β
≤ ||ξ − T (ξ)||Zp

δ

m−1∑

k=n

p

√
L̂(T )kT k

(β − δ)kq
kkq

p
√
k!
. (3.8)

Remark 3.5. Observe that the inclusion Zp
α ⊂ Z2

α implies that the estimate (3.6) and

preceding statements hold with p replaced by any p′ ∈ [2, p). In particular, T ∈GLq(Z
2).

Finally, we prove regularity of the right-hand side of (3.8). In what follows, we will

use the notation

E(p)(t, ε, q) := 1 +

∞∑

n=1

tn

εnq
nnq

p
√
n!

(3.9)

Observe that for p = 1 and q = 0 the right-hand side of (3.9) reduces to an exponential

series, so that E(1)(c, ε, 0) = ec.

Lemma 3.6. For any t, p, ε > 0 and q ∈ [0, 1p ) we have E(p)(t, ε, q) <∞.

Proof. Analyzing the ratio of terms of series (3.9) we see that

lim
n→∞

t(n+1)

εq(n+1)

(n+1)q(n+1)

((n+1)!)1/p

tn

εqn
nqn

(n!)1/p

= lim
n→∞

t

εq
(n+ 1)qn+q− 1

p
1

nqn

= lim
n→∞

t

εq

(
1 +

1

n

)qn

(n+ 1)q−
1
p =

t

εq
eq lim

n→∞
(n+ 1)q−

1
p = 0,

provided q − 1
p < 0, which proves the result.

Corollary 3.7. Setting t = p

√
L̂(T )T and ε = β − α we obtain equality

lim
n→∞

∞∑

k=n

p

√
L̂(T )kT k

(β − α)kq
kkq

p
√
k!

= 0 (3.10)

for any α < β and q < p−1.

4 Fixed point theorem and proof of the main result

We will now prove the fixed point theorem for the map T defined by (2.5), which

immediately allows us to establish the existence and uniqueness of a solution of equation

(2.4). We suppose without loss of generality that u0 ∈ Zp
α∗
.
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Theorem 4.1. Suppose that p ∈
[
2, q−1

)
. Then the map T : Z

p → Z
p
has a unique fixed

point u. Moreover, u ∈ Zp, the equality T (u) = u holds in any Zp
α, α > α∗ and for an

arbitrary ξ ∈ Zp
α we have

lim
n→∞

T n(ξ) = u,

where the convergence takes place in Zp
β for all β > α.

Proof. Let us fix ξ ∈ Zp
α∗
. Estimate (3.8) and Corollary 3.7 show that the sequence

{T n(ξ)}∞n=1 is Cauchy in Z
p
β and thus converges in Zp

β , for any β > α∗. Thus there exists

u ∈ Zp
β such that

lim
n→∞

T n(ξ) = u,

where the convergence takes place in Zp
β . Observe that for any β1 < β2 the space Zp

β1
is

a dense vector subspace of Zp
β2
, which implies that u is independent of the choice of β,

and so u ∈ Zp = ∩β>α∗
Zp
β .

To show that u is a fixed point, we can now fix arbitrary β > α∗ and choose any

δ ∈ (α∗, β). Observe that T n(ξ) ∈ Zp
δ and T : Zp

δ → Zp
β is continuous. Therefore, passing

to the limit in both sides of the equality

T (T n(ξ)) = T n+1(ξ) ∈ Zp
β

we can conclude that

T (u) = u in Zp
β for any β > α∗,

which also implies that for all t ≤ T we have T (u)(t) = u(t) almost everywhere.

Suppose now that there exists another element v ∈ Zp
β′ , β′ > α∗, such that T (v) = v.

Assume without loss of generality that β ≥ β′ and fix δ > β. Then v ∈ Zp
β ⊂ Zp

δ and so we

have

||u− v||p
Zp

δ
= ||T n(u)− T n(v)||p

Zp
δ
≤ npnq

n!

(
L̂(T )T

(δ − β)pq

)n

||u− v||p
Zp

β
→ 0, n→ ∞, (4.1)

by (3.6) and (3.10), which implies that v = u in Zp
δ and thus in Zp

β .

Observe that similar arguments show that for any α > α∗ and ξ ∈ Zp
α the sequence

{T n(ξ)}∞n=1 converges in any Zp
β for all β > α and limn→∞ T n(ξ) ∈ Zβ is a fixed point of

the map T . The uniqueness of the fixed point implies that limn→∞ T n(ξ) = u ∈ Zp. The

proof is complete.

