
This is a repository copy of Do automatic test generation tools generate flaky tests?.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/203874/

Version: Published Version

Proceedings Paper:
Gruber, M., Roslan, M.F., Parry, O. et al. (3 more authors) (2024) Do automatic test
generation tools generate flaky tests? In: ICSE '24: Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering. 46th International Conference on
Software Engineering (ICSE 2024), 14-20 Apr 2024, Lisbon, Portugal. Association for
Computing Machinery (ACM) , New York, NY, United States . ISBN 9798400702174

https://doi.org/10.1145/3597503.3608138

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Do Automatic Test Generation Tools Generate Flaky Tests?

Martin Gruber∗

BMW Group, University of Passau
Munich, Germany

martin.gr.gruber@bmw

Muhammad Firhard Roslan∗

University of Sheffield
Sheffield, United Kingdom
mfroslan2@sheffield.ac.uk

Owain Parry
University of Sheffield

Sheffield, United Kingdom
oparry1@sheffield.ac.uk

Fabian Scharnböck
University of Passau
Passau, Germany

scharn05@ads.uni-passau.de

Phil McMinn
University of Sheffield

Sheffield, United Kingdom
p.mcminn@sheffield.ac.uk

Gordon Fraser
University of Passau
Passau, Germany

gordon.fraser@uni-passau.de

ABSTRACT

Non-deterministic test behavior, or flakiness, is common and dreaded

among developers. Researchers have studied the issue and proposed

approaches to mitigate it. However, the vast majority of previous

work has only considered developer-written tests. The prevalence

and nature of flaky tests produced by test generation tools remain

largely unknown. We ask whether such tools also produce flaky

tests and how these differ from developer-written ones. Further-

more, we evaluate mechanisms that suppress flaky test genera-

tion. We sample 6 356 projects written in Java or Python. For each

project, we generate tests using EvoSuite (Java) and Pynguin (Py-

thon), and execute each test 200 times, looking for inconsistent

outcomes. Our results show that flakiness is at least as common in

generated tests as in developer-written tests. Nevertheless, existing

flakiness suppression mechanisms implemented in EvoSuite are

effective in alleviating this issue (71.7% fewer flaky tests). Com-

pared to developer-written flaky tests, the causes of generated flaky

tests are distributed differently. Their non-deterministic behavior is

more frequently caused by randomness, rather than by networking

and concurrency. Using flakiness suppression, the remaining flaky

tests differ significantly from any flakiness previously reported,

where most are attributable to runtime optimizations and EvoSuite-

internal resource thresholds. These insights, with the accompanying

dataset, can help maintainers to improve test generation tools, give

recommendations for developers using these tools, and serve as a

foundation for future research in test flakiness or test generation.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Test Generation, Flaky Tests, Empirical Study

∗Both authors contributed equally to this research.

ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3608138

ACM Reference Format:

Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharn-

böck, Phil McMinn, and Gordon Fraser. 2024. Do Automatic Test Generation

Tools Generate Flaky Tests?. In 2024 IEEE/ACM 46th International Conference

on Software Engineering (ICSE ’24), April 14ś20, 2024, Lisbon, Portugal. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3608138

1 INTRODUCTION

A flaky test is a test case that produces inconsistent results, meaning

that the same test can pass or fail for no apparent reason, even when

the system being tested has not changed [51]. They are a major

problem for software developers because they limit the efficiency of

testing, complicate continuous integration, and reduce productiv-

ity [19, 39, 48]. The negative effects of flaky tests are ubiquitous,

experienced by large companies such as Google, Microsoft, and

Facebook, as well as the developers of smaller open-source pro-

jects [19, 36, 45, 47]. Indeed, recent surveys found that a majority of

developers observe flaky tests on at least a monthly basis [29, 52]. As

well as being a burden on developers, flaky tests are also a persistent

problem in research, limiting the deployment of several state-of-

the-art techniques for test selection and prioritization [45, 54, 68].

Increasing research interest in the area of flaky tests has pro-

duced a range of empirical studies regarding the causes, origins, and

impacts of developer-written flaky tests [21, 37, 44, 64]. However,

far less attention has been paid to flaky tests produced by automatic

test generation tools [53, 60]. This research gap is problematic for

several reasons. Firstly, there is minimal guidance for developers

regarding the sorts of flaky tests they might expect to receive from

test generation tools and more crucially how to avoid them. This

threatens to detract from the positive benefits of such tools on the

software development lifecycle as previously established [61]. Sim-

ilarly, the maintainers of test generation tools have only limited

information on the prevalence of automatically generated flaky

tests and what causes them. These insights are crucial for maintain-

ers to prevent their tools from producing flaky tests. Furthermore,

researchers in the field of flaky tests would benefit from an analysis

of how the root causes of developer-written flaky tests compare

to those that are automatically generated. Such an investigation

would inform researchers on whether generated flaky tests are rep-

resentative of their developer-written counterparts. This would be

useful for augmenting existing datasets of developer-written flaky

tests with generated flaky tests [35].

In this study, we used the popular search-based test generation

tools EvoSuite [25] and Pynguin [42] to generate test suites for 1 902

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser

Java projects and 4 454 Python projects respectively. We repeatedly

executed both the developer-written and automatically generated

test suites of all the projects, consisting of nearly amillion individual

test cases, 200 times each to detect flaky tests. We compared the

prevalence of flakiness between both types of test suites and went

one step further by comparing root causes, following our manual

analysis on a random sample of 481 non-order-dependent flaky

tests. Furthermore, we performed the first scientific evaluation

on the effectiveness of EvoSuite’s built-in flaky test suppression

feature. Chiefly among our findings, we found that flaky tests are

at least as common in generated tests as they are in developer-

written tests, that EvoSuite’s flaky test suppression feature can

reduce the number of generated flaky tests by 71.7 %, and that the

distribution of the root causes of generated flaky tests differs to

that of developer-written tests.

The main contributions of this study are as follows:

Contribution 1: Empirical study: Our empirical study involving

6 356 open-source projects is the largest among all previous studies

on both flaky tests and search-based test generation. Our study is

also the first to analyze the root causes of automatically generated

flaky tests. See Section 3 for more information.

Contribution 2: Recommendations: The results of our study

have important implications for software developers, maintainers

of test generation tools, and researchers in the area of flaky tests.

From these, we are able to offer insights and recommendations that

are actionable by these stakeholders. See Sections 4 and 5 for more

information.

Contribution 3: Dataset: The dataset we collected for this study

is the first publicly available dataset of flaky tests that contains

automatically generated flaky tests and features a large manually

annotated sample. See our replication package for more informa-

tion [11].

2 BACKGROUND

2.1 Flaky Tests

Luo et al. [44] performed one of the earliest empirical studies of

test flakiness. They categorized the cause of the flaky tests repaired

by developers in 201 commits across 51 open-source projects using

the following ten categories:

1. Async. Wait. Test makes an asynchronous call but does not

properly wait for it to finish, leading to intermittent failures.

2. Concurrency. Test spawns multiple threads that behave in an

unsafe or unanticipated manner, such as a race condition.

3. Floating Point. Test uses floating points and is flaky due to

unexpected results such as non-associative addition.

4. Input/Output (I/O). Test uses the filesystem and is flaky due to

intermittent issues such as storage space limitations.

5. Network. Test depends on the availability of a network and is

flaky when the network is unavailable or busy.

6. Order Dependency. Test depends on a shared value or resource

that is modified by other test cases as a side effect.

7. Randomness. Test involves random number generators and is

flaky due to not setting seeds, for example.

8. Resource Leak. Test does not release acquired resources (e.g.

database connection) inducing flaky failures for itself or for other

tests that require the same resources.

9. Time. Test relies on measurements of date and/or time. Flakiness

is caused by, for instance, discrepancies in precision and represent-

ation of time across libraries and platforms.

10. Unordered Collection. Test assumes a deterministic iteration

order for an unordered collection-type object, such as a set, leading

to intermittent failures.

Eck et al. [21] asked Mozilla developers to categorize the causes

of 200 flaky tests they had previously repaired. The developers used

the categories introduced by Luo et al. but with the option to create

new categories if needed. Following this, Eck et al. identified the

following additional four categories:

11. Too Restrictive Range. Test includes a range-based assertion

that excludes a portion of the valid output values.

12. Test Case Timeout. Test intermittently exceeds a pre-defined

upper limit on its execution time.

13. Platform Dependency. Test outcome varies across the pro-

ject’s target platforms.

14. Test Suite Timeout. Test intermittently exceeds a pre-defined

upper limit on the execution time of the test suite.

