
This is a repository copy of OpenPodcar:An Open Source Vehicle for Self-Driving Car
Research.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/203734/

Version: Published Version

Article:

Camara, Fanta, Waltham, Chris, Churchill, Grey et al. (1 more author) (2023)
OpenPodcar:An Open Source Vehicle for Self-Driving Car Research. Journal of Open
Hardware. ISSN 2514-1708

https://doi.org/10.5334/joh.46

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

HARDWARE

METAPAPER

CORRESPONDING AUTHOR:

Fanta Camara

Institute for Transport Studies,

University of Leeds, UK;

School of Computer Science,

University of Lincoln, UK

fanta.camara@york.ac.uk

KEYWORDS:

Autonomous vehicle;

automation; self-driving car;

mobility scooter; open source

platform

TO CITE THIS ARTICLE:

Camara, F, Waltham, C,

Churchill, G and Fox, C. 2023.

OpenPodcar: An Open Source

Vehicle for Self-Driving Car

Research. Journal of Open

Hardware, 7(1): 8, pp. 1–17.

DOI: https://doi.org/10.5334/

joh.46

OpenPodcar: An Open
Source Vehicle for Self-
Driving Car Research

FANTA CAMARA

CHRIS WALTHAM

GREY CHURCHILL

CHARLES FOX

ABSTRACT

OpenPodcar is a low-cost, open source hardware and software, autonomous vehicle

research platform based on an off-the-shelf, hard-canopy, mobility scooter donor

vehicle. Hardware and software build instructions are provided to convert the donor

vehicle into a low-cost and fully autonomous platform. The open platform consists

of (a) hardware components: CAD designs, bill of materials, and build instructions; (b)

Arduino, ROS and Gazebo control and simulation software files which provide standard

ROS interfaces and simulation of the vehicle; and (c) higher-level ROS software

implementations and configurations of standard robot autonomous planning and

control, including the move_base interface with Timed-Elastic-Band planner which

enacts commands to drive the vehicle from a current to a desired pose around

obstacles. The vehicle is large enough to transport a human passenger or similar load

at speeds up to 15 km/h, for example for use as a last-mile autonomous taxi service

or to transport delivery containers similarly around a city center. It is small and safe

enough to be parked in a standard research lab and be used for realistic human-vehicle

interaction studies. System build cost from new components is around USD7,000 in

total in 2022. OpenPodcar thus provides a good balance between real world utility,

safety, cost and research convenience.

*Author affiliations can be found in the back matter of this article

2Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

METADATA OVERVIEW

Main design files: https://github.com/OpenPodcar/OpenPodcar.

Target group: researchers and hobbyists interested in autonomous vehicle research and

robotics.

Skills required: Mechanical assembly – intermediate (drilling steel); electrical assembly –

intermediate (PCB soldering); Software – easy (Linux command line).

Replication: The current OpenPodcar is being used by some of the authors for human-robot

interaction experiments and a second copy will be built from the documentation to improve its

accuracy. The design is currently being forked for a courier-type manually-driven platform by a

commercial UK vehicle manufacturer.

(1) OVERVIEW

INTRODUCTION

Autonomous Vehicles (AVs, also known as ‘self-driving cars’), is a fast-moving research field

in both academia and the industry. Open source software (OSS) for localisation, mapping and

control of AVs is available [25] but hardware vehicle platforms remain expensive and proprietary,

making it difficult for researchers with low resources to develop algorithms or reproduce

complete research systems. There is thus a need for a standard, low-cost, reproducible

hardware platform, compatible with the standard open source software stack.

Open source hardware (OSH) allows for more effective and accessible sharing and

collaboration among researchers [16]. By combining OSH and OSS, a standard platform can

be produced for use by all members of a research community, who may then reproduce each

others work in full, and contribute their new research as functional system components rather

than only as reports. Such platforms may evolve from research into development and real-

world applications.

To create an OSH platform for the autonomous vehicle research community, several

requirements must be met: low cost and easy to build to enable the community to reproduce

and use it; consumer levels of safety and reliability are not required, though research standards

of safety and reliability are required; the system should be designed to enable easy modification

so that it can be forked to operate with similar but different vehicles; the system should be

physically light-weight to ease experimentation and reduce risks of damage, though large

enough for human transport so that it can be used in real-world applications and in research

requiring realistic interactions with other human road users [10, 17].

RELATED SYSTEMS

SMART [36] is a design to modify an existing donor golf cart vehicle for automation research,

this is of a similar size and power to OpenPodcar. Similarly, iCab (Intelligent Campus Automobile)

[22] is a research golf car with a ROS (Robot Operating System)-based architecture and that

has been tested with Timed-Elastic Band planner [28]. However, these vehicle designs are not

open source hardware.

Complete and built mechanical OSH designs for on-road, person-carrying cars exist, including

PixBot [37] and Tabby EVO [33]. Building these full size cars is a large task for experts and

may require dangerous processes such as welding, purchase of expensive components, and

considerable storage space. OpenPodcar is based on a proprietary but commodity mobility

scooter which is cheaper and easier to convert than performing these builds.

Several OSH RC-scale cars have been completed and built such as F1Tenth [1], AutoRally [21],

BARC [23], MIT Racecar [2], MuSHR [3], [31], and [46]. These platforms are not large enough

to drive on public roads or to transport people or goods like OpenPodcar. Open Source Ecology

(OSE) [24] is an ambitious programme of projects which ultimately aims to develop fully OSH

vehicles including a car and tractor. OSE is optimised for reliability and for users in developing

countries so it uses hydraulic power rather than electric as used in OpenPodcar. But its vehicle

designs are not yet complete.

3Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

Autoware [25] is a heavyweight open source software project to construct a full ROS-based

automation stack for on-road cars. Apollo [4] is an open source self-driving software stack and

an open hardware interface which may be implemented on vehicles, as done in [26]. These

systems could be software interfaced to run with OpenPodcar.

Some AV research can be done in simulation without the need for hardware, hence open

source simulation platforms are widely available such as SUMMIT [5], Gym-Duckietown [15],

CARLA [18], DEEPDRIVE [39], LGSVL Simulator [41], AirSim [43], and FLOW [47]. The USA state

of Georgia provides a level 3 open-source autonomous vehicle based on a Ford-Edge [35],

which can be used gratis in their Peachtree Corners’ Curiosity Lab smart city environment by

researchers needing a vehicle but not wanting to build or buy one.

(2) OVERALL IMPLEMENTATION AND DESIGN

DONOR VEHICLE

A Pihsiang TE-889XLSN hard-canopy scooter (branded in UK as Shoprider Traverso, [44]) is used

as a donor vehicle. It is an Ackermann-steered [30], hard-canopy, electric mobility scooter.

It is powered by two 12V batteries connected in series to provide 24V operating voltage and

containing 75 Ah. In its standard configuration, its steering is controlled by a human-operated

loop handle bar. The speed and braking systems are both powered by an electric motor and

an electric brake via the trans-axle assembly, controlled by an AC2 digital controller receiving

different voltage signals to drive forward or brake. The manual speeding and braking systems

are controlled by three buttons connected in series on the handle bar. A toggle switch in parallel

with a resistor (10k Ω) selects speed mode from high (max 8 mph) or low (max 4mph); a speed

dial knob via a variable resistor (20k Ω) sets a maximum limit speed within the mode. A throttle

lever connected with a 5kΩ potentiometer is used to select the speed within the mode and limit.

MECHANICAL MODIFICATION FOR STEERING

To automate steering, a linear actuator (Gimson GLA750-P 12V DC) with position feedback

is mounted between an anchor on the underside of the chassis and the car’s front axle

via bearings. This actuator has a 8 mm/s full load (750N) speed and 250mm stroke length

(installation length is 390mm). To access the underside of the vehicle, two axle stands are used

as shown in Figure 1a. There is an existing hole in the right front wheel axle. The linear actuator

is mounted via a rear hole to the left side of the front chassis and connected through the front

hole of the actuator with the hole in the car’s right front wheel axle via bearings as shown in

Figures 1b and 2.

ELECTRONICS

The new vehicle electronics, which various different voltage power supplies (cf. Figure 3), are

packaged on a single new PCB (Printed Circuit Board), as shown in Figure 5a and 5b. This is

convenient as it reduces the number of small wires between the components by having them

directly drawn on the board, and packages them together.

Figure 1 Vehicle mechanical

modification. (a) Tilting

the vehicle using two axle

stands, to enable access to

the underside. (Note also

lidar mounted to roof.) (b)

Underside with linear actuator

added for steering.

4Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

As an OSH design, the PCB hosts several daughter PCBs, mounted using headers. The physical

structure of the large PCB comprised of these smaller PCBs reflects the OSH design itself. There

are two DC-DC Buck converters with an XL4016 regulator, an Arduino Uno, an MCP4725 DAC

(Digital-Analog Converter), a Pololu Jrk 21v3 motor controller with position feedback for the

linear actuator, two resistors (10kΩ and 100kΩ) for the potential divider and two terminal

blocks. 3D-printed parts support the mounting of the LCD and the 3D lidar to the board. A 3D

printed enclosure mounts and protects the PCB board, as shown in Figure 4.

Figure 2 Underside view

of front wheels’ steering

relationship including

geometric coefficients.

Figure 3 Circuit diagram for

electronic modifications.

Figure 4 PCB enclosure

mounted on the vehicle (top

left, white box).

5Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

STEERING AUTOMATION SYSTEM

The front wheels are steered by a Pololu Jrk 21v3 PID controller-driver, which takes serial port

desired positions as input. It also takes feedback position information as an analog voltage from

the linear actuator as an input. It outputs analog high-power voltages to the linear actuator. A

gratis, closed-source, Windows program from Pololu is required once, at build time, to set the

PID parameters for the linear actuator.

The relationship between the required central turning angle θ of the pair of front wheels and

extending length l of linear actuator as in Figure 2 is given by,

θ α= −arctan()
2

W

H
 (1)

πβ α= −
2 (2)

β= 1cos()x r (3)

β= 1sin()y r (4)

= − + − − +2 2

0 0 0() ()l x x y y L l (5)

where r
1
, x

0
, y

0
, W, H and L are the geometric coefficients shown in Figure 1. Among them, the

value of y
0
 is negative. l

0
 is the initial value of the linear actuator position feedback. Table 1

specifies the acceptable serial port commands for the linear actuator. Sending commands

outside this range may mechanically destroy the system.

SPEED CONTROLLER AUTOMATION SYSTEM

An Arduino UNO [34] is used to send electric signals to the vehicle’s motor controller in place of

the donor vehicle’s paddle controller’s potentiometer. An Adafruit MCP4725 DAC is connected

to the Arduino as in Figure 3, and is used to send clean analog speed command voltages to the

donor vehicle’s internal controller.

Arduino firmware source, and upload instructions, are supplied in the repository. When

uploaded to the Arduino (using the standard Arduino IDE running on the laptop), the firmware

provides a simple serial port API running at 112,000 baud. It receives ASCII commands of the

form ‘FA:210’ as speed commands. Table 2 summarises the range of speed commands and

their corresponding output voltages.

To start the ignition, the car safety system requires the control voltage to be in the dead range.

