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CHOICE AND INDEPENDENCE OF PREMISE RULES IN

INTUITIONISTIC SET THEORY

EMANUELE FRITTAION, TAKAKO NEMOTO, AND MICHAEL RATHJEN

Abstract. Choice and independence of premise principles play an important role in

characterizing Kreisel’s modified realizability and Gödel’s Dialectica interpretation. In

this paper we show that a great many intuitionistic set theories are closed under the

corresponding rules for finite types over N. It is also shown that the existence property

(or existential definability property) holds for statements of the form ∃yσ ϕ(y), where

the variable y ranges over objects of finite type σ. This applies in particular to CZF

(Constructive Zermelo-Fraenkel set theory) and IZF (Intuitionistic Zermelo-Fraenkel set

theory), two systems known not to have the general existence property. On the technical

side, the paper uses a method that amalgamates generic realizability for set theory with

truth, whereby the underlying partial combinatory algebra is required to contain all

objects of finite type.

1. Introduction

There are (at least) three types of classically valid principles that figure prominently in

constructive mathematics: ACFT (Choice in Finite Types), MP (Markov’s principle) and

IP (Independence of Premise principle). All three are required for a characterization of

Gödel’s Dialectica interpretation (see [41, 3.5.10], [16, Proposition 8.13]), whereas Kreisel’s

modified realizability for intuitionistic finite type arithmetic HA
ω is axiomatized by ACFT

and IP alone. To be more precise, let

ACFT ∀xσ ∃yτ φ(x, y) → ∃fστ ∀xσ φ(x, fx)

IP¬ (¬ψ → ∃yσ φ(y)) → ∃yσ (¬ψ → φ(y))

IPef (ψef → ∃yσ φ(y)) → ∃yσ (ψef → φ(y))

where σ, τ signify finite types, zρ varies over objects of finite type ρ, and ψef is assumed

to be ∃-free, i.e., it neither contains existential quantifiers nor disjunctions.1

Then the following holds (see e.g. [41, 3.4.8], [43, Theorem 3.7], [16, Theorem 5.12]):

Theorem 1.1. With ⊩mr signifying modified realizability, we have:

(i) HA
ω + ACFT + IPef ⊢ φ↔ ∃x (x ⊩mr φ).
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2 FRITTAION, NEMOTO, AND RATHJEN

Let T ∈ {HAω,E-HAω}.2 Then:

(ii) T + ACFT + IPef ⊢ φ iff T ⊢ (t ⊩mr φ) for some term t.

An important application of modified realizability (to be correct, its truth variant, aka

modified realizability with truth) is that (i) T is closed under the rule of choice in finite

types, (ii) T is closed under the independence of premise rule for negated formulas IPR¬

(in particular, it is closed under IPRef), and (iii) T satisfies explicit definability. Short and

sweet (see e.g. [43, Theorem 3.8], [16, Corollary 5.24]):

Theorem 1.2. Let T ∈ {HAω,E-HAω}. Then:

(i) If T ⊢ ∀xσ ∃yτ φ(x, y), then T ⊢ ∃fστ ∀xσ φ(x, fx).

(ii) If T ⊢ ¬ψ → ∃yσ φ(y), then T ⊢ ∃yσ (¬ψ → φ(y));

(iii) If T ⊢ ∃yσ φ(y), then T ⊢ φ(t), for a suitable term t.

The current paper shows that results similar to Theorem 1.2 hold for a great many set

theories T , including CZF (Constructive Zermelo-Fraenkel set theory) and IZF (Intuition-

istic Zermelo-Fraenkel set theory), even if augmented by suitable choice principles and

large set axioms.3 A more precise delineation of the kind of set theories eligible for this

theorem is that T should be self-validating with respect to generic realizability combined

with truth (cf. Theorem 4.11).

Theorem 1.3 (see Theorems 8.2, 8.5 and 8.7). An array of set theories T including CZF

and IZF satisfy the following:

(i) If T ⊢ ∀xσ ∃yτ φ(x, y), then T ⊢ ∃fστ ∀xσ φ(x, fx);

(ii) If T ⊢ ∀x (¬ψ(x) → ∃yσ φ(x, y)), then T ⊢ ∃y ∀x (¬ψ(x) → y ∈ σ ∧ φ(x, y));

(iii) If T ⊢ ∀x (∀z ϑ(x, z) → ∃yσ φ(x, y)) and T ⊢ ∀z (ϑ(x, z) ∨ ¬ϑ(x, z)), then T ⊢

∃yσ ∀x (∀z ϑ(x, z) → φ(x, y));

(iv) If T ⊢ ∃yσ φ(y), then T ⊢ ∃!yσ (δ(y) ∧ φ(y)), for some formula δ(y).

To properly shelve the perhaps perplexing results, i.e., from a classical viewpoint, it is

good to bear in mind that our theorem applies to set theories T closed under the following

rules:

(v) the Unzerlegbarkeits rule, namely, if T ⊢ ∀x (φ(x) ∨ ψ(x)), then T ⊢ ∀xφ(x) or

T ⊢ ∀xψ(x);

(vi) the Uniformity rule, namely, if T ⊢ ∀x ∃y ∈ ω φ(x, y), then T ⊢ ∃y ∈ ω ∀xφ(x, y)

(see [34, Theorem 1.2] and [36, Theorem 7.4]).4 A by-product of Theorem 1.3 (cf. Section

8.2) is that rule (vi) still holds when y ranges over objects of a given finite type.

It is known that IZF (see [27]) and CZF (see [34]) have the numerical existence property,

so Theorem 1.3 part (iv) extends this property to a larger collection of existential formulas.

On the other hand, it is known by work of Friedman and Ščedrov [7] that IZF does not have

the general existence property EP while Swan [40] proved that EP also fails for CZF. In

2For a definition of HAω and its extensional variant E-HAω cf. e.g. [41] or [16].
3The intuitionistic rendering of large cardinal axioms.
4Discussions of uniformity under realizability seem to appear first in the literature in Friedman’s [6] and
Troelstra’s [42].
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the latter case the culprit is CZF’s Subset Collection axiom as shown by the third author

[33] since the version of CZF with Exponentiation in lieu of Subset Collection has the EP.

On the technical side, the paper uses the method of generic realizability with truth

from [34]. The main novelty of the paper, however, is the introduction of a special kind

of partial combinatory algebra (pca) to the realizability framework. We single out the

notion of a reflexive pca over finite types to deal specifically with objects of finite type. An

instance of this new phenomenon, and its construction in weak set theories such as CZF,

is duly supplied.

Generic realizability is better understood as a generalization of Kleene’s 1945 realizabil-

ity rather than Kreisel’s modified realizability. Even so, it differs from both. On one hand,

generic realizability (with truth) combined with a reflexive pca over finite types bears close

similarities to modified realizability (with truth). Roughly, a truth realizer of a ∀xσ ∃yτ

statement yields a choice functional of type στ . This gives closure under the rule of choice

in all finite types. On the other hand, totality is a crucial aspect of modified realizability

with truth in establishing closure under independence of premise rule for (extensional)

finite type arithmetic: realizers are total functionals. As it turns out, the independence of

premise rules of Theorem 1.3 do not require the use of a total combinatory algebra: the

inherent nature of set theory (a set is given by its members) allows us to dispense with

totality. Note in contrast that truth variants of Kleene’s realizability (e.g. q-realizability

[41, 44]) do not yield closure under independence of premise rule for first order arithmetic

HA, and one has to resort to other methods such as Kleene’s or Aczel’s slash instead.

Our approach to establish independence of premise rules however is not without short-

comings, as can be seen from Theorem 1.3 part (ii), and we do not know whether the

following more genuine version holds true.

Problem 1.4. Is the following an admissible rule of CZF or any other familiar construc-

tive/intuitionistic set theory T?

• If T ⊢ ¬ψ → ∃yσ φ(y), then T ⊢ ∃yσ (¬ψ → φ(y)), where y is not free in ψ.