While studying flakiness in Python tests, Gruber et al. [32] iden-

tified another root cause:

15. Infrastructure. Test fails intermittently due to issues outside

the project code, but inside the execution environment (the con-

tainer or the local host), for example, permission errors or lack of

disk space.

2.2 Automatic Test Generation

EvoSuite is an automatic test generation tool for Java projects [25,

26]. It uses a search-based approach to generate test suites that

cover as much of the code under test as possible. The tool is based

on evolutionary algorithms, which means that it uses principles

from biological evolution to search for test cases [46]. The search

is guided by a fitness function that can be configured to optimize

test suite generation for high line, branch, or mutation coverage.

The tool applies techniques from mutation testing to minimize

the number of assertions in the generated tests [33]. This ensures

that they are more easily understandable to developers and not

overly brittle. A large-scale empirical study demonstrated that Evo-

Suite can achieve an average of 71% branch coverage per class [27].

EvoSuite also provides ways to suppress łunstablež (flaky) tests, ad-

dressing this issue both during the evolutionary search process and

after its completion. EvoSuite detects unstable tests by controlling

the environmental dependencies using bytecode instrumentation,

resetting the state of static variables before executing each test,

using mocks to replace non-deterministic calls, and compiling and

executing the generated tests, removing failing tests [14].

Pynguin is an automatic test generation tool for Python pro-

jects [41ś43]. Target languages aside, Pynguin and EvoSuite share

several similarities. Both tools use a search-based approach to gener-

ate test cases and both apply mutation testing to generate assertions.

Pynguin faces the additional challenge that Python is a dynamically

typed language, meaning that generating test inputs of the appropri-

ate type is much harder. Therefore, Pynguin relies on existing type

hints in function and class definitions in the code under test. From

these, Pynguin can apply type inference to attempt to determine the

types of variables without hints. A previous empirical evaluation of

Do Automatic Test Generation Tools Generate Flaky Tests? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Pynguin found that it was able to achieve a mean branch coverage

of 71.6 % on 163 Python modules from 20 open-source projects [43].

3 METHODOLOGY

With our study, we aim to answer the following research questions:

RQ1 (Prevalence): How prevalent is flakiness in tests that were

generated without flakiness suppression mechanisms?

RQ2 (Flakiness Suppression): How many flaky tests can Evo-

Suite’s flakiness suppression mechanism prevent?

RQ3 (Root Causes): How do the root causes of generated flaky

tests differ from those of developer-written tests?

Fig. 1 depicts an overview of our study setup.

3.1 Project Sampling

To collect subjects for our empirical study, we randomly sampled

open-source projects written in Java and Python. These are two of

the most popular programming languages, which have also been

the main targets for both test flakiness and test generation research.

3.1.1 Java. To collect Java projects, we used the index of theMaven

Central Repository [4], one of the official software repositories for

Java. The index is updated weekly for newly added projects or

patches. It consists of roughly 520 000 unique packages (as of 2022ś

10ś26). We iterated over the entire index and each project’s Project

Object Model (POM) to fetch the URL to the project repository.

We limited our project sampling to only include projects whose

source code is available on GitHub and which use Maven as a build

tool. Since the project’s POM in the Maven Central Repository does

not include details of the build automation tool it is usingÐwhich

means that the index includes projects built from Gradle or AntÐwe

crawled through the GitHub URLs to filter for projects that include

a pom.xml file in the root of their repository. This is to confirm that

the project is using Maven as its build automation tool. In total,

we found 38 841 Maven projects that include a link to the project

repository on GitHub. While some projects may lack developer-

written tests, we did not exclude them during this crawling process

(but we did so later, during the test outcome analysis). We decided

against sampling projects from existing flakiness databases, such as

IDoFT [35], because we did not want to limit our study to projects

that already contain developer-written flaky tests.

3.1.2 Python. To collect Python projects, we used the dataset from

Gruber et al. [32], who studied flakiness in Python. It consists of

22 352 projects that were randomly sampled from the Python Pack-

age Index (PyPI) [10], the official third-party software repository

of Python. Each project contains at least one test that could be

executed using pytest [8] and its source code is available on GitHub.

Unlike IDoFT [35], these projects do not all contain flaky tests: The

original study found 7 571 flaky tests among 1 006 projects.

3.2 Test Generation

To generate tests for the sampled projects, we use state-of-the-art

test generation tools for the respective language. For Java, we use

EvoSuite [25], an automated test generation tool that utilizes meta-

heuristic techniques to generate JUnit test suites. For Python, we

use Pynguin [41ś43], a test generation tool that produces unit tests

Table 1: Updated parameters to deactivate flakiness suppression

mechanisms (EvoSuiteFSOff)

Parameter Description New
Value

Test Scaffolding Generate separate scaffolding file to execute
the tests

false

No Runtime Dependency Avoid runtime dependencies in JUnit test true
JUnit Check Compile and run the resulting JUnit test suite false
Sandbox Executing tests in an independent testing

environment
false

Virtual FS Using virtual file system for all File I/O op-
erations

false

Virtual Net Using virtual network for all network
communications

false

Replace Calls Replacing non-deterministic calls false
Replace System In Replacing the InputStream mechanism with

a mock
false

Replace GUI Replacing the GUI calls with a mock false
Reset Static Fields Call static constructors only after static field

was changed
false

Reset Static Field Gets Call static constructors only after static field
was read

false

Reset Static Final Fields Remove the static modified in target fields false

for Python programs. The tests are generated from scratch, not

relying on any existing developer-written tests as input [56].

3.2.1 Java. We use the latest release of EvoSuite at the time (v1.2.0)

to generate tests for each Java project. Since EvoSuite applies mul-

tiple techniques to avoid creating flaky tests, and we want to meas-

ure the impact of these flakiness suppression mechanisms, we apply

EvoSuite under two configurations: with and without Flakiness Sup-

pression, which we refer to as EvoSuiteFSOn and EvoSuiteFSOff . The

flakiness suppression parameters are turned on by default, which

means that for EvoSuiteFSOn, we do not change any of the EvoSuite

parameters. To generate tests without the flakiness suppression

mechanisms (EvoSuiteFSOff), we update several parameters of Evo-

Suite that we extracted from previous studies [14, 24, 26], and which

we confirmed via in-depth discussions with one of the EvoSuite

maintainers on our team. Table 1 shows the parameters that we

changed to deactivate EvoSuite’s flakiness suppression. These para-

meters consist of actions carried out during the test generation

process to mitigate non-determinism. They address factors related

to managing environmental dependencies, establishing a virtual

file system, mocking non-deterministic output such as Random [2]

and Calendar [1] classes, and resetting the state of static and final

fields to avoid creating dependencies on other tests. For each of the

Java projects, both EvoSuiteFSOn and EvoSuiteFSOff generate tests

for every testable class in the system under test (SUT). A class is

considered testable if it has at least one public method. EvoSuite

aims to generate a test suite that covers all public methods. We set

the search budget for generating tests to two minutes per class for

both EvoSuiteFSOn and EvoSuiteFSOff , which is what previous tool

competitions have used [58, 65].

3.2.2 Python. To generate tests for the Python projects, we use

version 0.27.0 of Pynguin, the latest release at the time (2022ś11-14).

Pynguin operates on module-level, and we apply it to each mod-

ule contained in each of our sample projects. Like Lukasczyk et

al. [43], we use a maximum search budget of ten minutes. Unlike

EvoSuite, Pynguin does not offer optional parameters for flakiness

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser

Isolated Test
Execution

100x Same
order

100x Random
order

A. Project Sampling B. Test Generation C. Test Execution D. Test Outcome Analysis (RQ1, RQ2) E. Root Cause Analysis (RQ3) (i) Alignment (ii) Manual Classification
 Section 3.1 Section 3.2 Section 3.3 Section 3.4 Section 3.5

Flakiness Suppression ON
(Default mode)

Flakiness Suppression OFF

No Flakiness Suppression
(Default mode)

Sampling NOD
Flaky Tests

(Breadth + Depth)

Randomly
Sample
50 Tests

481 Flaky
Tests

Alignment
Sample

Manually Label Root
Causes + Discussion

(4 researchers)

Manually Label Root
Causes

(1 researcher per test)

1 902 Projects
~ 737 000 Tests

4 454 Projects
~ 442 000 Tests

dev.-written tests

38 841 Java
Projects

dev.-written tests

22 352 Python
Projects

Figure 1: Study setup

suppression. Instead, it applies a re-execute-once strategy to łfil-

ter out trivially flaky assertions, e.g., strings that include memory

locationsž [7]: After generating a test that contains passing as-

sertions, the test is executed again. Any assertion that does not

hold in this execution is excluded, as it was made on an appar-

ently flaky value. This behavior is inspired by EvoSuite’s JUnit

Check, however, since it is not optional and Pynguin has no further

flakiness-relevant parameter, we execute Pynguin using only one

configuration: the default settings.

