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Abstract 1 

Shakedown limit analysis is used to calculate the factor of safety of a structure subject to cyclic 2 

moving loading. It is a promising approach for railway slab track structural design because it can help 3 

identify the required layer thicknesses and material strength properties. However, the approach is 4 

based on an underlying assumption that the stress field in the train passage direction is invariant, 5 

which is violated for slab tracks in the vicinity of expansion joints. To address this issue, this paper 6 

proposes a novel shakedown limit analysis implementation that enables its use for slab tracks with 7 

joints. Firstly, a 3D finite element slab track model is developed to calculate the stress field profiles 8 

exerted on the subgrade surface. Analytical equations describing the shape of these profiles are then 9 

derived, considering locations along the slab track, including those near and far from expansion joints. 10 

Relationships are also derived to describe the stress field profile variation with depth, including both 11 

train-induced and geostatic stresses. Next, a lower-bound shakedown limit method is used to calculate 12 

the elastic shakedown limit based on the Mohr-Coulomb criterion using the computed stress fields. 13 

After the model is validated, shakedown limits are examined, considering various friction angles, 14 

cohesions, and Poisson's ratios. It is shown that the limit is reduced when the geostatic stresses in the 15 

ground are ignored. Furthermore, the shakedown limit is not always directly proportional to subsoil 16 

cohesion and increases with Poisson's ratio. 17 

Keywords: shakedown limit; railway slab track; track expansion joints; railway geostatic stress; 18 

subgrade surface stress 19 

  20 
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1. Introduction 21 

Slab tracks are extensively used in railway engineering as they offer the stable and level 22 

foundation necessary for a safe and comfortable journey (Wang et al. 2020). To evaluate the 23 

performance of a track substructure design, residual stresses resulting from cyclic moving loading 24 

caused by traffic must be taken into account. It is crucial to establish an acceptable load threshold that 25 

ensures a stable track substructure over a considerable number of load cycles. Failure to do so can 26 

lead to the gradual development of plastic strains in the track substructure, ultimately resulting in 27 

fatigue failure. 28 

Shakedown limit analysis is an approach for determining the maximum permissible load for 29 

structures exposed to cyclic moving loads (Connolly et al. 2020). It considers failure modes such as 30 

the accumulation of excessive plastic strains, fatigue, and instantaneous collapse. In contrast to 31 

numerical elastoplastic analysis, shakedown analysis is a more straightforward method that predicts 32 

the long-term behavior of structures subjected to a large number of load cycles by exploring the most 33 

critical point throughout the elastoplastic structure. Furthermore, it does not require time-stepping 34 

calculations, making it a computationally efficient approach. 35 

The concept of shakedown was first introduced by Bleich (1932), Melan (1938), and Koiter 36 

(1960) in their works exploring the long-term response of elastoplastic structures to cyclic or moving 37 

loads. When the load level is above the yield limit but below the elastic shakedown limit, the structure 38 

will initially undergo plastic deformation, adapt to the load over time, and ultimately exhibit elastic 39 

behavior. However, if the load level exceeds the elastic shakedown limit, the structure will experience 40 

plastic deformation at every load cycle, leading to excessive permanent deformation or alternate 41 

plasticity and eventual failure. 42 

Classical shakedown theory gave rise to the lower bound theorem (Boulbibane and Weichert 43 

1997; Sharp and Booker 1984; Raad, Weichert, and Najm 1988; Yu and Hossain 1998) and the upper 44 

bound theorem (Collins and Boulbibane 2000; Collins and Cliffe 1987; Ponter, Hearle, and Johnson 45 
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1985), developed to determine the shakedown limit load of structures. The former provides a 46 

conservative solution, while the latter offers a less conservative solution. Although initial approaches 47 

were limited to 2D problems, shakedown analysis has also been expanded to encompass 3D problems 48 

(Yu 2005). It has received considerable attention in the fields of pavement (Collins, Wang, and 49 

Saunders 1993; Connolly and Yu 2020; Krabbenhøft, Lyamin, and Sloan 2007; Zhao et al. 2008; 50 

Zhuang and Wang 2018; Wang and Yu 2014; Li and Zhang 2010; Wang and Yu 2013a) and, more 51 

recently, in railway engineering (Liu et al. 2018; Wang et al. 2020; Wang and Yu 2021; Alves Costa, 52 

Lopes, and Silva Cardoso 2018; Zhuang 2020; Wang, Liu, and Yang 2018; Bi et al. 2022). It can be 53 

utilized to calculate factors of safety and optimize design layer thicknesses. 54 

Shakedown analysis in railway engineering requires careful consideration of the track structure 55 

and its transmission of loading to the subsoil/trackbed surface. Despite recent advancements, the 56 

application of shakedown analysis in railway engineering remains limited. Previous studies utilized 57 

the shakedown lower bound theorem to determine shakedown limits of ballasted railways (Zhuang 58 

2020; Zhuang et al. 2019; Wang and Zhuang 2021) and slab tracks (Wang and Yu 2021; Wang, Liu, 59 

and Yang 2018), establishing a relationship between dynamic shakedown limits and critical speeds 60 

for high-speed railways. Liu et al. (2018) studied the effects of depth-dependent stiffness modulus on 61 

shakedown limits, while Costa et al. (2018) examined the impact of train geometry, track stiffness, 62 

and soil improvement on a slab track system, accounting for geostatic stresses in the ground using a 63 

2.5D approach. However, due to the presence of track expansion joints, the stress on the subsoil 64 

surface for typical slab tracks used in high-speed railways differs from general track structure 65 

positions (Ye et al. 2023). Therefore, a comprehensive shakedown analysis of slab track structures 66 

should also consider the impact of this structural discontinuity. 67 

To address the impact of track expansion joints on shakedown limit analysis for railway slab 68 

track structures, this paper aims to simulate the shakedown behavior of slab track structures with 69 

discontinuities, subject to moving loads. First a 3D dynamic finite element model is developed to 70 
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determine the load pattern and stress peaks on the trackbed at differing positions related to the 71 

expansion joints.  Analytical equations are developed based upon load position to define the upper 72 

and lower bounds of the stress fields.  Then a parametric study investigates how the subsoil's material 73 

properties affect the shakedown limit load. Additionally, the study incorporates shakedown analysis 74 

into the design process by determining the lower and upper bounds of the equivalent axle load for 75 

different operating speeds. 76 

2. Analytical shakedown solution 77 

This section introduces the general lower-bound shakedown theorems and shakedown 78 

computation procedure. 79 

2.1 Lower-bound shakedown theorems 80 

When a highway or railway is subjected to a moving load, it can experience both elastic and 81 

plastic deformation. Shakedown refers to the phenomenon where a material, initially undergoing 82 

permanent deformation due to repeated loads exceeding its elastic limit, eventually returns to elastic 83 

behavior after a finite number of cycles, as long as the load is below the elastic shakedown load limit. 84 