Notice that as a special case of Theorem 1.3 part (ii) one only obtains the following

weaker rule:

• if T ⊢ ¬ψ → ∃yσ φ(y), then T ⊢ ∃y (¬ψ → y ∈ σ ∧ φ(y)),

where the y in the conclusion is guaranteed to be of type σ only in case the premise ¬ψ

is verified.

More in general, closure under independence of premise rule with no type restrictions

remains an open problem:

Problem 1.5. Is the following an admissible rule of CZF or any other familiar construc-

tive/intuitionistic set theory T?

• If T ⊢ ¬ψ → ∃y φ(y), then T ⊢ ∃y (¬ψ → φ(y)), where y is not free in ψ.

The present paper shows that this holds true when ∃y is bounded by some finite type.

1.1. Generic realizability for set theory. Realizability semantics are ubiquitous in the

study of intuitionistic theories. In the case of set theory, they differ in important aspects
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from Kleene’s [13] realizability in their treatment of the quantifiers. Its origin is Kreisel’s

and Troelstra’s [17] definition of realizability for second order Heyting arithmetic. This

was applied to systems of higher order arithmetic and (intensional) set theory by Friedman

[6] and Beeson [1]. McCarty [23] and [24] adapted Kreisel-Troelstra realizability directly

to extensional intuitionistic set theories such as IZF. This type of realizability can also be

formalized in CZF (see [35]) to yield a self-validating semantics for CZF.

Realizability combined with truth appears in connection with function realizability in

Kleene [15] and was also studied by others (see [43] for the history). Troelstra considers

realizability with truth in the arithmetic context and in connection with modified realiz-

ability in [43, 1.6, 2.1, 3.4]. In generic realizability for extensional set theory, however, the

background universe V and the realizability universe V(A) erected over a partial combi-

natory algebra A are rather different “worlds”, and it is prima facie not clear how to view

a statement as talking about a state of affairs in V and V(A) at the same time. The paper

[34] introduced a new realizability structure Vtr(A) that arises by amalgamating the real-

izability structure V(A) with the universe of sets in a coherent, albeit rather complicated

way. This approach to realizability with truth based on Vtr(A) will also be used in the

present paper.5 A very rough heuristics for using this method of realizability with truth

is that it often works with principles that are validated in a realizability model based on

a particular partial combinatory algebra and that switching to the corresponding version

with the additional truth component one can derive the pertaining rule.6

1.2. Comparison with other approaches to showing the independence of premise

rule. Closure under IPR has been shown for HAS (second order Heyting arithmetic) by

Troelstra [42, 2.10] and for HAH (Heyting arithmetic in higher types, aka intuitionistic type

theory) by Lambek and Scott [19].7 Its admissibility is often established as a by-product

of the existence property EP (also called the existential definability property) that such

systems enjoy. As to the methods used in the metamathematics of HAS and HAH, one

can roughly group them as follows:

(1) Proof-theoretic methods: study of the proof structure either in natural deduction

systems or sequent calculi (e.g. Prawitz [29, 30], Scarpellini [37, 38], Troelstra [42],

Hayashi [10, 11, 12]).

(2) Functional interpretation (e.g. Girard [8, 9]).

(3) Extensions of Kleene’s slash method [14] (e.g. Moschovakis [26], Myhill [27, 28],

Friedman [6], Lambek-Scott [18]).

(4) Topos-theoretic methods, conceptualizing term models as topoi (“free topos”) and

using techniques such as Freyd covers and topos glueing (e.g. Freyd [5], Moerdijk

[25], Lambek-Scott [19, 20, 21], Ščedrov-Scott [46]).

5For more information, the introduction of [34] contains a historical account of realizability for set theories
and the roots of generic realizability in particular.
6E.g. for Church’s rule and Troelstra’s Uniformity rule this was done in [34] using Kleene’s first algebra.
7For a definition of HAS and HAH cf. [44, pp. 164 and 170]. HAS is a subsystem of CZF + (Full Separation).
The two theories are known to be equiconsistent as shown by Lubarsky [22]. HAH is a fragment of
intuitionistic Kripke-Platek set theory plus Powerset, IKP + (Powerset), but strictly weaker in terms of
proof-theoretic strength. The latter theory is much weaker than intuitionistic Power Kripke-Platek set
theory (see [32]), IKP(P), which proof-theoretically equates to a version of the Calculus of Constructions
with one universe by [31, Theorem 15.1]. And IKP(P) is just a small fragment of IZF.



CHOICE AND INDEPENDENCE OF PREMISE RULES IN SET THEORY 5

Taking intuitionistic Zermelo-Fraenkel set theory, IZF, to be the “typical” set theory of

this paper, one can perhaps immediately say that such strong theories are currently not

amenable to the methods of (1) and (2). The topos-theoretic methods of (4) have turned

out to be equivalent in a strong sense to Friedman’s modification of Kleene’s slash in [6]:

“Thus Freyd’s use of retracts and Friedman’s impredicative assignment of indices turn out

to be one and the same process” [46, 443]. In view of the foregoing, we will only consider

the Friedman slash method and point out the obstacles one faces when attempting to

obtain the results of this paper via this method. For any of the slash methods to apply to

a theory T one needs a language that has sufficiently many terms to serve as names for

the objects that are describable in T . In the case of arithmetic this is easy as one has the

numerals. In the context of higher order systems or set theories one is usually compelled

to move to a theory T ∗ with a richer language that is conservative over T . Typically let T

be a set theory with explicit set existence axioms, i.e. with axioms that define the contents

of the set being asserted to exists, namely if it is of the form

∀x0 . . . ∀xn−1 [ψ(x0, . . . , xn−1) → ∃y ∀u [u ∈ y ↔ φ(u, x0, . . . , xn−1)]. (1)

One then simultaneously inductively defines a new theory T ∗ and a collection of closed

terms T ∗ such that T ∗ comprises the axioms of T and for each axiom of the form (1),

whenever there is t0, . . . , tn−1 ∈ T ∗ with T ∗ ⊢ ψ(t0, . . . , tn−1), one adds a new constant

cϕ,ψ(t0, . . . , tn−1) to T ∗ and an axiom

∀u [u ∈ cϕ,ψ(t0, . . . , tn−1) ↔ φ(u, t0, . . . , tn−1)].

It turns out that T ∗ is conservative over T . In a further step one defines the system T ⋄

that is obtained by splitting up each term of T ∗ into many terms. Thus the terms of T ⋄ are

of the form cϕ,ψ(t0, . . . , tn−1)
X , where X is any set of closed terms of T ∗ satisfying certain

conditions. Echoing Myhill’s words [28, p. 369], roughly cϕ,ψ(t0, . . . , tn−1)
X denotes the

set {u | φ(u, t0, . . . , tn−1)} and X is the “reason” that we know φ(u, t0, . . . , tn−1). For

our purposes it is not necessary to spell out the details. It suffices to know that the

clauses for the quantifiers in the definition of the Friedman slash refer to the terms of

T ⋄. This slash interpretation works for many theories with explicit set existence axioms

such as intuitionistic Zermelo-Fraenkel set theory when based on Replacement rather than

Collection. As a typical application one obtains the set existence property. However, the

Friedman slash is not known to work for theories whose set existence axioms are not explicit

such as the Collection, Strong Collection, Subset Collection, the Regular Extension Axiom

and the Presentation Axiom. Indeed, as shown by Friedman and Ščedrov [7], IZF does not

have the EP and Swan [40] proved that CZF also lacks the EP, rendering it unlikely that the

Friedman slash can be applied to these theories to establish closure under independence

of premise rules whereas the method of realizability with truth works perfectly well.

2. Intuitionistic set theory

The language of constructive Zermelo-Fraenkel set theory CZF is same first order lan-

guage as that of classical Zermelo-Fraenkel set theory ZF whose only non-logical symbol

is the binary predicate ∈. We use x, y, z, u, v, w, possibly with superscripts, for variables
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in the language of CZF. The logic of CZF is intuitionistic first order logic with equality.

The axioms of CZF are as follows (universal closures):

Extensionality: ∀z (z ∈ x↔ z ∈ y) → x = y.

Pairing: ∃z (x ∈ z ∧ y ∈ z).