A problem is that this doesn’t correspond precisely to any fixed speed bytes, due to floating

USB power level issues. But if we pick a number solidly in the center of the dead zone, such as

164, this will work for most USB supplies. (i.e. when the vehicle’s battery is flatter, the voltages

Figure 5 Electronics with PCB

board design and assembly.

(a) PCB Design. (b) PCB

assembly currently used.

FA:CMD EFFECT

2500 turn max right i.e ~ –45 deg

1900 center wheels i.e ~ 0 deg

1000 turn max left i.e ~ +45 deg

Table 1 Linear actuator

acceptable command ranges.

6Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

provided to USB power by it are lower. For example, we might send 164 and get 1.9V instead of

the usual 2.26V.) This may result in the vehicle not starting and producing an audible warning

beep instead.

Also due to floating voltages from the battery, the Arduino typically receives a lower power e.g.

4.9V instead of its ideal 5V, which gets divided by the DAC value in some calculations.

To deal with these instabilities, a potential divider is added to the battery to monitor its voltage

and compensate the podcar control accordingly, as in Figure 6. A “BV” command is provided in

the Arduino serial protocol which allows callers to request this current battery voltage. This can

then be used by higher-level (Python) systems to decide what speed bytes to sent, including

compensating for the floating dead zone.

SOFTWARE INTERFACE (ROS)

A ROS interface to and from the physical vehicle is provided as described below. ROS is an open

source operating system for robots based on a publish-subscribe pattern [38], which is the

robotics community’s standard interface. The ROS core and software all run on a consumer

laptop computer mounted on-board the vehicle, and that could be powered from a DCDC

converter from the vehicle battery, running Xubuntu 16.04 (Xenial) and ROS Kinetic.

The system expects to hear two incoming ROS control messages: /speedcmd_meterssec and

/wheelAngleCmd, which contain single floats representing the desired speed in meters per

second, and the desired front wheel orientation in radians respectively. These two messages

are received by ROS nodes speedm2arduino and wheelAngle2Pololu, which are ROS drivers for

the Arduino speed controller and the Polulo steering controller respectively. Converters from a

standard ROS USB joystick driver node to the speed and angle command interface messages

are provided, by joystick2speedms and joystick2wheelAngle. These use the y axis of a joystick

for speed and x for steering.

3D LIDAR SENSOR

A Velodyne VLP-16 lidar sensor is mounted on the vehicle roof using a Manfrotto Black Digi

Table Tripod 709B. It is mounted at a 10 degree tilt downwards (to allow pedestrians to be most

clearly seen in the 16 scan lines). The lidar has a ROS driver.

Table 2 Speed commands and

their corresponding output

voltages.

COMMAND VOLTAGE EFFECT

FA:0 0 very fast reverse

FA:80 ~ 0.9 fast reverse (ROS limit)

FA:132 ~ 1.5 slowest reverse motion

dead zone – allows ignition

FA:170 ~ 1.9 stop – zero/home position

FA:201 ~ 2.3 slowest forward motion

FA:240 ~ 2.7 fast forward (ROS limit)

FA:255 ~ 3.0 very fast forward

Figure 6 Potential divider

linked to the battery.

7Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

HIGH-LEVEL AUTOMATION SOFTWARE

Figure 7 shows an overview of the ROS components used in high level automation, including

localisation and mapping, path planning and control, and pedestrian tracking as discussed in

the following sections.

Localisation and Mapping System

Simultaneous Localisation and Mapping (SLAM) [45] is the robotic task of inferring the robot’s

location at the same time as building a map of its environment, which is a classic ‘chicken

and egg’ problem as the two subtasks depend on one another. Solving SLAM is an NP-hard

problem but many standard approximations exist. GMapping [49] is a ROS implementation of

a Rao-Blackwellized Particle Filter (RBPF) in which “each particle carries an individual map of

the environment”. The information carried by each particle overlaps, and an estimation of a

map can be built based on these relationships. As the robot moves around the environment,

these estimations are stored, and when a ‘feedback loop’ is closed, the estimations cascade

into a portion of the completed map. These maps take the form of 2D occupancy grids, and

can be used later by the navigation stack to plan paths around the environment. To provide

reliable odometry data for GMapping, ROS laser_scan_matcher package is used as a stand-

alone odometry estimator that matches consecutive laserscans.

Path Planning and Control

Path planning is the autonomous selection of an entire desired trajectory for a robot to get from

a current pose to a desired pose. Path control (or path following) is then the real-time process

of executing a path plan by interactively monitoring the robot’s state and sending commands

to motors, to make the actualized path close to the desired path. The OpenPodcar software

includes path planning and control with the standard ROS tool move_base and Timed Elastic

Band (TEB) [42] plugin. These tools implement the requirement geometry of Dubins paths [19]

and Ackermann steering. The values for parameters such as minimum turning radius have

been calculated from the technical specifications of the base vehicle [44].

Pedestrian Detection and Tracking

A pedestrian detector and tracker ROS package are included in the system. The lidar-based

detections are classified by a SVM (Support Vector Machine) classifier, then a Bayesian multi-

target tracker is used to track pedestrians over time. These modules re-use OSS from the EU

FLOBOT project [48], merged into the repository.

Figure 7 ROS nodes used in

the autonomous driving mode.

Figure 8 OpenPodcar 3D

simulation. (a) Physical

simulation of vehicle. (b)

Default Gazebo simulation

world.

8Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

SIMULATION

A physical simulation of the vehicle is provided for use in Gazebo 7 [27] under ROS Kinetic

and Ubuntu 16.04 (Xenial). The simulation implements the same ROS interface as the physical

vehicle system to enable plug and play inter-operability between them. The physics model is

based on a simplified vehicle geometry with two large cuboids containing the vehicles’ mass,

as shown in Figure 8a. Wheel geometry, friction, and motor driver parameters were measured

from the physical vehicle. A detailed graphical mesh model of the vehicle is provided for display,

rather than physical simulation, purposes. The main difference with the real vehicle is that the

effects of the linear actuator are represented by a tracking rod, where is mounted the Kinect

sensor used in place of the lidar, as found in Figure 8b.

A basic 3D world containing the podcar and various test objects from Gazebo libraries

is provided by default as shown in Figure 8b. Figure 11 shows the complete ROS node

configuration used during simulation, under manual joystick control. Moreover, the open

source Blender 3D add-on, called MapsModelsImporter [29], was used to create further 3D

worlds representative of the University of Lincoln, the testing area for the OpenPodcar, and the

University of Leeds campuses, shown in Figure 9. Figure 10 shows the OpenPodcar in Lincoln

campus environment.

Figure 9 OpenPodcar

additional Gazebo 3D

simulation worlds. (a)

University of Lincoln 3D world.

(b) University of Leeds 3D

world.

Figure 10 OpenPodcar in

Lincoln world.

9Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

(3) QUALITY CONTROL

SAFETY

Autonomous vehicles can present a significant hazard to humans and to the environment in

which they operate. Damage to surroundings and possible injury to operators and bystanders

could result from inappropriate use or malfunction. A particular risk arises from the speed

controller on the donor vehicle being of ‘wigwag’ style, as is common in mobility scooters.

This means it is an analog signal in the range 0–5V, including a dead zone around 2.5V

corresponding to no motion. Above the dead zone and up to 5V are forward speed control

commands of increasing speeds, below the dead zone to 0V are reverse control commands of

increasing speeds. Wigwag control is potentially dangerous because a 0V signal might appear

due to component failure rather than as a desired max-speed reverse command. Also, if the

vehicle batteries run low, the scaling of this signal may be altered resulting in the dead zone

position floating and leading to further undesired motion. The following layered safey systems

are included to fully mitigate these risks:

Fusing As shown in Figure 3, a 10A fuse is inserted between the vehicle’s original 24V

battery and the switch to the new electronics. This is in addition to original fusing and

other safety features provided by the donor vehicle, which all remain in tact.

Dead Man’s Handle It is essential that a suitable emergency stop system is

implemented in all autonomous vehicles. Given the research nature of the

OpenPodcar, a safety mechanism which stops the vehicle under fault conditions is an

especially important part of the design. A wired dead-man’s handle (DMH) is included

which is required to be pressed by a human experimenter at all times, in order for

a hardware relay to actively continue to supply power from the vehicle’s batteries

to all other systems. The relay connects to the donor vehicle’s keyed ignition switch

and will naturally cut out if these signals are absent for any reason, including failures

in the safety systems themselves. A photograph of the installed system is shown in

Figure 12.

Figure 11 ROS nodes used in

simulated, manual joystick

control mode.

Figure 12 Steering console

showing the newly added

relay (with lit LED).

10Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

Heartbeat Signal The serial protocol linking the Arduino to ROS includes a heartbeat

signal, in which the Arduino code will shut down the motors unless a correctly

formatted and timestamped serial command is received within 0.1 seconds. This

requires ROS code to actively check and confirm its own status and to send positive

confirmation, for example if ROS or Linux go down then this heartbeat will cut off.

Steering Control System Limiter Limitations are placed on the steering controller for

the linear actuator commands, to only allow the vehicle to accept and execute input

values within the range that will keep the mechanical mounting safe.

GENERAL TESTING

A series of sub-component (e.g. Pololu, DAC) acceptance tests, component (e.g. PCB, lidar)

hardware unit tests, and system integration tests are defined and included as formal, non-

optional steps in the build instructions. The structure of the tests is designed to enable build

problems to be immediately localised, so that passing one test means that a failure of the

next one must be due to build steps that have occurred between them. Below is a summary

of these tests.

At component level, an external power supply, a multi-meter, a clamp meter and a breadboard

with some wires are frequently used to recreate smaller electronic circuits in order to check

the voltages, currents and the correct functioning of each component during the build. For

instance, a circuit with an external power supplying 5V to the Arduino connected to the DAC

is temporally created to test the Arduino code and its communication with the DAC. Similarly,

another test circuit is created with an external power supplying 12V to the Pololu connected

to the linear actuator to send direct commands via the Windows program used to fix the PID

parameters. These hardware unit tests are essential to the success of components’ integration

to the vehicle and make things easier later.

At system integration level, udev rules are used to facilitate testing with the creation of simlinks,

i.e. dynamic assignments for the laptop USB ports connected to the Arduino and the Pololu,

using their respective product and vendor IDs. This helps in being able to physically interchange

the USB ports without having any impact at the software level. For the speed control, the vehicle

wheels are lifted from the ground using jacks to stop them from driving off. This technique

helps to test and fix the Arduino and ROS speed control code whilst staying in the same place.

Vehicle steering is first tested using the Windows app that allows direct commands to be

directly sent to the linear actuator. This helps verify and fix the linear actuator mounting as

desired. Similarly, using Pololu’s C++ API, direct commands are sent from a terminal to the

linear actuator, but this time for testing at the software level.

Driving tests are initially performed in the manual joystick control mode in order to ensure that

both hardware and software stack work well together. In particular, the LCD on the PCB board

helps with checking in real-time the voltage received for each speed command and the LEDs

colors displayed on the Pololu also give useful indications about the steering control.