Thus, plastic deformation accumulation does not persist indefinitely for all load magnitudes 85 

surpassing the elastic limit. After each load cycle, residual stresses, in addition to plastic strains, 86 

remain, resulting in the total stress field being the sum of the residual stress from previous cycles and 87 

the applied load. Radovsky and Murashina (1996) observed experimentally the permanence of 88 

residual horizontal stresses on pavements after the passage of moving loads, while Wang and Yu 89 

(2013b) reached similar conclusions through numerical analysis of the shakedown problem. 90 

A key consideration is whether the load exceeds the shakedown load limit. If the load exceeds 91 

this limit, a shakedown state will not occur. Instead, the permanent strains may settle into a closed 92 

cycle, which is called "cyclic" or "alternating plasticity," or they may continuously increase, a 93 

phenomenon known as "ratcheting." In either scenario, the structure will eventually fail (Collins and 94 

Boulbibane 2000). 95 
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Melan's lower-bound shakedown theorem (Melan 1938) has been employed to determine the 96 

shakedown limit of a continuous earth structure, which emphasizes the importance of establishing a 97 

critical residual stress field. For a structure subject to moving train loads, assuming uniform 98 

settlement in the half-space after a large number of load cycles (Yu 2005), the induced residual stress 99 

should be equilibrated and time-independent, as each point located at the cross-section perpendicular 100 

to the travel direction undergoes the same load history. In other words, shakedown will occur if the 101 

following condition is satisfied for any time and location of the body under analysis: 102 

 
0( ) 0e r

ij ij ijf   + +    (1) 103 

where f (·) represents the yielding criteria; 𝜆𝜎𝑖𝑗𝑒  is the elastic stress field due to the applied load, λ is 104 

a load factor of the stress field generated by a fundamental loading scenario; the subscripts i and j 105 

define the coordinate inside the plane of the half-space under consideration, where i is the vertical 106 

direction and j is the direction of load movement; 𝜎𝑖𝑗0  is the static stress induced by the structure's 107 

self-weight. 108 

2.2 Shakedown analysis 109 

As highlighted by (Yu 2005; Yu and Wang 2012), the largest value of λ obtained by searching 110 

all possible self-equilibrated residual stress fields will give the actual shakedown limit Psd = λsd·P. 111 

Therefore, the aim is to find a residual stress state that is compatible with the restrictions expressed 112 

above: it needs to be self-equilibrated, time independent and its conjunction with the geostatic stress 113 

state must give rise to a total stress state that does not violate the yielding criteria. 114 

To obtain a time-independent residual stress field, it is necessary to define a critical plane that is 115 

independent of the longitudinal direction. Yu (2005) and more recently Yu and Wang (2012) have 116 

shown that for a moving three-dimensional Hertz pressure distribution, the critical plane should be 117 

defined by y = constant (y-direction is the horizontal direction normal to the direction of movement), 118 

with the plane y = 0 being the most critical one. The procedure to achieve this conclusion is described 119 

in detail in Yu (2005), and the same assumptions are followed here. 120 
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 121 

Figure 1. Half-space subject to vertically applied moving load 122 

Consider a moving load with constant speed on the surface of a 3D half-space (Fig. 2), where x 123 

is the direction of load movement, y is perpendicular to the direction of movement, and z is the vertical 124 

direction. Treating tensile stresses as positive, there are six possible elastic stress (σe) components 125 

generated during movement: three normal stress directions: 𝜎𝑥𝑥𝑒 , 𝜎𝑦𝑦𝑒 , and 𝜎𝑧𝑧𝑒 , and three shear stress 126 

directions: 𝜏𝑥𝑦𝑒 , 𝜏𝑦𝑧𝑒 , and 𝜏𝑥𝑧𝑒 . Assuming the critical plane is directly below the load, the only shear 127 

stress generated in this plane is 𝜏𝑥𝑧𝑒 , meaning 𝜏𝑥𝑦𝑒 , 𝜏𝑦𝑧𝑒  are zero. Furthermore, because the load is 128 

travelling in the x direction, the stresses in the y direction are always intermediate stresses, meaning 129 

this is not a critical plane either. Therefore, it is possible to consider the total elastic stress field as 130 

having just 3 stress components: 𝜎𝑥𝑥𝑒 , 𝜎𝑧𝑧𝑒 , and 𝜏𝑥𝑧𝑒 . 131 

Using a similar process of deduction for the residual stresses (σr), if the load did not induce 𝜏𝑥𝑦𝑒  132 

and 𝜏𝑦𝑧𝑒  elastic stresses on the plane, the corresponding residual stresses will not remain after passage 133 

either. Also, the residual stress in the 𝜎𝑦𝑦𝑟  direction will be an intermediate residual stress. To satisfy 134 

equilibrium in the vertical direction, residual stresses in the vertical 𝜎𝑧𝑧𝑟  direction cannot occur, while 135 

the antisymmetric nature of 𝜏𝑥𝑧𝑒  means that residual stresses cannot be induced. Therefore, the total 136 

residual stress field can be reduced to just one component: 𝜎𝑥𝑥𝑟 . 137 

For the geostatic stress, 𝜎𝑥𝑥0 , 𝜎𝑦𝑦0 , and 𝜎𝑧𝑧0  are principal stresses of the geostatic stress field if 138 
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half-space self-weight is considered, and 𝜎𝑦𝑦0  is the intermediate principal stress for any location in 139 

the plane defined by y = 0. The coefficient of earth pressure at rest k = μ / (1−μ), where μ is the 140 

Poisson's ratio; then 𝜎𝑥𝑥0  = k 𝜎𝑧𝑧0 . 141 

The total stress field in terms of elastic, residual and geostatic stresses can be expressed as: 142 

 

0

0

e

zz zz zz

e r

xx xx xx xx

e

xz xz

  

   

 

 = +


= + +
 =

  (2) 143 

The total stress field defined by Eq. (2) must respect the yielding condition in Eq. (1). Therefore, 144 

adopting the Mohr-Coulomb criterion, defined by the cohesion and friction angle, the following 145 

inequality must be met: 146 

 1 3 1 3( ) ( )sin 2 cos 0c     − − + −    (3) 147 

The principal stresses σ1 and σ3 are defined as: 148 
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 