Both EvoSuite and Pynguin generate tests non-deterministically,

meaning that they generate different test suites every time the tool

is used. Most of the previous studies investigating automatic test

generation generated more than one test suite per project to take

the random nature of the evolutionary search [42, 60] into account.

Unlike these, we generate only one test suite per class/module, since

our study does not draw any conclusions by comparing individual

projects or components. Instead, we accommodate for the random-

ness in the test generation by sampling a large corpus of projects,

which also contributes to the generalizability of our findings.

3.3 Test Execution

To detect flaky tests, we execute all generated tests and all developer-

written tests 100 times in the same order and 100 times in random

orders. This procedure follows other studies [32, 38] and allows us

to distinguish order-dependent (OD) from non-order-dependent

(NOD) flaky tests. The test executions are conducted either directly

through or inspired by FlaPy [31], a tool that allows researchers to

mine flaky tests from a given set of projects by repeatedly executing

their test suites. FlaPy ensures a fresh and isolated environment

for each test execution and handles dependency installation. Fur-

thermore, it splits the runs into iterations, where each iteration

is executed in a separate Docker container, which helps to avoid

timeouts and detect environment issues, such as infrastructure

flakiness [32]. In our case, we split the 200 runs into at least five it-

erations per project and test type. Generated and developer-written

tests are not executed together, but in separate iterations to avoid

side-effects.

To install third-party dependencies of the project under evalu-

ation, we use language-specific pipelines: For Java this can easily be

accomplished by using ‘mvn dependency:copy-dependencies’

to make a copy of all the dependencies from the repository on our

local machine. We then update the environment variables to include

Table 2: Size of our dataset

Projects # Tests (FS = Flakiness Suppression)

Language
Test Gen.

Framework

Developer

-written

Generated

Without FS

Generated

With FS

Java EvoSuite 1 902 163 305 264 000 310 193

Python Pynguin 4 454 303 711 138 627

all the dependencies that the project needs when executing the tests.

For Python this process is more complicated since the general land-

scape of build systems is more heterogeneous. As we cannot rely on

a standardized solution, we use FlaPy’s built-in dependency install-

ation heuristic which searches for requirements.txt (or similarly

named) files and runs them against pip. To execute the projects’

test suites we use the JUnit Runner [3] for Java and pytest [8] for

Python. When conducting test executions in random orders, we

shuffle the tests on class-level, which randomly sorts first the classes

and then the tests within each class. For Python, this can easily be

accomplished using pytest’s random-order plugin [9]. For Java, we

had to create a custom test runner since Maven’s Surefire plugin [5]

currently does not support this form of shuffling.

3.4 Test Outcome Analysis

Table 2 depicts the number of projects for which we were able to

successfully execute the developer-written tests, and successfully

generate tests using EvoSuite or Pynguin. We consider the execu-

tion of the developer-written test suite to be successful if at least

one test case was executed without producing an Error or Skip

outcome. We consider the test generation to be successful if at least

one executable test was generated. Since we use the same generic

setup processes for all projects of the same language, we were not

able to successfully execute the developer-written test suite and the

test generation for each sampled project. Reasons for erroring test

executions or test generation include project-specific requirements

that go beyond standard third-party dependencies, such as setting

global variables or installing system software.

To assert if we still derived a sufficiently large and diverse set of

projects, we inspect two quantitative metrics: the lines of source

code (SLOC) of the projects measured via CLOC [16], and the num-

ber of developer-written tests they possess (Fig. 2). To assess if we

applied the test generation tools properly, we look at the coverage

Do Automatic Test Generation Tools Generate Flaky Tests? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

101 102 103 104 105

Lines of Code (LOC)

0

50

100

150

Pr

oj
ec

ts

(a) lines of code (Java)

100 101 102 103

Developer-Written Test Cases

0

50

100

150

Pr

oj
ec

ts
(b) dev.-written Java tests / proj.

101 102 103 104 105

Lines of Code (LOC)

0

100

200

300

Pr

oj
ec

ts

(c) lines of code (Python)

100 101 102 103 104

Developer-Written Test Cases

0

100

200

300

400

Pr

oj
ec

ts

(d) dev.-written Python tests / proj.

Figure 2: Dataset statistics

that the generated tests achieved and compare it with the coverage

reported by previous studies applying these tools.

3.4.1 Java. On average (mean) the Java projects possess 4 948 lines

of source code (median 1 395). Only 1.5 % of all projects contain less

than 100 SLOC, whereas the largest project (cosmos-sdk-java1)

has more than 500 000 lines of Java code. The total number of SLOC

is around 9.4 million for all projects combined. Fig. 2a shows the

histogram of the SLOC distribution for the Java projects. Fig. 2b

shows the number of developer-written test cases per Java project.

Multiple parametrizations of the same test case are treated as separ-

ate test cases, following a previous study [32]. In total, the projects

possess 163 305 developer-written tests and each project contains

between 1 and 6 315 test cases. The median number of tests per

project is 18, and the mean is 85.9. As these figures about SLOC

and test cases show, we have indeed derived a large and diverse

sample of Java projects. Both EvoSuiteFSOn and EvoSuiteFSOff gen-

erated test suites with high branch- (over 81 % mean) and line- (over

84 % mean) coverage (Fig. 3). This is similar to the reported code

coverage of previous studies on EvoSuite [27, 28].

3.4.2 Python. Fig. 2c depicts the size of the 4 454 Python projects in

terms of SLOC. The average (mean) project has 1 755 SLOC (median

549.5). The largest project (kuber2) has more than 500 000 lines of

source code and only 5.2 % of projects contain less than 100 SLOC.

Combined, the projects feature 7.8 million lines of Python code.

Fig. 2d shows the size of the Python projects in terms of the number

of developer-written tests they contain. Like for the Java projects,

the mean number of test cases per project (68.2) is substantially

greater than the median (14), which is caused by a small number

of very large projects. In total, the Python projects contain 303 711

developer-written test cases. After inspecting the projects both

1https://github.com/cloverzrg/cosmos-sdk-java
2https://github.com/sernst/kuber

EvoSuiteFsOn EvoSuiteFsOff Pynguin
0.0

0.2

0.4

0.6

0.8

1.0

Br
an

ch
Co

ve
ra
ge

mean

Figure 3: Branch coverage of generated tests

in terms of number of SLOC and their number of test cases, we

find no obvious bias towards overly small or large projects and

conclude that we have derived a large and diverse sample of Python

projects. The Python tests generated by Pynguin yielded a mean

branch coverage of 66.0 % (Fig. 3) with a standard deviation of 31.7.

This performance is very similar to the one reached by Lukasczyk

et al. [43], the creators of Pynguin, who achieved a mean branch

coverage of 71.6 % with a standard deviation of 30.5.

3.4.3 RQ1 (Prevalence). To study the prevalence of flakiness in gen-

erated tests, we compare the number of flaky tests that were created

by the test generation toolsÐwithout using flakiness suppressionÐ

to the number of flaky tests found in the developer-written tests

of the respective language. We regard a test as flaky if it yielded at

least one passed and one failed or errored outcome [17, 32]. Tests

that switch between failing and erroring verdicts are therefore not

considered as flaky, since both lead to a build failure and the test

therefore does not contribute to the typical developer experience

caused by flakiness (sporadically failing builds). Furthermore, we

look at the ratio between order-dependent flaky tests (which only

show flaky behavior when run in random orders) and non-order-

dependent flaky tests (which also show flaky behavior when run in

the same order). Lastly, we also compare the projects containing at

least one developer-written or generated flaky test to investigate if

generated and developer-written flakiness tends to appear in the

same projects.

3.4.4 RQ2 (Flakiness Suppression). To assess the effectiveness of

EvoSuite’s flakiness suppression, we compare the number of flaky

tests generated by EvoSuiteFSOn to those generated by EvoSuiteFSOff ,

and to developer-written tests. For each Java project and each of

the three test types, we compute the ratio of flaky to non-flaky

tests and use a Wilcoxon signed-rank test [67]Ðwhich is a com-

monly used, non-parametric paired difference testÐto check for

statistically relevant differences. We refrain from using a parametric

test, as we found our data to be not normally distributed according

to a Shapiro-Wilk test [62]. Since Pynguin does not offer any op-

tional flakiness suppression mechanisms, we limit our comparison

to EvoSuite.

