
This is a repository copy of OpenPodcar:An Open Source Vehicle for Self-Driving Car 
Research.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/203734/

Version: Published Version

Article:

Camara, Fanta, Waltham, Chris, Churchill, Grey et al. (1 more author) (2023) 
OpenPodcar:An Open Source Vehicle for Self-Driving Car Research. Journal of Open 
Hardware. ISSN 2514-1708 

https://doi.org/10.5334/joh.46

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



HARDWARE 

METAPAPER

CORRESPONDING AUTHOR:

Fanta Camara

Institute for Transport Studies, 

University of Leeds, UK; 

School of Computer Science, 

University of Lincoln, UK

fanta.camara@york.ac.uk

KEYWORDS:

Autonomous vehicle; 

automation; self-driving car; 

mobility scooter; open source 

platform

TO CITE THIS ARTICLE:

Camara, F, Waltham, C, 

Churchill, G and Fox, C. 2023. 

OpenPodcar: An Open Source 

Vehicle for Self-Driving Car 

Research. Journal of Open 

Hardware, 7(1): 8, pp. 1–17. 

DOI: https://doi.org/10.5334/

joh.46

OpenPodcar: An Open 
Source Vehicle for Self-
Driving Car Research

FANTA CAMARA 

CHRIS WALTHAM

GREY CHURCHILL

CHARLES FOX 

ABSTRACT

OpenPodcar is a low-cost, open source hardware and software, autonomous vehicle 

research platform based on an off-the-shelf, hard-canopy, mobility scooter donor 

vehicle. Hardware and software build instructions are provided to convert the donor 

vehicle into a low-cost and fully autonomous platform. The open platform consists 

of (a) hardware components: CAD designs, bill of materials, and build instructions; (b) 

Arduino, ROS and Gazebo control and simulation software files which provide standard 

ROS interfaces and simulation of the vehicle; and (c) higher-level ROS software 

implementations and configurations of standard robot autonomous planning and 

control, including the move_base interface with Timed-Elastic-Band planner which 

enacts commands to drive the vehicle from a current to a desired pose around 

obstacles. The vehicle is large enough to transport a human passenger or similar load 

at speeds up to 15 km/h, for example for use as a last-mile autonomous taxi service 

or to transport delivery containers similarly around a city center. It is small and safe 

enough to be parked in a standard research lab and be used for realistic human-vehicle 

interaction studies. System build cost from new components is around USD7,000 in 

total in 2022. OpenPodcar thus provides a good balance between real world utility, 

safety, cost and research convenience.

*Author affiliations can be found in the back matter of this article
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METADATA OVERVIEW

Main design files: https://github.com/OpenPodcar/OpenPodcar.

Target group: researchers and hobbyists interested in autonomous vehicle research and 

robotics.

Skills required: Mechanical assembly – intermediate (drilling steel); electrical assembly – 

intermediate (PCB soldering); Software – easy (Linux command line).

Replication: The current OpenPodcar is being used by some of the authors for human-robot 

interaction experiments and a second copy will be built from the documentation to improve its 

accuracy. The design is currently being forked for a courier-type manually-driven platform by a 

commercial UK vehicle manufacturer.

(1) OVERVIEW

INTRODUCTION

Autonomous Vehicles (AVs, also known as ‘self-driving cars’), is a fast-moving research field 

in both academia and the industry. Open source software (OSS) for localisation, mapping and 

control of AVs is available [25] but hardware vehicle platforms remain expensive and proprietary, 

making it difficult for researchers with low resources to develop algorithms or reproduce 

complete research systems. There is thus a need for a standard, low-cost, reproducible 

hardware platform, compatible with the standard open source software stack.

Open source hardware (OSH) allows for more effective and accessible sharing and 

collaboration among researchers [16]. By combining OSH and OSS, a standard platform can 

be produced for use by all members of a research community, who may then reproduce each 

others work in full, and contribute their new research as functional system components rather 

than only as reports. Such platforms may evolve from research into development and real-

world applications.

