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Abstract 

An optimized cross-sectional area of a retaining wall assists in reducing material costs. 

Nevertheless, the design solution obtained from the traditional methods is not always the optimal one. 

Therefore, this study uses the flower pollination algorithm (FPA) to optimize the configuration of a 

gravity retaining wall, attempting to find the smallest cross-sectional area that meets design 

requirements. A key novelty is the use of a metaheuristic for gravity retaining wall design considering 

railway loading. First, the FPA is described in detail along with the general design methods for 

retaining walls and the definition of the optimisation problem. Next, a gravity retaining wall case study 

is performed and the FPA method is compared against alternative genetic algorithm (GA), particle 

swarm optimization (PSO), and other approaches. Lastly, a parametric analysis is performed to assess 

the impact of the design parameters on the optimization outcomes. Results indicate that the FPA 

furnishes an effective methodology for optimizing the design of gravity retaining walls when switch 

probability values oscillate between 0.1 and 0.8, the population comprises 20 individuals, the constant 

of the Lévy flight step size lies between 1 and 2, and the Lévy flight step size scale factor ranges from 

0.001 to 0.1. Further, the consistency of the algorithm's results and its convergence rate present a 

significant advantage over alternate algorithms. The evidence posits that implementing a landward-

leaning wall back with an inclination angle of 14.04° facilitates the attainment of the optimal minimum 

cross-sectional area. The wall height emerges as the predominant determinant of the minimum cross-

sectional area, demonstrating negligible sensitivity to ground bearing capacities exceeding 300 kPa. 

Finally, the algorithm is shown to be capable of identifying the design requirement thresholds for which 

retaining walls are unviable (e.g. ground bearing capacity being 100 kPa or the wall height exceeding 
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7 m), and for which alternative designs should be explored. 

Keywords: Optimum Design; Gravity Retaining Walls; Railway Embankments; Flower Pollination 

Algorithm  
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1 Introduction 

The railway is one of the most important means of transport [1,2]. And its roadbed is a significant 

structure situated below the railway track system, primarily constructed from natural soil and stone 

materials[3]. Compared to other engineering structures such as bridges, tunnels, and culverts, the 

roadbed has lower construction difficulty, engineering risk, and construction costs [4]. Embankments 

of soil and stone fill can be used directly to form parts of the roadbed where the surface is higher than 

the ground, and a slope with a certain gradient is built beyond the shoulder edge to ensure stability for 

the general embankment. Replacing the soil beneath a slope with a retaining structure can save the 

embankment footprint and reduce the amount of fill required. Gravity retaining walls are a much-

favoured type of retaining structure in civil and railway engineering due to their simple construction 

and ease of building. These walls rely on their own weight to resist the earth pressure behind them and 

prevent soil collapse and slipping. The cross-section design can be obtained from a given set of 

drawings or tables, or it can be drafted based on engineering experience, followed by an examination 

of the stability and strength [5]. Nevertheless, the design solution thus obtained presents challenges in 

ensuring that the retaining wall has the minimum cross-sectional area while satisfying the design 

requirements. 

Owing to the pervasive utilization of railway gravity retaining walls [6], even slight alterations in 

their cross-sectional configuration can yield substantial savings in terms of wall materials. 

Consequently, a prudent selection of the minimum cross-sectional area can effectively optimize 

material utilization and significantly bolster the economic efficiency entwined with material costs, 

thereby bearing considerable significance in the realm of railway construction. Furthermore, the 
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essential materials necessary for the fabrication of retaining walls, such as concrete and cement, are 

deemed carbon-intensive commodities. Similarly, the extensive transportation of materials and on-site 

construction activities entail carbon-intensive process [7]. Thus, reducing material consumption 

contributes to the mitigation of carbon emissions and the lessening of ecological repercussions 

associated with construction activities. This aspect assumes paramount significance in the realm of 

environmental conservation and the promotion of sustainable development. Henceforth, it is of utmost 

importance to employ a methodology that discerns the optimal design solution for railway gravity 

retaining wall, one that not only satisfies the design criteria but also embodies the smallest cross-

sectional area. 

Metaheuristic algorithms, such as cuckoo search (CS) [8], firefly algorithm (FA) [9], genetic 

algorithm (GA) [10], particle swarm optimization (PSO) [11], shuffled shepherd optimization 

algorithm (SSOA) [12], tug of war optimization (TWO) [13], charged system search (CSS) [14], and 

flower pollination algorithm (FPA) [15], can be applied in the design of engineering structures. These 

algorithms often consider the requirements to ensure the safety of structure as constraints, the 

construction costs such as material usage as objective functions, and the structural dimensions and 

spatial locations as design variables. This then helps engineers search for combinations of design 

variables that satisfy the constraints and minimise the value of the objective function. For instance, 

Kaveh and Mahdavi [16] utilized three algorithms, namely CSS, PSO, and a hybrid CSS and PSO 

(CSS-PSO), to investigate the optimal design solution for minimizing the construction cost or concrete 

volume of double curvature arch dams under seismic loading conditions. Metaheuristic optimization 

methods have also been employed in the realm of retaining wall design. For example, multiple 
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algorithms have been utilized to design cantilever retaining walls [17–22]. For gravity retaining walls, 

Varga et al. [23] used a real coded genetic algorithm (RCGA) to optimize the design considering the 

total cost of material, excavation, filling, and drainage as the objective function. Talatahari et al. [24] 

used the CSS algorithm to search for the optimum design of gravity retaining walls subject to seismic 

loads, using the self-weight of the wall as the objective function. In addition, Kaveh and Zakian [25] 

explored the optimal shape corresponding to the minimum cross-sectional area using various 

algorithms such as CSS for concrete gravity dams similar to gravity retaining walls that rely on self-

weight to maintain the stability of the system. 

Inspired by the pollination process of flowers in nature, Yang [15] proposed a population-based 

FPA metaheuristic algorithm. The algorithm amalgamates robust local and global search capabilities 

while exhibiting exceptional convergence speed. And it is advantageous compared to some other 

metaheuristic algorithms due to its ease of implementation, high efficiency, and adaptability. Notably, 

it has proven to be efficacious in tackling optimization problems within diverse scientific fields [26], 

such as image processing [27,28], power systems [29,30], structures [31] and geotechnical engineering 

[20,22,32,33]. Related to geotechnical engineering, Singh et al. [32] and ÖCAL et al. [33] proposed 

the use of FPA to search for the location of critical sliding surfaces for slope stability analysis, while 

Mergos and Mantoglou [20] and YÜCEL et al. [22] used FPA for the design of cantilever retaining 

walls. 