  (4) 149 

Then, substituting Eq. (4) into the Mohr-Coulomb failure criterion yields: 150 

 ( ) ( ) ( )2 2
0 0 0 0

4 sin 2 cos 0
e r e e e r e

xx xx xx zz zz xz xx xx xx zz zz
c            + + − − + − + + + + −    (5) 151 

Separating the elastic and residual stress components results in a simplification: 152 

 ( )2

0r

xxf M N= + +    (6) 153 

where 154 

 

0 0 0

2 2 0 2

( ) ( ) 2 tan ( ( ) tan )

4(1 tan )[( ) ( ( ) tan ) ]

r e e

xx zz xx zz zz zz

e e

xz zz zz

M c

N c

        

    

 = − + − + − +


= + − − +
  (7) 155 

From above, the residual stress is unknown, making it difficult to calculate the λ value. However, 156 
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if N ≤ 0, it is possible to find one possible shakedown load factor that fulfils the condition: 157 

 

0 tan

tan

zz

e e

xz zz

c  
  
−


+

  (8) 158 

To calculate the initial estimation of the shakedown limit load, we need to determine the 159 

minimum value of λi for a particular depth z = i. This involves calculating the maximum value of 160 

|𝜏𝑥𝑧𝑒 | + 𝜎𝑧𝑧𝑒 tan 𝜑 for the same depth z = i due to the passage of a moving load, given that 
0

zz
  is 161 

constant for the particular depth. The minimum value of λi can then be identified, resulting in λi, which 162 

serves as the initial estimation for the shakedown limit load. 163 

However, this approach results in an "upper bound type 1" solution λI, which corresponds to the 164 

maximum limit of the lower-bound shakedown (Krabbenhøft, Lyamin, and Sloan 2007), as it 165 

disregards both yield and equilibrium constraints on residual stresses. When Eq. (1) satisfies f = 0, it 166 

permits the calculation of the residual stress at any point in the half-space, i.e., the smaller root 167 −𝑀𝑖𝑗 − √−𝑁𝑖𝑗 and larger root −𝑀𝑖𝑗 +√−𝑁𝑖𝑗, where by the value of Ni should be negative. Hence, 168 

the residual stress field at a given depth z = i should conform to max(−𝑀𝑖𝑗 + √−𝑁𝑖𝑗) ≤ 𝜎𝑥𝑥𝑟 ≤169 

min( − 𝑀𝑖𝑗 +√−𝑁𝑖𝑗). If the minimum larger root is less than the maximum smaller root, the half-170 

space is in a non-shakedown state, meaning that no common residual stress satisfies f = 0 at any point 171 

of z = i. An optimization procedure is necessary to obtain a more precise approximation of the most 172 

critical shakedown load factor. 173 

The procedure involves the following steps, as illustrated in Figure 2: 174 

a) Compute the maximum smaller critical stress value and the minimum larger critical stress at 175 

all j locations for a given depth z = i, using the initial estimation of the shakedown limit load λI. 176 

b) Determine proximity to the yield condition using either the maximum smaller critical stress 177 

or the minimum larger critical stress: If the difference between the solution and the yield condition is 178 

less than the desired threshold (e.g., 0.001), consider the shakedown limit for this depth an acceptable 179 

solution; If the solution falls outside the allowable range, employ an optimization procedure to 180 
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converge the shakedown limit load to an acceptable value, for example using a bisection method. 181 

c) Repeat the above procedure for each depth. The critical shakedown limit is the minimum 182 

value across all depths. 183 

  
184 

 185 

Figure 2. Flowchart of the shakedown solution 186 

3. Model development 187 

To obtain the stress fields needed for the start of Figure 2, shakedown limit analysis requires the 188 
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domain to be invariant in the direction of the moving load. Although shakedown analysis has been 189 

attempted for ballasted tracks (Zhuang 2020; Zhuang et al. 2019; Wang and Zhuang 2021), the 190 

accuracy of shakedown limit analysis in the presence of discrete sleepers is still unclear. Similarly, 191 

slab track expansion joints introduce discontinuities in the direction of the train load, however these 192 

have until now, been disregarded in the shakedown analysis of non-ballasted track.  Another 193 

requirement of shakedown analysis is that the residual stress field must remain time-independent. 194 

This is problematic for railways because the presence of track irregularities on train-track interaction 195 

causes dynamic loading that varies with position.  196 

Considering these two challenges with applying shakedown analysis for railway slab tracks, a 197 

modelling approach was developed to overcome them.  Firstly, regarding the expansion joints, a finite 198 

element method (FEM) approach was used to isolate the surface stress responses of moving train 199 

loads at representative track locations, leading to empirical approximations. These approximations, 200 

in the form of analytical equations, were then be utilized as boundary inputs into an analytical 201 

shakedown framework. Secondly, regarding the effect of dynamic train-track interaction, this is more 202 

important for differential settlement induced during track operation (Charoenwong, Connolly, 203 

Woodward, et al. 2022; Charoenwong et al. 2023; Charoenwong, Connolly, Odolinski, et al. 2022), 204 

rather than ultimate limit state design.  Therefore, as proposed by Costa et al. (2018), the relevant 205 

excitation was considered to be quasi-static. 206 

3.1 Surface stresses 207 

A Hertzian-type load, commonly assumed for highway pavement shakedown analysis, does not 208 

accurately describe the loading exerted on a slab track system. The transfer of the axle load through 209 

the superstructure of the slab track to the trackbed modifies the load shape and magnitude on the 210 

subgrade surface, especially at the concrete base expansion joints. Below, the FEM model 211 

development and analysis is briefly outlined to investigate the diversified surface stresses on trackbed, 212 

based on which the analytical elastic stress fields can be derived. 213 
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3.1.1 Finite element track model 214 

Due to symmetry, only half of the slab track structure is modeled. The FE mesh used for the 215 

simulation is shown in Figure 3. The track structure consists of a 176 mm high rail with a cross-216 

sectional area of 7.745 × 105 mm2, discretely supported on the track slab. Fasteners with a spacing 217 

of 0.63 m and a vertical stiffness of 40 kN/mm are modeled using spring elements. The track slab has 218 

a length of 5.6 m, a width of 2.5 m, and a height of 0.2 m. The self-compacting concrete has the same 219 

length and width as the track slab with a thickness of 0.1 m. Expansion joints with a width of 70 mm 220 

and 20 mm are considered for the track slab and concrete base, respectively. The track foundation 221 

consists of three layers: the upper roadbed, lower roadbed, and subgrade, each with a thickness of 0.4 222 

m, 2.3 m, and 3.0 m, respectively. The embankment slope gradient is 1:1.5. The rail, sleepers and 223 

subgrade soil are assumed to be linear elastic materials. The material properties of the formation 224 

layers are listed in Table 1. 225 

  226 

Figure 3. Finite element model of a slab track system 227 

Table 1. Material parameters of the model components 228 

Components Materials Modulus 
(MPa) 