To create an OSH platform for the autonomous vehicle research community, several 

requirements must be met: low cost and easy to build to enable the community to reproduce 

and use it; consumer levels of safety and reliability are not required, though research standards 

of safety and reliability are required; the system should be designed to enable easy modification 

so that it can be forked to operate with similar but different vehicles; the system should be 

physically light-weight to ease experimentation and reduce risks of damage, though large 

enough for human transport so that it can be used in real-world applications and in research 

requiring realistic interactions with other human road users [10, 17].

RELATED SYSTEMS

SMART [36] is a design to modify an existing donor golf cart vehicle for automation research, 

this is of a similar size and power to OpenPodcar. Similarly, iCab (Intelligent Campus Automobile) 

[22] is a research golf car with a ROS (Robot Operating System)-based architecture and that 

has been tested with Timed-Elastic Band planner [28]. However, these vehicle designs are not 

open source hardware.

Complete and built mechanical OSH designs for on-road, person-carrying cars exist, including 

PixBot [37] and Tabby EVO [33]. Building these full size cars is a large task for experts and 

may require dangerous processes such as welding, purchase of expensive components, and 

considerable storage space. OpenPodcar is based on a proprietary but commodity mobility 

scooter which is cheaper and easier to convert than performing these builds.

Several OSH RC-scale cars have been completed and built such as F1Tenth [1], AutoRally [21], 

BARC [23], MIT Racecar [2], MuSHR [3], [31], and [46]. These platforms are not large enough 

to drive on public roads or to transport people or goods like OpenPodcar. Open Source Ecology 

(OSE) [24] is an ambitious programme of projects which ultimately aims to develop fully OSH 

vehicles including a car and tractor. OSE is optimised for reliability and for users in developing 

countries so it uses hydraulic power rather than electric as used in OpenPodcar. But its vehicle 

designs are not yet complete.
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Autoware [25] is a heavyweight open source software project to construct a full ROS-based 

automation stack for on-road cars. Apollo [4] is an open source self-driving software stack and 

an open hardware interface which may be implemented on vehicles, as done in [26]. These 

systems could be software interfaced to run with OpenPodcar.

Some AV research can be done in simulation without the need for hardware, hence open 

source simulation platforms are widely available such as SUMMIT [5], Gym-Duckietown [15], 

CARLA [18], DEEPDRIVE [39], LGSVL Simulator [41], AirSim [43], and FLOW [47]. The USA state 

of Georgia provides a level 3 open-source autonomous vehicle based on a Ford-Edge [35], 

which can be used gratis in their Peachtree Corners’ Curiosity Lab smart city environment by 

researchers needing a vehicle but not wanting to build or buy one.

(2) OVERALL IMPLEMENTATION AND DESIGN

DONOR VEHICLE

A Pihsiang TE-889XLSN hard-canopy scooter (branded in UK as Shoprider Traverso, [44]) is used 

as a donor vehicle. It is an Ackermann-steered [30], hard-canopy, electric mobility scooter. 

It is powered by two 12V batteries connected in series to provide 24V operating voltage and 

containing 75 Ah. In its standard configuration, its steering is controlled by a human-operated 

loop handle bar. The speed and braking systems are both powered by an electric motor and 

an electric brake via the trans-axle assembly, controlled by an AC2 digital controller receiving 

different voltage signals to drive forward or brake. The manual speeding and braking systems 

are controlled by three buttons connected in series on the handle bar. A toggle switch in parallel 

with a resistor (10k Ω) selects speed mode from high (max 8 mph) or low (max 4mph); a speed 

dial knob via a variable resistor (20k Ω) sets a maximum limit speed within the mode. A throttle 

lever connected with a 5kΩ potentiometer is used to select the speed within the mode and limit.

MECHANICAL MODIFICATION FOR STEERING

To automate steering, a linear actuator (Gimson GLA750-P 12V DC) with position feedback 

is mounted between an anchor on the underside of the chassis and the car’s front axle 

via bearings. This actuator has a 8 mm/s full load (750N) speed and 250mm stroke length 

(installation length is 390mm). To access the underside of the vehicle, two axle stands are used 

as shown in Figure 1a. There is an existing hole in the right front wheel axle. The linear actuator 

is mounted via a rear hole to the left side of the front chassis and connected through the front 

hole of the actuator with the hole in the car’s right front wheel axle via bearings as shown in 

Figures 1b and 2.