Upon considering the preceding discourse, an endeavour is undertaken to optimize the design of 

the gravity retaining wall of railway embankment utilizing FPA, with the aim of acquiring the optimum 

design that satisfies the design requisites while possessing the minimum cross-sectional area. An initial 
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exploratory study is carried out to demonstrate the advantages of the FPA over traditional design 

methods and to determine the optimal FPA parameter values that would produce the highest level of 

performance in gravity retaining wall design. Furthermore, a comparative study with established 

algorithms, such as GA, PSO, SSOA, and TWO is being performed to further assess its performance. 

Finally, a parametric study is conducted to demonstrate the effects of parameters associated with usage 

scenarios on the optimization results. These research findings can serve as a reference for the design 

of gravity retaining wall supporting railway embankment. 

2 Methodology 

This section provides a detailed description of the FPA and the general design methods for railway 

retaining walls. Following this, the optimization problem is stated. 

2.1 Flower pollination algorithm 

FPA, which is formed based on the analogy of flower pollination, has been utilized in 

contemporary civil engineering optimization applications. Pollen transfer in natural plants can be 

accomplished by either cross-pollination or self-pollination. Cross-pollination is predominantly 

achieved by biological pollination, in which biological pollinators like insects and birds transport 

pollen over considerable distances between plants. These animal pollinators are inclined to ignore other 

flower species and exclusively visit particular flower species, resulting in what is commonly known 

as “flower constancy” [34]. On the other hand, self-pollination is mainly achieved through abiotic 

pollination, wherein wind or water carries pollen between different flowers or the same flower. The 

aforementioned characteristics of flower pollination are defined by the following rules [15]: 

a. Cross-pollination is considered as global pollination, where the pollen-carrying pollinators 
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make a Lévy flight; 

b. Self-pollination is viewed as local pollination; 

c. Flower constancy can be regarded as the probability of reproduction, proportional to the 

similarity of the two flowers involved in the pollination process. 

d. Global or local pollination is determined by a switch probability p that is a pre-fixed constant 

in [0,1]. 

In the process of FPA, a group of candidate solution vectors X1, X2, …, Xi, …, Xnpop simulates a 

population comprising npop flowers. The next-generation solution vector is created by applying global 

or local pollination operations to Xi. Mathematically, the combination of global pollination (rule a) and 

flower constancy (rule c) can be expressed as: 

 ( )( )1

*

t t t

i i iX X L g X + = + −  (1) 

where t

iX  denotes the solution vector iX  at iteration t , g* signifies the best solution of the current 

iteration, γ represents the scaling factor controlling the step size, and λ is a constant of L(λ) for which 

Yang [15] recommends a value of 3/2. L(λ) > 0 denotes the Lévy flight step size.  

Moreover, local pollination (rule b) coupled with flower constancy (rule c) can be mathematically 

represented as: 

 ( )1t t t t

i i j kX X X X+ = + −  (2) 

where t

jX , t

kX  is a randomly chosen solution vector from the set of solution vectors at iteration t, and 

  is a random number chosen from a uniform distribution in [0, 1]. 

If a random number generated from the interval [0, 1] is smaller than the switch probability p 

specified in rule d, then global pollination is used to generate a new solution vector. Otherwise, local 
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pollination is carried out. Yang [15] has shown that a value of p = 0.8 typically produces acceptable 

results. The FPA pseudo-code is depicted in Fig. 1. 

Flower Pollination Algorithm 

Determine the objective function f(X), X = (x1, x2, …, xdim) 
Initialize a population of npop flowers 

Find the best solution g∗ of the initial population 

Set the value switch probability p∈[0, 1] 
while (t < Maximum iterations) 

for i = 1:npop (for all npop flowers in the population) 
if rand < p 

Draw a dim-dimensional vector L from a Lévy distribution 

Global pollination by 𝑋𝑖𝑡+1 = 𝑋𝑖𝑡 + 𝛾𝐿(𝜆)(𝑔∗ −𝑋𝑖𝑡).  
else 

Draw   value from a uniform distribution in [0, 1] 
Local pollination by 𝑋𝑖𝑡+1 = 𝑋𝑖𝑡 + 𝜀(𝑋𝑗𝑡 −𝑋𝑘𝑡) 

end if 
Caculate and evaluate objective function values of new solutions 

If better, update new solutions in the population 

end for 

Find the current best solution g∗ in new population 

end while 

Output the best solution and its objective function value 

Fig. 1 Pseudo-code of FPA 

2.2 Methods for retaining wall design 

The longitudinal extent of a retaining wall that provides support to a embankment considerably 

surpasses its cross-sectional dimensions, thereby enabling the simplification of its stability analysis as 

a problem of plane strain [35]. Fig. 2 illustrates a typical stability analysis diagram of a gravity 

retaining wall supporting a railway embankment. In Fig. 2a, the gravity retaining wall is depicted as 

having a height denoted H, with a top width of b, a wall face slope of 1:n, a wall back inclination angle 

of α, and a bottom surface width of B which is set at an angle of αo with respect to the horizontal. The 

height of the wall toe from the subgrade surface is indicated by Hs, while the height and width of the 
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wall toe step are specified as h1 and b1, respectively. Additionally, the face of the wall toe step is 

arranged in parallel with the wall face. In engineering practice, a slope of embankment with a height 

of h and a slope gradient of 1:1.5 is often set above the wall top. The line spacing of a double-track 

railway is denoted as D. The distance from the center of the track near retaining wall to the top of wall 

back is indicated as ds, while the distance to the edge of embankment shoulder is designated as d. 
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Fig. 2 Stability analysis diagram of gravity retaining wall supporting railway embankment: (a) geometry of 

embankment and force analysis of soil wedge behind the wall; (b) force analysis of gravity retaining wall 

For stability analysis, the track load, train load and the load between two tracks are simplified as 

a uniformly distributed load on the crest due to self-weight of imaginary fill. These loads are denoted 

as q1, q2 and q0 in Fig. 2a, and the distribution widths of q1 and q2 are represented by bt. Also, in Fig. 