Poisson's 
ratio 

Damping 
ratio 

Rail Steel 206,000 0.300 0.01 
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Track slab C60 concrete 36,000 0.167 0.03 

Self-compacting concrete C40 concrete 32,500 0.167 0.03 

Concrete base C40 concrete 32,500 0.167 0.03 

Upper roadbed Graded gravel 228.9 0.300 0.08 

Lower roadbed Coarse fill  186.0 0.350 0.07 

Subgrade Coarse fill 163.5 0.400 0.10 

 229 

The train has a design axle load of 170 kN and an axle spacing of 2.5 m, which results in each 230 

wheel load being 85 kN. The wheel/rail contact is simplified as a moving wheel load that acts on the 231 

rail. To evaluate the impact of longitudinal discontinuities, three simulation scenarios are considered, 232 

where the load is exerted at different locations on the track structures. Figure 3 shows that Position A 233 

corresponds to a force acting on the continuous structure, Position B refers to a force acting on 234 

expansion joints at the track slab level while the underlying concrete base is continuous, and Position 235 

C denotes a scenario where the load is exerted directly above expansion joints encountered in both 236 

track slab and concrete base layers. 237 

3.1.2 Explicit expressions for two surface stresses 238 

The stress transverse distribution of the subgrade surface at positions A, B, and C is uniform, as 239 

per the finite element model results. At positions A and B, the stress longitudinal distribution of the 240 

subgrade surface forms an approximately isosceles trapezoid, while at position C, it forms an 241 

approximately isosceles triangle. Hence, two loading modes exist for both the continuous and joint 242 

positions of the track structure, as shown in Figure 4. 243 
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 244 

Figure 4. Three longitudinal stress distributions on the trackbed 245 

Figure 4 displays the longitudinal stress distributions induced on the trackbed by two moving 246 

axle loads. The stress peak occurs at Position C, where expansion joints are situated on a concrete 247 

base. Stress in the transverse direction uniformly distributes at all three positions A, B, and C, with a 248 

range equivalent to the width (b) of the concrete base. At locations with continuous structures 249 

(position A) and track slab expansion joints (position B), the longitudinal stress distributions follow 250 

an isosceles trapezoid pattern. Equation (9) presents the design value of induced stress (σv) on the 251 

trackbed for the first pattern, considering the mechanical equilibrium conditions. 252 

 0

4

( )
k

v P
b Z L

 =
+   (9) 253 

where P0 is the design axle load; L is the axle spacing; b is the width of the concrete base; Z represents 254 

the longitudinal influencing length; φk denotes the dynamic amplification factor which is the ratio of 255 

stress level at different speeds to that in quasi-static states (φk = 1.0 at 5 km/h). The prescribed 256 

structural parameters for the slab track are b=3.1 m, Z=9.0 m, and L=2.5 m. 257 

As seen in Figure 4, when the double-axle load is located above the track joint, the trackbed 258 

load's longitudinal distribution pattern takes the form of an isosceles triangle. The finite element 259 

results indicate that, for the same design axle load, the stress magnitude ratio of a triangular load to a 260 

trapezoidal load increase with increasing speed. The value of Cv is then defined as the stress 261 

concentration coefficient of the expansion joints, which equals the stress magnitude ratio of a 262 
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triangular load to a trapezoidal load. By employing the equivalence of stress and the definition of the 263 

stress concentration factor Cv, explicit expressions for the stress magnitude (σv) and longitudinal 264 

influencing length (Z) are: 265 

 

2 2

0

0

4
vk

v

Z Z L

C

C
P

bZ



  = −





 =


  (10) 266 

where C0 is the stress concentration factor at 5 km/h. 267 

Hence, for the slab track structure, train loads on the trackbed are classified into two categories: 268 

trapezoidal load on the continuous track structure and triangular load at the track joint position, as 269 

depicted in Figure 5. For two identical axle loads, the distribution length of expansion joint loading 270 

is smaller than the continuous slab loading distribution length, with a higher total load magnitude. 271 

 272 

Figure 5. Simplified stress pattern on trackbed: (a) general location; (b) expansion joints (Ye et al. 273 

2023) 274 

3.2 Subgrade stress fields 275 

The stress distribution on the trackbed below the concrete base is simplified by considering two 276 

loading positions of continuous slab and base expansion joints, as defined by Eqs. (9) and (10). 277 
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However, since the stress pattern changes gradually from trapezoidal to triangular as the load moves, 278 

the elastic stress field, calculated from the 3D finite element model, cannot be directly utilized for 279 

shakedown analysis. Lower-bound shakedown assumptions require a quasi-static surface load on a 280 

half-space, which leads to a time-independent residual stress field in the moving direction. By 281 

considering a single stress pattern of continuous slab loading on the subgrade surface, a shakedown 282 

limit λCSL can be determined based on the elastic stress field generated by continuous slab loading. 283 

Similarly, the shakedown limit λEJL for expansion joint loading can be derived accordingly. Since 284 

other stress magnitudes and longitudinal lengths are in an intermediate state between the two typical 285 

loading positions, the shakedown limit for the slab track structure is believed to fall within the 286 

shakedown limits due to the two stress patterns, see the induced elastic stress envelopes in Sec. 4.1. 287 

To obtain shakedown solutions for these two stress patterns, the elastic stress field can be derived 288 

from such surface stress conditions. The overall analysis procedure is provided in Figure 6. 289 

 290 

Figure 6. The overall computational logic 291 

To obtain analytical solutions for these types of surface loads on a half- space, it is necessary to 292 

first derive the analytical solutions for uniform shaped and triangular loads (refer to Fig. 4). The 293 
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derivation process is introduced below. 294 

3.2.1 Uniform shaped fields 295 

Boussinesq (1885) derived the stresses at any point (x, y, z) of a homogeneous, elastic, and 296 

isotropic medium subject to a concentrated load P acting on the surface of a semi-infinite half-space. 297 

This solution can be expressed by: 298 
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where R2 = x2 + y2+ z2. 300 

A single half contact area depicted in Figure 7(a) with dimensions of A × B can be used to 301 

establish rectangular Cartesian coordinates by setting the corner of the contact area as the origin of 302 

coordinate O. Assuming a unit body with an area of dxdy, the vertical load acting on this unit body is 303 

P0·dx·dy. Consequently, the elastic stress arising from a uniform distributed vertical stress P at any 304 

depth below point O, i.e., M (0, 0, z), can be determined by (Zhuang 2020): 305 
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 307 