Union: ∃y ∀z (∃w ∈ x (z ∈ w) → z ∈ y).

Infinity: ∃w ∀x [x ∈ w ↔ ∀y (y /∈ x) ∨ ∃y ∈ w ∀z (z ∈ x↔ z ∈ y ∨ z = y)].

Set Induction: ∀x [∀y ∈ xφ(y) → φ(x)] → ∀xφ(x), for any formula φ,

Bounded Separation: ∃y ∀z [z ∈ y ↔ z ∈ x ∧ φ(z)], for any bounded formula φ. A

formula is bounded or restricted if it is constructed from prime formulae using →, ¬, ∧, ∨,

∀x ∈ y and ∃x ∈ y only.

Strong Collection:

∀y ∈ x ∃z φ(y, z) → ∃w [∀y ∈ x ∃z ∈ wφ(y, z) ∧ ∀z ∈ w ∃y ∈ xφ(y, z)],

for any formula φ.

Subset Collection:

∀x ∀y ∃z ∀u [∀v ∈ x ∃w ∈ y φ(v, w, u) →

∃y′ ∈ z [∀v ∈ x ∃w ∈ y′ φ(v, w, u) ∧ ∀w ∈ y′ ∃v ∈ xφ(v, w, u)]],

for any formula φ.

In what follows, we shall assume that the language CZF has constants ∅ denoting the

empty set, ω denoting the set of von Neumann natural numbers. One can take the axioms

∀x (x /∈ ∅) for ∅ and ∀x [x ∈ ω ↔ (x = ∅ ∨ ∃y ∈ ω ∀z (z ∈ x ↔ z ∈ y ∨ z = y))] for ω. We

write x+ 1 for x ∪ {x} and use n, m, and l for elements of ω.

We consider also several extensions of CZF with other principles.

Full Separation: ∃y ∀z [z ∈ y ↔ z ∈ x ∧ φ(z)], for any formula φ.

Powerset: ∃y ∀z (z ⊆ x→ z ∈ y).

The system CZF+(Full Separation)+(Powerset) is called IZF (cf. [27] or [1, VIII.1]).

Markov principle (MP): If ∀n ∈ ω (φ(n)∨¬φ(n)) and ¬¬∃n ∈ ω φ(n), then ∃n ∈ ω φ(n).

Axiom of Countable Choice (ACω): If ∀n ∈ ω ∃xφ(n, x), then ∃f (f is a function ∧

dom(f) = ω ∧ ∀n ∈ ω φ(n, f(n))).

Dependent Choices Axiom (DC): If ∀x ∈ z ∃y ∈ z φ(x, y), then ∀x ∈ z ∃f (f is a function ∧

dom(f) = ω ∧ f(0) = x ∧ ∀n ∈ ω φ(f(n), f(n+ 1))).

Relativised Dependent Choices Axiom (RDC): If ∀x (ψ(x) → ∃y (ψ(y) ∧ φ(x, y)),

then for every x such that ψ(x) there is a function f such that dom(f) = ω ∧ f(0) =

x ∧ ∀n ∈ ω φ(f(n), f(n+ 1)).

Definition 2.1. A set x is inhabited if ∃y (y ∈ x). An inhabited set x is regular if x is

transitive, and for every y ∈ x and a set z ⊆ y × x if ∀u ∈ y ∃v (⟨u, v⟩ ∈ z), then there is

a set w ∈ x such that

∀u ∈ y ∃v ∈ w (⟨u, v⟩ ∈ z) ∧ ∀v ∈ w ∀u ∈ y (⟨u, v⟩ ∈ z).

Regular Extension Axiom (REA): Every set is a subset of a regular set.

Definition 2.2. A set x is projective if for any x-indexed family (yu)u∈x of inhabited sets

yu, there exists a function f with domain x such that f(u) ∈ yu for all u ∈ x.
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Presentation Axiom (PAx): Every set is the surjective image of a projective set.

2.1. Finite types.

Definition 2.3. Finite types σ and their extensions Fσ are defined by the following

clauses:

• o ∈ Φ and Fo = ω;

• if σ, τ ∈ Φ, then (σ)τ ∈ Φ and F(σ)τ = Fσ → Fτ = {total functions from Fσ to Fτ}.

If there is no risk of confusion, we write στ or σ → τ to denote the type (σ)τ . The sets Φ

of all finite types, F = {Fσ : σ ∈ Φ} and F =
⋃
F all exist in CZF.

Definition 2.4. There is a formula ϑ(σ, z) (also written ϑσ(z)) such that:

• ϑ(o, z) ↔ z is ω;

• ϑ(στ, z) ↔ ∀zσ ∀zτ (ϑ(σ, zσ) ∧ ϑ(τ, zτ ) → ∀f (f ∈ z ↔ Fun(f, zσ, zτ ))).

Here, Fun(f, x, y) is an abbreviation for “f is a function from x to y.”

Notation 2.5 (Official). ∀xσ . . . stands for ∀zσ (ϑσ(zσ) → ∀x ∈ zσ . . .). Similarly for ∃xσ.

3. Partial combinatory algebras I

In order to define a realizability interpretation we must have a notion of realizing func-

tions to hand. A particularly general and elegant approach to realizability builds on struc-

tures which have been variably called partial combinatory algebras, applicative structures,

or Schönfinkel algebras. For more information on these structures see [3, 4, 1, 45].

Definition 3.1. (A, ·) is said to be a partial algebra if A is a set and · is a binary function

on some subset of A × A. Since · is only partial on A, it is convenient to talk about

application terms of (A, ·), where these terms might not denote an object in A. Given an

infinite collection x, y, z, . . . of variables, the inductive definition of application terms is as

follows: every variable x and every a ∈ A is an application term; if s, t are application

terms then (s ·t) is an application term. A closed application term is one without variables

and it denotes an element a of A iff it is a itself or else it is of the form (s · t) and there

are b, c ∈ A such that s denotes b, t denotes c, (b, c) is in the domain of · and a = b · c. If

a closed application term t denotes, then we convey this by writing t ↓.

For application terms s1, . . . , sr we shall just write s1 . . . sr to refer to the application

term inductively defined by letting s1 . . . sn+1 be ((s1 . . . sn) · sn+1); so the convention

is to drop · and assume the bracketing to be arranged to the left. We also use s = t to

convey that the closed application terms s and t denote the same object in A; in particular

s = t entails that s ↓ and t ↓. We also introduce the very helpful abbreviation t ≃ s for

(t ↓ ∨ s ↓) → s = t.

A partial combinatory algebra (pca) is a partial algebra (A, ·) such that A has at least

two elements and there are elements k and s in A such that ka, sa and sab are always

defined and

• kab ≃ a;

• sabc ≃ ac(bc)

holds for all a, b, c ∈ A.
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The combinators k and s are due to Schönfinkel [39] while the axiomatic treatment,

although formulated just in the total case, is due to Curry [2]. Employing the axioms for

the combinators k and s one can deduce an abstraction lemma yielding λ-terms (cf. [3]).

Lemma 3.2 (abstraction lemma). For each application term t(x1, . . . , xn+1), there is a

closed application term a, denoted λx1 · · ·xn.t, such that for all a1, . . . , an, b ∈ A

• aa1 · · · an ↓;

• aa1 · · · anb ≃ t(a1, . . . , anb).

The most important consequence of the Abstraction Lemma is the Recursion Theorem.

It can be derived in the same way as for the λ–calculus (cf. [3], [4], [1, VI.2.7]).

Corollary 3.3 (recursion theorem). For every n > 0 there exists a closed application term

f such that for all a, b1, . . . , bn ∈ A we have:

• fa ↓;

• fab1 · · · bn ≃ a(fa)b1 · · · bn.

In every pca, one has pairing and unpairing8 combinators p, p0, and p1 such that:

• pab ↓;

• pi(pa0a1) ≃ ai.