2a, the sliding wedge behind the wall, corresponding to the active limit equilibrium state, is determined 

by the earth pressure theory of Coulomb and is subject to the self-weight Gs, the active earth pressure 

Ea at the back of the wall, and the stable soil reaction force R. θ denotes the angle between the sliding 

surface and the vertical surface, while δ refers to the angle between Ea and the normal to the wall back 

(i.e. the wall-soil friction angle), and φ represents the angle between R and the normal to the sliding 

surface (i.e. the friction angle of the fill). In the design of retaining walls with shallow foundations, the 

passive earth pressure in front of the wall may be disregarded. 
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Fig. 2b illustrates the forces exerted on the retaining wall and the stress distribution at its bottom 

surface. Stability analysis is conducted in accordance with the Code for Design of Retaining Structures 

of Railway Earthworks (TB10025-2019), which involves evaluating anti-slip stability, anti-

overturning stability, eccentricity and the compressive stress under the foundation. The anti-slip 

stability coefficients, Kc and 
cK  , are determined using Eq. 3 and Eq. 4respectively, while the anti-

overturning stability coefficient, K0, is calculated using Eq. 5. Kc pertains to the potential slip surface 

along the bottom surface of the retaining wall, while 
cK   corresponds to the potential slip surface 

along the horizontal plane where the wall heel is located. 
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where Gw is the self-weight of wall, Ex and Ey denote the horizontal and vertical components of active 

earth pressure Ea acting behind the wall. Meanwhile, Zw, Zx and Zy refer to the arm length of the 

moment created by Gw, Ex and Ey at the wall toe, respectively. N' represents the normal force acting 

on the wall base, f is the friction coefficient of the wall-ground. γg, f ' are the weight and the coefficient 

of friction of the ground soil respectively. 

The eccentricity e is determined using Eq. 6. Additionally, the compressive stress at the toe and 

heel of the wall (denoted by p1 and p2 respectively), and the average compressive stress pm under base, 

are calculated using Eq. 7 to Eq. 10. 
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where s denotes the moment arm length created by N' at the wall toe. 

In addition to conducting a stability analysis, it is also important to evaluate the strength of the 

retaining wall. As shown in Fig. 2b, Sections I and II, denoting the horizontal section where the top 

and bottom of the wall toe step are situated, are selected as representative sections for strength 

evaluation. The eccentricity e1 of the section is evaluated according to Eq. 11, and the tensile and 

compressive stresses in the normal direction are assessed using Eq. 12. When | e1| > B1/6, the outcomes 

of Eq. 12 contain negative value, indicating that tensile stress occurs in the normal direction of the 

section. It is essential to ensure that the tensile stress is less than the allowable bending tensile strength 

[σt] of the material. Additionally, the maximum compressive stress σmax of the section after stress 

redistribution should be evaluated using Eq. 13. The shear stress τ is calculated using Eq. 14 and 

( )1w 1y 1G E f+  as resistance can safely be omitted. Finally, note that the wall sections are evaluated 

approximately by the earth pressure applied to the entire back of the wall. 

 1 1 1w 1w 1y 1y 1x 1x 1w 1y2 ( ) ( )e B G Z E Z E Z G E= − + − +  (11) 

 
1w 1y 1

1,2

1 1

( ) 6
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G E e
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+
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
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 (13) 

 1x 1w 1y 1 1( ( ) )E G E f B = − +  (14) 

where B1 is the width of the section under evaluation, G1w represents the self-weight of the wall above 

the section, E1x and E1y denote the horizontal and vertical components of the active earth pressure 

above the section; Z1w, Z1x and Z1y refer to the moment arm lengths created by G1w, E1x and E1y, 

respectively, at the intersection of the section and the wall face. Finally, f1 refers to the friction 

coefficient of the wall material. 

2.3 Optimum design problem formulation 

Optimum design problems require explicit design variables, objective function and constraints. 

For the optimum design of railway gravity retaining walls, the inclination of the wall back and bottom 

are described using the tangent values of α and αo, respectively. And a negative value of tanα indicates 

a landward-leaning wall back, while a zero value signifies vertical back, and a positive value indicates 

an outward-leaning inclination. Then, five parameters: n, tanα, b, tanαo and b1, are considered as design 

variables to determine the geometry of wall. If the angle β shown in Fig. 2b, is not greater than 45°, 

no bending and shear stresses need to be checked at the wall toe. By setting the toe step face slope at 

1:n and β = 45°, the value of h1 can be obtained as b1/(1−n). Empirically, the following design variables 

were determined: n[0, 0.35], tanα[−0.25, 0.25], b[0.2, 0.625H], tanαo[0, 0.20] and b1[0, H/20]. 

The objective function is defined as the cross-sectional area of the retaining wall, and the optimum 

design solution should have the minimum cross-sectional area Sw. The constraints for the optimal 

design of the general regions are that: Kc, cK   , K0, e, p1, p2, pm, e1, σ1,2, σmax and τ satisfy the 
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requirements specified in Table 1. In the table, [σc] represents the compressive strength of the retaining 

wall material and [τ] denotes the shear strength. The bearing capacity σ0 of ground and other parameters 

such as Hs, φ, f, ds, that determine the working scenario of the retaining wall, can be input into the 

optimum design model as known design constants. 

Table 1. Performance criteria used in gravity retaining wall design 

Potential failure mode Performance criteria 

Instability 

Sliding Kc ≥ 1.3; Kc'  ≥ 1.3 

Overturning K0 ≥ 1.6 

Eccentricity 
e ≤ B/4 for unweathered or weakly weathered 

hard rock; e ≤ B/6 for other condition.  

Bearing capacity (p1,  p2, or pm) p1 ≤ σ0;  p2 ≤ 1.3σ0; pm ≤ σ0  

Insufficient wall strength 

Eccentricity |e1| ≤ 0.3B1 

Normal compressive or tensile stress |σ1,2| ≤ [σc] and [σt] 

Maximum normal compressive stress σmax ≤ [σc] 

Shear stress τ ≤ [τ] 

The optimum design of the retaining wall is achieved using the FPA. The flowchart is illustrated 

in Fig. 3 and the steps are as follows: 

Step 1: Parameter input. Enter the values of the parameters σ0, Hs, φ, f, and ds that define the 

working scenario in which the retaining wall will be employed. Additionally, specify the parameters p, 

npop, λ, γ, and the maximum number of iterations of the FPA algorithm. 

Step 2: Initialization. In order to make the initial solution have a value of b while satisfying the 

constraints, n, tanα, tanαo and b1 for each solution vector are generated randomly. The initial minimum 

value of b is then set as bmin = 0.2 m, and the initial maximum value of b is set as bmax = 0.625H. The 

retaining wall is then checked at b=(bmax+bmin)/2. If the check passes, bmax is updated to b, and if it 

fails, bmin is updated to b, until convergence (bmax – bmin ≤ 0.001 m). The initial solution that do not 
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satisfy the constraints are flagged, and unflagged in subsequent iterations if an optimal design solution 

emerges, to identify scenarios for which no solution exists. Subsequently, the solution exhibiting the 

smallest cross-sectional area is identified as the global optimal solution g*. 