ELECTRONICS

The new vehicle electronics, which various different voltage power supplies (cf. Figure 3), are 

packaged on a single new PCB (Printed Circuit Board), as shown in Figure 5a and 5b. This is 

convenient as it reduces the number of small wires between the components by having them 

directly drawn on the board, and packages them together.

Figure 1 Vehicle mechanical 

modification. (a) Tilting 

the vehicle using two axle 

stands, to enable access to 

the underside. (Note also 

lidar mounted to roof.) (b) 

Underside with linear actuator 

added for steering.
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As an OSH design, the PCB hosts several daughter PCBs, mounted using headers. The physical 

structure of the large PCB comprised of these smaller PCBs reflects the OSH design itself. There 

are two DC-DC Buck converters with an XL4016 regulator, an Arduino Uno, an MCP4725 DAC 

(Digital-Analog Converter), a Pololu Jrk 21v3 motor controller with position feedback for the 

linear actuator, two resistors (10kΩ and 100kΩ) for the potential divider and two terminal 

blocks. 3D-printed parts support the mounting of the LCD and the 3D lidar to the board. A 3D 

printed enclosure mounts and protects the PCB board, as shown in Figure 4.

Figure 2 Underside view 

of front wheels’ steering 

relationship including 

geometric coefficients.

Figure 3 Circuit diagram for 

electronic modifications.

Figure 4 PCB enclosure 

mounted on the vehicle (top 

left, white box).
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STEERING AUTOMATION SYSTEM

The front wheels are steered by a Pololu Jrk 21v3 PID controller-driver, which takes serial port 

desired positions as input. It also takes feedback position information as an analog voltage from 

the linear actuator as an input. It outputs analog high-power voltages to the linear actuator. A 

gratis, closed-source, Windows program from Pololu is required once, at build time, to set the 

PID parameters for the linear actuator.

The relationship between the required central turning angle θ of the pair of front wheels and 

extending length l of linear actuator as in Figure 2 is given by,

θ α= −arctan( )
2

W

H
 (1)

πβ α= −
2  (2)

β= 1cos( )x r  (3)

β= 1sin( )y r  (4)

= − + − − +2 2

0 0 0( ) ( )l x x y y L l  (5)

where r
1
, x

0
, y

0
, W, H and L are the geometric coefficients shown in Figure 1. Among them, the 

value of y
0
 is negative. l

0
 is the initial value of the linear actuator position feedback. Table 1 

specifies the acceptable serial port commands for the linear actuator. Sending commands 

outside this range may mechanically destroy the system.

SPEED CONTROLLER AUTOMATION SYSTEM

An Arduino UNO [34] is used to send electric signals to the vehicle’s motor controller in place of 

the donor vehicle’s paddle controller’s potentiometer. An Adafruit MCP4725 DAC is connected 

to the Arduino as in Figure 3, and is used to send clean analog speed command voltages to the 

donor vehicle’s internal controller.

Arduino firmware source, and upload instructions, are supplied in the repository. When 

uploaded to the Arduino (using the standard Arduino IDE running on the laptop), the firmware 

provides a simple serial port API running at 112,000 baud. It receives ASCII commands of the 

form ‘FA:210’ as speed commands. Table 2 summarises the range of speed commands and 

their corresponding output voltages.

To start the ignition, the car safety system requires the control voltage to be in the dead range. 

A problem is that this doesn’t correspond precisely to any fixed speed bytes, due to floating 

USB power level issues. But if we pick a number solidly in the center of the dead zone, such as 

164, this will work for most USB supplies. (i.e. when the vehicle’s battery is flatter, the voltages 

Figure 5 Electronics with PCB 

board design and assembly. 

(a) PCB Design. (b) PCB 

assembly currently used.

FA:CMD EFFECT

2500 turn max right i.e ~ –45 deg

1900 center wheels i.e ~ 0 deg

1000 turn max left i.e ~ +45 deg

Table 1 Linear actuator 

acceptable command ranges.
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provided to USB power by it are lower. For example, we might send 164 and get 1.9V instead of 

the usual 2.26V.) This may result in the vehicle not starting and producing an audible warning 

beep instead.