The notion of a pca is slightly impoverished compared to that of a model of Beeson’s

theory PCA
+ [1, VI.2] or Feferman’s theory for applicative structures APP ([3, 4], [44,

9.3]). Although, as Curry showed, every pca can be expanded to a model of PCA+,

which at the same time is also an applicative structure (see [1, VI.2.9]), we spell out the

sort of structure we are interested in, that is, a model of PCA+. Details will become more

pertinent when we engineer specific ones that include all finite types (Definition 5.1).

Definition 3.4. We say that A is a pca over ω if there are extra combinators succ, pred

(successor and predecessor combinators), d (definition by cases combinator), and a map

n 7→ n̄ from ω to A such that for all n,m ∈ ω and a, b ∈ A

succ n̄ ≃ n+ 1, predn+ 1 ≃ n̄, dn̄m̄ab ≃







a n = m;

b n ̸= m.

One then defines 0 := 0̄ and 1 := 1̄.

4. Realizability with truth

4.1. The general realizability structure. [34] introduces a realizability structure with

truth over Kleene’s first algebra. In this paper, we define it over an arbitrary set-sized pca

A (both A and the graph {(x, y, z) ∈ A3 : xy ≃ z} are sets).

Notation 4.1. For an ordered pair x = ⟨x0, x1⟩, let

x◦ = x0

x∗ = x1.

8Let p = λxyz.zxy, p0 := λx.xk, and p1 := λx.xk̄, where k̄ := λxy.y. Projections p0 and p1 need not be
total.
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Definition 4.2. Ordinals are transitive sets whose elements are transitive also. As per

usual, we use lower case Greek letters α and β to range over ordinals. Let A be a pca.

Besides Vα and V, we define Vtr(A)α and Vtr(A) as follows:

Vtr(A)α =
⋃

β∈α

{
⟨x, x̂⟩ | x ∈ Vβ ∧ x̂ ⊆ A×Vtr(A)β ∧ ∀⟨a, u⟩ ∈ x̂ (u◦ ∈ x)

}
(2)

Vα =
⋃

β∈α

P(Vβ)

Vtr(A) =
⋃

α

Vtr(A)α

V =
⋃

α

Vα.

As the power set operation is not available in CZF, it is not clear whether the classes V

and Vtr(A) can be formalized in CZF. However, employing the fact that CZF accommo-

dates inductively defined classes, the classes Vα and Vtr(A)α can be defined in the same

vein as in [35, Lemma 3.4].

Lemma 4.3 (CZF). The following holds:

(i) V and Vtr(A) are cumulative: for β ∈ α, Vβ ⊆ Vα and Vtr(A)β ⊆ Vtr(A)α.

(ii) For all sets x, x ∈ V.

(iii) If x, x̂ are sets, x̂ ⊆ A×Vtr(A) and ∀⟨a, u⟩ ∈ x̂ (u◦ ∈ x), then ⟨x, x̂⟩ ∈ Vtr(A).

Proof. This is proved in the same way as [34, Lemma 4.2]. □

The definition of Vtr(A)α in (2) is perhaps a bit involved. Note first that all the elements

of Vtr(A) are ordered pairs ⟨x, x̂⟩ such that x̂ ⊆ A × Vtr(A). For an ordered pair ⟨x, x̂⟩

to enter Vtr(A)α the first conditions to be met are that x ∈ Vβ and x̂ ⊆ A× Vtr(A)β for

some β ∈ α. Furthermore, it is required that enough elements of x live in the transitive

closure of x̂ in that whenever ⟨a, u⟩ ∈ x̂ then u◦ ∈ x.

For all intents and purposes, the following equivalent definition of Vtr(A) is perfectly

justifiable in CZF.

Definition 4.4 (universe). Given a pca A, we inductively define the class Vtr(A) by the

following clause:

• if x̂ ⊆ A×Vtr(A) and for every ⟨a, u⟩ ∈ x̂ we have u◦ ∈ x, then ⟨x, x̂⟩ ∈ Vtr(A).

Definition 4.5 (canonical name). Let

x̌ = ⟨x, {⟨0, ǔ⟩ : u ∈ x}⟩.

Then x̌ ∈ Vtr(A) and x̌
◦ = x.

4.2. Defining realizability. We now proceed to define a notion of realizability with truth

over Vtr(A), where A is any pca over ω.

Definition 4.6. Given a formula φ with parameters in Vtr(A), let φ
◦ be the formula

obtained by replacing each parameter x in φ with x◦.

Notation 4.7. We use (a)i or simply ai for pia. Whenever we write an application term

t, we assume that it is defined. In other words, a formula φ(t) stands for ∃a (t ≃ a∧φ(a)).
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The following truth variant of generic realizability is due to Rathjen (see [34]). Bounded

quantifiers are treated as quantifiers in their own right, i.e., bounded and unbounded

quantifiers are treated as syntactically different kinds of quantifiers. The subscript in ⊩tr

is supposed to serve as a reminder of “realizability with truth.”

Definition 4.8 (realizability with truth). We define the relation a ⊩tr φ, where a ∈ A

and φ is a formula with parameters in Vtr(A). The atomic cases are defined by transfinite

recursion.

a ⊩tr x ∈ y ⇔ x◦ ∈ y◦ ∧ ∃z (⟨a0, z⟩ ∈ y∗ ∧ a1 ⊩tr x = z)

a ⊩tr x = y ⇔ x◦ = y◦ ∧ ∀⟨b, z⟩ ∈ x∗ ((ab)0 ⊩tr z ∈ y)

∧ ∀⟨b, z⟩ ∈ y∗ ((ab)1 ⊩tr z ∈ x)

a ⊩tr φ ∧ ψ ⇔ a0 ⊩tr φ ∧ a1 ⊩tr ψ

a ⊩tr φ ∨ ψ ⇔ a0 ≃ 0 ∧ a1 ⊩tr φ or a0 ≃ 1 ∧ a1 ⊩tr ψ

a ⊩tr ¬φ ⇔ ¬φ◦ ∧ ∀b¬(b ⊩tr φ)

a ⊩tr φ→ ψ ⇔ φ◦ → ψ◦ ∧ ∀b ⊩tr φ (ab ⊩tr ψ)

a ⊩tr ∀x ∈ y φ ⇔ ∀x ∈ y◦ φ◦ ∧ ∀⟨b, x⟩ ∈ y∗ (ab ⊩tr φ)

a ⊩tr ∃x ∈ y φ ⇔ ∃x (⟨a0, x⟩ ∈ y∗ ∧ a1 ⊩tr φ)

a ⊩tr ∀xφ ⇔ ∀x ∈ Vtr(A) (a ⊩tr φ)

a ⊩tr ∃xφ ⇔ ∃x ∈ Vtr(A) (a ⊩tr φ)

Lemma 4.9. CZF proves

(a ⊩tr φ) → φ◦.

Proof. By induction on the build up of φ. The case of an unbounded universal quantifier

follows from the fact that every set has a name in Vtr(A). □

Lemma 4.10. Negated formulas are self-realizing, that is to say, CZF proves

¬φ◦ → (0 ⊩tr ¬φ) ↔ ∀a (a ⊩tr ¬φ).

Proof. Assume ¬φ◦. From a ⊩tr φ, we would get φ◦ by Lemma 4.9. But this is absurd.

Hence ∀a¬(a ⊩tr φ), and therefore 0 ⊩tr ¬φ. The second part is similar. □

Theorem 4.11 (Soundness). Let T be any combination of CZF with the axioms and

schemes (Full Separation), (Powerset), REA, MP, ACω, DC, RDC, and PAx. Then, for

every theorem θ of T , there exists an application term t such that T ⊢ (t ⊩tr θ). In

particular, CZF, CZF+ REA, IZF, IZF+ REA satisfy this property. Moreover, the proof is

effective in that the application term t can be constructed from the T -proof of θ.

Proof. This is proved in the same way as [34, Theorem 6.1, Theorem 7.2] and [36, Theorem

7.4]. □

Notation 4.12. We write ⊩tr φ for ∃a ∈ A (a ⊩tr φ).