Figure 7. Schematic of elastic stress in half-space: (a) uniform shaped loading, (b) triangular 308 

loading 309 

By employing the principle of superposition, the elastic stress field induced by the uniform load 310 

P0 at any point (x, y, z) can be obtain as follows: 311 

 312 

Figure 8. The elastic stress field calculated by the corner point method: (a) point O beneath the 313 

rectangular area; (b) point O outside the rectangular area 314 

When z > 0 beneath the surface, a uniform load acts on a rectangular contact area underside 315 

abcd, as illustrated in Figure 8(a). To determine the elastic stress increment at any depth below point 316 

O, two sublines ef and gh can be drawn parallel to the longer and shorter sides of the rectangular 317 

contact area, respectively. Point O serves as the common corner of four rectangles 1, 2, 3, and 4. Thus, 318 

the elastic stress increment at any depth beneath O is the aggregate of elastic stress increments of the 319 

aforementioned four new rectangular contact areas. 320 

 ( ) ( ) ( ) ( ) ( )
oeag

e e e e e
ij ij ij ij ijabcd ogbf ofch ohde    = + + +   (13) 321 
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In the event that point O lies beyond the range of the rectangular contact area underside, the 322 

current rectangular contact area underside should first be expanded to place point O beneath the 323 

corner of an assumed contact area underside, as illustrated by the dotted line in Figure 8(b). 324 

Consequently, the elastic stress increment at any arbitrary depth below point O is the total of the 325 

elastic stress increments at O caused by the four respective rectangular contact area undersides (ohed, 326 

Ohcg, Ofae, and Ofbh). 327 

 ( ) ( ) ( ) ( ) ( )e e e e e
ij ij ij ij ijabcd ohed ohcg ofae ofbh    − −= +   (14) 328 

3.2.2 Triangular shaped fields 329 

Similar to the rectangular uniform load formula, for the triangular load acting on the rectangular 330 

area in Figure 7(b), with a length of b and a width of l, setting the origin coordinate O to be the zero-331 

load corner of the contact area. Taking a unit integral body with the area of dxdy, the vertical load on 332 

the integral area is 
𝑥𝑏 𝑃d𝑥d𝑦. By integrating across the load area yields, the analytical elastic stress to 333 

the triangular load P at any arbitrary point M (0, 0, z) below point O can be obtained: 334 
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The corresponding sub-item in Eq. (15) can be calculated as followings: 336 
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Substituting Eqs. (16) to (19) into Eq. (15), the analytical solution 
0

( )e

xx P
  for can be given by: 341 
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Likewise, the elastic stress ( )e

zz P
  and ( )e

xz P
  required for shakedown analysis can be obtained 343 

as: 344 
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Seen in Figure 9, by using the principle of superposition, the elastic stress field induced by the 347 

triangular load OAB at any point M (x, 0, z) in the xoz plane can be expressed by: 348 
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 349 

Figure 9. Four scenarios of the corner point method to calculate elastic stress field 350 

a) When point M is located below the point of A, which is P load corner of the triangular load 351 

OAB, the elastic stress field ( )e
ij P at point M is the difference between the elastic stress field 352 

generated by the rectangular load OABC and the triangular load OAC: 353 

 ( ) ( ) ( )e e e
ij ij ijOAB OABC OAC  −=   (23) 354 

b) When point M is located below point F on line segment OA, the triangle load OAB is split 355 

into three sub-loads: triangular loads OFD and DCB, and rectangular load FADC. In this case, the 356 

elastic stress field ( )e
ij P  generated by the triangular load OAB at point M is the sum of the three sub-357 

loads: 358 

 ( ) ( ) ( ) ( )OAB

e e e e
ij ij ij ijOFD FACD CBD   + +=   (24) 359 

c) When point M is located below point F outside the line segment AO, as shown in Figure 9(c), 360 

the elastic stress field ( )e
ij P  generated by the triangular load OAB at point M is determined by Eq. 361 

(25): 362 
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 ( ) ( ) ( ) ( )e e e e
ij ij ij ijOAB CBD AFDC OFD   − +=   (25) 363 

d) When point M is located below point F outside the line segment OA, as shown in Figure 9(d), 364 

the elastic stress field ( )e
ij P is derived from Eq. (26): 365 

 ( ) ( ) ( ) ( )e e e e
ij ij ij ijOAB OFD AFCB CDB   − +=   (26) 366 

3.2.3 Elastic stress solution for continuous slab loading and expansion joint loading 367 

By combining uniform and triangular shaped fields, elastic stress solutions for continuous slab 368 

loading and expansion joint loads on the surface of a half-space can be obtained. The continuous slab 369 

loading can be decomposed into a uniform rectangular load and two triangular loads, while the 370 

expansion joint loading can be separated into two sub-triangular loads. Figure 10 displays the 371 

shakedown limits for the two stress patterns with and without geostatic stresses, considering 372 

parameters μ = 0.3, c = 1 kPa. 373 

 374 

Figure 10. Shakedown limits for continuous slab loading and expansion joint loading with and 375 

without geostatic stress fields 376 

Figure 10 demonstrates that the inclusion of geostatic stress can significantly raise the 377 

shakedown limit. The shakedown limits for expansion joint loading, with and without geostatic stress 378 

state, are higher than the corresponding values for continuous slab loading. This indicates that 379 
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triangular loads at expansion joints are a more conservative mode of force compared to trapezoidal 380 

loads at general positions for the same magnitude. Furthermore, the discrepancy in shakedown 381 

between the two stress patterns intensifies with the friction angle of subsoil. 382 

4. Validation 383 

4.1 Elastic stress envelopes 384 

Figure 11 shows the stress envelopes at three typical depths of: 0 m, 0.4 m, and 2.7 m, within 385 

the subgrade. 386 

 387 

Figure 11. Stress envelopes at different subgrade depths: (a) 0 m (surface); (b) 0.4 m; (c) 2.7 m 388 

In the analysis of shakedown for slab track substructures, the elastic stress fields are only 389 

affected by the stress patterns on the subgrade surface. When subjected to the same axle load, the 390 
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continuous slab loading located at track structure midpoints result in the minimum stress magnitude, 391 

whereas the expansion joint loading leads to the largest stress magnitude. Stress magnitudes at other 392 

positions are between these two extremes, indicating that the resulting elastic stress fields also fall in 393 

between. As illustrated in Figure 11, the stress magnitude envelope at depths of 0.4 m and 2.7 conform 394 

to the same law observed on the surface, implying that the elastic stress fields always lie within the 395 

bounds of those generated by continuous slab loading and expansion joint loading. 396 