Also due to floating voltages from the battery, the Arduino typically receives a lower power e.g. 

4.9V instead of its ideal 5V, which gets divided by the DAC value in some calculations.

To deal with these instabilities, a potential divider is added to the battery to monitor its voltage 

and compensate the podcar control accordingly, as in Figure 6. A “BV” command is provided in 

the Arduino serial protocol which allows callers to request this current battery voltage. This can 

then be used by higher-level (Python) systems to decide what speed bytes to sent, including 

compensating for the floating dead zone.

SOFTWARE INTERFACE (ROS)

A ROS interface to and from the physical vehicle is provided as described below. ROS is an open 

source operating system for robots based on a publish-subscribe pattern [38], which is the 

robotics community’s standard interface. The ROS core and software all run on a consumer 

laptop computer mounted on-board the vehicle, and that could be powered from a DCDC 

converter from the vehicle battery, running Xubuntu 16.04 (Xenial) and ROS Kinetic.

The system expects to hear two incoming ROS control messages: /speedcmd_meterssec and 

/wheelAngleCmd, which contain single floats representing the desired speed in meters per 

second, and the desired front wheel orientation in radians respectively. These two messages 

are received by ROS nodes speedm2arduino and wheelAngle2Pololu, which are ROS drivers for 

the Arduino speed controller and the Polulo steering controller respectively. Converters from a 

standard ROS USB joystick driver node to the speed and angle command interface messages 

are provided, by joystick2speedms and joystick2wheelAngle. These use the y axis of a joystick 

for speed and x for steering.

3D LIDAR SENSOR

A Velodyne VLP-16 lidar sensor is mounted on the vehicle roof using a Manfrotto Black Digi 

Table Tripod 709B. It is mounted at a 10 degree tilt downwards (to allow pedestrians to be most 

clearly seen in the 16 scan lines). The lidar has a ROS driver.

Table 2 Speed commands and 

their corresponding output 

voltages.

COMMAND VOLTAGE EFFECT

FA:0 0 very fast reverse

FA:80 ~ 0.9 fast reverse (ROS limit)

FA:132 ~ 1.5 slowest reverse motion

dead zone – allows ignition

FA:170 ~ 1.9 stop – zero/home position

FA:201 ~ 2.3 slowest forward motion

FA:240 ~ 2.7 fast forward (ROS limit)

FA:255 ~ 3.0 very fast forward

Figure 6 Potential divider 

linked to the battery.
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HIGH-LEVEL AUTOMATION SOFTWARE

Figure 7 shows an overview of the ROS components used in high level automation, including 

localisation and mapping, path planning and control, and pedestrian tracking as discussed in 

the following sections.

Localisation and Mapping System

Simultaneous Localisation and Mapping (SLAM) [45] is the robotic task of inferring the robot’s 

location at the same time as building a map of its environment, which is a classic ‘chicken 

and egg’ problem as the two subtasks depend on one another. Solving SLAM is an NP-hard 

problem but many standard approximations exist. GMapping [49] is a ROS implementation of 

a Rao-Blackwellized Particle Filter (RBPF) in which “each particle carries an individual map of 

the environment”. The information carried by each particle overlaps, and an estimation of a 

map can be built based on these relationships. As the robot moves around the environment, 

these estimations are stored, and when a ‘feedback loop’ is closed, the estimations cascade 

into a portion of the completed map. These maps take the form of 2D occupancy grids, and 

can be used later by the navigation stack to plan paths around the environment. To provide 

reliable odometry data for GMapping, ROS laser_scan_matcher package is used as a stand-

alone odometry estimator that matches consecutive laserscans.

Path Planning and Control

Path planning is the autonomous selection of an entire desired trajectory for a robot to get from 

a current pose to a desired pose. Path control (or path following) is then the real-time process 

of executing a path plan by interactively monitoring the robot’s state and sending commands 

to motors, to make the actualized path close to the desired path. The OpenPodcar software 

includes path planning and control with the standard ROS tool move_base and Timed Elastic 

Band (TEB) [42] plugin. These tools implement the requirement geometry of Dubins paths [19] 

and Ackermann steering. The values for parameters such as minimum turning radius have 

been calculated from the technical specifications of the base vehicle [44].