3.5 Root Cause Analysis

In our last research question, we investigate the similarity of devel-

oper-written and generated flaky tests regarding their root causes,

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser

which is seen as a core property of flakiness [44, 51]. Like other

studies [32, 44], we categorize the flaky tests’ root causes by labeling

them manually along established categories. Namely, we use the

amalgamation of root causes collected by Parry et al. in 2021 [51] as

our initial set of pre-defined categories (items 1. to 14. in Section 2.1).

Since we can automatically detect order-dependency (OD) through

test executions in random orders, we only consider non-order-

dependent (NOD) flaky tests for this step.

3.5.1 Sampling. As we found a total of 1 740 NOD flaky tests, we

have to take a representative sample to keep the labeling feasible.

To avoid creating a bias towards projects with only a few flaky tests

(e.g., by randomly selecting projects), or tests from only a few large

projects (e.g., by randomly selecting flaky tests), we combine two

sampling strategies: First, we randomly select one NOD flaky test

from each affected project, regardless of the test type (generated

or developer-written), resulting in the breadth sample. Second, we

randomly choose 21 Java and 9 Python projects and sample all their

flaky tests (depth sample). These projects are evenly distributed re-

garding the typeÐor combinationÐof flaky tests they contain (Java

developer-written, EvoSuiteFSOn, EvoSuiteFSOff , Python developer-

written, Pynguin). Using this technique, we sampled a total of 481

flaky tests (340 Java, 141 Python): 329 from the breadth sample, 122

from the depth sample, and 30 selected by both strategies.

3.5.2 Labeling. The manual labeling itself is carried out by four

of the authors using the project code, the test code, as well as the

test failures (stack trace and error message). To create a common

understanding about what constitutes a certain root cause and to

assess if existing root cause categories are applicable to generated

flaky tests, we precede the actual labeling with an alignment step:

We randomly choose 50 flaky tests from our sample, which are then

classified by all four researchers. According to Fleiss’ Kappa [23],

the four labeling authors have reached an inter-rater reliability of

0.41, which is considered ‘good’ according to Regier et al. [55]. For

cases in which the authors disagree, discussions are held, which

have resulted in the following adjustments to the set of root causes:

• Broaden the category unordered collection to also include

unspecified behavior in general.

• Broaden the category resource leak to also include resource

unavailability.

• Add category performance, which describes tests that fail

intermittently due to varying durations of (sequential) pro-

cesses (example: Fig. 5).

• Add category non-idempotent-outcome (NIO), which covers

self-polluting and self-state-setting tests. This was described

by Wei et al. [66] shortly after the literature survey on which

we based our root cause categories [51].

After finishing the alignment, the remaining flaky tests in the

sample are labeled each by one of the four researchers.

3.5.3 RQ3 (Root Causes). We use the labeled root causes to make

threemain comparisons: First, the root causeswe found in developer-

written tests against those found by previous studies. Second, the

root causes of flaky tests generated without flakiness suppression

(EvoSuiteFSOff , Pynguin) against those of developer-written tests

of the respective language. Third, the root causes of tests gen-

erated with and without flakiness suppression (EvoSuiteFSOff vs.

EvoSuiteFSOn).

3.6 Threats to Validity

3.6.1 External Validity. To sample projects for our study, we relied

on the Maven Central Repository [4] and PyPI [10], which are the

largest official software repositories of Java and Python. However,

we had to make certain assumptions to keep our setup feasible: For

Java, we only considered projects using Maven and we excluded

projects using JUnit 3 due to compatibility issues with more recent

versions. While these design decisions might potentially influence

our results, we tried to mitigate this threat by assuming the usage of

the predominantly used build automation and testing technologies

(Maven and JUnit), which also other studies on test flakiness rely

on [13, 38, 63]. For Python, we used an existing dataset of Python

projects [32], which was also used by other researchers to evalu-

ate flakiness detection and debugging techniques [12, 30, 57, 66].

Nevertheless, we inherit any potentially existing bias in this dataset.

3.6.2 Construct Validity. To detect test flakiness, we executed each

test 100 times in a fixed order and 100 times in shuffled orders. How-

ever, some flaky tests have very low failure rates, which might have

caused us to underestimate the number of flaky tests in our dataset.

Another potential threat to the construct validity of our study is

the search budget used for test generation. We gave two minutes

per Java class for EvoSuite and ten minutes per Python module for

Pynguin. However, allowing more time might have yielded differ-

ent results. Choosing a meaningful search budget is a non-trivial

issue, especially when setting up experiments that include thou-

sands of projects with various different sizes [15]. To achieve a

balance between feasibility, resembling a practical use case, and

giving sufficient resources to the tools, we chose our search budgets

according to the most commonly used configurations in tool com-

petitions [58, 65] or evaluations by the maintainer [43]. We also

measured the coverage of the generated tests and found that they

yielded a high branch coverage, which indicates that our search

budgets were sufficient.

3.6.3 Internal Validity. As we found almost 1 800 NOD flaky tests,

we had to take a sample before manually labeling their root cause,

which might pose a potential threat to the validity of our findings.

To avoid favoring overly large or small projects, we applied a two-

fold sampling strategy (see Section 3.5.1). Each flaky test was then

manually labeled by one of four authors. This might pose a potential

threat, as the authors have different backgrounds and experiences

when it comes to root-causing flaky tests. To mitigate this issue, we

created an alignment sample of 50 flaky tests that were labeled by all

four researchers, and we held discussions about cases in which we

disagreed. In our alignment sample, we reached a ‘good’ inter-rater

reliability, meaning that we were aligned in most of the verdicts

given even before starting the alignment. Furthermore, the root

causes we found for developer-written flaky tests match previous

studies [21, 44], which increases our confidence in the validity of

our other findings.

Do Automatic Test Generation Tools Generate Flaky Tests? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Number of flaky tests found in developer-written and automatically generated tests

Language Test Type NOD OD Flaky (NOD + OD) All

Tests # Projects # Tests # Projects # Tests # Projects # Tests # Projects

Java
Developer-Written 698 (0.43%) 105 (5.52%) 830 (0.51%) 104 (5.46%) 1 528 (0.94%) 161 (8.46%) 163 305

1 902EvoSuiteFSOn 175 (0.06%) 43 (2.26%) 1 110 (0.35%) 109 (5.73%) 1 285 (0.41%) 133 (6.99%) 310 193
EvoSuiteFSOff 597 (0.22%) 111 (5.84%) 3 235 (1.23%) 163 (8.57%) 3 832 (1.45%) 228 (11.9%) 264 000

Python
Developer-Written 182 (0.06%) 88 (1.98%) 1 728 (0.57%) 270 (6.06%) 1 910 (0.63%) 341 (7.65%) 303 711

4 454
Pynguin 88 (0.06%) 49 (1.10%) 925 (0.67%) 183 (4.11%) 1 013 (0.73%) 224 (5.03%) 138 627

4 RESULTS

4.1 RQ1: Prevalence

Table 3 depicts the number of flaky tests we discovered for each

language and configuration. Overall we executed almost 1.2 million

tests and discovered 9 568 flaky tests, roughly two-thirds of them

generated ones. For developer-written tests, we found roughly 0.5 %

to 1% of all tests to be flaky, which is similar to previous studies

on flakiness in Java [38] and Python [32]. Like them, we also found

the ratio between OD and NOD flaky tests to be almost even for

Java projects, whereas it strongly tilts towards order-dependency

for Python projects.

Looking at the flaky tests generated by EvoSuiteFSOff (3 832) and

Pynguin (1 013), we see that for both languages/tools, flakiness is

more prevalent in generated than in developer-written tests, relative

to the total number of generated/developer-written tests. In the

case of Java, we even see an increase of 54 % (0.94 % to 1.45 %). When

distinguishing between order- and non-order-dependent flakiness,

we see a strong tendency towards OD flaky tests (91 % of flaky

Pynguin tests are OD, 84 % of flaky EvoSuiteFSOff tests are OD).

To check if generated flaky tests tend to appear more frequently

in projects that already contain developer-written flaky tests, we

looked at the sets of projects containing at least one flaky test. We

found 224 Python projects containing generated flaky tests and

341 projects having developer-written ones. For Java, EvoSuiteFSOff
produced flaky tests for 228 projects, while 161 projects contained

developer-written flaky tests. Fig. 4 depicts the overlap between

these sets, which is notably small: Only 17.1% of Java and 19.6%

of Python projects that contain generated flaky tests also contain

developer-written flaky tests.

