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ABSTRACT: We present a general theory of cooperativity in sorption isotherms that can
be applied to sorbent/gas and sorbent/solution isotherms and is valid even when sorbates
dissolve into or penetrate the sorbent. Our universal foundation, based on the principles
of statistical thermodynamics, is the excess number of sorbates (around a probe sorbate),
which can capture the cooperativities of sigmoidal and divergent isotherms alike via the
ln−ln gradient of an isotherm (the excess number relationship). The excess number
relationship plays a central role in deriving isotherm equations. Its combination with the
characteristic relationship (i.e., a succinct summary of the sorption mechanism via the
dependence of excess number on interfacial coverage or sorbate activity) yields a
differential equation whose solution is an isotherm equation. The cooperative isotherm
equations for convergent and divergent cooperativities derived from this novel method
can be applied to fit experimental data traditionally fitted via various isotherm models,
with a clear statistical thermodynamic interpretation of their parameters..

■ INTRODUCTION

A steep increase in the sorption isotherm is observed when
sorbates, already sorbed at the interface, bring in more sorbates
via attractive interactions. This is called cooperative sorption,
which may be classified in this paper into the following two
categories:

A. Convergent (sigmoidal) cooperativity, such as the
IUPAC Types IV and V,1 observed for microporous and
mesoporous materials (Figure 1a).

B. Divergent cooperativity, such as the IUPAC Types II and
III,1−5 observed for “non-porous or macroporous surfaces
which interact very weakly with adsorbate molecules”3

and “[f]oods that are rich in soluble compounds such as
sugars”4 (Figure 1b).

Convergent cooperativity was first formulated by Hill for oxygen
binding on hemoglobin.6 From an experimental ligand-binding
isotherm, cooperativity underlying binding can be quantified
straightforwardly using the linearized Hill plot (Figure 2).7,8

However, since the linearized Hill plot presupposes the
saturation of binding isotherms at large ligand concentration
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Revised: August 30, 2023

Figure 1. (a) Convergent cooperativity. The fractional coverage θ of
the cooperative isotherm (eq 7) is plotted against the activity of sorbate
(a2) with the parameters Am = 20 andm = 0.5 (black), 1.0 (red), and 2.0
(green). (b) Divergent cooperativity. The normalized amount of
sorption (A⟨n2⟩) of the AB isotherm (eq 14b) is plotted against a2 with
the parameters Kb = 0 (black), 0.5 (red), and 0.9 (green).

Figure 2. Linearized Hill plot for the cooperative isotherm (eq 13a) for
convergent cooperativity (Figure 1a) with the parameters Am = 20 (i.e.,
the intercept of the plot) and the gradient of the plot, m = 0.5 (black),
1.0 (red), and 2.0 (green).
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(Figure 1a), it cannot be applied to the divergent cooperativity
to quantify its underlying cooperativity; divergent cooperativity
was captured, for example, by the promotion of sorption on the
side of the primary sorbate.9,10 How can we quantify the
sorption cooperativity for divergent isotherms in a manner
common to convergent isotherms? Is there any universal
measure of sorption cooperativity that encompasses both
convergent and divergent cooperativities?
The first aim of this paper is to establish a universal principle

of sorption cooperativity that can be applied to both convergent
and divergent isotherms. This can be achieved by the fluctuation
sorption theory, a model-free theory founded directly on the
statistical thermodynamic fluctuation theory.11−14The universal
applicability of this theory to any interfacial porosity or
geometry contrasts with the previous approaches based on (i)
sorption models that assume binding sites, binding constants,
and adsorption layers (such as the Langmuir,15,16 BET,17,18 and
GAB19−21 models) or (ii) equations of states assumed for the
spreading pressure (such as the Volmer,22 Hill-de Boer,21,23 and
Guggenheim19 models). Our theory, in contrast, is based on the
excess number of sorbates around a probe sorbate, which can be
evaluated directly from the gradient of an isotherm (i.e., the
excess number relationship).11−14 In this paper, the validity of
the excess number relationship will be extended to the cases
when sorbate and solvent molecules dissolve into or penetrate
the sorbent.24,25 We will show that the excess number can
capture convergent and divergent cooperativities alike.
The second aim of this paper is to derive an equation for