Step 3: Pollination. For each design solution 𝑋𝑖𝑡, a random number is generated within the range 

of [0, 1], and subsequently compared to the switch probability p. In the event that the random number 

is smaller than p, a fresh solution 𝑋𝑖𝑡+1 is produced through global pollination, as exemplified by Eq. 

1. Conversely, if the random number is not less than p, a new solution 𝑋𝑖𝑡+1 is generated through local 

pollination, as elucidated by Eq. 2. 

Step 4: Evaluation. if the newly obtained solution 𝑋𝑖𝑡+1  meet the stability and strength 

requirements, while also possessing a wall cross-sectional area 𝑆𝑤,𝑖𝑡+1 that is smaller than 𝑆𝑤,𝑖𝑡  of the 

original solution 𝑋𝑖𝑡 , then 𝑋𝑖𝑡  should be substituted with 𝑋𝑖𝑡+1 . Otherwise, 𝑋𝑖𝑡  remains unchanged. 

Further, if 𝑆𝑤,𝑖𝑡+1 is smaller than the cross-sectional area of current global optimal solution g*, then g* 

is replaced by 𝑋𝑖𝑡+1. 

Step 5: Termination. Revisit steps 3 and 4 until the maximum number of iterations is satisfied, 

and the global optimum is output. 
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Fig. 3 Flowchart of optimum design of gravity retaining wall by FPA 

3 Case study 

In this section, a high-speed railway retaining wall is used as study case. First, the original design 

solution is compared with the FPA optimization results, and the FPA parameters such as p, npop, λ, and 

γ are tuned to explore the reasonable values in the optimal design of retaining walls. In addition, FPA 

is compared with GA, PSO, SSOA, and TWO algorithms to further evaluate the performance of FPA 

in this study. 
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3.1 Optimization results 

The case utilizes a concrete slab track, with parameters d = 4.3 m, bt = 3.1 m, D = 5 m, 1q =13.7 

kN/m2, 2q = 40.4 kN/m2
 and q0 =2.3 kN/m2. The original design plan employed C30 concrete for the 

retaining wall, while the embankment soil has average weight γs = 20 kN/m3, φ = 35°, and gravel 

ground has γg = 19 kN/m3, σ0 = 300 kPa, f '= 0.7. In addition, δ = φ/2 and f = 0.38 were determined 

respectively at the back and bottom of the wall. And the scheme determined ds = 5.8 m and Hs = 7 m. 

Optimized design from FPA adopts the same design parameters as the original plan. The comparison 

of the design solutions before and after optimization is shown in Fig. 4. In addition, the C30 concrete 

parameters, including γc = 23 kN/m3, [σc] = 10 MPa, [σt] = 0.55 MPa, [τ] = 1.1 MPa, are determined 

according to the design code. 
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Fig. 4 Comparison of design schemes (Unit: m): (a) original design configuration; (b) FPA optimization with the 

same stability coefficient as the original design; (c) reduced wall width of the original design while meeting design 

requirements; (d) FPA global optimization while satisfying design requirements 

All four design options shown in Fig. 4 meet the design requirements for wall strength, as well as 

eccentricity and stress at the bottom of the wall. The original design in Fig. 4a has a safety margin 

exceeding the design requirements outlined in Table 1, with a cross-sectional area of wall measuring 

10.347 m2. Selecting the same stability coefficient as the original design, the optimized design 

employing FPA in Fig. 4b has a reduced cross-sectional area of 9.359 m2, representing a reduction of 

approximately 9.55%. Subsequently, the thickness of the wall in the initial design is decreased to 

precisely align with the design specifications in Table 1, resulting in the scheme displayed in Fig. 4c. 

FPA is once again utilized to optimize the design according to design requirements, leading to the 

scheme depicted in Fig. 4d, wherein the cross-sectional area experiences a reduction of approximately 

12.59%. The results demonstrate that FPA yields a significant optimization effect on the section design 

of gravity retaining walls employed in railways. It is worth noting that the best solutions presented in 

Fig. 4b and d derived after numerous FPA trials. 
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The finite difference method is employed to construct a plane strain numerical model, elucidating 

the force condition acting on railway gravity retaining wall and enabling an evaluation of its support 

capacity both before and after optimal design. The numerical model integrates the construction process 

within the simulation, adhering to the code-required minimum burial depth of 1.0 m for the designed 

retaining wall. The development and validation of the model can be found in Appendix A. Following 

the construction of the retaining wall and the embankment fill, two design loads, q1 and q0, representing 

the self-weight of the track structure and the load between two tracks, are applied to the embankment 

crest. Following this, train loading, labelled as q2, is implemented and progressively increased in 

increments of 0.2-fold, signifying the enhanced value as q2a. This process continues until a sudden 

increase of wall displacement signals structural instability. 

The primary displacements of all four walls in Fig. 4 under q2a manifest as rotation around the 

wall base. And the relationship between the incremental displacement at the wall top and q2a/q2 is 

shown in Fig. 5. Evidently, both the embankments supported by the pre- and post-optimization 

retaining walls can withstand surcharge loads greater than those stipulated by the design code. The 

post-optimization retaining walls, depicted in Fig. 4b and d, support embankments that can withstand 

maximum q2a values of approximately 5.2 and 3.6 times the value dictated by the specifications, 

slightly exceeding those supported by the non-optimized walls. This suggests that the optimized 

retaining walls, subjected to the same constraints, are not only more economic in terms of wall material 

but also exhibit potentially superior support capacity compared to their non-optimized counterparts. 
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Fig. 5 Displacement of wall versus surcharge loads of embankment crest 

3.2 FPA parameter tuning 

As a preliminary investigation, it is crucial to investigate the impact of FPA parameters on the 

optimum design results of gravity retaining walls for railways. Specifically, the effects of p, npop, λ and 

γ will be probed herein. The influences of each parameter on the outcomes of ten runs after 2000 

iterations are presented in Table 2, while their effects on the average iteration histories of the optimal 

design are illustrated in Fig. 6. The parameter values are adjusted based on the basic combination of p 

= 0.5, npop = 20, λ = 3/2 and γ = 0.01. 

Table 2 displays the average, minimum, and maximum cross-sectional area obtained by the ten 

FPA runs, along with their corresponding coefficient of variation. The FPA algorithm produced 

promising predictions for most values of p, which range from 0 to 1.0 in increments of 0.1, as indicated 

by the minimum value of Sw. However, the quality of the outcomes deteriorates significantly for the 

extreme p values of 0 or 1.0, where the algorithm fails to combine global and local search to update 

the design variables. On the other hand, Sw values calculated by p[0.1, 0.9] are better and more 

consistent. Moreover, the quality of the results further improves for p values ranging from 0.1 to 0.8. 
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In addition, Fig. 6a shows the average iteration histories generated by the FPA simulations using 

various values of p. It can be seen that a p value of 1.0 requires the greatest number of iterative steps 

to achieve convergence followed by a null value of p, which fails to fully exploit the performance of 

the algorithm. Although setting p = 0.9 gives acceptable results, FPA convergence requires about 800 

iterations, which is significantly larger than 500 iterations needed for p[0.1, 0.8]. Further analysis of 

the optimisation results and computational efficiency reveals that the FPA performs well in finding the 

optimum design solution when the switch probability value p is within the range 0.1 to 0.8. 