Pedestrian Detection and Tracking

A pedestrian detector and tracker ROS package are included in the system. The lidar-based 

detections are classified by a SVM (Support Vector Machine) classifier, then a Bayesian multi-

target tracker is used to track pedestrians over time. These modules re-use OSS from the EU 

FLOBOT project [48], merged into the repository.

Figure 7 ROS nodes used in 

the autonomous driving mode.

Figure 8 OpenPodcar 3D 

simulation. (a) Physical 

simulation of vehicle. (b) 

Default Gazebo simulation 

world.
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SIMULATION

A physical simulation of the vehicle is provided for use in Gazebo 7 [27] under ROS Kinetic 

and Ubuntu 16.04 (Xenial). The simulation implements the same ROS interface as the physical 

vehicle system to enable plug and play inter-operability between them. The physics model is 

based on a simplified vehicle geometry with two large cuboids containing the vehicles’ mass, 

as shown in Figure 8a. Wheel geometry, friction, and motor driver parameters were measured 

from the physical vehicle. A detailed graphical mesh model of the vehicle is provided for display, 

rather than physical simulation, purposes. The main difference with the real vehicle is that the 

effects of the linear actuator are represented by a tracking rod, where is mounted the Kinect 

sensor used in place of the lidar, as found in Figure 8b.

A basic 3D world containing the podcar and various test objects from Gazebo libraries 

is provided by default as shown in Figure 8b. Figure 11 shows the complete ROS node 

configuration used during simulation, under manual joystick control. Moreover, the open 

source Blender 3D add-on, called MapsModelsImporter [29], was used to create further 3D 

worlds representative of the University of Lincoln, the testing area for the OpenPodcar, and the 

University of Leeds campuses, shown in Figure 9. Figure 10 shows the OpenPodcar in Lincoln 

campus environment.

Figure 9 OpenPodcar 

additional Gazebo 3D 

simulation worlds. (a) 

University of Lincoln 3D world. 

(b) University of Leeds 3D 

world.

Figure 10 OpenPodcar in 

Lincoln world.
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(3) QUALITY CONTROL

SAFETY

Autonomous vehicles can present a significant hazard to humans and to the environment in 

which they operate. Damage to surroundings and possible injury to operators and bystanders 

could result from inappropriate use or malfunction. A particular risk arises from the speed 

controller on the donor vehicle being of ‘wigwag’ style, as is common in mobility scooters. 

This means it is an analog signal in the range 0–5V, including a dead zone around 2.5V 

corresponding to no motion. Above the dead zone and up to 5V are forward speed control 

commands of increasing speeds, below the dead zone to 0V are reverse control commands of 

increasing speeds. Wigwag control is potentially dangerous because a 0V signal might appear 

due to component failure rather than as a desired max-speed reverse command. Also, if the 

vehicle batteries run low, the scaling of this signal may be altered resulting in the dead zone 

position floating and leading to further undesired motion. The following layered safey systems 

are included to fully mitigate these risks:

Fusing As shown in Figure 3, a 10A fuse is inserted between the vehicle’s original 24V 

battery and the switch to the new electronics. This is in addition to original fusing and 

other safety features provided by the donor vehicle, which all remain in tact.

Dead Man’s Handle It is essential that a suitable emergency stop system is 

implemented in all autonomous vehicles. Given the research nature of the 

OpenPodcar, a safety mechanism which stops the vehicle under fault conditions is an 

especially important part of the design. A wired dead-man’s handle (DMH) is included 

which is required to be pressed by a human experimenter at all times, in order for 

a hardware relay to actively continue to supply power from the vehicle’s batteries 

to all other systems. The relay connects to the donor vehicle’s keyed ignition switch 

and will naturally cut out if these signals are absent for any reason, including failures 

in the safety systems themselves. A photograph of the installed system is shown in 

Figure 12.