The autonomous driving tests with move_base and TEB are performed with the vehicle speed

controls dial know set to ‘5’, corresponding to about 0.2 m/s. This relatively low speed is chosen

because these tests may be performed in a shared and cluttered research lab around people. Also,

a large inflation distance is set in the planner to prevent the vehicle from close contacts with both

static and dynamic obstacles. At first, simple and short goals are sent to move_base such as “drive

one meter forward and keep your current orientation” or “drive three meters forward and keep

your current orientation”. Once the vehicle is able to execute and reach these simple goals, more

complex goal commands are sent. Once a goal is reached, it is possible to resend immediately

another goal without having to turn off the system, which is very convenient for example when

one wants to ask the vehicle to return to its starting position or go somewhere else.

Setting a very high accuracy for goals such as 1mm and 0.01rad is achievable on the vehicle

and is tested for short drives in the lab. However, in these cases, the short drives may end up

taking a lot of time, for example it can take up to three minutes to simply reach a one meter

forward goal. This is due to the planner’s oscillating behaviour around the goal. To fix this, more

tolerance should be given for the goal accuracy, for example, 150mm and 0.15rad give an

acceptable vehicle behaviour. During these driving tests, ROS topics and RViz (ROS visualization

tool) are particularly monitored to get informed about the vehicle behaviour in real-time.

11Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

OpenPodcar was developed, and our own build was heavily tested, between March 2018 and

March 2022. With its first automated test drives taking place since summer 2018 and an

estimated 100km or more driven to date, the vehicle design has thus proven robust enough for

autonomous vehicle research.

(4) APPLICATION

USE CASES

Self-Driving Research

Many AV researchers cannot currently afford the acquisition of a self-driving hardware platform

for their work. The OpenPodcar is primarily designed for this purpose, as a low-cost and an

all-in-one, software and hardware platform for researchers and hobbyists. Thus, giving them

not only the opportunity to reproduce, develop and test algorithms on a physical hardware

platform but also to extend its capabilities with new features.

The Related Systems section found that there are many open source software stacks without

related open hardware platforms. OpenPodcar thus fills this gap, offering the opportunity

not only to deploy Autoware or other types of AV software but also to extend the hardware

capabilities to the point where OpenPodcar could become a standard test bed for the AV

research community. For example, this platform could be useful to test different SLAM and

planning algorithms, parallel and valet parking methods. The objective being that both

hardware and software can be tested regularly in real-world conditions and contribute towards

the deployment of AVs. The OpenPodcar can avoid both static and dynamic obstacle using the

integrated feature in move_base and TEB planner. Figure 13 shows the OpenPodcar test drive

with GMapping, move_base and TEB planner in action when it encounters an obstacle on its

path.

Human-Robot Interaction Research

Understanding human behaviour and interaction strategies are of upmost importance

nowadays for autonomous systems. There is a general growing interest from the robotics

and autonomous vehicle research communities to tackle the numerous challenges posed

by human interactions. Social robots as well as autonomous vehicles need better models

Figure 13 OpenPodcar

test drive with GMapping

SLAM, ROS move_base with

TEB planner and obstacle

avoidance.

Figure 14 Pedestrian detection

and tracking output from RViz.

12Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

of human behaviour [6, 7]. Some of the authors (FC and CF) are particularly interested in

improving autonomous vehicles’ decision-making using a game theoretic approach for road-

crossing scenarios [20]. Several empirical studies e.g. [8, 9, 14], were performed in highly

safe lab environments and found that human participants were not interacting realistically

with the other agent. A similar experiment performed in a VR environment showed a more

realistic behaviour from the participants [10, 11]. An additional model of human proxemics

(i.e., interpersonal distances) has been developed and is being combined with the game

theory model [13, 12]. In future work, the OpenPodcar will be used to extend these human

experiments using a real physical platform and demonstrate the operation of game theoretic

behaviour on a autonomous vehicle for the first time. The pedestrian detection and tracking

feature will be particularly useful for this task, since the AV needs to track the pedestrian in

order to make a decision. Figure 14 shows an example output of the pedestrian detection and

tracking integrated in the OpenPodcar.

Practical Transportation

OpenPodcar can carry at least 76kg of payload, such as a person or parcels, making it potentially

useful for real-world as well as research applications.

Last mile delivery of parcels could replace human workers for e-commerce deliveries. Urban

center retail environments may also be improved by replacing the last mile of supply to retail

outlets. Instead of driving to a shop to deliver goods, heavy goods vehicles could instead

park a mile outside the urban center and transfer the goods to OpenPodcar or similar electric

autonomous vehicles to take to the shop, reducing local pollution. The Covid-19 pandemic

emphasised a specific need for autonomous last-mile delivery: to reduce the need for human

contact and potential disease transmission at the point of delivery.

OpenPodcar is able to transport a human passenger, as shown in Figure 15, as it is based on an

COTS mobility scooter. For instance fleets of OpenPodcars might one day transport people over

the last mile from the train station to their office, as a low cost electric taxi service. This will

require more automation software to operate in busy urban environments.

Figure 15 OpenPodcar test

drive in remote control mode.

13Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

REUSE POTENTIAL AND ADAPTABILITY

The OpenPodcar design is intended so that the mechanical, electronics and software

components can be easily ported to other vehicles/platforms and only require small changes on

the software side to adapt it and fix some parameters specific to the new vehicle requirements.

This could include future deeper OSH vehicles as well as additional commercial donor vehicles.

Cheaper sensors such as depth cameras or stereo cameras could be used instead of the

3D lidar. Such modifications would typically require an advanced rather than intermediate

designer/builder.

(5) BUILD DETAILS

AVAILABILITY OF MATERIALS AND METHODS

The design is made under the CERN-OSH-W licence which allows for the use of commercially

available proprietary components such as the off-the-shelf donor vehicle. However the design

is intended to be easily modifiable for transfer to other base vehicles, including those which

are OSH at lower levels. The PCB can be manufactured by many online PCB manufacturers.