cooperative isotherm applicable both for sorbent/gas and
sorbent/solution systems based directly on the excess number
relationship.11,12 This can be achieved by overcoming the two-
fold limitations of our recent papers.24,25 First, our cooperative
isotherm from statistical thermodynamics, despite its capacity to
fit Types IV−VI isotherms, has been limited to solid/gas
sorption.24,25 Cooperative sorption has also been observed in
sorbent/solution interfaces and makes an appearance in
isotherm classifications (such as Type S by Giles et al.26−28

and Type b by the 1986 IUPAC report29). Second, the solid/gas
cooperative isotherm was derived by postulating the existence of
statistically independent patches of microscopic sizes (such as
pores and crevices) that constitute the interface.24,25 However,
the relationship between this postulate and the excess number
relationship has remained obscure due to the mathematically
involved nature of the derivation.24,25These two-fold limitations
will be overcome in this paper through a novel, systematic
method to derive isotherm equations via differential equations,
based directly on the excess number relationship. We will
demonstrate that this method, an alternative to the common
approaches (e.g., based on site-specificmodels15−21 or equations
of states for the spreading pressure11−14), is versatile and is
capable of deriving widely varying types of isotherms.
The third aim of this paper is to clarify the physical meaning of

negative cooperativity in sorption. In sorption, negative
cooperativity is often described using the Freundlich isotherm
model30,31 which, although initially proposed as an empirical
model, corresponds at dilute sorbate concentrations to a third
case of the Hill model6 (positive, zero, and negative
cooperativities) where the reduction in subsequent ligand
affinities is caused by the first ligand (see Figure 1a).7,30,31

However, our recent statistical thermodynamic cooperative
isotherms, while successful in modeling isotherms with positive
and zero cooperativities, are incapable of capturing negative
cooperativity.24,25Our third aim, therefore, is to clarify the origin

of negative sorption cooperativity for both sorbent/gas and
sorbent/solution sorption based directly on the excess number
relationship (the first aim) and the novel method for deriving
sorption isotherms (the second aim).

■ THEORY

Sorbent/Gas Sorption. Setup. The fluctuation sorption
theory is founded on a statistical thermodynamic generalization
of the Gibbs isotherm, applicable to any interfacial geometry and
porosity,11 based on a postulate on the finite-ranged nature of an
interface.11−13,32 Following the statistical thermodynamic
notation,11−13,32 we denote sorbate molecule as species 2, its
number at the interface (within the volume v) as n2*, and its
activity as a2. The sorption isotherm is the dependence of
sorbate surface excess, ⟨n2*⟩−⟨n2

I⟩−⟨n2
II⟩, on a2, where ⟨⟩

represents ensemble averaging, and n2
I and n2

II are the number
of sorbates in the sorbent and vapor reference states (with the
same volume v) as the interface.11−13,24,32,33 Since the sorbate is
dilute in the reference states I and II, the surface excess can be
approximated by “the amount of sorption”, ⟨n2*⟩, via
⟨n2*⟩−⟨n2

I⟩−⟨n2
II⟩ ≃ ⟨n2*⟩.11−13,24,32,33 Following our recent

papers, we shall omit * for sorbent/gas isotherms from now
onward.11−13,24,32,33

Excess Number Relationship. Here, we summarize the
fundamental equation of the fluctuation sorption theory.
Sorbate−sorbate interaction, which takes place at the interface,
can be evaluated from an isotherm, using the excess number of
sorbates around a probe sorbate, N22, defined in terms of the
sorbate number correlation

= =N
n n n

n

n n

n

( 1)
122

2 2 2
2

2

2 2

2 (1)

where δn2 = n2 − ⟨n2⟩ as the deviation of n2 from the mean. A
favorable sorbate−sorbate interaction drives up N22, while
repulsion, including the excluded volume effect, drives it down.
The excess number can be calculated straightway from the
gradient of an isotherm via11−13
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zzzzz
(2)

This equation is the fundamental relationship for sorbent/gas
sorption, which can reveal the underlying sorbate−sorbate
interaction from an experimental isotherm.
Excess Sorbate Cluster Number. Our fundamental equation

(eq 2), termed the excess number relationship, can be
interpreted in an alternative, equivalent manner. Counting the
probe sorbate itself (i.e., the term 1 on the right-hand side), N22