Summary (RQ1: Prevalence) For both Java and Python projects,

flakiness is at least as common in generated tests as in developer-

written tests. However, it does not appear in the same projects.

Similar to developer-written tests in Python (but unlike Java tests),

the ratio between order-dependent and non-order-dependent

flaky tests is leaning strongly towards order-dependency for gen-

erated tests.

4.2 RQ2: Flakiness Suppression

The second row in Table 3 (Java, EvoSuiteFSOn) depicts the amount

of flakiness we found among tests generated while using flaki-

ness suppression. We observe a significant (𝑝-value of Wilcoxon

test < 0.001) reduction in flakiness of 71.7% (1.45% to 0.41%)

compared to EvoSuiteFSOff and 56.4 % compared to the developer-

written tests. Among the remaining flaky tests, order-dependency

116 686

144

25 45
14

Dev-Written
(1528 tests)

EvosuiteFsOn
(1285 tests)

EvosuiteFsOff
(3832 tests)

(a) Java

297 18044

Dev-written
(1910 tests)

Generated
(1013 tests)

(b) Python

Figure 4: Projects containing flaky tests

is again far more common than non-order-dependent causes (86.4 %

of EvoSuiteFSOn flaky tests are OD). Looking at projects contain-

ing flaky tests (Fig. 4a), we see only a minor overlap between

EvoSuiteFSOn (133 projects) and the developer-written tests (161

projects), as we found for EvoSuiteFSOff (228 projects). When com-

paring the two EvoSuite configurations, we are surprised to also

find only a moderate overlap. To investigate this observation more

deeply, we look at the flaky tests’ root causes in Section 4.3.

Summary (RQ2: Flakiness Suppression) EvoSuite’s flakiness

suppression mechanism is effective: It reduced the number of

flaky tests by 71.7 %, which is considerably lower than the relative

number of developer-written flaky tests (56.4 % fewer flaky tests).

The ratio of NOD and OD flaky tests remains strongly leaning

towards OD.

4.3 RQ3: Root Causes

Table 4 depicts the distribution of flakiness root causes that we

identified in our sample via manual labeling (Section 3.5).

For Java projects, we found asynchronous waiting to be a major

cause (21.2 %) for flakiness in developer-written tests, which corrob-

orates previous studies [21, 44]. However, we also found many flaky

tests to be caused by brittle assumptions about the Performance (i.e.,

duration) of sequential processes (19.4 %), a root cause that has not

previously been described. Fig. 5 shows an example of such a test.

The assertion on line 113 is flaky as it assumes that the execution

time (line 106) is within a certain range, which is not guaranteed.

For Python projects, the main causes for developer-written flaki-

ness are networking (30.1 %) and randomness (17.2 %), which was

also found by the study from which we sampled our projects [32].

3https://github.com/krka/mockachino/tree/9bcdda05

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser

Table 4: Root causes for NOD flaky tests. Cells: number of tests (number of projects)

Language Java Python
Test Type Dev.-Written EvoSuiteFSOn EvoSuiteFSOff Dev.-Written Pynguin
Total 170 (106) 57 (42) 113 (102) 93 (88) 48 (47)

Async Wait 36 (23) 3 (2) 5 (4) 11 (7) 1 (1)
Concurrency 15 (14) 0 (0) 5 (3) 3 (3) 0 (0)
Floating Point 0 (0) 0 (0) 0 (0) 2 (2) 0 (0)
I/O 9 (9) 0 (0) 0 (0) 6 (6) 3 (3)
Network 36 (9) 1 (1) 13 (13) 28 (27) 6 (6)
NIO 0 (0) 0 (0) 0 (0) 3 (3) 5 (5)
OTHER 0 (0) 34 (22) 0 (0) 0 (0) 3 (3)
Performance 33 (11) 0 (0) 7 (7) 4 (4) 4 (4)
Randomness 13 (12) 2 (2) 23 (22) 16 (16) 11 (11)
Resource Leak / Resource Unavailability 7 (7) 2 (2) 7 (6) 0 (0) 0 (0)
Test Case Timeout 2 (2) 4 (4) 23 (18) 0 (0) 0 (0)
Time 6 (6) 2 (1) 12 (12) 4 (4) 0 (0)
Too Restrictive Range 2 (2) 0 (0) 0 (0) 7 (7) 0 (0)
UNKNOWN 8 (8) 2 (2) 4 (4) 7 (7) 6 (5)
Unordered Collection / Unspecified Behavior 3 (3) 7 (6) 14 (13) 2 (2) 9 (9)

73 @Test

74 public void testTimeoutFailExactly () {

75 final List mock = Mockachino.mock(ArrayList.class);

76 mock.size();

77 mock.size();

78 runTimeoutTest(Mockachino.verifyExactly (2) ,200,220,200,500,

mock ,() -> mock.size());

79 }

// ... omitted ...

98 private void runTimeoutTest(VerifyRangeStart type ,int min ,int

max ,int waitTme ,int timeout ,List mock ,Runnable runnable) {

99

100 long t0 = System.currentTimeMillis ();

101 Executors.newSingleThreadScheduledExecutor ().schedule(

runnable ,waitTime ,TimeUnit.MILLISECONDS);

102 long t1 = System.currentTimeMillis ();

103 long margin = t1 - t0;

// ... omitted ...

106 type.withTimeout(timeout).on(mock).size();

// ... omitted ...

111 long t2 = System.currentTimeMillis ();

112 long time = t2 - t1;

113 assertTrue(time + " expected at most " + max , time <= max +

margin);

114 }

<error message="273 expected at most 220" type="junit.framework

.AssertionFailedError">

Figure 5: Developer-written flaky test with root cause Performance

(project krka-mockachino3)

For flaky tests that were generated without using flakiness sup-

pression (EvoSuiteFSOff and Pynguin), their root causes fit our pre-

defined categories (only few OTHER cases), however, the distribu-

tion differs: Generated flaky tests tend to be more commonly caused

by Randomness (∼20%) and Unspecified Behavior (EvoSuiteFSOff :

12.4 %, Pynguin: 18.7 %). Fig. 6 is an example of a test generated by

EvoSuiteFSOff , which is flaky due to randomness. The test makes an

assertion against the value of a random variable that it sampled from

a Gaussian distribution using a Box-Muller transform. Fig. 7 shows

an example of a randomness-related flaky test that was generated

by Pynguin for the usolitaire project, which is a terminal solitaire

application. The game_0 object shuffles the deck of cards randomly

which causes the move_tableau_pile(int_0, bool_0) method

to arbitrarily pass or fail raising an InvalidMove error. Fig. 8 shows

1 @Test(timeout = 4000)

2 public void test00 () throws Throwable {

3 RandomJava randomJava0 = new RandomJava ();

4 randomJava0.gaussian ((double) 1057);

5 double double0 = randomJava0.gaussian ();

6 assertEquals (0.8241080392646101 , double0 , 0.01);

7 }

Expected : <0.8241080392646101 > but was : < -0.06836772391958745 >

Figure 6: Randomness-related flaky test generated by EvoSuiteFSOff
(project mitchelltech5-jmatharray)

another test that was generated by Pynguin, which is flaky due to

the non-deterministic order within a frozensets in Python.

For EvoSuiteFSOff we also found Test Case Timeouts happen-

ing frequently (20.4%), which are caused by the 4000ms timeout

EvoSuite sets for each test it generates. Python tests generated by

Pynguin, on the other hand, do not exhibit such issues, as it does

not set a test case timeout. One type of flakiness that was generated

by Pynguin, but not by EvoSuite, is non-idempotent-outcome (NIO)

(10.4 %). Fig. 9 shows a NIO test produced by Pynguin from project

bl (BlackEarth core library). The statement in line 7 tries to create a

file, which succeeds for the first run in each iteration (i.e. container),

but raises a FileExistsError for every further run. During the

test generation, the config_0.write(str_0) operation was most

likely executed multiple times, which caused Pynguin to assume

that the exception is meant to be thrown, so it created an assertion

based on it (line 6). The test therefore has an inverted failure pat-

tern, where its first execution fails and the following executions

pass. EvoSuiteFSOn doesn’t experience such issues, since it uses a

virtual file system, however, we also did not find such cases for

EvoSuiteFSOff , where we deactivated this mechanism.