The additional mechanical and electronics used are common parts available from standard

online vendors.

EASE OF BUILD

The vehicle modification requires the use of common hand tools for assembly: spanners,

screwdrivers, and pliers. Additionally, a 3D printer is needed to fabricate some components.

Basic soldering skills are needed for assembling the PCB.

OPERATING SOFTWARE AND PERIPHERALS

The system requires open source software: Arduino IDE, Ubuntu 16.04, ROS Kinetic, Gazebo,

KiCad (PCB Design), ROS GMapping, ROS move_base, and Velodyne lidar driver. It also requires the

Pololu Configuration Utility Manager software which is available gratis from the manufacturer

website. The on-board laptop should have minimal specifications of amd64 3GHz quad-core,

8GB RAM, 250Gb hard-disc, USB and Ethernet ports. The system might also work on lower

specifications. Step-by-step instructions for installation of these software dependencies, and

the new system software components, are provided in the repository.

HARDWARE DOCUMENTATION AND FILES LOCATION

Archive for hardware documentation, build files and software

Name: GitHub

Project repository: https://github.com/OpenPodcar/OpenPodcar

Licence: CERN-OHL-W for hardware design and build instructions; GPL for software source code.

Date published: 09/05/2022

The hardware is structured as two separate formal OSH designs, each licenced as CERN-

OSH-W. The first covers all components which are easily transferable to other vehicles without

modification. The second contains all components which are specific to the mobility scooter

donor vehicle. This structure enables the first design to be used as sub-component of closed

products while also preventing closed modifications of it.

(6) DISCUSSION

CONCLUSIONS

OpenPodcar is a multi-purpose hardware and software platform for autonomous vehicle

research. It provides the required hardware and software tools to carry out research in this field.

The platform has a lower-level stack, a higher-level stack and a simulator for initial testing.

It has several safety features to prevent hazards. The general testing carried on the vehicle

14Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

shows a robust and safe design. Several use cases have been identified and successfully tested.

OpenPodcar is open source to allow further improvements and extensions of its capabilities

from the community. The replication of this work on a second and later vehicles will help

identify build issues and continually improve the documentation.

FUTURE WORK

OpenPodcar is designed to be extensible and modular, both at the hardware and software

levels. As well as improving the current design, the community is warmly invited to create

forks such as replacing the mobility scooter with other donor vehicles – including deeper OSH

vehicles – or extending the ROS stack to more complex on-road self-driving systems such as

Autoware.

In the current setup, the lidar has limited perception of obstacles that are too close and not

as high as the lidar. This is generally fine, because people or objects would be seen before, but

this can be problematic with objects such as desks and chairs that are not detected by the

laserscans and can create unexpected collisions. For example, a low-cost alternative to lidar is

to use a stereo camera for point cloud sensing. In this option, a StereoLabs ZedCam is mounted

similarly on the vehicle roof.

The design currently uses ROS1 but the robotics community is slowly shifting to ROS2 for its

security, real-time control and increased distributed processing features. OpenPodcar could

join this shift when all of its ROS dependencies have themselves completed it.

The donor vehicle currently used it not itself OSH, and it would be interesting and useful to

replace it with a more deep OSH vehicle. Such vehicles would be based on OSH motor drivers

and controllers such as the brushed OSMC [40] or brushless ODrive v3.5 [32].

ACKNOWLEDGEMENTS

The authors would like to thank Jacob Lord for creating the vehicle graphical mesh model,

Yao Chen for scoping Dubins path methods and the mechanical design, Gabriel Walton for

scoping simulation tools, Yicheng Zhang for helping with the 3D printer and many other useful

tools for the PCB board, Zak Burrows for the PCB enclosure design and assistance during some

autonomous driving tests.

FUNDING INFORMATION

This project has received funding from EU H2020 grant 723395 interACT, and from Innovate

UK grant 5949683 C19-ADVs.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Fanta Camara performed the physical podcar automation work including the mechanical

design, printed circuit board (PCB), ROS localisation and mapping, path planning, people

detector and tracker integration, Gazebo 3D simulation worlds of Lincoln and Leeds

university campuses, testing, and wrote the documentation for the physical podcar and the

manuscript. Chris Waltham designed the initial electronics circuit and safety systems, wrote

the Arduino code for the speed control and participated in the initial remotely-controlled

driving test. Grey Churchill developed the podcar simulator with path planning in ROS/Gazebo

and wrote the documentation for the simulator. Charles Fox supervised the work, wrote the

manuscript, and wrote some ROS code. The manuscript was improved by comments from all

the co-authors.

15Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

AUTHOR AFFILIATIONS

Fanta Camara orcid.org/0000-0002-2655-1228

Institute for Transport Studies, University of Leeds, UK; School of Computer Science, University of Lincoln, UK

Chris Waltham

School of Computer Science, University of Lincoln, UK

Grey Churchill

School of Computer Science, University of Lincoln, UK

Charles Fox orcid.org/0000-0002-6695-8081

Institute for Transport Studies, University of Leeds, UK; School of Computer Science, University of Lincoln, UK

REFERENCES

1. F1tenth. https://f1tenth.org/.

2. MIT RaceCar. https://mit-racecar.github.io/.

3. MuSHR. https://mushr.io/.

4. ApolloAuto. Apollo. https://github.com/ApolloAuto/apollo.

5. Panpan Cai, Yiyuan Lee, Yuanfu Luo, and David Hsu. Summit: A simulator for urban driving in

massive mixed traffic. In 2020 IEEE International Conference on Robotics and Automation (ICRA),

pages 4023–4029. IEEE, 2020.