+ 1 can also be interpreted as the excess sorbate cluster
number.11−13 Here, we emphasize the importance of the term
“excess” in the interpretation of N22 + 1 [an increase in the
amount of sorption (hence in the fractional saturation of an
interface) may not necessarily lead to a larger sorbate cluster
size; a greater fractional saturation may lead to diminishing
sorbate−sorbate correlation, as will be shown in Results and
Discussion]. We will demonstrate that the relationship between
the interfacial filling and excess sorbate number will play a key
role in deriving the isotherm equations.
Cooperative Isotherm. As emphasized in the Introduction-

section, rederiving an isothermmay lead to new insights into the
sorption mechanism. Here, we present a facile rederivation of
the cooperative isotherm, which has a clear and direct link to the
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foundation of the fluctuation sorption theory (eq 2). Our first
step is to simplify eq 2 using the inhomogeneous solution
theory,34,35 as

= [ + ]
n

a
n n n

ln
1

T

2

2

2 2 2 2

i

k

jjjjj

y

{

zzzzz
(3a)

where

=n

n n

n

( 1)
2 2

2 2

2 (3b)

The left-hand side of eq 3b represents the ensemble average of
sorbate number in an inhomogeneous ensemble, namely, the
conditional ensemble average in the presence of the probe
sorbate 2 fixed at the origin.36,37Our second step for deriving the
cooperative isotherm is to establish how ⟨n2⟩2 + 1− ⟨n2⟩ in eq 3a
changes with ⟨n2⟩. This can be achieved by postulating that the
interface is composed ofN statistically independent microscopic
patches, such as pores or crevices.24,25 This postulate was
implemented also in our previous papers,24,25 yet without a clear
link to the excess number relationship (eq 2), i.e., the foundation
of the fluctuation sorption theory. Our intuitive implementation
of this postulate in the following section will help clarify this link.
Let the number of sorbates within a microscopic patch be
denoted by v2 hereafter and the probe sorbate be in one of the
patches. With this setup, the statistical independence is
equivalent to the sorbate−sorbate correlation being restricted
within the same patch. Consequently, the mean sorbate number
within the patch is conditional to the presence of the probe and
is denoted as ⟨ν2⟩2. It deviates from that of otherN − 1 patches,
⟨ν2⟩, that do not feel the effect of the probe. Hence, ⟨n2⟩2 of the
total interface can be expressed as

+ = + +n N1 1 ( 1)2 2 2 2 2 (4a)

We can simplify eq 4a by introducing

= +m 1
2 2 (4b)

as the excess sorbate cluster number in the patch that contains
the probe. In the following development of our theory, m is
assumed to be a constant, which does not depend on a2 or ⟨n2⟩;
it is the extrapolation of ⟨ν2⟩2 to a2 = 0, rather than the true
limiting value at a2 → 0, as shown in Supporting Information:
Limiting excess number and cooperativity. Having evaluated
⟨n2⟩2 + 1 within ⟨n2⟩2 + 1 − ⟨n2⟩ in eq 3a via eqs 4a and 4b, now
we turn to ⟨n2⟩, rewriting it also using the postulate of
statistically independent patches. By definition, none of the
patches that constitute ⟨n2⟩ contains any probe sorbate. This
means that all of the patches are statistically equivalent.
Consequently

=n N
2 2 (4c)

Combining eqs 4a−4c, we obtain

+ = =n n m m
N

n1
1

2 2 2 2 2 (5)

where, in the final step, eq 4c is used to eliminate ⟨ν2⟩. Equation
5 is the characteristic relationship for this sorption isotherm: the
excess sorbate cluster number [N22 + 1 = ⟨n2⟩2 + 1 − ⟨n2⟩ via eqs
2 and 3b] decreases linearly with the amount of sorption, ⟨n2⟩.
Combining eqs 3a and 5, a nonlinear differential equation can be
derived
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Solving eq 6a is facilitated by introducing the fractional
saturation

=

n

mN

2

(6b)

through which eq 6a can be rewritten as

=

aln
(1 )

m

T
2
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k

jjjjj
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(6c)

Integrating eq 6c via the separation of variables and partial
fraction decomposition yields

=

+

A a

A a1

m

m

m

m

2

2 (7)

where Am is an integration constant. In our previous paper, we
have shown that −RT ln Am signifies as the free energy of
transferring m sorbate molecules cooperatively from saturated
vapor to the interface24 (note that eq 7 is valid for finite a2 yet
modification is required to be exact at a2 → 0, as shown in the
Supporting Information: Limiting excess number and coop-
erativity). To summarize, we have discovered a facile and
insightful rederivation of the statistical thermodynamic cooper-
ative isotherm, whose simplicity and insight should be
contrasted with significant mathematical work in our previous
paper.24 The new physical insight (eq 5), which is a concise
expression of the statistical independence of small patches, led to
this simple derivation.