Figure 11 ROS nodes used in 

simulated, manual joystick 

control mode.

Figure 12 Steering console 

showing the newly added 

relay (with lit LED).
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Heartbeat Signal The serial protocol linking the Arduino to ROS includes a heartbeat 

signal, in which the Arduino code will shut down the motors unless a correctly 

formatted and timestamped serial command is received within 0.1 seconds. This 

requires ROS code to actively check and confirm its own status and to send positive 

confirmation, for example if ROS or Linux go down then this heartbeat will cut off.

Steering Control System Limiter Limitations are placed on the steering controller for 

the linear actuator commands, to only allow the vehicle to accept and execute input 

values within the range that will keep the mechanical mounting safe.

GENERAL TESTING

A series of sub-component (e.g. Pololu, DAC) acceptance tests, component (e.g. PCB, lidar) 

hardware unit tests, and system integration tests are defined and included as formal, non-

optional steps in the build instructions. The structure of the tests is designed to enable build 

problems to be immediately localised, so that passing one test means that a failure of the 

next one must be due to build steps that have occurred between them. Below is a summary 

of these tests.

At component level, an external power supply, a multi-meter, a clamp meter and a breadboard 

with some wires are frequently used to recreate smaller electronic circuits in order to check 

the voltages, currents and the correct functioning of each component during the build. For 

instance, a circuit with an external power supplying 5V to the Arduino connected to the DAC 

is temporally created to test the Arduino code and its communication with the DAC. Similarly, 

another test circuit is created with an external power supplying 12V to the Pololu connected 

to the linear actuator to send direct commands via the Windows program used to fix the PID 

parameters. These hardware unit tests are essential to the success of components’ integration 

to the vehicle and make things easier later.

At system integration level, udev rules are used to facilitate testing with the creation of simlinks, 

i.e. dynamic assignments for the laptop USB ports connected to the Arduino and the Pololu, 

using their respective product and vendor IDs. This helps in being able to physically interchange 

the USB ports without having any impact at the software level. For the speed control, the vehicle 

wheels are lifted from the ground using jacks to stop them from driving off. This technique 

helps to test and fix the Arduino and ROS speed control code whilst staying in the same place. 

Vehicle steering is first tested using the Windows app that allows direct commands to be 

directly sent to the linear actuator. This helps verify and fix the linear actuator mounting as 

desired. Similarly, using Pololu’s C++ API, direct commands are sent from a terminal to the 

linear actuator, but this time for testing at the software level.

Driving tests are initially performed in the manual joystick control mode in order to ensure that 

both hardware and software stack work well together. In particular, the LCD on the PCB board 

helps with checking in real-time the voltage received for each speed command and the LEDs 

colors displayed on the Pololu also give useful indications about the steering control.

The autonomous driving tests with move_base and TEB are performed with the vehicle speed 

controls dial know set to ‘5’, corresponding to about 0.2 m/s. This relatively low speed is chosen 

because these tests may be performed in a shared and cluttered research lab around people. Also, 

a large inflation distance is set in the planner to prevent the vehicle from close contacts with both 

static and dynamic obstacles. At first, simple and short goals are sent to move_base such as “drive 

one meter forward and keep your current orientation” or “drive three meters forward and keep 

your current orientation”. Once the vehicle is able to execute and reach these simple goals, more 

complex goal commands are sent. Once a goal is reached, it is possible to resend immediately 

another goal without having to turn off the system, which is very convenient for example when 

one wants to ask the vehicle to return to its starting position or go somewhere else.

Setting a very high accuracy for goals such as 1mm and 0.01rad is achievable on the vehicle 

and is tested for short drives in the lab. However, in these cases, the short drives may end up 

taking a lot of time, for example it can take up to three minutes to simply reach a one meter 

forward goal. This is due to the planner’s oscillating behaviour around the goal. To fix this, more 

tolerance should be given for the goal accuracy, for example, 150mm and 0.15rad give an 

acceptable vehicle behaviour. During these driving tests, ROS topics and RViz (ROS visualization 

tool) are particularly monitored to get informed about the vehicle behaviour in real-time.
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OpenPodcar was developed, and our own build was heavily tested, between March 2018 and 

March 2022. With its first automated test drives taking place since summer 2018 and an 

estimated 100km or more driven to date, the vehicle design has thus proven robust enough for 

autonomous vehicle research.