6. Fanta Camara, Nicola Bellotto, Serhan Cosar, Dimitris Nathanael, Matthias Althoff, Jingyuan Wu,

Johannes Ruenz, André Dietrich, and Charles W. Fox. Pedestrian models for autonomous driving

Part I: lowlevel models, from sensing to tracking. IEEE Transactions on Intelligent Transportation

Systems, 2020. DOI: https://doi.org/10.1109/TITS.2020.3006768

7. Fanta Camara, Nicola Bellotto, Serhan Cosar, Florian Weber, Dimitris Nathanael, Matthias

Althoff, Jingyuan Wu, Johannes Ruenz, André Dietrich, Anna Schieben, Gustav Markkula, Fabio

Tango, Natasha Merat, and Charles W. Fox. Pedestrian models for autonomous driving Part II: high-

level models of human behavior. IEEE Transactions on Intelligent Transportation Systems, 2020. DOI:

https://doi.org/10.1109/TITS.2020.3006767

8. Fanta Camara, Serhan Cosar, Nicola Bellotto, Natasha Merat, and Charles W. Fox. Towards

pedestrian-av interaction: method for elucidating pedestrian preferences. In IEEE/RSJ Intelligent

Robots and Systems (IROS) Workshops, 2018.

9. Camara, F., Cosar, S., Bellotto, N., Merat, N., and Fox, C. W. Continuous Game Theory Pedestrian

Modelling Method for Autonomous Vehicles. Book on Human Factors in Intelligent Vehicles,

Olaverri-Monreal, C., Garcia, F. & Rossetti, R. (Eds.), River Publishers, 2020.

10. Fanta Camara, Patrick Dickinson, and Charles Fox. Evaluating pedestrian interaction preferences

with a game theoretic autonomous vehicle in virtual reality. Transportation Research Part F: Traffic

Psychology and Behaviour, 78:410–423, 2021. DOI: https://doi.org/10.1016/j.trf.2021.02.017

11. Fanta Camara, Patrick Dickinson, Natasha Merat, and Charles W. Fox. Towards game theoretic av

controllers: measuring pedestrian behaviour in virtual reality. In IEEE/RSJ International Conference on

Intelligent Robots and Systems Workshops, 2019.

12. Camara, F., and Fox, C. Extending quantitative proxemics and trust to HRI. In Proc. ofthe 31st Proc.

of the IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 2022.

(Best Student Award Paper Finalist and KROS Interdisciplinary Research Award in Social Human-Robot

Interaction Finalist) https://doi.org/10.1109/RO-MAN53752.2022.9900821

13. Fanta Camara and Charles Fox. Space invaders: Pedestrian proxemic utility functions and trust zones

for autonomous vehicle interactions. International Journal of Social Robotics, 2020. DOI: https://doi.

org/10.1007/s12369-020-00717-x

14. Fanta Camara, Richard Romano, Gustav Markkula, Ruth Madigan, Natasha Merat, and Charles

Fox. Empirical game theory of pedestrian interaction for autonomous vehicles. In Measuring Behavior

2018: 11th International Conference on Methods and Techniques in Behavioral Research. Manchester

Metropolitan University, March 2018.

15. Maxime Chevalier-Boisvert, Florian Golemo, Yanjun Cao, Bhairav Mehta, and Liam Paull.

Duckietown environments for OpenAI Gym. https://github.com/duckietown/gym-duckietown, 2018.

16. Fisher Daniel K and Gould Peter J. Open-source hardware is a low-cost alternative for scientific

instrumentation and research. Modern instrumentation, 2012, 2012. DOI: https://doi.org/10.4236/

mi.2012.12002

17. Patricia R DeLucia. Effects of size on collision perception and implications for perceptual theory and

transportation safety. Current directions in psychological science, 22(3):199–204, 2013. DOI: https://

doi.org/10.1177/0963721412471679

18. Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An

open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages

1–16, 2017.

16Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

19. Lester E Dubins. On curves of minimal length with a constraint on average curvature, and with

prescribed initial and terminal positions and tangents. American Journal of mathematics, 79(3):497–

516, 1957. DOI: https://doi.org/10.2307/2372560

20. Charles W. Fox, Fanta Camara, Gustav Markkula, Richard Romano, Ruth Madigan, and Natasha

Merat. When should the chicken cross the road?: Game theory for autonomous vehicle – human

interactions. In VEHITS 2018: 4th International Conference on Vehicle Technology and Intelligent

Transport Systems, January 2018. DOI: https://doi.org/10.5220/0006765404310439

21. Brian Goldfain, Paul Drews, Changxi You, Matthew Barulic, Orlin Velev, Panagiotis Tsiotras, and

James M Rehg. Autorally: An open platform for aggressive autonomous driving. IEEE Control Systems

Magazine, 39(1):26–55, 2019. DOI: https://doi.org/10.1109/MCS.2018.2876958

22. D Gomez, P Marin-Plaza, Ahmed Hussein, A Escalera, and J Armingol. Ros-based architecture

for autonomous intelligent campus automobile (icab). UNED Plasencia Revista de Investigacion

Universitaria, 12:257–272, 2016.

23. Jon Gonzales. Planning and Control of Drift Maneuvers with the Berkeley Autonomous Race Car. PhD

thesis, University of California at Berkeley, 2018.

24. Marcin Jakubowski. Open Source Ecology. https://www.opensourceecology.org/, 2003.

25. Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki

Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware on

board: Enabling autonomous vehicles with embedded systems. In 2018 ACM/IEEE 9th International

Conference on Cyber-Physical Systems (ICCPS), pages 287–296. IEEE, 2018. https://github.com/

Autoware-AI/autoware.ai.