4.3. Pairing.
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Definition 4.13 (internal pairing). For x, y ∈ Vtr(A), let

{x}A = ⟨{x◦}, {⟨0, x⟩}⟩,

{x, y}A = ⟨{x◦, y◦}, {⟨0, x⟩, ⟨1, y⟩}⟩,

⟨x, y⟩A = ⟨⟨x◦, y◦⟩, {⟨0, {x}A⟩, ⟨1, {x, y}A⟩}⟩.

Note that all these sets are in Vtr(A).

Notation 4.14. To avoid confusion, let op(z, x, y) be a formula expressing that z is the

ordered pair of x and y, that is, z = ⟨x, y⟩ = {{x}, {x, y}}.

As expected, all the desired properties of pairing are realized. Below we list some.

Lemma 4.15. There are closed application terms v, w, z such that for all x, y, z, u, v ∈

Vtr(A)

v ⊩tr op(⟨x, y⟩A, x, y),

w ⊩tr ⟨x, y⟩A = ⟨u, v⟩A → x = u ∧ y = v,

z ⊩tr op(z, x, y) → z = ⟨x, y⟩A.

5. Partial combinatory algebras II

To deal with the rules of choice and independence of premise in all finite types, we will

use our truth variant of generic realizability with pca’s containing all objects of finite type.

Definition 5.1 (pca over F). We say that A is a pca over F if there are extra combinators

succ, pred (successor and predecessor combinators), d (definition by cases combinator),

and a one-to-one map x 7→ x̄ from F to A such that

• f̄ x̄ ≃ f(x) for f ∈ Fστ and x ∈ Fσ;

• for all n,m ∈ ω and a, b ∈ A

succ n̄ ≃ n+ 1, predn+ 1 ≃ n̄, dn̄m̄ab ≃







a n = m;

b n ̸= m.

The idea is to have nice names of the form

Ḟσ = ⟨Fσ, {⟨x̄, ẋ⟩ | x ∈ Fσ}⟩

for every type σ. Indeed, we require a little bit more.

Definition 5.2 (reflexive pca over F). A pca A over F is reflexive on F if for all σ and τ

there is a combinator iστ such that

iστa ≃ f̄ ,

whenever f ∈ Fστ and ax̄ = f(x) for every x ∈ Fσ.

Unless otherwise stated, from now on we posit a reflexive pca A over F within CZF. In

Section 9 we will give an example and show how to carry out such construction in CZF.
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6. Injective names for finite type objects

Definition 6.1 (canonical names for objects of finite type and extensions). Let A be a

pca over F. Let

ω̇ = ⟨ω, {⟨n̄, ṅ⟩ | n ∈ ω}⟩,

where

ṅ = ⟨n, {⟨m̄, ṁ⟩ | m < n}⟩.

For higher types, let

Ḟστ = ⟨Fστ , {⟨f̄ , ḟ⟩ | f ∈ Fστ}⟩,

where

ḟ = ⟨f, {⟨x̄, ⟨ẋ, ẏ⟩A⟩ | x ∈ Fσ ∧ f(x) = y}⟩.

Lemma 6.2. Let A be a pca over F. For every σ,

• (ẋ)◦ = x for every x ∈ Fσ,

• (Ḟσ)
◦ = Fσ.

Definition 6.3 (injective). A name x ∈ Vtr(A) is injective if

(i) x◦ = {u◦ | ∃a ∈ A (⟨a, u⟩ ∈ x∗)};

(ii) if ⟨a, u⟩, ⟨b, v⟩ ∈ x∗, then a = b iff u◦ = v◦.

In other words, {⟨a, u◦⟩ | ⟨a, u⟩ ∈ x∗} is one-to-one function from {a ∈ A | ∃u (⟨a, u⟩ ∈ x∗)}

onto x◦. We say that x◦ is injectively presented.

Lemma 6.4. Let x ∈ Vtr(A) be injective. Then

a ⊩tr ∀u ∈ xφ(u) ⇔ ∀⟨b, u⟩ ∈ x∗ ab ⊩tr φ(u).

Proof. Indeed, condition (i) is sufficient. □

Lemma 6.5. Let A be a pca over F. For every σ,

• ẋ is injective for every x ∈ Fσ;

• Ḟσ is injective;

• ⊩tr ẋ = ẏ implies x = y for all x, y ∈ Fσ (absoluteness).

7. Realizing finite types

We want to show that CZF proves ⊩tr ϑσ(Ḟσ) for every σ, provided that A is a reflexive

pca over F. Recall that ϑσ(z) is the formula asserting that z is the set of all objects of

type σ (Definition 2.4).

Theorem 7.1 (natural numbers). There exists a closed application term e such that CZF

proves

e ⊩tr ϑo(ω̇).

Proof. See [34, Theorem 6.1 (Infinity)]. Note that any pca would do the job. □

For arrow types, we use reflexivity.

Theorem 7.2 (arrow types). For all finite types σ and τ there exists a closed application

term e such that CZF proves

e ⊩tr ∀f (f ∈ Ḟστ ↔ Fun(f, Ḟσ, Ḟτ )).
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Proof. Fix types σ and τ . It suffices to look for closed application terms a and b such

that

a ⊩tr ∀f ∈ Ḟστ Fun(f, Ḟσ, Ḟτ ),

and for every g ∈ Vtr(A),

b ⊩tr Fun(g, Ḟσ, Ḟτ ) → g ∈ Ḟστ .

To ease notation, we identify x with x̄. Since (Ḟσ)
◦ = Fσ for every type σ, we just need

to verify the second half of the pertaining clauses, namely,

• for every f ∈ Fστ , af ⊩tr Fun(ḟ , Ḟσ, Ḟτ );

• if a ⊩tr Fun(g, Ḟσ, Ḟτ ), then ba ⊩tr g ∈ Ḟστ .

For a, we need to find r, t, f such that for every f ∈ Fστ ,

rf ⊩tr ∀z ∈ ḟ ∃x ∈ Ḟσ ∃y ∈ Ḟτ op(z, x, y), (1)

tf ⊩tr ∀x ∈ Ḟσ ∃y ∈ Ḟτ ∃z ∈ ḟ op(z, x, y), (2)

ff ⊩tr ∀z0 ∈ ḟ ∀z1 ∈ ḟ ∀x ∀y0 ∀y1 (op(z0, x, y0) ∧ op(z1, x, y1) → y0 = y1). (3)

For (1), let

r = λax.px(p(ax)v),

where v ⊩tr op(⟨x, y⟩A, x, y) for all x, y ∈ Vtr(A). Let us verify that r does the job. Let

f ∈ Fστ . We want to show that

rf = λx.px(p(fx)v) ⊩tr ∀z ∈ ḟ ∃x ∈ Ḟσ ∃y ∈ Ḟτ op(z, x, y).

As ḟ is injective, by Lemma 6.4 it suffices to show that for x ∈ Fσ and y = f(x) ∈ Fτ we

have that

px(p(fx)v) ⊩tr ∃x0 ∈ Ḟσ ∃y0 ∈ Ḟτ op(⟨ẋ, ẏ⟩A, x0, y0).

By definition, ⟨x, ẋ⟩ ∈ (Ḟσ)
∗. Let us check that

p(fx)v ⊩tr ∃y0 ∈ Ḟτ op(⟨ẋ, ẏ⟩A, ẋ, y0).

Note that fx ≃ y and ⟨y, ẏ⟩ ∈ (Ḟτ )
∗. Finally,

v ⊩tr op(⟨ẋ, ẏ⟩A, ẋ, ẏ).

For (2), use

t = λax.p(ax)(pxv),

where v is as above.

For (3), use the fact that ẋ◦ = x for every x ∈ Fσ and the properties of pairing and

equality.

We now construct b. Here is where the στ combinator iστ comes into play. Suppose

that

a ⊩tr Fun(g, Ḟσ, Ḟτ ).

We aim for

ba ⊩tr g ∈ Ḟστ .