Table 2. FPA outcomes for different parameter values 

Parameters Values Avg. Sw (m2) Max. Sw (m2) Min. Sw (m2) CoV (%) 

p 

0 7.196 8.031 6.781 5.53 

0.1 6.723 6.723 6.723 9.62e-04 

0.2 6.723 6.723 6.723 1.87e-04 

0.3 6.723 6.723 6.723 1.11e-04 

0.4 6.723 6.723 6.723 1.20e-04 

0.5 6.723 6.723 6.723 3.56e-04 

0.6 6.723 6.723 6.723 3.70e-04 

0.7 6.723 6.723 6.723 8.07e-04 

0.8 6.723 6.723 6.723 2.75e-03 

0.9 6.725 6.728 6.724 2.15e-02 

1.0 7.504 8.019 7.140 4.12 

npop 

10 6.723 6.723 6.723 1.51e-04 

20 6.723 6.723 6.723 3.56e-04 

30 6.723 6.723 6.723 9.79e-05 

λ 

1 6.723 6.723 6.723 2.99e-04 

3/2 6.723 6.723 6.723 3.56e-04 

2 6.723 6.723 6.723 1.45e-06 

γ 

0.001 6.723 6.723 6.723 7.73e-06 

0.01 6.723 6.723 6.723 3.56e-04 

0.1 6.723 6.723 6.723 2.57e-03 

1.0 6.725 6.741 6.723 8.52e-02 

Note: CoV, Coefficient of variation. 
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Furthermore, Table 2 shows that the difference of the maximum Sw values obtained for npop = 10 

to 30 is within 1‰ m2, and this also holds true for the average and minimum Sw values. Additionally, 

the coefficients of variation for the results of multiple simulations are small, which shows that the 

population size has no significant influence on the optimal results. In addition, Fig. 6b illustrates the 

average iteration histories of Sw with different npop values. It is seen that all solutions converge almost 

to the same solution at approximately 300 iterations. However, convergence is still relatively slow at 

npop = 10. In contrast, the computational cost per iteration step increases significantly with a relatively 

large value of 30 for npop, without achieving better results or higher convergence efficiency. Therefore, 

it is recommended to set the value of npop to 20 when using the FPA method to optimize the design of 

gravity retaining walls. 

6

7

8

9

10

S
w
/m

2

           p

 0  0.1  0.2

 0.3  0.4  0.5

 0.6  0.7  0.8

 0.9       1.0

(a)          npop

 10

 20

 30

(b)

 

0 500 1000 1500 2000
6

7

8

9

10

S
w
/m

2

Iterations

          λ
 1

 3/2

 2

(c)

0 500 1000 1500 2000
Iterations

          γ
 0.001

 0.01

 0.1

 1.0

(d)

 
 

Fig. 6 Iteration histories for different parameter values: (a) p; (b) npop; (c) λ; (d) γ 

Based on Table 2, it is apparent that optimal results can be achieved using λ values of 1, 3/2, and 
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2 after conducting 2000 iterations in the FPA simulations. Furthermore, Fig. 6c displays the average 

iteration histories of Sw with different λ values. It can be seen that the value of λ has almost no effect 

on the convergence efficiency. 

In addition, the optimization results in Table 2 show that the outcomes for γ = 0.001 to 0.1 are 

superior compared to those for the larger value of 1.0. Moreover, Fig. 6d illustrates the average iteration 

histories of Sw with different γ values. It’s observable that γ = 0.1 and 1.0 exhibit slightly faster 

convergence, but the overall variance in convergence efficiency across γ values is not significant. In 

light of the optimal results and efficiency, it was concluded to set γ in the range 0.001 to 0.1. 

3.3 Comparison of optimization algorithms 

The case study is also used to compare the performance of FPA with GA, PSO, SSOA and TWO 

in finding the optimum design. In a similar fashion to FPA, GA, PSO, SSOA and TWO are calculated 

with a population size of 20 individuals and 2000 maximum iterations. The MATLAB toolbox is 

utilized to implement the GA algorithm, with the default values being utilized for all parameters 

excluding the convergence criterion. PSO, on the other hand, makes use of the standard version as 

outlined by Kennedy [11]. In addition, parameters of SSOA and TWO tuned according to Kaveh’s 

recommendations [36]. The parameters α0, β0, and βmax of SSOA are assigned the values 1.5, 2.0, and 

2.5, respectively. Similarly, the parameters μs, α, and β of TWO take on the values 1.0, 0.99, and 0.01, 

respectively. In this context, the symbols of parameters for SSOA and TWO retain their original 

meanings as described in Ref. [36].The FPA parameters used for comparison are: p = 0.5, λ = 3/2, γ = 

0.01. 

Table 3 presents the statistical outcomes of 10 runs for various optimization methods. Each method 
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gives satisfactory results after several runs. However, compared to the GA, PSO, SSOA and TWO 

algorithms, the FPA algorithm shows higher convergence. The average iteration histories of Sw for 

each method are shown in Fig. 7. PSO, SSOA and TWO achieve an acceptable outcome after 

approximately 100 iterations, requiring a lower number of iterations. They are followed by the FPA at 

approximately 250 iterations, while GA requires the most iterations (approximately 800). Considering 

it’s performance, the FPA method is a promising design optimization tool for the railway gravity 

retaining wall problem, and offers advantages in terms of convergence and number of iterations. 

Table 3. Outcomes for different optimization methods 

Method Avg. Sw (m2) Max. Sw (m2) Min. Sw (m2) CoV (%) 

FPA 6.723 6.723 6.723 3.56e-04 

PSO 6.734 6.751 6.723 0.17 

GA 6.728 6.742 6.723 0.09 

SSOA 6.725 6.728 6.723 0.03 

TWO 6.727 6.737 6.723 0.07 

Note: CoV, Coefficient of variation. 
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Fig. 7 Iteration histories for various optimization methods 

4 Analysis 

A parametric analysis was performed to study the effect of different design parameters on the 
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solution. Table 4 shows the design constants, σ0, Hs, φ, ds and f considered, resulting in 4,914 design 

permutations. An additional constraint was that the top of the wall is flush or slightly below the surface 

of the embankment, thus giving a wall height H =Hs – h, where h = (ds – 4.3 m)/1.5 for ds > 4.3 m, and 

h = 0 for ds ≤ 4.3 m. Furthermore, the friction coefficient 𝑓′  of the ground was approximated as 

tan(1.67arctanf), while the other parameters were adopted from Section 3.1. Additionally, the retaining 

wall design was optimized for varying application scenarios using FPA, with the maximum number of 

iterations set to 1,000. npop, p, λ and γ were set to: 20, 0.5, 3/2 and 0.01, respectively. Each application 

scenario underwent three runs, and the optimal solution was chosen as the final outcome. 