4.2 Stress attenuation along the depth 397 

The stress patterns on the roadbed surface have been identified as being trapezoidal and 398 

triangular in shape. Boussinesq's equations can be used to determine the variation of stress with depth. 399 

Figure 14(a) illustrates a comparison between analytical solutions and numerical simulations of stress 400 

attenuation in the track foundation, with P0=170 kN and v=5 km/h. The attenuation coefficients are 401 

obtained by normalizing the stress values with respect to the baseline on the roadbed. Figure 14(b) 402 

shows a comparison of stress attenuation coefficients with increasing depth. 403 

 404 

Figure 12. Stress attenuation in slab track foundation: (a) stress variation in depth from surface 405 

level; (b) normalised stress attenuation 406 

The numerical simulations show smaller stress values than the analytical solution at the same 407 
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depth. When the operating speed is 5 km/h, stress differences of 1.75 kPa and 2.10 kPa for continuous 408 

and discontinuous structures are observed using both methods on the roadbed. At the base of the 409 

upper roadbed (0.4 m), these differences increase to 2.32 kPa and 2.90 kPa, before decreasing to 1.57 410 

kPa and 1.84 kPa at the base of the lower roadbed (2.7 m). The maximum difference in stress values 411 

between the two methods throughout the depth of interest is 2.32 kPa and 2.90 kPa, which is 412 

considered acceptable. The maximum difference in attenuation coefficient obtained by the two 413 

methods is 4.2%, suggesting that the derived stress patterns are of sufficient accuracy and lead to a 414 

conservative track foundation design. 415 

4.3 Shakedown limits compared with existing studies 416 

The shakedown limit of continuous slab loading on a homogenous half-space was validated by 417 

comparing the calculation results against those computed using a simplified track analysis (Wang, 418 

Liu, and Yang 2018). In the analysis, the superstructure components were considered to act together 419 

as a single infinite Euler-Bernoulli beam, while the supporting substructure was simplified as a 420 

Winkler's foundation. The relation between the reaction modulus k and the elastic modulus E of the 421 

soil was proposed (Liu et al. 2018): 422 
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  (28) 425 

where μ is Poisson’s ratio of the soil; b is the half width of the slab track; EbI can be calculated from 426 

the material properties in Table 2. 427 

Table 2. Material properties and dimensions of the key components of track superstructure 428 

Track Components Modulus (MPa) Width (m) Height (m) Second moment of area I 
(m4) 

Rail 206,000 0.15 0.172 3.06×10-5 

Track slab 36,000 0.167 0.2 1.67×10-3 
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Self-compacting 
concrete 

32,500 0.167 0.1 2.08×10-4 

Concrete base 32,500 0.167 0.3 6.98×10-3 

 429 

Then, a single-axle load P0 can be converted into a distributed load p on the top of the 430 

substructure using: 431 

 0 (cos ( ) sin )
x

p p e x x
  −= +   (29) 432 

where p0=P0 η/2b; η=(kb/4EbI)0.25. 433 

Figure 13(a) exhibits the pressure distribution for a dual-axle load employing Eq. (29) and the 434 

continuous slab loading on the trackbed surface. The pressure is assumed to be distributed uniformly 435 

over the width of the concrete base in the transverse direction. Figure 13(b) displays the difference in 436 

shakedown limit between the two stress patterns, with different friction angles. The shakedown limits 437 

obtained through simplified track analysis are slightly lower than those of the proposed continuous 438 

slab loading. However, the difference is less than 5%, indicating the accuracy of the continuous slab 439 

loading at general positions. 440 

 441 
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 442 

Figure 13. Comparison of simplified track analysis and the proposed model: (a) longitudinal 443 

distribution of surface stresses; (b) shakedown limits versus soil friction angles considering 444 

geostatic stress 445 

5. Analysis 446 

Simulations are conducted on a homogeneous half-space with friction angles φ of 20°, 25°, 30°, 447 

35°, and 40°, cohesions c of 1 kPa, 2 kPa, and 5 kPa, Poisson's ratios μ of 0.3, 0.35, 0.4, and 0.5, and 448 

bulk density of 2 000 kg/m3. It should be noted that the cohesion in a compacted coarse fill for a track 449 

foundation is a result of grain interlocking, dilatancy, and rearrangement of grains. The elastic stresses 450 

are calculated using the equations described in Section 4.1 for both continuous slab and expansion 451 

joint loading. The shakedown limit is normalized with respect to the load as λnormalised = λP0/c since it 452 

is always proportional to the value of cohesion (Wang, Liu, and Yang 2018). The evolution of the 453 

normalized shakedown limit is compared while considering or neglecting the geostatic stress state. 454 

5.1 Friction angle 455 

Figure 14 and Figure 15 illustrate the impact of φ on the normalized shakedown limit, which 456 

varies with Poisson's ratio μ. As anticipated, increasing the friction angle results in a higher 457 

shakedown limit for continuous slab loading and expansion joint loading alike. In the case of μ=0.3 458 
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neglecting the geostatic stress state, the normalized shakedown limits increase by approximately 141% 459 

for continuous slab loading with friction angle increasing from 20° to 40°. Although the Poisson's 460 

ratio is expressed as a function of elastic stress in Eq. (12) and Eq. (20), it rarely affects the normalized 461 

shakedown limit load, with the curves converging for μ = 0.3 0.35, 0.4 and 0.5 for both continuous 462 

slab loading and expansion joint loading. However, when considering geostatic effects, the overall 463 

effect of friction angle on the normalized shakedown limit remains similar, while the Poisson's ratio 464 

has a significant impact on the shakedown limit. For instance, when φ = 20°, the normalized 465 

shakedown limit increases by 186% and 187%, respectively, for continuous slab loading and 466 

expansion joint loading as the Poisson's ratio increases from 0.3 to 0.5. Detailed data for generating 467 

Figure 14 and Figure 15 is provided in Appendix A. 468 

Furthermore, if the geostatic stress state is ignored, the critical depth decreases as the friction 469 

angle increases, indicating that the structure failure occurs closer to the surface. However, when the 470 

at rest state is taken into account, the critical depths are always 0 m for μ = 0.3 and 0.35, which implies 471 

that the failure occurs at the surface. For instance, in the case of μ = 0.3, Figure 16 illustrates the 472 

typical critical residual stress fields of the continuous slab loading for both φ = 20° and φ = 40° 473 

conditions. The critical depths are both null for φ = 20° and φ = 40° when considering geostatic stress, 474 

while without the geostatic stress the critical depth decreases from 1.37 m to 1.05 m. 475 