Remark 4.2. Taking into account Remark 3.5 we see that the statement of Theorem 4.1

holds with p replaced by any p′ ∈ [2, p). This implies in particular that the fixed point u is

unique in Zp′.

Remark 4.3. In particular, for any α < β and ξ ∈ Xα we have limn→∞ ‖T n(ξ)(t) −
u(t)‖Xβ

= 0 and ‖T (u)(t)− u(t)‖Xα
= 0 a.s., t ≤ T .

Proof of Theorem 2.4. The first two statements follow immediately from Theorem 4.1

and Remark 4.2 above. Indeed, the unique fixed point u of the map T gives the solution

of equation (2.4).

To prove the third statement, consider the Xβ-valued process

T (u)(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

Φ(u(s))dW (s), t ∈ [0, T ],

which is, according to the first part of the theorem, a modification of the process u.

By the general properties of stochastic integrals, this process is a.s. continuous, see

Remark 2.5.
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If p > 2, the existence of a continuous modification of u can be also shown directly

by an application of Kolmogorov’s continuity theorem in a rather standard way. Indeed,

using (2.4) and the arguments similar to those in the proof of (3.3) we obtain for any

α ∈ (α∗, β) that

E||u(t)− u(s)||pXβ
≤ E

[∥∥∥∥
∫ t

s

f(u(τ))dτ +

∫ t

s

Φ(u(τ))dW (τ),

∥∥∥∥
p

Xα

]

≤ C(t− s)

(β − α)pq
‖u‖pZp

α
|t− s|p/2 , 0 ≤ s < t ≤ T,

where C(τ) = (τp/2 + p[ p
2(p−1) ]

p/2)2p−1Lp ≤ C(T ), 0 < τ < T . So we have the estimate

E||u(t)− u(s)||pXβ
≤ k(u, T ) |t− s|p/2

with k(u, T ) = C(T )
(β−α)pq ‖u‖

p
Zp

a
, which implies the existence of a continuous Xβ-valued

modification η.

Observe now that by (3.5) we have for any β′ > β

‖η − T (η)‖pZp

β′

= ||T (u)− T (η)||p
Zp

β′

≤
p

√
L̂(T )T

(β′ − β)pq
‖u− η‖pZp

β
= 0, t ∈ [0, T ].

Since β and β′ are arbitrary, the proof is complete.

Remark 4.4. Observe that ‖u− η‖Zp
β
= 0, so the processes u and η coincide as elements

of Zp
β .

5 Estimate of the solution

In this section, we derive a norm estimate of the solution u from Theorem 2.4.

Lemma 5.1. For any β > α we have

||u||Zp
β
≤ E(p)

(
p

√
L̂(T )T ,

β − α

2
, q

)[
1 +

(
E||u0||pXα

)1/p]
.

Proof. By (3.8) with ξ = u0 and n = 0 we obtain

||u0 − T m(u0)||Zp
β
≤

m−1∑

n=0

nnq

p
√
n!




p

√
L̂(T )T

(β − δ)q



n

||u0 − T (u0)||Zp
δ

for any δ ∈ (α, β). An application of (2.2) to the right-hand side of the equality

E||u0 − T (u0)(t)||pXδ
= E

[∥∥∥∥
∫ t

0

f(u0)ds+

∫ t

0

Φ(u0)dW (s)

∥∥∥∥
p

Xδ

]

gives us an estimate similar to (3.5), namely

||u0 − T (u0)||Zp
δ
≤

p

√
L̂(T )T

(δ − α)q
(
E
(
1 + ||u0||pXα

))1/p
.

Thus, taking into account that
(
E
(
1 + ||u0||pXα

))1/p ≤ 1 +
(
E||u0||pXα

)1/p
and setting

δ = β+α
2 , we obtain for any m ∈ N

||u0 − T m(u0)||Zp
β
≤

m∑

n=1

nnq

p
√
n!




p

√
L̂(T )T

(β−α
2 )q



n
[
1 +

(
E||u0||pXα

)1/p]
.
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Passing to the limit as m→ ∞ (cf. Theorem 4.1) we obtain the bound

||u0 − u||Zp
β
≤

∞∑

n=1

nnq

p
√
n!




p

√
L̂(T )T

(β−α
2 )q



n
[
1 +

(
E||u0||pXα

)1/p]
.