We have

a0 ⊩tr ∀z ∈ g ∃x ∈ Ḟσ ∃y ∈ Ḟτ op(z, x, y), (4)
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a10 ⊩tr ∀x ∈ Ḟσ ∃y ∈ Ḟτ ∃z ∈ g op(z, x, y), (5)

a11 ⊩tr ∀z0 ∈ g ∀z1 ∈ g ∀x ∀y0 ∀y1 (op(z0, x, y0) ∧ op(z1, x, y1) → y0 = y1). (6)

Since g◦ ∈ (Ḟστ )
◦ = Fστ , we only need to find b such that

(ba)0 ≃ f ∈ Fστ and (ba)1 ⊩tr g = ḟ .

It follows from (5) that for every x ∈ Fσ there exists (a unique) y ∈ Fτ such that

(a10x)0 ≃ y and

(a10x)1 ⊩tr ∃z ∈ g op(z, ẋ, ẏ).

We now apply the στ combinator iστ . We then have iστλx.(a10x)0 ≃ f , for the (unique)

f ∈ Fστ such that

(a10x)0 ≃ f(x), for all x ∈ Fσ.

We set

b = λa.p(iστλx.(a10x)0)(ha),

and we are left to find h such that

ha ⊩tr g = ḟ .

By using (5), it is not difficult to show that g◦(x) = f(x) for every x ∈ Fσ, and hence

g◦ = f = (ḟ)◦. It remains to prove the second half of the pertaining clause.

(⊆) Let ⟨b, z⟩ ∈ g∗. We aim for (hab)0 ⊩tr z ∈ ḟ . By (4), there are x ∈ Fσ and y0 ∈ Fτ

such that

(a0b)0 ≃ x and (a0b)10 ≃ y0 and (a0b)11 ⊩tr op(z, ẋ, ẏ0).

On the other hand, by (5), there is a ⟨b1, z1⟩ ∈ g∗ with (a10x)10 ≃ b1 such that

(a10x)11 ⊩tr op(z1, ẋ, ẏ),

where y = f(x). By (6),

a11bb1(p(a0b)11(a10x)11) ⊩tr ẏ0 = ẏ.

By absoluteness (Lemma 6.5) it follows from ⊩tr ẏ0 = ẏ that y0 = y. Then h such that

(hab)0 ≃ p(a0b)0(q(a0b)11),

where q is some fixed term such that

q ⊩tr op(z, x, y) → z = ⟨x, y⟩A,

is as desired.

(⊇) Let ⟨x, ⟨ẋ, ẏ⟩A⟩ ∈ (ḟ)∗. By definition, f(x) = y. We aim for (hax)1 ⊩tr ⟨ẋ, ẏ⟩A ∈ g.

Just let

(hax)1 = p(a10x)10(r(a10x)11),

where r is some fixed term such that

r ⊩tr op(z, x, y) → ⟨x, y⟩A = z.

□
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Theorem 7.3. For every finite type σ there exists a closed application term f such that

CZF proves

f ⊩tr ϑσ(Ḟσ).

8. Admissible rules

8.1. Choice.

Lemma 8.1 (choice for injective names). CZF proves

(⊩tr ∀u ∈ x ∃v ∈ y φ(x, y)) → ∃f : x◦ → y◦ ∀u ∈ x◦ φ◦(u, f(u)),

for all injective names x, y ∈ Vtr(A).

Proof. Suppose

e ⊩tr ∀u ∈ x ∃v ∈ y φ(u, v).

Unraveling the definition, we have that if ⟨a, u⟩ ∈ x∗ then ea ⊩tr ∃v ∈ y φ(u, y), and

hence there is ⟨b, v⟩ ∈ y∗, where (ea)0 ≃ b, such that (ea)1 ⊩tr φ(u, v). In particular,

φ◦(u◦, v◦). Let

f = {⟨u◦, v◦⟩ : ⟨a, u⟩ ∈ x∗ ∧ ⟨b, v⟩ ∈ y∗ ∧ (ea)0 ≃ b}.

Then f is as desired. In fact, dom(f) = x◦ follows from Definition 6.3 (i). The fact that

f is indeed a function follows from Definition 6.3 (ii) applied to both x and y. □

Theorem 8.2 (choice rule). CZF is closed under

∀xσ ∃yτ φ(x, y)

∃fστ ∀xσ φ(x, f(x))

Same for IZF and any other theory from Theorem 4.11.

Proof. Use a reflexive pca over F. By soundness, let e ⊩tr ∀xσ ∃yτ φ(x, y). By Theorem

7.3 and soundness, we can compute a such that

a ⊩tr ∀x ∈ Ḟσ ∃y ∈ Ḟτ φ(x, y).

By injectivity and Lemma 8.1, we conclude

∃f : Fσ → Fτ ∀x ∈ Fσ φ(x, f(x)),

that is, ∃fστ ∀xσ φ(x, f(x)). □

8.2. Uniformity rules.

Theorem 8.3. CZF is closed under

∀x (φ(x) ∨ ψ(x))

∀xφ(x) or ∀xψ(x)
(UZR)

Same for IZF and any other theory from Theorem 4.11.

Proof. Use generic realizability with truth and Kleene’s first algebra. See [34, Theorem

1.2]. □
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Theorem 8.4. CZF is closed under

∀x ∃yσ φ(x, y)

∃yσ ∀xφ(x, y)
(URσ)

Same for IZF and any other theory from Theorem 4.11.

Proof. Use a reflexive pca over F. WLOG, let x consist of a single variable. Suppose CZF

proves ∀x ∃yσ φ(x, y). By soundness, let e be such that CZF proves e ⊩tr ∀x ∃y
σ φ(x, y).

According to our official convention, ∃yσ φ(x, y) stands for

∀z (ϑσ(z) → ∃y ∈ z φ(x, y)).

Reasoning in CZF, we have that e ⊩tr ∃y
σ φ(x̌, yσ) for every x. We know that there is a

closed application term f such that f ⊩tr ϑσ(Ḟσ). In particular, for every x there exists

y ∈ Fσ such that (ef)0 ≃ ȳ and (ef)1 ⊩tr φ(x̌, ẏ). Note that y does not depend on x. So

let y ∈ Fσ such that (ef)0 ≃ ȳ. We thus have that for every x, (ef)1 ⊩tr φ(x̌, ẏ), and

hence φ(x, y), as desired. □

8.3. Independence of premise.

Theorem 8.5 (independence of premise rules). Let ψ(x), φ(x, y), θ(x, z) be formulas

with displayed free variables. Then CZF is closed under the following rules:

∀x (¬ψ(x) → ∃yσ φ(x, y))

∃y ∀x (¬ψ(x) → y ∈ Fσ ∧ φ(x, y))
(1)

∀x (¬ψ(x) → ∃yσ φ(x, y)) ∃x¬ψ(x)

∃yσ ∀x (¬ψ(x) → φ(x, y))
(2)

∀x (∀z θ(x, z) → ∃yσ φ(x, y)) ∀x ∀z (θ(x, z) ∨ ¬θ(x, z))

∃yσ ∀x (∀z θ(x, z) → φ(x, y))
(3)

∀x (∀zρ θ(x, z) → ∃yσ φ(x, y)) ∀x ∀zρ (θ(x, z) ∨ ¬θ(x, z))

∃y ∀x (∀zρ θ(x, z) → y ∈ Fσ ∧ φ(x, y))
(4)

Same for IZF and any other theory from Theorem 4.11.

Proof. For ease of notation, let x and z consist of a single variable x and z respectively.

Again, ∃yσ φ(x, y) stands for ∀z (ϑσ(z) → ∃y ∈ z φ(x, y)). On the other hand, let

y ∈ Fσ ∧ φ(x, y) be short for

∀z (ϑσ(z) → y ∈ z ∧ φ(x, y)).

(1) Use a reflexive pca over F. Now suppose CZF proves ∀x (¬ψ(x) → ∃yσ φ(x, y)). By

soundness, let e be a closed application term such that CZF proves e ⊩tr ∀x (¬ψ(x) →

∃yσ φ(x, y)). From now one we argue in CZF. It follows from the definition of generic

realizability that e ⊩tr ¬ψ(x̌) → ∃yσ φ(x̌, y), for every x.