When looking at tests generated while using flakiness suppres-

sion (EvoSuiteFSOn), the picture changes drastically: On one hand,

the flakiness suppression vastly reduced the amount of flakiness

caused by any known root cause. On the other hand, we found

that the majority (59.6 %) of the remaining flaky tests do not fit any

known root cause category (OTHER). We inspected these cases in

greater detail and found them to be attributable to two causes: Veri-

fying Expected Exceptions (18/34) and StackOverflowErrors (16/34).

Do Automatic Test Generation Tools Generate Flaky Tests? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 def test_case_33 ():

2 int_0 = 0

3 game_0 = module_0.Game()

4 # omitted

5 bool_0 = True

6 with pytest.raises(module_0.InvalidMove):

7 game_0.move_tableau_pile(bool_0 , int_0)

8 var_0 = game_0.move_tableau_pile(int_0 , bool_0)

E usolitaire.game.InvalidMove

Figure 7: Randomness-related flaky test generated by Pynguin

(project usolitaire)

1 def test_case_54 ():

2 str_0 = ''

3 query_0 = module_0.where(str_0)

4 # omitted

5 query_instance_0 = query_0.all(str_0)

6 # omitted

7 query_instance_1 = query_0.all(query_instance_0)

8 bool_1 = query_instance_1.__call__(dict_0)

9 # omitted

10 query_instance_2 = query_instance_1.__or__(query_instance_0)

11 var_0 = query_instance_2.__repr__ ()

12 assert var_0 == "QueryImpl('or', frozenset ({('all ', ('',),

QueryImpl('all ', ('',), '')), ('all ', ('',), '')}))"

Figure 8: Unordered collection flakiness generated by Pynguin

(project TinyDB)

1 def test_case_9 ():

2 none_type_0 = None

3 str_0 = '/'

4 config_0 = module_0.Config(none_type_0)

5 # omitted

6 with pytest.raises(FileExistsError):

7 config_0.write(str_0)

E IsADirectoryError: [Errno 21] Is a directory: '/'

Figure 9: Non-idempotent-outcome flakiness generated by Pynguin

(project bl)

Verifying Expected Exceptions describes issues happening when

a test case expects a certain exception to be thrown and makes

assertions about where (i.e., by which class) the exception was

thrown. In other words, the test case asserts that the top of the

stack trace of an expected exception has a certain value. Such tests

can be flaky since a stack trace can change intermittently, even

for the same exception. This is caused by optimizations, namely

the just-in-time (JIT) compilation, that might decide at any point

during the program execution to compile a frequently executed

area in the class to native code, which causes it to no longer ap-

pear in the stack trace [34, 50]. Fig. 10a shows an example of

such a case: The test is expecting an IndexOutOfBoundsException

thrown by java.nio.Buffer. Sometimes, however, this excep-

tion is instead thrown by java.nio.HeapByteBuffer. This test

is flaky due to the default way that the JVM decides to optimize

the compilation, where the JIT compilation will compile certain

parts of the java.nio.Buffer class to native code, causing it to no

longer appear on top of the stack trace (as shown in Fig. 10b). Such

optimization-based flakiness does not happen in tests generated

by EvoSuiteFSOff as we updated the ‘No Runtime Dependency’

parameter to true, which prevents EvoSuite from generating tests

1 @Test(timeout = 4000)

2 public void test17 () throws Throwable {

3 Name name0 = new Name();

4 int[] intArray0 = new int [1];

5 intArray0 [0] = (-3152);

6 Blob blob0 = new Blob(intArray0);

7 SafeBag safeBag0 = null;

8 try {

9 safeBag0 = new SafeBag(name0 , blob0 , blob0);

10 fail("Expecting exception:IndexOutOfBoundsException");

11 } catch(IndexOutOfBoundsException e) {

12 verifyException("java.nio.Buffer", e);

13 }

14 }

Exception was not thrown in java.nio.Buffer but in java.base/

java.nio.HeapByteBuffer.get(HeapByteBuffer.java :169): java

.lang.IndexOutOfBoundsException: 1

(a) Flaky test generated by EvoSuiteFSOn

Exception in thread "main" java.

lang.IndexOutOfBoundsException

at java.nio.Buffer.checkIndex

(Buffer.java:743)

at java.nio.HeapByteBuffer.get

(HeapByteBuffer.java:169)

...

at SafeBag_ESTest.test17

(SafeBag_ESTest.java:330)

...

Before JIT compilation

Exception in thread "main" java.

lang.IndexOutOfBoundsException

at java.nio.HeapByteBuffer.get

(HeapByteBuffer.java:169)

...

at SafeBag_ESTest.test17

(SafeBag_ESTest.java:330)

...

After JIT compilation

(b) Stack traces

Figure 10: Flakiness due to Verifying Expected Exceptions (project

named-data-jndn)

that verify thrown exceptions. Although keeping it false (default)

decreases the number of flaky tests of other causes, it also generates

new flaky tests that try to verify the class that throws an exception.

Secondly, EvoSuiteFSOn generates flaky tests that produce inter-

mittent StackOverflowErrors. This was also discovered by a previ-

ous study [22]. The errors occur consistently when the flakiness

suppression is turned off. EvoSuiteFSOn includes an internal re-

source thresholdÐlimiting the stack sizeÐto prevent a test case

from a StackOverflowError, however, the resource checking is non-

deterministic and some errors manage to slip through. Such issues

do not occur in EvoSuiteFSOff because we have disabled the gen-

eration of test scaffolding files (first row Table 1), which include

a check to prevent infinite loops in recursive methods. However,

not generating scaffolding files for test classes makes the generated

tests more susceptible to traditional causes of flaky tests [24].

Summary (RQ3: Root Causes) Generated tests are flaky for

the same reasons as developer-written ones, however, the dis-

tribution among those reasons differs: While developer-written

flaky tests are often caused by concurrency and networking oper-

ations, generated flaky tests tend to be the result of randomness

and unspecified behavior. When using flakiness suppression, the

picture changes vastly, as the majority of remaining flaky tests

do not fit any previously described category of flakiness. Instead,

they are caused by runtime optimizations and EvoSuite-internal

resource threshold. Notably, both only take effect when certain

flakiness suppression mechanisms are activated!

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser

5 RECOMMENDATIONS

5.1 Maintainers of Test Generation Tools

We found EvoSuite’s flakiness suppression mechanisms to be very

effective and can recommend them to other tools, such as Pynguin,

whose rate of flaky tests is currently still higher than the rate of

flaky tests in developer-written tests. Nevertheless, EvoSuite still

produces flaky tests, which are mainly caused by (1) Verifying Ex-

pected Exceptions related to the ‘No Runtime Dependency’ option,

and (2) StackOverflowErrors caused by scaffolding. Most notably,

both mechanisms are meantÐand also accomplishÐto prevent tra-

ditional causes of flakiness. We therefore recommend revisiting

EvoSuite’s implementation of the ‘No Runtime Dependency’ op-

tion and the scaffolding mechanisms to eradicate the flakiness these

tend to introduce. Furthermore, we recommend studying and ad-

dressing order-dependency in generated tests, as we found high

numbers of OD flaky tests for both EvoSuite and Pynguin.

Our dataset [11] should provide the maintainers of both EvoSuite

and Pynguin with a large number of real-world examples that

can help to reproduce flakiness in generated tests and serve as an

evaluation sample for improved versions.

5.2 Developers Using Test Generation

For developers using EvoSuite, we can highly recommend its flak-

iness suppression options, which we found to be very effective.

The remaining flaky tests are mostly caused by Verifying Expected

Exceptions and StackOverflowErrors. The former can be mitigated by

disabling the tiered compilation (-XX:-TieredCompilation) flag

when executing the tests. This will prevent the JVM from compil-

ing frequently executed parts of the bytecode into native code (JIT

compilation), which however will adversely affect the performance

and execution time of other tests. The flaky StackOverflowErrors can

be mitigated by removing the NonFunctionalRequirementRule in

the test scaffolding file, which however causes the test to fail consist-

ently. For developers using Pynguin, we recommend setting seeds

for random number generators. This should eliminate randomness-

related flakiness, which we found to be the most common individual

root cause for flaky Pynguin tests. However, there is known criti-

cism about using seeding to avoid flakiness [20]. Developers should

also consider order-dependencies between generated tests as a pos-

sibility. In our evaluation, about 4 % to 6 % of projects were affected

by generated order-dependent flaky tests.