(4) APPLICATION

USE CASES

Self-Driving Research

Many AV researchers cannot currently afford the acquisition of a self-driving hardware platform 

for their work. The OpenPodcar is primarily designed for this purpose, as a low-cost and an 

all-in-one, software and hardware platform for researchers and hobbyists. Thus, giving them 

not only the opportunity to reproduce, develop and test algorithms on a physical hardware 

platform but also to extend its capabilities with new features.

The Related Systems section found that there are many open source software stacks without 

related open hardware platforms. OpenPodcar thus fills this gap, offering the opportunity 

not only to deploy Autoware or other types of AV software but also to extend the hardware 

capabilities to the point where OpenPodcar could become a standard test bed for the AV 

research community. For example, this platform could be useful to test different SLAM and 

planning algorithms, parallel and valet parking methods. The objective being that both 

hardware and software can be tested regularly in real-world conditions and contribute towards 

the deployment of AVs. The OpenPodcar can avoid both static and dynamic obstacle using the 

integrated feature in move_base and TEB planner. Figure 13 shows the OpenPodcar test drive 

with GMapping, move_base and TEB planner in action when it encounters an obstacle on its 

path.

Human-Robot Interaction Research

Understanding human behaviour and interaction strategies are of upmost importance 

nowadays for autonomous systems. There is a general growing interest from the robotics 

and autonomous vehicle research communities to tackle the numerous challenges posed 

by human interactions. Social robots as well as autonomous vehicles need better models 

Figure 13 OpenPodcar 

test drive with GMapping 

SLAM, ROS move_base with 

TEB planner and obstacle 

avoidance.

Figure 14 Pedestrian detection 

and tracking output from RViz.
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of human behaviour [6, 7]. Some of the authors (FC and CF) are particularly interested in 

improving autonomous vehicles’ decision-making using a game theoretic approach for road-

crossing scenarios [20]. Several empirical studies e.g. [8, 9, 14], were performed in highly 

safe lab environments and found that human participants were not interacting realistically 

with the other agent. A similar experiment performed in a VR environment showed a more 

realistic behaviour from the participants [10, 11]. An additional model of human proxemics 

(i.e., interpersonal distances) has been developed and is being combined with the game 

theory model [13, 12]. In future work, the OpenPodcar will be used to extend these human 

experiments using a real physical platform and demonstrate the operation of game theoretic 

behaviour on a autonomous vehicle for the first time. The pedestrian detection and tracking 

feature will be particularly useful for this task, since the AV needs to track the pedestrian in 

order to make a decision. Figure 14 shows an example output of the pedestrian detection and 

tracking integrated in the OpenPodcar.

Practical Transportation

OpenPodcar can carry at least 76kg of payload, such as a person or parcels, making it potentially 

useful for real-world as well as research applications.

Last mile delivery of parcels could replace human workers for e-commerce deliveries. Urban 

center retail environments may also be improved by replacing the last mile of supply to retail 

outlets. Instead of driving to a shop to deliver goods, heavy goods vehicles could instead 

park a mile outside the urban center and transfer the goods to OpenPodcar or similar electric 

autonomous vehicles to take to the shop, reducing local pollution. The Covid-19 pandemic 

emphasised a specific need for autonomous last-mile delivery: to reduce the need for human 

contact and potential disease transmission at the point of delivery.

OpenPodcar is able to transport a human passenger, as shown in Figure 15, as it is based on an 

COTS mobility scooter. For instance fleets of OpenPodcars might one day transport people over 

the last mile from the train station to their office, as a low cost electric taxi service. This will 

require more automation software to operate in busy urban environments.

Figure 15 OpenPodcar test 

drive in remote control mode.
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REUSE POTENTIAL AND ADAPTABILITY

The OpenPodcar design is intended so that the mechanical, electronics and software 

components can be easily ported to other vehicles/platforms and only require small changes on 

the software side to adapt it and fix some parameters specific to the new vehicle requirements. 