 476 
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 477 

Figure 14. Normalised shakedown limit with continuous slab loading: (a) without geostatic stress; 478 

(b) with geostatic stress 479 

 480 

  481 
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  482 

Figure 15. Normalised shakedown limit for expansion joint loading: (a) without geostatic stress; (b) 483 

with geostatic stress 484 

 485 

  486 
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  487 

Figure 16. Distributions of critical residual stresses of continuous slab loading: (a) φ = 20° with 488 

geostatic stress; (b) φ = 40° with geostatic stress; (c) φ = 20° without geostatic stress; (d) φ = 40° 489 

without geostatic stress 490 

5.2 Cohesion 491 

Taking Poisson's ratio μ = 0.3 as a base model, Figure 17 and Figure 18 illustrate the impact of 492 

different cohesions on the normalized shakedown limit with varying friction angle φ for continuous 493 

slab loading and expansion joint loading. Since the shakedown limit λP0 is always proportional to the 494 

value of cohesion when ignoring geostatic stresses, cohesion has no effect on the normalized 495 

shakedown limit for all cases shown in Figure 17(a) and Figure 18(a). However, when considering 496 

the geostatic stresses, λP0 is not always proportional to cohesion, as demonstrated by Eq. (8), which 497 

shows that the shakedown initial value changes from c to 𝑐 − 𝜎𝑧𝑧0 tan 𝜑. The normalized shakedown 498 

limit decreases at cohesive values of 5 kPa and 10 kPa (φ increasing from 20° to 40°) for continuous 499 

slab loading, relative to the values of c = 1 kPa and 2 kPa, as depicted in Figure 17(b). Similarly, for 500 

expansion joint loading, the normalized shakedown limit decreases at cohesive values of 5 kPa and 501 

10 kPa (φ increasing from 20° to 30°) compared to the corresponding values of c = 1 kPa and 2 kPa, 502 
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as illustrated in Figure 18(b). 503 

 504 

 505 

Figure 17. Normalised shakedown limit for continuous slab loading versus soil cohesion: (a) 506 

without geostatic stress; (b) with geostatic stress 507 
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 508 

 509 

Figure 18. Normalised shakedown limit of expansion joint loading for varying cohesions: (a) 510 

without geostatic stress; (b) with geostatic stress 511 

5.3 Poisson's ratio 512 

Figure 19 and Figure 20 depict the effect of Poisson's ratio μ on the normalized shakedown limit, 513 

which changes with friction angle φ. Four Poisson's ratios of 0.3, 0.35, 0.4, and 0.5 were considered, 514 

where μ=0.3 is a common Poisson's ratio for subsoil and μ=0.5 means the substructure is in isotropic 515 
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consolidation. As mentioned in Section 5.1, Poisson's ratio rarely impacts the normalized shakedown 516 

limit for continuous slab loading and expansion joint loading when disregarding the geostatic stress 517 

state. However, accounting for the geostatic stress state, a greater Poisson's ratio results in a higher 518 

shakedown limit. Poisson's ratio μ affects the geostatic stress state via the coefficient of earth pressure, 519 

k = μ / (1−μ), which is an increasing function of μ. Thus, considering the geostatic stresses, increasing 520 

μ elevates the stress component, 𝜎𝑥𝑥0  = k 𝜎𝑧𝑧0 , which makes the difference between vertical stress 𝜎𝑧𝑧0  521 

and horizontal stress 𝜎𝑥𝑥0  smaller. In particular, the first principal stress is equal to the third principal 522 

stress with Poisson’s ratio increasing to 0.5. The Mohr circle of subsoil with geostatic stress changes 523 

to a point in the Mohr circle coordinate system, which means no shear stress occurs in y=0 plane (see 524 

Figure 1). Therefore, larger Poisson ratios can provide a more stable state for the subsoil with 525 

geostatic stress before cyclic moving loading. 526 

In addition, neglecting the geostatic stress state leads to a significant underestimation of the 527 

shakedown limit load (Costa, Lopes, and Cardoso 2018). Larger Poisson ratios results in a higher 528 

shakedown limit, meaning this trend is clearer for higher Poisson's ratios. Thus, the shakedown limit 529 

ratio of considering geostatic stress to neglecting geostatic stress also rises with the increase of 530 

Poisson’s ratio. Taking a friction angle φ=30° as an example, the ratio of the shakedown limit 531 

increases from 1.81 to 8.54 as the Poisson's ratio varies from 0.3 to 0.5 in the case of continuous slab 532 

loading. 533 
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 534 

Figure 19. Normalised shakedown limit of continuous slab loading for varying Poisson's ratios 535 

 536 

  537 

Figure 20. Normalised shakedown limit of expansion joint loading versus Poisson's ratio 538 

5.4 Implications for track design 539 

Based on Eqs. (9) and (10), the magnitudes of the expansion joint loading, σ′v, and continuous 540 

slab loading σv, induced by a dual-axle load P0 differ, with σ′v being greater than σv. Consequently, to 541 

design a slab track foundation, the normalized shakedown limit must be converted to the 542 

corresponding axle load P0. The shakedown axle load limits for the continuous slab loading and 543 

expansion joint loading cases are defined by Eqs. (30) and (31), respectively. 544 
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where Cv represents the ratio of stress levels at the expansion joints to those at continuous positions, 547 

and it is dependent on the operating speed. The correlation between the factor Cv and speed on the 548 

roadbed is illustrated in Figure 21. 549 

 550 

Figure 21. Stress concentration factor versus operating speed 551 

Assuming Poisson's ratio μ = 0.3 and cohesion c = 1 kPa, Figure 22 shows how operating speed 552 

affects the shakedown limit at different friction angles. The figure illustrates that the shakedown limit 553 

for expansion joint loading remains lower than that for continuous slab loading at the same friction 554 

angle. Therefore, for the design of the slab track foundation, the shakedown solution should fall 555 

within the range of loading between expansion joint loading and continuous slab loading, represented 556 

by the shaded region in the cases of φ=20° and 40°. 557 
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 558 

Figure 22. Shakedown limit of equivalent axle load versus operating speed: shaded areas are 559 

bounded by expansion joint loading and continuous slab loading scenarios and only presented for φ 560 