5.3 Researchers Studying Flaky Tests

Since generating tests automatically can be done quickly and ef-

ficiently, there is a potential for using tools such as EvoSuite and

Pynguin to help in the research on flaky tests. For example, test

generation tools could be used to create training data for machine

learning models or to systematically expose non-determinisms in

individual target projects. While we found generated flaky tests

to have similar root causes compared to developer-written flaky

tests as long as flakiness-suppression mechanisms are turned off

(Table 1), we also found several differences: First, the root cause

distribution differs, as flakiness in generated tests is less likely the

cause of concurrency or networking issues, and more often the

result of randomness and unspecified behavior (Table 4). Second,

we found that projects containing developer-written flaky tests are

not particularly likely to also produce generated flaky tests and

vice versa (Fig. 4).

6 RELATEDWORK

Shamshiri et al. [60] studied the effectiveness of automatically gen-

erated test suites in Java projects. They applied three automatic test

generation tools, Randoop, EvoSuite, and AgitarOne, to a dataset

of over 300 faults across five open-source projects, assessing how

many bugs the automatically generated tests could detect. Through

this process, they also identified the number of flaky tests that

were generated by each of the three tools. Of the tests generated

by Randoop, which uses feedback-directed random test generation,

an average of 21% exhibited non-determinism in their outcomes.

EvoSuite produced flaky tests at an average rate of 3%. Only 1%

of the tests generated by the commercial, proprietary tool Agit-

arOne were flaky. While our study and theirs both demonstrate

that automatic test generation tools are capable of producing flaky

tests, there major are differences. The main objective of our study

was to investigate the prevalence and root causes of flaky tests

generated by automatic test generation tools. However, the main

objective of the study performed by Shamshiri et al. was to assess

the bug-finding capability of automatically generated tests. As such,

we analyzed the prevalence of generated flaky tests in much more

detail (see Section 4.1) and went on to categorize their root causes

(see Section 4.3). Furthermore, our subject set of 1 902 Java projects

and 4 454 Python projects is significantly larger than the five Java

projects used by Shamshiri et al. in their empirical evaluation.

Paydar et al. [53] examined the prevalence of flaky tests, and

other types of problematic tests, generated specifically by Randoop.

They took between 11 and 20 versions of five open-source Java

projects and used Randoop to generate regression test suites, which

were the main objects of analysis. Overall, they found that 5% of the

automatically generated test classes were flaky, and on average, 54%

of the test cases within each of these were flaky. As before, since

Paydar et al. were not solely investigating automatically generated

flaky tests, they did not examine them to the same level of detail

as in our study (for example, they did not consider root causes).

Furthermore, while they are all automatic test generation tools,

Randoop is significantly different from EvoSuite and Pynguin in

that Randoop is based entirely on random search.

Li et al. [40] applied automatic test generation to the repair of

order-dependent flaky tests. Their work builds upon the iFixFlakies

tool introduced by Shi et al. [63], which uses the statements of

existing łcleanerž tests to remove the state-pollution left behind

by łpolluterž tests that induce order-dependency in the łvictimž

tests that the tool aims to repair. A weakness of iFixFlakies is that

if no such cleaner test exists in the test suite, the tool will be unable

to repair the victim. The technique introduced by Li et al. aims to

address this weakness by applying automatic test generation to

generate cleaners such that the victim may be repaired. Beyond the

intersection of flaky tests and automatic test generation, there are

no significant similarities between their study and ours.

There have been several previous studies, in which the authors

have manually classified the root causes of flaky tests. Luo et al. [44]

categorized the causes of the flaky tests repaired by developers in

Do Automatic Test Generation Tools Generate Flaky Tests? ICSE ’24, April 14–20, 2024, Lisbon, Portugal

201 commits across 51 (mostly Java) projects of the Apache Software

Foundation. Vahabzadeh et al. [64] categorized the causes of 443

bugs in test code (as opposed to in code-under-test), which they

mined from the bug repository of the Apache Software Foundation.

They found 51% of these to be flaky tests, which they went on

to subcategorize based on their root cause. Eck at al. [21] asked

Mozilla developers to categorize the causes of 200 flaky tests they

had previously repaired. Lam et al. [37] categorized the type of

flakiness repaired in 134 pull requests regarding flaky tests in six

subject projects that were internal to the Microsoft Corporation. In

spite of much previous work in this area, ours is the first study to

categorize the root causes of automatically generated flaky tests.

Flakiness is also an issue in fuzzing, a discipline closely related to

automatic test generation: Nourry et al. [49] surveyed 106 fuzzing

practitioners and found that developers are often struggling to

reproduce build failures or bugs detected by fuzzing. Ding et al. [18]

analyzed 23 907 bugs discovered by OSS-Fuzz [59], of which 13%

were flaky. Like our study, they found that timeouts and resource

thresholds set by the tool itself (25s and 2.5 GB RAM for OSS-

Fuzz [6]) are major causes of flakiness.

7 CONCLUSIONS

Flaky tests are a common and troublesome phenomenon in software

testing. Through this study, we were able to show that flakiness

does not only affect developer-written tests, but also automatically

generated tests: We sampled 6 356 open-source Java and Python

projects and generated tests for them using two state-of-the-art

test generation frameworks (EvoSuite and Pynguin). After execut-

ing the resulting test suites repeatedly, we found flakiness to be

even more common among generated tests than among developer-

written ones. The root causes of this flakiness are similar, however,

its distribution differs: Developer-written flaky tests tend to be

caused by concurrency and networking operations, while gener-

ated flaky tests are more frequently the result of randomness and

unspecified behavior. For both developer-written and generated

flaky tests, order-dependency is a frequent cause, which could be

a possible direction for future work. While flakiness suppression

mechanisms are effective in reducing the flakiness rate among gen-

erated tests, they also cause other, previously unseen, forms of

flakiness. We hope that our work inspires researchers working on

test flakiness and that our insights help maintainers and users of

test-generation tools to avoid flakiness in generated tests. We make

all data available [11].

ACKNOWLEDGEMENTS

We thank Stephan Lukasczyk, the creator and maintainer of Pyn-

guin, for his support and advice. Phil McMinn and Owain Parry

are supported by the EPSRC grant "Test FLARE" (EP/X024539/1)

and a Meta Testing and Verification award. Owain Parry received

additional support from the EPSRC Doctoral Training Partnership

with the University of Sheffield (EP/R513313/1). Gordon Fraser is

supported by the DFG project "STUNT" (FR2955/4-1) and by the

BMWK project "ANUKI" (50RM2100B).

REFERENCES
[1] [n. d.]. Class Calendar. https://docs.oracle.com/javase/8/docs/api/java/util/

Calendar.html

[2] [n. d.]. Class Random. https://docs.oracle.com/javase/8/docs/api/java/util/
Random.html

[3] [n. d.]. JUnit 4. https://junit.org/junit4/
[4] [n. d.]. Maven Central Repository. https://repo.maven.apache.org/maven2/
[5] [n. d.]. Maven Surefire plugin. https://maven.apache.org/surefire/maven-

surefire-plugin/
[6] [n. d.]. OSS-Fuzz: How do you handle timeouts and OOMs? https://

google.github.io/oss-fuzz/faq/#how-do-you-handle-timeouts-and-ooms
[7] [n. d.]. Pynguin documentation: Generating Assertions. https://

pynguin.readthedocs.io/en/latest/user/assertions.html#simple
[8] [n. d.]. pytest. https://docs.pytest.org/en/7.2.x/
[9] [n. d.]. pytest-random-order: a pytest plugin that randomises the order of tests.

https://pypi.org/project/pytest-random-order/
[10] [n. d.]. Python Package Index (PyPI). https://pypi.org/
[11] 2023. Do Automatic Test Generation Tools Generate Flaky Tests? [Dataset].

https://doi.org/10.6084/m9.figshare.22344706
[12] Azeem Ahmad, Erik Norrestam Held, Ola Leifler, and Kristian Sandahl. 2022.

Identifying Randomness related Flaky Tests through Divergence and Execution
Tracing. In International Conference on Software Testing, Verification and Validation
Workshops (ICST-Workshops). 293ś300.

[13] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan
Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In Inter-
national Conference on Software Engineering (ICSE). 1572ś1584.

[14] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated Unit
Test Generation for Classes with Environment Dependencies. In International
Conference on Automated Software Engineering (ASE). 79ś89.

[15] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. 2014. Continuous test
generation: Enhancing continuous integration with automated test generation.
In International Conference on Automated Software Engineering (ASE). 55ś66.

[16] Albert Danial. 2021. cloc: v1.92. https://doi.org/10.5281/zenodo.5760077
[17] Jens Dietrich, Shawn Rasheed, and Amjed Tahir. 2022. Flaky Test Sanitisation via

On-the-Fly Assumption Inference for Tests with Network Dependencies. In IEEE
Working Conference on Source Code Analysis and Manipulation (SCAM). 264ś275.