Table 4. Values of design constants associated with working scenarios 

Design constants Boundaries Increment Unit 

σ0 
[100, 400) 50 

kPa 
[400, 1000] 100 

Hs [3, 9] 1 m 

φ [30, 40] 5 ° 

f [0.3, 0.8] 0.1 — 

ds  [2.8, 5.3] 1.5 m 

 

4.1 Design constraints 

The results indicate that optimal solutions can be achieved when σ0 ≥ 200 kPa. However, certain 

scenarios did not yield solutions capable of meeting the design requirements (e.g., when σ0 is 100 kPa 

or 150 kPa). This suggests that the gravity retaining wall design parameters under consideration are 

not suitable for supporting embankments under these particular conditions. Such scenarios that lack a 

solution vector are labelled in Fig. 8. This confirms that it is a challenging task to design a retaining 

wall for cases where σ0 is low and Hs is high. For example, for scenarios where σ0 = 100 kPa and Hs ≥ 
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7 m, the preferrable design solution is likely to an alternatvie approach (i.e. not a gravity retaining 

wall). Similarly, gravity retaining walls that satisfy the problem constraints may not be attainable when 

Hs is 5 m or 6 m at σ0 = 100 kPa, or when Hs is 8 m or 9 m at σ0 = 150 kPa, particularly in cases where 

the wall is near to the track structure, the friction coefficient of wall-ground is insufficient or the 

friction angle of embankment fill is minimal. 
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Fig. 8 Classification of scenarios based on the existence of solution vector: (a) σ0 = 100 kPa; (b) σ0 = 150 kPa 
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4.2 Sensitivity analysis 

The root-mean-square (RMS) errors of the training results of the ANFIS model were compared 

for each input variable, with the aim of assessing the most influential variables [23,37]. The scenarios 

without a solution in Fig. 8 were omitted from the analysis, and the remaining data were then divided 

into training and checking sets, with the latter accounting for 30% of the data. Subsequently, 

MATLAB’s “exhsrch” function was employed to investigate the relative importance of the design 

constants: σ0, Hs, φ, f, and ds, on Sw. The correspondence between the design constants and the RSM 

errors is presented in Fig. 9, with the variable or combination of variables on the upper side exhibiting 

the lowest errors and having the greatest influence on Sw. 
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Fig. 9 Correspondence between the design constants and RSM errors: (a) single input variable; (b) all two input 

variable combinations; (c) all three input variable combinations; (d) all four input variable combinations 

Fig. 9a illustrates that Hs is the most critical parameter for Sw, followed by φ, ds, f, and finally σ0 

in descending order of importance. Single-factor analysis shows that the training and checking RSM 

errors are comparable, indicating the absence of overfitting and suggesting that the interplay of 
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multiple factors on Sw can be further explored. As observed in Fig. 9b-d, the RMS errors decrease with 

an increase in the number of input parameters, and the combination of “φ, Hs, ds, f ” yields the smallest 

errors and proves to be the most influential for Sw. It can be inferred that the interaction of multiple 

design constants significantly affects Sw, however σ0 has only a weak correlation with Sw. 

Assuming σ0 = 1000 kPa as a reference value, the relative differences in Sw between other values 

of σ0 and the reference value were calculated for each usage scenario, and the relationship between 

their distribution and σ0 is depicted in Fig. 10. For σ0 ≥ 300 kPa, the relative difference in Sw falls within 

the range of [-0.5%, +5.0%], with an average value close to zero. Especially, for σ0 ≥ 350 kPa, the 

relative difference of Sw is confined to a narrow range of [−0.5%, +1.0%]. This suggests that when the 

bearing capacity of the ground is greater than 300 kPa, it does not impact the optimal design outcomes 

of the wall cross-sectional area. For σ0 < 300 kPa, Sw exhibits a significant increase for higher Hs 

values compared to the reference conditions, leading to a noticeable increase in the relative difference 

of Sw. However, the mean increase remains below 5.0%. It can be seen that the correlation between Sw 

and σ0 is limited. 
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Fig. 10 Relationship between relative difference distribution of Sw and σ0 
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Fig. 11 shows the distribution of Sw at different levels of each design constant. In Fig. 11a, an 

increase in Hs implies a taller embankment and gravity retaining wall, thus requiring a larger Sw to 

support and stabilize the soil behind the wall. An increase of φ leads to a reduction in the active earth 

pressure behind the wall, whereas a larger value of f can improve the resistance of the wall to slip 

instability. Moreover, a greater ds can mitigate the impact of track and train loads on wall. Therefore, 

Sw in Fig. 11b-d decreases overall as the values of φ, f, and ds increase. Notably, in Fig. 11e, Sw associated 

with lower values of σ0 (100 kPa and 150 kPa) is considerably smaller than the scenarios where σ0 is 

higher, due to the exclusion of unviable scenarios for large Hs. In addition, the distribution pattern of 

Sw at σ0 ≥ 300 kPa shows similarity, which is consistent with the previous discussion. 
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Fig. 11 Distribution of Sw at different values of (a) Hs; (b) φ; (c) f; (d) ds; (e) σ0 

4.3 Analysis of design variables 

The optimization results [5] demonstrate that the inclination of gravity retaining wall back in the 
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optimal design solution consistently corresponds to the given lower boundary [23]. Further analysis of 

the optimization results for the railway gravity retaining wall reveals that the optimal design solutions 

for 97.8% of the working scenarios have tanα[−0.25, −0.24], which is approximately the same as the 

lower limit value. The optimal solutions for the working scenarios with tanα > −0.24 are adjusted by 

setting tanα = −0.25, and the optimization processes are performed again. It is found that the optimal 

design solution with tanα = −0.25 could solely not be obtained in a limited number of scenarios 

characterized by σ0 = 100 kPa and Hs = 5 m, as well as σ0 = 150 kPa and Hs = 7 m or 8 m, accompanied 

by considerably small values of f and ds. In addition, the Sw of the optimal solution, achieved by 

adjusting the tanα value to −0.25 for the remaining scenarios, exhibits a modest increase of no more 

than 2.0% compared to that obtained with unmodified tanα value. This observation implies that the 

design of the railway retaining wall, featuring a landward-leaning back with a inclination angle of 

14.04° (tanα = −0.25), aids in achieving the proper minimum cross-sectional area. 