= 20° and 40° 561 

When designing slab trackbed to meet the serviceability limit state (SLS), it is essential that the 562 

substructure exhibits fully elastic behavior, devoid of residual strain accumulation or approximate 563 

elastic behavior that returns to an elastic state after multiple loading cycles. The shakedown solution 564 

is responsible for determining the elastic limit beyond which the structure undergoes plastic 565 

deformation. If the load magnitude exceeds the elastic shakedown limit, plastic strains develop 566 

repeatedly, leading to failure at a low number of cycles. Consequently, the elastic shakedown limit is 567 

a significant determinant of the ultimate limit state (ULS) of slab track foundations. If the load 568 

magnitude falls below the elastic shakedown limit but exceeds the elastic limit, the subsoil response 569 

returns to its elastic state following residual stress buildup. However, the time required for residual 570 

stress buildup and cyclic settlement is not factored into the lower-bound theorem. Thus, it is necessary 571 

to adjust the shakedown limit by a factor that bridges the SLS and ULS in track design. One possible 572 

approach to determine this factor is by relating it to the cyclic settlement behavior and design 573 

requirements of the track substructure. Establishing this relationship would require extensive 574 

numerical simulations and field evidence. 575 
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6. Conclusions 576 

This paper develops shakedown solutions for slab track substructures using lower-bound 577 

shakedown theorems. The continuous slab loading and expansion joint loading are adopted 578 

representing trackbed stress pattern when double-axle loads acting on the track's general location and 579 

joints. Analytical lower-bound shakedown solutions were established for the homogeneous half-580 

space under two typical stress patterns and extended to shakedown analysis of slab track substructures. 581 

Shakedown analysis was incorporated into design to determine lower and upper bounds of axle load 582 

with differing operating speeds. 583 

The parametric analysis results indicate that the presence of a geostatic stress field can 584 

effectively enhance the normalized shakedown limit under both load types with the same friction 585 

angle and Poisson's ratio. Neglecting the geostatic stress state leads to an increase in shakedown limits 586 

with increasing friction angles, which are proportional to the cohesion normalized by its value. 587 

Poisson's ratio has a minimal effect on the shakedown limit and critical depth, with the critical depth 588 

closer to the surface at depths ranging from 1.0-1.5 m and decreasing with increasing friction angles. 589 

However, considering the geostatic stress state results in a non-proportional relationship between 590 

shakedown limit and cohesion. In such cases, the geostatic stress state can lead to a significant raise-591 

up of the shakedown limit load, particularly for higher Poisson's ratios. Moreover, the growth ratio 592 

of the shakedown limit also increases with an increasing Poisson's ratio. Therefore, the geostatic stress 593 

state cannot be neglected in railway engineering. 594 

On the roadbed surface of the slab track structure, two loading modes exist for both continuous 595 

and joint positions. The magnitude of expansion joint loading is greater than that of continuous slab 596 

loading for the same axle load, and the magnitude ratio of expansion joint loading to continuous slab 597 

loading Cv increases with increasing train speeds. The shakedown limit of axle load reflects the 598 

influence of operating speed on the stress concentration factor Cv and dynamic amplification factor 599 

φk. In the design of slab trackbed, the shakedown solution for the slab track structure should be 600 
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between the lower and upper bounds of continuous slab loading and expansion joint loading. The 601 

findings provide a reference for optimized design of slab substructure. 602 
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Appendix A 609 

Tables A1, A2, A3, and A4 present the normalized shakedown limit and critical depth 610 

calculation results for continuous slab loading and expansion joint loadings with c = 1 kPa, varying 611 

in μ values. 612 

Table A1. Normalized shakedown limit and critical depth with c=1 kPa, μ = 0.3 613 

Friction 
angle 

Shakedown limit of CSL Critical depth of CSL Shakedown limit of EJL Critical depth of EJL 

Without GS  With GS Without GS  With GS Without GS  With GS Without GS  With GS 

20° 14.85  52.81  1.37 0.00 18.37  69.45  1.47 0.00 

25° 18.33  54.76  1.31 0.00 23.69  72.01  1.36 0.00 

30° 22.72  57.30  1.24 0.00 29.41  75.35  1.28 0.00 

35° 28.37  60.58  1.17 0.00 36.77  79.67  1.19 0.00 

40° 35.81  64.78  1.05 0.00 46.45  85.19  1.11 0.00 

Note: CSL, continuous slab loading; EJL, expansion joint loading; GS, geostatic stress. 614 

Table A2. Normalized shakedown limit and critical depth with c=1 kPa, μ = 0.35 615 

Friction 
angle 

Shakedown limit of CSL Critical depth of CSL Shakedown limit of EJL Critical depth of EJL 

Without GS  With GS Without GS  With GS Without GS  With GS Without GS  With GS 

20° 14.85 70.41  1.37 0.00 18.87  92.60  1.48  0.00 

25° 18.33 73.01  1.31 0.00 23.69  96.01  1.36  0.00 

30° 22.72 76.40  1.24 0.00 29.41  100.47  1.28  0.00 

35° 28.37 80.77  1.17 0.00 36.77  106.22  1.19  0.00 

40° 35.81 86.37  1.05 0.00 46.45  113.59  1.11  0.00 

Note: CSL, continuous slab loading; EJL, expansion joint loading; GS, geostatic stress. 616 

Table A3. Normalized shakedown limit and critical depth with c=1 kPa, μ = 0.4 617 

Friction 
angle 

Shakedown limit of CSL Critical depth of CSL Shakedown limit of EJL Critical depth of EJL 

Without GS  With GS Without GS  With GS Without GS  With GS Without GS  With GS 

20° 14.85  98.26  1.37  0.39  19.14  130.10  1.44  0.40 

25° 18.33  109.51  1.31  0.00  23.69  144.01  1.36  0.00  
30° 22.72  114.60  1.24  0.00  29.41  150.71 1.28  0.00  
35° 28.37  121.16  1.17  0.00  36.77  159.33  1.19  0.00  
40° 35.81  129.56  1.05  0.00  46.45  170.38  1.11  0.00  
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Note: CSL, continuous slab loading; EJL, expansion joint loading; GS, geostatic stress. 618 

Table A4. Normalized shakedown limit and critical depth with c=1 kPa, μ = 0.49 619 

Friction 
angle 

Shakedown limit of CSL Critical depth of CSL Shakedown limit of EJL Critical depth of EJL 

Without GS  With GS Without GS  With GS Without GS  With GS Without GS  With GS 

20° 14.85  98.26  1.37  0.39  19.16  130.10  1.42  0.40  
25° 18.33  139.60  1.31  0.33  23.70 184.28 1.36  0.34  
30° 22.72  189.47  1.24  0.22  29.41  250.97  1.28  0.21  
35° 28.37  247.97  1.17  0.17  36.77  328.34  1.19  0.16  
40° 35.81  321.70  1.05  0.13  46.45  426.77  1.11  0.14  
Note: CSL, continuous slab loading; EJL, expansion joint loading; GS, geostatic stress. 620 
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