[18] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs.
In International Conference on Mining Software Repositories (MSR). 131ś142.

[19] Thomas Durieux, Claire Le Goues, Michael Hilton, and Rui Abreu. 2020. Empirical
Study of Restarted and Flaky Builds on Travis CI. In International Conference on
Mining Software Repositories (MSR). 254ś264.

[20] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and
SasaMisailovic. 2020. Detecting Flaky Tests in Probabilistic andMachine Learning
Applications. In International Symposium on Software Testing and Analysis (ISSTA).
211ś224.

[21] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding Flaky Tests: The Developer’s Perspective. In Joint Meeting of the
European Software Engineering Conference and the Symposium on the Foundations
of Software Engineering (ESEC/FSE). 830ś840.

[22] Zhiyu Fan. 2019. A systematic evaluation of problematic tests generated by
EvoSuite. In International Conference on Software Engineering: Companion Pro-
ceedings (ICSE Companion). 165ś167.

[23] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin (1971), 378.

[24] Gordon Fraser. 2018. A tutorial on using and extending the EvoSuite search-based
test generator. In International Symposium on Search Based Software Engineer-
ing (SSBSE). 106ś130.

[25] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In ACM SIGSOFT Software Engineering Notes. 416ś
419.

[26] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite: On the challenges of test
case generation in the real world. In International Conference on Software Testing,
Verification and Validation (ICST). 362ś369.

[27] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using EvoSuite. ACM Transactions on Software Engineering
and Methodology (2014), 1ś42.

[28] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2015.
Does automated unit test generation really help software testers? a controlled
empirical study. ACM Transactions on Software Engineering and Methodology
(2015), 1ś49.

[29] Martin Gruber and Gordon Fraser. 2022. A Survey on How Test Flakiness Af-
fects Developers and What Support They Need To Address It. In International
Conference on Software Testing, Verification and Validation (ICST). 82ś92.

[30] Martin Gruber and Gordon Fraser. 2023. Debugging Flaky Tests using Spectrum-
based Fault Localization. In International Conference on Automation of Software
Test (AST@ICSE). 128ś139.

[31] Martin Gruber andGordon Fraser. 2023. FlaPy:Mining Flaky Python Tests at Scale.
In International Conference on Software Engineering: Companion Proceedings (ICSE
Companion). 127ś131.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser

[32] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An
Empirical Study of Flaky Tests in Python. In International Conference on Software
Testing, Verification and Validation (ICST). 148ś158.

[33] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering (2011), 649ś678.

[34] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodrig-
uez, Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot™ client
compiler for Java 6. ACM Transactions on Architecture and Code Optimization
(TACO) (2008), 1ś32.

[35] Wing Lam. 2020. International Dataset of Flaky Tests (IDoFT). http:
//mir.cs.illinois.edu/flakytests

[36] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root Causing Flaky Tests in a Large-Scale Industrial Setting. In
International Symposium on Software Testing and Analysis (ISSTA). 204ś215.

[37] Wing Lam, Kıvanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A
Study on the Lifecycle of Flaky Tests. In International Conference on Software
Engineering (ICSE). 1471ś1482.

[38] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A Framework for Detecting and Partially Classifying Flaky Tests. In International
Conference on Software Testing, Verification and Validation (ICST). 312ś322.

[39] Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.
2020. Dependent-Test-Aware Regression Testing Techniques. In International
Symposium on Software Testing and Analysis (ISSTA). 298ś311.

[40] Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repairing
Order-Dependent Flaky Tests via Test Generation. In International Conference on
Software Engineering (ICSE). 1881ś1892.

[41] Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated Unit Test
Generation for Python. In International Conference on Software Engineering: Com-
panion Proceedings (ICSE Companion). 168ś172.

[42] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2020. Automated Unit
Test Generation for Python. In International Symposium on Search Based Software
Engineering (SSBSE). 9ś24.

[43] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2023. An empirical study
of automated unit test generation for Python. Empirical Software Engineering
(2023), 36.

[44] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In International Symposium on Foundations of
Software Engineering (FSE). 643ś653.

[45] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In International Conference on Software Engineer-
ing (ICSE). 91ś100.

[46] Phil McMinn. 2004. Search-Based Software Test Data Generation: A Survey.
Journal of Software Testing, Verification and Reliability (2004), 105ś156.

[47] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In
International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). 233ś242.

[48] John Micco. 2016. Flaky Tests at Google and How We Mitigate Them. https:
//testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

[49] Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and
Yasutaka Kamei. 2023. The Human Side of Fuzzing: Challenges Faced by De-
velopers During Fuzzing Activities. ACM Transactions on Software Engineering
and Methodology (2023).

[50] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotSpot™
Server Compiler. In Java (TM) Virtual Machine Research and Technology Sym-
posium (JVM 01). 1ś12.

[51] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2022.
A Survey of Flaky Tests. IEEE Transactions on Software Engineering (2022), 17:1ś
17:74.

[52] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2022. Surveying the
Developer Experience of Flaky Tests. In International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). 253ś262.

[53] Samad Paydar and Aidin Azamnouri. 2019. An Experimental Study on Flakiness
and Fragility of Randoop Regression Test Suites. Lecture Notes in Computer
Science (2019), 111ś126.

[54] Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revisiting
and Enhancing IR-Based Test-Case Prioritization. In International Symposium on
Software Testing and Analysis (ISSTA). 324ś336.

[55] Darrel A Regier, William E Narrow, Diana E Clarke, Helena C Kraemer, S Janet
Kuramoto, Emily A Kuhl, and David J Kupfer. 2013. DSM-5 field trials in the
United States and Canada, Part II: test-retest reliability of selected categorical
diagnoses. American journal of psychiatry (2013), 59ś70.

[56] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in
search-based unit test generation. Journal of Software Testing, Verification and
Reliability (2016), 366ś401.

[57] Wing Lam Ruixin Wang, Yang Chen. 2022. iPFlakies: A Framework for Detecting
and Fixing Python Order-Dependent Flaky Tests. In International Conference on
Software Engineering: Companion Proceedings (ICSE Companion). 120ś124.

[58] Sebastian Schweikl, Gordon Fraser, and Andrea Arcuri. 2022. EvoSuite at the
SBST 2022 Tool Competition. In International Workshop on Search-Based Software
Testing (SBST@ICSE). 33ś34.

[59] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. USENIX Security Symposium (2017).

[60] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. In International Conference
on Automated Software Engineering (ASE). 201ś211.

[61] Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil Walkinshaw, and
Gordon Fraser. 2018. How do automatically generated unit tests influence soft-
ware maintenance?. In International Conference on Software Testing, Verification
and Validation (ICST). 250ś261.

[62] Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test
for normality (complete samples). Biometrika (1965), 591ś611.

[63] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A Framework for Automatically Fixing Order-Dependent Flaky Tests. In Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering (ESEC/FSE). 545ś555.

[64] Arash. Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An Empirical Study
of Bugs in Test Code. In International Conference on Software Maintenance and
Evolution (ICSME). 101ś110.

[65] Sebastian Vogl, Sebastian Schweikl, Gordon Fraser, Andrea Arcuri, Jose Campos,
and Annibale Panichella. 2021. EvoSuite at the SBST 2021 Tool Competition. In
International Workshop on Search-Based Software Testing (SBST@ICSE). 28ś29.

[66] Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam. 2022.
Preempting Flaky Tests via Non-Idempotent-Outcome Tests. In International
Conference on Software Engineering (ICSE). 1730ś1742.

[67] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin (1945), 80ś83.

[68] Zhe Yu, Fahmid Fahid, Tim Menzies, Gregg Rothermel, Kyle Patrick, and Snehit
Cherian. 2019. TERMINATOR: Better Automated UI Test Case Prioritization. In
Joint Meeting of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE). 883ś894.

	Abstract
	1 Introduction
	2 Background
	2.1 Flaky Tests
	2.2 Automatic Test Generation

	3 Methodology
	3.1 Project Sampling
	3.2 Test Generation
	3.3 Test Execution
	3.4 Test Outcome Analysis
	3.5 Root Cause Analysis
	3.6 Threats to Validity

	4 Results
	4.1 RQ1: Prevalence
	4.2 RQ2: Flakiness Suppression
	4.3 RQ3: Root Causes

	5 Recommendations
	5.1 Maintainers of Test Generation Tools
	5.2 Developers Using Test Generation
	5.3 Researchers Studying Flaky Tests

	6 Related work
	7 Conclusions
	References