No statistically significant patterns were identified for the other design variables of optimal design 

solution. However, it is believed that the following analysis can still serve as a useful reference for 

engineers in determining a more rational design solution. The relationship between the width of the 

toe step and the height of the retaining wall is denoted by b1/H, while the relationship between the 

width of the wall top and the height of the wall is expressed as b/H. By employing the “exhsrch” 

function, it is evident that the the friction coefficient f of the wall-ground exerts the most substantial 

influence on n, tanαo, b1/H, and b/H of optimization results. Consequently, the discussion primarily 

revolves around the influence of varying values of f on n, tanαo, b1/H, and b/H of optimal design 

solution, as depicted in Fig. 12. 
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Fig. 12 Distribution of (a) n, (b) tanαo, (c) b1/H, and (d) b/H at different values of f 

As shown in Fig. 12a, the average magnitude of n exhibits an ascending trend as f escalates, 

indicating that heightened wall-ground friction leads to a more gradual inclination of the wall face for 

optimal design solution. Moreover, it is imperative to note that the optimal design solution should have 

n = 0.35 for a substantial majority of scenarios wherein the value of f does not fall below 0.6. In Fig. 

12b, for a diminutive f value of 0.3, the friction of the ground soil is low. Consequently, the design of 

the retaining wall is predominantly controlled by the potential slip surface along the horizontal plane 

where the wall heel is located. In these scenarios, the most suitable design solution for the majority of 

applications corresponds to a tanαo value of approximately 0.165. For f ≥ 0.4, the optimal design 

solution of retaining wall is independent of ground soil strength. As f increases, gentle bottom surface 

of wall can offer sufficient resistance against slip through wall-ground friction. Consequently, the mean 

tanαo decreases with increasing f. In addition, the optimal solutions for most scenarios with f = 0.4 and 

f = 0.8 correspond to tanαo values of 0.2 (upper limit) and 0.01 (approximate horizontal surface), 

respectively. 

Fig. 12c demonstrates a larger distribution and smaller mean value of b1/H for the optimal design 
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solution when f = 0.3. However, when f ≥ 0.4, b1/H converges around 0.05, indicating that obtaining a 

design solution with a smaller cross-sectional area is easier when the wall toe step width is 1/20 of the 

wall height. Fig. 12d reveals that, as f increases, the mean value of b/H for the optimal design solution 

generally decreases. Once f surpasses 0.6, the b/H distribution remains largely unaffected by further 

changes in f. During this stage, the optimal design solution corresponds to a wall top width ranging 

from approximately 0.05 to 0.23 times the wall height. 

5 Conclusions 

The design of railway gravity retaining walls using conventional methods can often pose 

challenges in achieving optimal cross-sectional areas. In this study, the flower pollination algorithm 

(FPA) is employed to address this issue and find a design solution that meets the design requirements 

with a minimum cross-sectional area Sw. The performance of FPA in optimizing retaining walls is 

explored through a case study on high-speed railway. Furthermore, a parametric analysis is conducted 

to examine the impact of design parameters on Sw where the top of the wall is flush with, or slightly 

below the embankment crest. The main conclusions can be summarized as follows: 

(1) The FPA approach was successful in finding solutions that met the design requirements while 

minimising the cross sectional area of the retaining wall. Detailed analysis showed that the value of Sw 

is influenced by the relationship between height Hs of the wall toe from the embankment crest, the 

friction angle φ of the fill behind the wall, the distance ds between the highest point of the wall back 

and the centre line of the track near the wall, and friction coefficient f of the wall-ground. Hs exerts the 

greatest influence on Sw, followed by φ, ds, f and ground bearing capacity σ0. Further, Hs exhibits a 

positive correlation with Sw, while φ, ds and f display a negative correlation. Also, the average relative 
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difference in Sw remains below 5.0% when σ0 is reduced compared to σ0 = 1000 kPa for every 

combination of Hs, φ, ds, and f. Lastly, Sw is insensitive to σ0 values of 300 kPa or greater. 

(2) Design variables selection critically influences the development of design strategies that 

minimize the cross-sectional area for retaining walls. Statistical scrutiny of these strategies reveals the 

utility of a specific railway retaining wall blueprint, distinguished by a landward-leaning wall back at 

an inclination angle α of 14.04° (tanα = −0.25), in achieving minimum cross-sectional dimensions. 

Furthermore, f significantly influences other design variables. A wall face slope of 1:0.35 becomes 

beneficial for constructing optimal designs when f ≥ 0.6, and in such optimal designs, the wall top 

width approximates 0.05 to 0.23 times the wall height. Moreover, under the majority of working 

scenarios where f ≥ 0.4, the optimal design solution approximates the toe step width to be 1/20 of the 

wall height. Furthermore, selecting tanαo—where αo is the angle between the bottom surface of wall 

and the horizontal plane—as 0.165, 0.2, or 0.01 when f equals 0.3, 0.4, or 0.8, respectively, facilitates 

the achievement of the minimal cross-sectional area for the retaining wall. 

(3) For certain simulation permutations it was found that a gravity retaining wall was not a viable 

design solution, in particular for problems with a low σ0 and a high Hs. More specifically, gravity 

retaining wall solutions could not be found when σ0 = 100 kPa and Hs ≥ 7 m. Furthermore, the 

attainment of an appropriate design solution may be impeded by constraints such as Hs = 5 m or 6 m 

at σ0 = 100 kPa, or Hs = 8 m or 9 m at σ0 = 150 kPa, particularly in cases where the retaining wall is in 

close proximity to the track structure, the friction of the wall-ground is deficient, or the friction angle 

of the embankment fill behind the wall is insufficient. 

(4) Parametric investigations are undertaken to identify the FPA parameters that yield peak 
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performance of this algorithm for the optimization problem. It is found that switch probability values 

within the range of 0.1 and 0.8, a population size of 20, a constant of the Lévy flight step size in the 

span of 1 and 2, and a Lévy flight step size scale factor between 0.001 and 0.1 yield the optimum 

performance in terms of both obtaining smallest cross-sectional area and convergence performance. 