For the sake of argument, suppose that 0 ⊩tr ¬ψ(x̌). Then e0 ⊩tr ∃yσ φ(x̌, y). We

know that there is a closed application term f such that f ⊩tr ϑσ(Ḟσ). Then

e0f ⊩tr ∃y ∈ Ḟσ φ(x̌, y).
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Therefore (e0f)0 ≃ ȳ for some (unique) y ∈ Fσ and (e0f)1 ⊩tr φ(x̌, ẏ). From this we

conclude φ(x, y), since x̌◦ = x and ẏ◦ = y.

It is now clear how to find y. Simply, let

y = {u ∈
⋃

Fσ | ∃v ∈ Fσ (u ∈ v ∧ (e0f)0 ≃ v̄)}.

We claim that ∀x (¬ψ(x) → y ∈ Fσ ∧ φ(x, y)). For this it is sufficient to note that

¬ψ(x) implies 0 ⊩tr ¬ψ(x̌). Note that, as Ḟσ is injective, the y satisfying φ(x, y) is

uniquely determined.

(2) Exercise for the reader. Use a reflexive pca over F.

(3) Exercise for the reader. Apply UZR and URσ.

(4) follows from (1).

□

Remark 8.6. The main use of reflexivity above consists in making sure that ⊩tr ϑσ(Ḟσ).

In general, the argument goes through if for every type σ there is a functional z ∈ Vtr(A)

such that ⊩tr ϑσ(z), where by functional we mean that ⟨a, y1⟩, ⟨a, y2⟩ ∈ z∗ implies y◦1 = y◦2.

In this case, one can let

y = {u ∈
⋃

Fσ | ∃a ∈ A ∃v ((e0f)0 ≃ a ∧ u ∈ v◦ ∧ ⟨a, v⟩ ∈ z∗)},

where f ⊩tr ϑσ(z).

8.4. Explicit definability.

Theorem 8.7. CZF is closed under

∀x ∃yσ φ(x, y)
for some formula δ(y)

∃!yσ (δ(y) ∧ ∀xφ(x, y))

Same for IZF and any other theory from Theorem 4.11.

Proof. Use a definable reflexive pca over F. Note that in such case Ḟσ is also definable for

every given type σ. An example of a pca over F definable in CZF is given in the upcoming

and final section. □

9. A direct construction in CZF of a reflexive pca over finite types

We first describe the general idea in a classical setting. Recall that F =
⋃
F with

F = {Fσ | σ ∈ Φ}. Let function application be given by fx ≃ y iff f is a function,

x ∈ dom(f) and f(x) = y. Since F is closed under function application, this gives us a

partial algebra on F. The idea would be to define a partial application map on the powerset

P(F) and take x 7→ {x} to be the embedding. Unfortunately, the usual constructions on

P(F) do not yield a pca.9 To solve this, we introduce the notion of arity and work with

9We remind the reader of a construction due to van Oosten. Given any pca A, one can define a partial
binary operation on P(A) by letting XY ≃ Z iff Z = {ab | a ∈ X ∧ b ∈ Y } and application is total on
X × Y , that is, ab is defined for all a ∈ X and b ∈ Y . This need not be a pca with combinators {k} and
{s}. Note that in general {s}XY Z is smaller than XZ(Y Z). However, the totality requirement makes it
an ordered pca in the sense of van Oosten [45, 1.8]. A similar contruction on F gives rise to an ordered
pca on P(F), but this fails to be a pca for the same reasons.
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nonempty subsets of F×P , where P is the set of arities. We use arities, that is types of the

form p0 · · · pn → q, to iterate function application in a prescribed manner. For example,

we can assign arity στ → ρ to a function f of type σ → τ → ρ and thus see (f, στ → ρ) as

a function from Fσ × Fτ to Fρ by currying. We then define a partial application map on

nonempty subsets of F × P , so that the resulting partial algebra is a pca that embeds F

via the canonical embedding xσ 7→ {(x, σ)}. We require the sets to be nonempty so that

the combinator k does its job. However, in order to obtain a reflexive pca, in particular a

‘definition by cases’ combinator, we also have to enlarge the type structure F by allowing

(enough) dependent products. Formally, this is how we proceed.

Let G be inductively defined by:

• ω ∈ G

• if F,G ∈ G, then F → G ∈ G;

• if Fn ∈ G for every n ∈ ω, then
∏

n∈ω Fn ∈ G,

where in general
∏

x∈F

Gx = {f : F →
⋃

x∈F

Gx | ∀x ∈ F (f(x) ∈ Gx)}.

Set G =
⋃
G. Note that F ⊆ G. On elements of G we will always consider function

application. We define the set of arities P by the following inductive clauses:

• o ∈ P ;

• if p0, . . . , pn, q ∈ P then p0 · · · pn → q ∈ P ;

• if pn ∈ P for every n ∈ ω, then
∏

n∈ω pn ∈ P .

Note that Φ ⊆ P . If σ, τ ∈ Φ, we denote by σn → τ ∈ P the arity

n+1
︷ ︸︸ ︷
σ · · ·σ → τ.

Let G(P ) = G× P . We use x, y, z, . . . to denote elements of G(P ). We define a partial

function from G(P ) × G(P )<ω to G(P ) by letting x(⃗y) ≃ z iff x = (x, p), z = (z, q) and

either one of the following applies:

(i) p = p0 · · · pn → q, y⃗ = ⟨(yi, pi) | i ≤ n⟩, and xy0 · · · yn ≃ z;

(ii) n = 0, p =
∏

n∈ω pn, y⃗ = ⟨(m, o)⟩ for some m ∈ ω, pm = q and xm ≃ z.

The reader should keep in mind that xy0 · · · yn and xm are defined by (iterated) function

application. We usually write x(y0, . . . , yn) for x(⟨y0, . . . , yn⟩).

Let G(P )∗ = P(G(P )) \ {∅}. A partial application map on G(P )∗ is then defined by

letting ab ≃ c iff

c = {z ∈ G(P ) | ∃x ∈ a ∃y0, . . . , yn ∈ b (x(y0, . . . , yn) ≃ z)}.

We now equip G(P )∗ with combinators.

(1) Let us define k ∈ G(P )∗. First, for all F,G ∈ G, let kFG : F → G → F be the

unique function such that kxF yG = x. Note that all k’s are in G since G is closed under

exponentiation. Let

k = {(kFG, p→ q → p) | F,G ∈ G ∧ p, q ∈ P}.
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(2) We define s ∈ G(P )∗ as follows. For any choice of n,m, n0, . . . , nm ∈ ω we consider

all functions s’s in G such that

sxy0 · · · ymz0 · · · znz00 · · · z0n0
· · · · · · zn0 · · · zmnm

=

= xz0 · · · zn(y0z00 · · · z0n0
) · · · (ymzm0 · · · zmnm

).

We suppress the type information for notational convenience. Note that all s’s are in G

since G is closed under exponentiation. Any such function can be assigned an arity of the

form

p→ r0 · · · rm → q0 · · · qnq00 · · · q0n0
· · · · · · qm0 · · · qmnm

→ q,

where p = q0 · · · qn → p0 · · · pm → q and ri = qi0 · · · qini
→ pi for every i ≤ m.

Let

s = S ∪ C,

where S consists of all pairs (s, r), where s is as above and the arity r agrees with the type

of s in the sense just described, and

C = {(λxF yG.0o, p→ q → o) | F,G ∈ G ∧ p, q ∈ P}.

We add C only to ensure that sab ↓ for all a and b.

(3) Numerical combinators are easily definable. Let succ = {(λn.n + 1, o → o)} and

pred = {(λn.n− 1, o→ o)}.

(4) As for d ∈ G(P )∗, for all F,G ∈ G, let dFG :
∏

n∈ω

∏

m∈ω Fnm, where

Fnm =







F → G→ F if n = m;

F → G→ G otherwise,

such that

dFGnm ≃







kFG if n = m;

k̄FG otherwise.