Therefore

||u||Zp
β
≤
(
E||u0||pXβ

)1/p
+

∞∑

n=1

nnq

p
√
n!




p

√
L̂(T )T

(β−α
2 )q



n
[
1 +

(
E||u0||pXα

)1/p]
.

≤


1 +

∞∑

n=1

nnq

p
√
n!




p

√
L̂(T )T

(β−α
2 )q



n

[
1 + (E||u0||pXα)

1/p
]

= E(p)

(
p

√
L̂(T )T ,

β − α

2
, q

)[
1 +

(
E||u0||pXα

)1/p]
,

which completes the proof.

Remark 5.2. Observe that we have
p

√
L̂(T )T ≤ a(T ) = ap max

(
T, T 1/2

)
, where ap =

2(p−1)/p(p1/p[ p
(p−1) ]

1/2 + 1)L.

6 Stochastic spin dynamics of a quenched particle system

In this section, we apply the results of Section 2 to system (1.3), which is motivated

by the study of stochastic dynamics of interacting particle systems and serves as our

main example. We follow the scheme of paper [8], adapted to our present setting, which

allows to show the existence of solutions with arbitrary large lifetime and their path-

continuity. Let γ ⊂ R
d be a locally finite set (configuration) representing a collection

of point particles. Each particle with position x ∈ γ is characterized by an internal

parameter (spin) σx ∈ S:=R. We fix an interaction radius r > 0 and assume that the

number

nx ≡ nx,r(γ) := # {y ∈ γ : |x− y| < r} (6.1)

satisfies the following regularity condition.

Condition 6.1. There exist constants q ∈ (0, 12 ) and a ≡ a(γ, r, q) > 0 such that

nx ≤ a (1 + |x|)q , x ∈ R
d. (6.2)

Remark 6.2. Condition (6.2) holds if γ is a typical realization of a Poisson or Gibbs

(Ruelle) point process inR
d. For such configurations, the following stronger (logarithmic)

bound holds:

nx,r(γ) ≤ c(γ) [1 + log(1 + |x|)]1/2 rd,

see e.g. [30] and [24, p. 1047]. Thus (6.2) holds for any q > 0.

Consider the Cartesian power Sγ = {ū = (ux)x∈γ , ux ∈ S}. Our dynamics will live in

the scale of Hilbert spaces

Xα = Sγ
α :=



ū ∈ Sγ : ‖ū‖α :=

√∑

x∈γ

|ux|2 e−α|x| <∞



 , 0 < α∗ ≤ α ≤ α∗.
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where the parameters α∗ and α
∗ are chosen in an arbitrary way and fixed. We set

H = Sγ
0 :=



ū ∈ Sγ : ‖ū‖0 :=

√∑

x∈γ

|ux|2 <∞





and define the corresponding spaces GLq(X) and GLq(X,H), cf. Definition 2.2. Observe

that W (t) := (Wx(t))x∈γ is a cylindrical Wiener process in H.

We assume that the families of mappings {ϕxy}x,y∈γ and {Ψxy}x,y∈γ from (1.4) satisfy

the following condition.

Condition 6.3.

• finite range: ϕxy = Ψxy ≡ 0 if |x− y| ≥ r, where r is the interaction radius from

(6.1);

• uniform Lipschitz continuity:

|ϕxy(z
′
1, z

′
2)− ϕxy(z

′′
1 , z

′′
2 )| ≤ C (|z′1 − z′′1 |+ |z′2 − z′′2 |) ,

|Ψxy(z
′
1, z

′
2)−Ψxy(z

′′
1 , z

′′
2 )| ≤ C (|z′1 − z′′1 |+ |z′2 − z′′2 |)

for some constant C > 0 and all x, y ∈ γ and z′1, z
′
2, z

′′
1 , z

′′
2 ∈ S.

Define a map ϕ : Sγ → Sγ and a linear operator Ψ̂(ū) : Sγ → Sγ by the formulae

ϕx(ū) =
∑

y∈γ

ϕxy(ux, uy) and
(
Ψ̂(ū) σ̄

)
x
=
∑

y∈γ

Ψxy(ux, uy)σx,

x ∈ γ, ū ∈ Sγ , respectively.

The proof of the following result is similar to that of Lemma 5.4 in [8], where the case

of q = 1/2 is considered.

Lemma 6.4. We have ϕ ∈ GLq(X) and Ψ̂ ∈ GLq(X,H).