This could include future deeper OSH vehicles as well as additional commercial donor vehicles. 

Cheaper sensors such as depth cameras or stereo cameras could be used instead of the 

3D lidar. Such modifications would typically require an advanced rather than intermediate 

designer/builder.

(5) BUILD DETAILS

AVAILABILITY OF MATERIALS AND METHODS

The design is made under the CERN-OSH-W licence which allows for the use of commercially 

available proprietary components such as the off-the-shelf donor vehicle. However the design 

is intended to be easily modifiable for transfer to other base vehicles, including those which 

are OSH at lower levels. The PCB can be manufactured by many online PCB manufacturers. 

The additional mechanical and electronics used are common parts available from standard 

online vendors.

EASE OF BUILD

The vehicle modification requires the use of common hand tools for assembly: spanners, 

screwdrivers, and pliers. Additionally, a 3D printer is needed to fabricate some components. 

Basic soldering skills are needed for assembling the PCB.

OPERATING SOFTWARE AND PERIPHERALS

The system requires open source software: Arduino IDE, Ubuntu 16.04, ROS Kinetic, Gazebo, 

KiCad (PCB Design), ROS GMapping, ROS move_base, and Velodyne lidar driver. It also requires the 

Pololu Configuration Utility Manager software which is available gratis from the manufacturer 

website. The on-board laptop should have minimal specifications of amd64 3GHz quad-core, 

8GB RAM, 250Gb hard-disc, USB and Ethernet ports. The system might also work on lower 

specifications. Step-by-step instructions for installation of these software dependencies, and 

the new system software components, are provided in the repository.

HARDWARE DOCUMENTATION AND FILES LOCATION

Archive for hardware documentation, build files and software

Name: GitHub

Project repository: https://github.com/OpenPodcar/OpenPodcar

Licence: CERN-OHL-W for hardware design and build instructions; GPL for software source code.

Date published: 09/05/2022

The hardware is structured as two separate formal OSH designs, each licenced as CERN-

OSH-W. The first covers all components which are easily transferable to other vehicles without 

modification. The second contains all components which are specific to the mobility scooter 

donor vehicle. This structure enables the first design to be used as sub-component of closed 

products while also preventing closed modifications of it.

(6) DISCUSSION

CONCLUSIONS

OpenPodcar is a multi-purpose hardware and software platform for autonomous vehicle 

research. It provides the required hardware and software tools to carry out research in this field. 

The platform has a lower-level stack, a higher-level stack and a simulator for initial testing. 

It has several safety features to prevent hazards. The general testing carried on the vehicle 
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shows a robust and safe design. Several use cases have been identified and successfully tested. 

OpenPodcar is open source to allow further improvements and extensions of its capabilities 

from the community. The replication of this work on a second and later vehicles will help 

identify build issues and continually improve the documentation.

FUTURE WORK

OpenPodcar is designed to be extensible and modular, both at the hardware and software 

levels. As well as improving the current design, the community is warmly invited to create 

forks such as replacing the mobility scooter with other donor vehicles – including deeper OSH 

vehicles – or extending the ROS stack to more complex on-road self-driving systems such as 

Autoware.

In the current setup, the lidar has limited perception of obstacles that are too close and not 

as high as the lidar. This is generally fine, because people or objects would be seen before, but 

this can be problematic with objects such as desks and chairs that are not detected by the 

laserscans and can create unexpected collisions. For example, a low-cost alternative to lidar is 

to use a stereo camera for point cloud sensing. In this option, a StereoLabs ZedCam is mounted 

similarly on the vehicle roof.

The design currently uses ROS1 but the robotics community is slowly shifting to ROS2 for its 

security, real-time control and increased distributed processing features. OpenPodcar could 

join this shift when all of its ROS dependencies have themselves completed it.

The donor vehicle currently used it not itself OSH, and it would be interesting and useful to 

replace it with a more deep OSH vehicle. Such vehicles would be based on OSH motor drivers 

and controllers such as the brushed OSMC [40] or brushless ODrive v3.5 [32].
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