(5) The efficiency of FPA in solving the optimization problem of this study is compared with GA, 

PSO, SSOA, and TWO algorithms. All the algorithms can obtain the optimum design solution for the 

retaining wall after several runs. However, FPA has better consistency in the results obtained from 

repeated runs than the latter four, and requires fewer iterations to converge to the ideal result than the 

GA algorithm. Furthermore, numerical models suggest that design solutions derived from optimization 

strategies demonstrate a potential superiority in support capacity compared to their non-optimized 

counterparts. 

It should be noted that this paper allows for the minimisation of cross-sectional areas, but this 

might not always lead to the minimum costs, for example because different design solutions may 

require different construction methods. Also, some projects may be more concerned with construction 

duration (e.g. a railway where the construction needs completed rapidly before operation), 

sustainability, or resilience against future climate conditions in comparison to cross-sectional area. 

Furthermore, the constraints within the optimization methodology employed in the paper solely 

address the stability and strength requirements of the wall in accordance with the prevailing design 

codes. However, this approach does not incorporate the deformation of embankment fill behind the 

wall. Such deformation plays a crucial role in relation to the operational state of the train and the long-

term durability performance of the track and embankment. In light of this, although this research aims 
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to guide the design of railway gravity retaining walls, it acknowledges the possible need for further 

adjustments for real-life application. 
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Appendix A 

A1. Model development 

The analysis of the support capacity of railway gravity retaining wall is abstracted as a plane strain 

problem. The numerical model conservatively considers only the semi-embankment symmetrical to 

the line center, with each structural component simulated by solid elements. The fill within the 

embankment incorporates a stratified structure, comprising, in descending order, an upper trackbed, a 

lower trackbed, and subgrade. Interactions between the soil and the wall are simulated through the use 

of interface elements, with shared grid points at the position of contact between each soil layer. In 

reference to Fig. 4a within the main text, the numerical model constructed for the embankment is 

depicted in Fig. A1. The upper trackbed measures 0.4 m, the lower trackbed is 2.3 m, and the model 

encompasses 2,632 elements and 2,774 grid points in total. In addition, roller boundaries are 

implemented for the lateral sides, while pinned boundaries are utilized for the bottom of the model. 
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Fig. A1 Meshes and configuration of the numerical model 

The numerical simulation process duly incorporates the construction sequence. Initially, a 

geological model is crafted, and a geostatic stress field is cultivated during the site conditioning phase. 

The subsequent stage involves the assembly of the retaining wall and emplacement of backfill, with 

both displacement and velocity fields being nullified upon convergence. The penultimate phase mimics 

the implementation of an evenly distributed load, epitomizing the self-weight of the tracks and the load 

interposed between them, subsequently leading to the computation of the stress field. Ultimately, a 

uniformly distributed load symbolizing the influence of the train is imposed and is gradually amplified 

to probe the stability status of the retaining wall. 

The concrete constituting the retaining wall structure in the model is delineated as a linearly elastic 

material, while the soils employ an ideal elastoplastic model adhering to the Mohr-Coulomb failure 

criterion, with Table A1 for material properties. Pertaining to soils, the deformation modulus (E) is 

employed under the influence of structural self-weight, whereas the elastic modulus (Ed) is used to 

ascertain the consequences of train loadings. Luo et al. [38] proposed that the modulus of subgrade 

reaction (K30) can serve as an effective estimator for both E and Ed. In these cases, the K30 values of 
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the upper trackbed, lower trackbed, and subgrade are respectively designated as per the recommended 

limit values of 190 MPa/m, 150 MPa/m, 130 MPa/m, as stipulated by the Code for Design of Railway 

Earth Structure (TB10001-2016). 

Table A1. Material properties of numerical model 

Component Material Density ρ 

(kg∙m-3) 

Deformation 
modulus E 

(MPa) 

Elastic 
Modulus Ed 

(MPa) 

Poisson’s ratio 
μ 

Friction angle φ 
(°) 

Retaining wall C30 concrete 2,300 — 30,000 0.20 — 

Upper trackbed Graded gravel 2,100 41.9 214.0 0.25 41.8 

Lower trackbed Class-A, B fill 2,050 32.2 168.6 0.30 35.0 

Subgrade Class-A, B, C fill 2,000 27.8 147.8 0.30 34.5 

Ground Coarse-grained soil 2,000 25.4 135.8 0.30 34.2 

Utilising Eq. 15, which establishes a relationship between the ground’s bearing capacity (σ0) and 

K30 [39], an interconnection between E, Ed, and σ0 can be delineated. The friction angle (φ) for coarse-

grained ground soil can be characterised by a statistical relationship with σ0, as manifested in Eq. 16, 

with data fitting this formulation derived from the Technical Code for Building Foundation (DB21/T 

907-2015). Regarding the scenarios depicted in Fig. 4, the φ of ground is estimated to be 34.18° using 

Eq. 16 with σ0 equating to 300 kPa, and it closely matches the value of 34.99° (arctan f ')utilised in 

stability analysis. 

 30 00.42 6.25K = −  (15) 

where K30 and σ0 are expressed in units of MPa/m and kPa, respectively. 

 00.0166 29.2 = +  (16) 

where φ and σ0 are both measured in degree and kPa, respectively. 

The coefficient of earth pressure at rest (Kh,0) in normally consolidated soil exhibits an 

approximate correlation with the soil friction angle φ, as indicated by Eq. 17 [40]. Moreover, Eq. 18 

[41] shows the relationship between Kh,0 and Poisson’s ratio μ under the assumption of elasticity. 
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Subsequently, Eq. 19 can be derived to provide an approximation for the connection between μ and φ. 

Additionally, an associated flow rule is employed in the calculations. 

 h 0 1 sinK = −，  (17) 

 h 0
1

K



=
−，  (18) 

 h 0

h 0

1 sin

1 2 sin

K

K




−
= =

+ −
，

，

 (19) 

A2. Model validation 

The validity of numerical model is established through verification with an in-situ test documented 

by Feng et al. [42], derived from a railway cross-section depicted in Fig. A2. And the materials’ 

parameters of numerical model are also indicated in Fig. A2. Furthermore, the track and train loading 

in the simulation adhere to the guidelines stipulated by the Code for Design of Retaining Structures of 

Railway Earthworks (TB10025-2019). According to the recommendations, q1 is to be set at 17.3 kN/m2, 

q2 at 55.2 kN/m2, with a distribution width of 3.4 m. 

 

Fig. A2 Cross-section of in-situ test and parameters of numerical model 
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Fig. A3 illustrates the comparison, with calculated values of earth pressure due to self-weight of 

structure and train loading approximately matching the measured values in magnitude and trend. The 

consistency implies that the numerical model is suitable for analyzing the force of railway gravity 

retaining wall. 
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Fig. A3 Comparison between calculated and test data for earth pressure against the retaining wall 
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