Now we can return to the discussion of system (1.3). We can write it in the form (1.1)

with f = ϕ, Φ = Ψ̂ and W (t) = (Wx(t))x∈γ , and apply the results of the previous sections

to its integral counterpart. We summarize those results in the following theorem, which

follows directly from Theorem 2.4.

Theorem 6.5. Assume that Conditions 6.1 and 6.3 hold. Then, for any α > 0, σ̄(0) ∈ Xα,

p ∈
[
2, q−1

)
and T > 0, system (1.3) has a unique strong solution u ∈ Zp

β for any β > α.

This solution has a continuous modification that satisfies (1.3).

This result implies of course that, for each x ∈ γ, equation (1.3) has a path-continuous

strong solution, which is unique in the class of predictable square-integrable processes.

Remark 6.6. For a configuration γ as in Remark 6.2, the statement of the theorem

above holds for any p ≥ 2.

7 Further examples

In this section we give two examples of linear maps of the class GLq(B).

Example 1. Consider the scale B of Banach spaces Bα := Lp(R, e−α|x|dx), p > 1,

α ∈ [α∗, α
∗], and the integral operator

Au(x) =

∫
K(x, y)u(y)dy, x ∈ R,

with kernel K satisfying the bound

|K(x, y)| ≤ ae−
β∗

p |x−y| (1 + |y|)δ , δ > 0, (7.1)

for some β∗ ∈ (α∗, α
∗), a > 0 and a.a. x, y ∈ R.
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Remark 7.1. It is clear that K(x, y) can grow to infinity along the main diagonal x = y,

which implies that A is in general unbounded in any weighted Lp.

Proposition 7.2. Assume that (7.1) holds. Then A ∈ GLq(B) with q = pδ
p−1 .

Remark 7.3. For an implementation of any version of Ovsyannikov-type method, we

need 0 < q ≤ 1, which implies δ ≤ p−1
p < 1.

Proof. We start with the following estimate of the norm of operator A in Bβ , β < α∗:

‖Au‖pBβ
≤
∫ [∫

|K(x, y)u(y)|dy
]p
e−β|x|dx

≤ ap
∫ [∫

e−
β∗

p |x−y| (1 + |y|)δ |u(y)| dy
]p

e−β|x|dx

= ap
∫ [∫

e−ε|x−y| (1 + |y|)δ |u(y)| e−
β
p |x−y|dy

]p
e−β|x|dx,

where ε = β∗−β
p . Observe that e−

β
p |x−y|e−

β
p |x| ≤ e−

β
p |y|, so that

‖Au‖pBβ
≤ ap

∫ [∫
e−ε|x−y| (1 + |y|)δ |u(y)| e−

β
p |y|dy

]p
dx.

For θ such that θ−1 + p−1 = 1 we have

e−ε|x−y| (1 + |y|)δ |u(y)| e−
β
p |y| =

[
e−

ε
θ |x−y| (1 + |y|)δ e−

β−α
p |y|

]
×
[
e−

ε
p |x−y| |u(y)| e−α

p |y|
]

for any α < β. Then, by Holder’s inequality,

‖Au‖pBβ

≤ ap
∫ [{∫ [

e−
ε
θ |x−y| (1 + |y|)δ e−

β−α
p |y|

]θ
dy

}p/θ

×
∫ [

e−
ε
p |x−y| |u(y)| e−α

p |y|
]p
dy

]
dx

≤ apbcp/θ+1 ‖u‖pBα
,

where

b = sup
s≥0

(1 + s)
θδ
e−

θ
p (β−α)s and c =

∫
e−ε|y|dy.

It remains to compute constant b. Equating to 0 the derivative ∂
∂s (1 + s) e−

1
pδ (β−α)s we

obtain

b =
C

(β − α)θδ
, C =

(
pδe

α∗
−α∗

pδ −1
)θδ

.

It is clear that estimate (2.1) holds with q = θδ = pδ
p−1 .

Example 2. A somewhat similar example is given by the spaces of sequences

Bα :=

{
(uk)k∈Z :

∑

k∈Z

|uk|p e−α|k| <∞
}
, p > 1,

and the linear map given an infinite matrix A = (Akj)k,j∈Z is with elements satisfying

the bound

|Akj | ≤ ae−
β∗

p |k−j| (1 + |j|)δ , k, j ∈ Z.

The proof of the inclusion A ∈ GLq(B), q = pδ
p−1 , is similar to that of Proposition 7.2.

Similar to the previous example, we have in general

|Akk| → ∞, k → ∞,

so that operator A is unbounded in any weighted lp.
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