26. Tobias Kessler, Julian Bernhard, Martin Buechel, Klemens Esterle, Patrick Hart, Daniel Malovetz,

Michael Truong Le, Frederik Diehl, Thomas Brunner, and Alois Knoll. Bridging the gap between

open source software and vehicle hardware for autonomous driving. In 2019 IEEE Intelligent Vehicles

Symposium (IV), pages 1612–1619, 2019. DOI: https://doi.org/10.1109/IVS.2019.8813784

27. Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-

robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

28. Pablo Marin-Plaza, Ahmed Hussein, David Martin, and Arturo de la Escalera. Global and local

path planning study in a ros-based research platform for autonomous vehicles. Journal of Advanced

Transportation, 2018, 2018. DOI: https://doi.org/10.1155/2018/6392697

29. Elie Michel. Maps Models Importer. https://github.com/eliemichel/MapsModelsImporter.

30. William F. Milliken, Douglas L. Milliken, et al. Race car vehicle dynamics, volume 400. Society of

Automotive Engineers Warrendale, PA, 1995.

31. Naohiro Nakamoto and Hiroyuki Kobayashi. Development of an opensource educational and

research platform for autonomous cars. In IECON 2019 – 45th Annual Conference of the IEEE

Industrial Electronics Society, volume 1, pages 6871–6876, 2019. DOI: https://doi.org/10.1109/

IECON.2019.8926794

32. ODrive Robotics. ODrive. https://odriverobotics.com/.

33. Open Motors. Tabby EVO. https://www.openmotors.co/evplatform/.

34. Jonathan Oxer and Hugh Blemings. Practical Arduino: cool projects for open source hardware. Apress,

2011.

35. Peachtree Corners. Curiosity Lab. https://www.curiositylabptc.com/.

36. Scott Pendleton, Tawit Uthaicharoenpong, Zhuang Jie Chong, Guo Ming James Fu, Baoxing Qin,

Wei Liu, Xiaotong Shen, Zhiyong Weng, Cody Kamin, Mark Adam Ang, et al. Autonomous golf

cars for public trial of mobility-on-demand service. In 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1164–1171. IEEE, 2015. DOI: https://doi.org/10.1109/

IROS.2015.7353517

37. PixMoving. Pixbot. https://gitlab.com/pixmoving/pixbot.

38. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,

and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop on open source

software, volume 3, page 5. Kobe, Japan, 2009.

39. Craig Quiter. Deepdrive. https://github.com/deepdrive/deepdrive.

40. Robot Power. Open Source Motor Control (OSMC). http://www.robotpower.com/products/osmc_info.

html.

41. Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke, Mārtinš Možeiko, Eric

Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, et al. Lgsvl simulator: A high fidelity simulator

for autonomous driving. arXiv preprint arXiv:2005.03778, 2020. DOI: https://doi.org/10.1109/

ITSC45102.2020.9294422

42. Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and Torsten Bertram.

Efficient trajectory optimization using a sparse model. In 2013 European Conference on Mobile

Robots, pages 138–143. IEEE, 2013. DOI: https://doi.org/10.1109/ECMR.2013.6698833

17Camara et al.

Journal of Open Hardware

DOI: 10.5334/joh.46

TO CITE THIS ARTICLE:

Camara, F, Waltham, C,

Churchill, G and Fox, C. 2023.

OpenPodcar: An Open Source

Vehicle for Self-Driving Car

Research. Journal of Open

Hardware, 7(1): 8, pp. 1–17.

DOI: https://doi.org/10.5334/

joh.46

Submitted: 09 May 2022

Accepted: 17 July 2023

Published: 11 September 2023

COPYRIGHT:

© 2023 The Author(s). This is an

open-access article distributed

under the terms of the Creative

Commons Attribution 4.0

International License (CC-BY

4.0), which permits unrestricted

use, distribution, and

reproduction in any medium,

provided the original author

and source are credited. See

http://creativecommons.org/

licenses/by/4.0/.

Journal of Open Hardware is

a peer-reviewed open access

journal published by Ubiquity

Press.

43. Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and

physical simulation for autonomous vehicles. In Field and Service Robotics, 2017.

44. Shoprider. Shoprider flagship luxury scooter model: Te-889xlsn user manual. https://www.

usermanual.uk/shoprider/te-889xlsn/manual, 2016.

45. Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002. DOI: https://

doi.org/10.1145/504729.504754

46. Bastien Vincke, Sergio Rodriguez Florez, and Pascal Aubert. An open-source scale model platform

for teaching autonomous vehicle technologies. Sensors, 21(11), 2021. https://github.com/BastienV-

SATIE/AutonomousCar/. DOI: https://doi.org/10.3390/s21113850

47. Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M. Bayen. Flow:

Architecture and benchmarking for reinforcement learning in traffic control. CoRR, abs/1710.05465,

2017. https://flow-project.github.io/.

48. Z. Yan, S. Schreiberhuber, G. Halmetschlager, T. Duckett, M. Vincze, and N. Bellotto. Robot

perception of static and dynamic objects with an autonomous floor scrubber. Intelligent Service

Robotics, 13(3):403–417, 2020. https://github.com/LCAS/FLOBOT. DOI: https://doi.org/10.1007/

s11370-020-00324-9

49. Barry Loh Tze Yuen, Khairul Salleh Mohamed Sahari, and Zubaidi Faiesal Mohamad Rafaai.

Improved map generation by addition of gaussian noise for indoor slam using ros. Journal

of Robotics, Networking and Artificial Life, 4(2):118–123, 2017. DOI: https://doi.org/10.2991/

jrnal.2017.4.2.3