Here, k̄FG : F → G → G is defined by k̄xF yG = y. It is easy to check that for every

F,G ∈ G,
∏

n∈ω

∏

m∈ω

Fnm ∈ G,

and therefore dFG ∈ G. Similarly, for all p, q ∈ P , let (p, q) ∈ P be defined as
∏

n∈ω

∏

m∈ω pnm,

where

pnm =







p→ q → p if n = m;

p→ q → q otherwise.

Let

d = {(dFG, (p, q)) | F,G ∈ G ∧ p, q ∈ P}.

(5) Combinator iστ ∈ G(P )∗ for σ, τ ∈ Φ. Let

iστ = {(inστ , (σ
n → τ) → σ → τ) | n ∈ ω},
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where inστ : (

n+1
︷ ︸︸ ︷

Fσ → · · · → Fσ → Fτ ) → Fσ → Fτ is defined by inστfx = f

n+1
︷ ︸︸ ︷
x · · ·x.

One could show in IZF that G(P )∗ is a reflexive pca over F. On the other hand, G(P )∗ is

not even a set in CZF. Note that in CZF we could inductively define G as a class. For our

purposes however, a class will not do. It turns out that we just need very few dependent

products, as can be easily gleaned from the construction above. Also, we have to settle

on the right notion of nonemptiness. But this is easily arranged: we just take inhabited

sets (x is inhabited if ∃u (u ∈ x)). The construction in CZF proceeds as follows.

First, we can form the set G =
⋃

s∈ωGs, where

• G0 = {ω};

• Gs+1 = Gs ∪ {F → G | F,G ∈ Gs} ∪ {
∏

n∈ω Fs | ∀n ∈ ω (Fn ∈ Gs)}.

Now, ω ∈ G and G is closed under exponentiation. Let G =
⋃
G. It follows that Fσ ∈ G

for every finite type σ, and so F ⊆ G. In a similar manner, we obtain in CZF a sufficiently

large set P of arities. Let P =
⋃

s∈ω Ps, where

• P0 = {o};

• Ps+1 = Ps ∪ {p0 · · · pn → q | p0, . . . , pn, q ∈ Ps} ∪ {
∏

n∈ω pn | ∀n ∈ ω (pn ∈ Ps)}.

We can then form the set G(P ) = G × P . Finally, unless we work in IZF, where we

have access to the full power set, we need to get by with sufficiently (set-)many subsets of

G(P ). This is how we can proceed. Consider

X = {k, s,d} ∪ {{(x, σ)} | σ ∈ Φ, x ∈ Fσ} ∪ {iστ | σ, τ ∈ Φ}.

We can construct the total algebra X̄ ⊆ G(P )∗ generated by X under application in

G(P )∗. To see this, we define by recursion

X0 = X

Xs+1 = Xs ∪ {ab | a, b ∈ Xs}

and set X̄ =
⋃

s∈ωXs. We then let

A = {a ∈ X̄ | a is inhabited}.

Note that A consists of inhabited subsets of G(P ). Also, for all a, b ∈ A, we have ab ↓ iff

ab is inhabited iff ab ∈ A.

Theorem 9.1 (CZF). A is a reflexive pca over F with embedding xσ 7→ x̄ = {(x, σ)}.

Proof. First, the function x 7→ x̄ from F to A is given by

{⟨x, (x, σ)⟩ | x ∈ Fσ ∧ σ ∈ Φ}.

By induction on the type, one can verify that if Fσ∩Fτ is inhabited, then σ = τ . Therefore

the set above is indeed a function. That this map provides an embedding of partial algebras

from F into A is immediate. In fact, if f ∈ Fστ and x ∈ Fσ, then (f, στ)(x, σ) ≃ (f(x), τ).

Let us check the combinators.

(1) Combinator k. Let a, b ∈ A. We have

kab =
⋃

F,G∈G

{(kFGx
F yG, p) | (x, p) ∈ a ∧ ∃q ((y, q) ∈ b)} = a.
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Use the fact that a and b are inhabited.

(2) Combinator s. Notice that sab ↓ since (0, o) ∈ sab. Now, sabc is designed to contain

exactly all elements of ab(cb). The verification that sabc ≃ ac(bc) is a simple exercise.

(3) The verification that succ and pred behave as desired is immediate.

(4) Combinator d. It is not difficult to see that

dn̄m̄ =







k if n = m;

k otherwise;

where k = {(k̄FG, p → q → q) | F,G ∈ G ∧ p, q ∈ P}, and k̄FG = λxF yG.y. Therefore

dn̄m̄ab ≃ a if n = m and b otherwise.

(5) Combinator iστ . Let F = Fσ and G = Fτ . Suppose that a ∈ A and that for every

x ∈ F there exists y ∈ G such that ax̄ ≃ ȳ. We want to show that iστa ≃ f̄ , where

f : F → G is such that

ax̄ ≃ f(x) for every x ∈ F . (∗)

Recall that iστ = {(inστ , (σ
n → τ) → σ → τ) | n ∈ ω}. Let us denote by inστ the n-th

element of iστ . Let us also write F →n G for

n+1
︷ ︸︸ ︷

F → · · · → F → G.

Note the difference between the set F →n G and the arity σn → τ . Recall that

inστ : (F →n G) → F → G.

By definition, iστa = {inστ (g) | n ∈ ω ∧ g ∈ a}.

Let us point out that G is sparse in the sense that if F,G ∈ G have some overlap,

meaning that F ∩ G is inhabited, then F = G. This is proved by induction on F ∈ G

(i.e., by induction on the stage n ∈ ω such that F ∈ Gn). This feature is crucial here and

will be used without further notice.

We start off by proving that f̄ ⊆ iστa, that is, (f, στ) ∈ iστa. Pick any u ∈ F . We can

do this since every F ∈ F is inhabited. By (∗), there must be a g = (g, p) ∈ a such that

g(

n+1
︷ ︸︸ ︷

(u, σ), · · · , (u, σ)) ≃ (f(u), τ).

It is not too difficult to check that g : Fn → G and g(⟨(x, σ) | i ≤ n⟩) ↓ for every

x ∈ F . Notice that p = σn → τ or p =
∏

m∈ω pm, in which case n = 0, σ = o and

pm = τ for every m ∈ ω. Since g(⟨(x, σ) | i ≤ n⟩) ∈ ax̄, it thus follows by (∗) that

g(⟨(x, σ) | i ≤ n⟩) ≃ (f(x), τ) for every x ∈ F . But then inστ (g) ≃ (f, στ). This shows one

direction.

The other direction iστa ⊆ f̄ is similar. Let g = (g, p) ∈ a and suppose that inστ (g) ↓,

so that inστ (g) ∈ iστa. Any element of iστa is obtained this way. By definition, it must be

p = σn → τ and inστg ↓. In particular, g : F →n G. It thus follows that for every x ∈ F

there exists yx ∈ G such that g(⟨(x, σ) | i ≤ n⟩) ≃ (yx, τ). On the other hand, for every

x ∈ F , (yx, τ) ∈ ax̄ = f(x), and so yx = f(x). Therefore inστ (g) ≃ (f, στ), as desired. □



22 FRITTAION, NEMOTO, AND RATHJEN

References

[1] Michael J. Beeson. Foundations of constructive mathematics, volume 6 of Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin,

1985. 4, 6, 7, 8

[2] Haskell Brooks Curry. Grundlagen der kombinatorischen Logik. American Journal of Mathematics,

51:363–384, 1930. 8

[3] Solomon Feferman. A language and axioms for explicit mathematics. In Algebra and logic (Fourteenth

Summer Res. Inst., Austral. Math. Soc., Monash Univ., Clayton, 1974), pages 87–139. Lecture Notes

in Math., Vol. 450. 1975. 7, 8

[4] Solomon Feferman. Constructive theories of functions and classes. In Logic Colloquium ’78, Stud.

Logic Found. Math., pages 159–224. North-Holland, Amsterdam, 1979. 7, 8

[5] Peter Freyd. On proving that 1 is an indecomposable projective in various free categories (manuscript).

1978. 4

[6] Harvey Friedman. Some applications of Kleene’s methods for intuitionistic systems. In Cambridge

summer school in mathematical logic, pages 113–170. Springer, 1973. 2, 4, 5
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