Sorbent/Solution Sorption. Setup. Here, we generalize
our discussion of sorbent/gas isotherms to sorbent/solution
isotherms. We follow the standard treatment of sorbent/
solution sorption isotherms, which neglects ⟨n2

I⟩, i.e., the
number of sorbates inside the sorbent (reference system I),
while incorporating ⟨n2

II⟩ (i.e., the number of sorbates in the
solution, denoted as the reference system II29). Unlike sorbent/
gas systems, the solvent (species 1) must also be taken into
account. There are two common quantities for sorption that are
interrelated.29 The first is Γ2

(1), the “relative surface excess of 2
with respect to 1″,29 which is related to the amounts of solvent
⟨n1*⟩ and sorbate ⟨n2*⟩ at the interface, via

= * *n C n2
(1)

2 2
II

1 (8a)

where C2
II = ⟨n2

II⟩/⟨n1
II⟩ is the sorbate/solvent mole ratio in the

solution phase. The second is the reduced surface excess, Γ2
(n),

which can be obtained directly from experiments29 and is related
to Γ2

(1) via29

= x
n

2
( )

1 2
(1)

(8b)

where x1 is the mole fraction of the solvent species in the
solution phase (II). These quantities are applicable to molecular
and weak electrolyte sorbates.29 A sorbent/solution isotherm, in
principle, is the dependence of Γ2

(1) or Γ2
(n) on the sorbate

activity, a2. However, in practice, the sorbate concentration in
the solution phase (such as x2

II, the mole fraction of sorbate) is
used commonly as the variable instead of a2.

26,27,29,38,39

Fluctuation Theory for Sorbent/Solution Isotherms. Here,
we generalize our excess number relationship for the sorbent/
gas theory on excess sorbate number (eq 2) to sorbent/solution
isotherms. To carry this out directly would incur significantly
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cumbersome algebra. However, as has been detailed in
Supporting Information: Derivation of the cooperative
isotherm for the sorbent/solution interface, the ensemble
invariance of mole ratio fluctuations40,41 provides a practical
route to simplification. The technicality of the derivation is
detailed in the Supporting Information; its key idea is
statistically transforming the interfacial and the solution
reference ensembles, originally defined under constant μ1, to
constant n1 ensembles for the ease of calculation.40,41 This leads
to the following generalization of the sorbent/gas theory (eq 2)
to the sorbent/solution interface

=
* + +

a

K N N

K

ln

ln

( 1) ( 1)

1
T

2
(1)

2

e 22 22
II

e

i

k

jjjjjj

y

{

zzzzzz
(9a)

whereN22* andN22
II are the sorbate excess numbers, defined in the

constant n1 ensemble at the interface and in the solution
reference system, respectively. To simplify the mathematical
expression, we have introduced the exchange constant, Ke,
defined as

=

*

=

*

*
K

C

C

n n

n n
e

2

2

II

2 1

II

1 2

II
(9b)

Ke has a simple physical interpretation, which corresponds to an
exchange of “a sorbate in the solution + a solvent at the interface”
with “a sorbate at the interface + a solvent in the solution”. The
presence of Ke in eq 9a comes from the fact that this exchange
equilibrium Ke is part of the sorbent-solution sorption process.
Equation 9a is a significant new result valid for any sorbent/
sorption isotherms as long as sorbate does not penetrate the
sorbent. Note that our sorbent-solution theory (eq 9a) is a
generalization of our sorbent-gas theory (eq 2). This can be
demonstrated by reducing eq 9a to the form mathematically
identical to that of sorbent/gas (eq 2) under Ke ≫ 1, which is
equivalent to C2* ≫ C2

II [where C2* = ⟨n2*⟩/⟨n1*⟩ is the mole ratio
at the interface signifying a very strong sorption]. Under this
condition, Γ2

(1) = ⟨n1*⟩(C2* − C2
II) ≃ ⟨n2*⟩, hence

*
= * +

n

a
N

ln

ln
1

T

2

2

22
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jjjjj

y

{

zzzzz
(9c)

which is mathematically analogous to eq 2.
Cooperative Sorbent/Solution Isotherm. We have shown

that the excess number relationships for sorbent/gas isotherms
(eq 2) and sorbent/solution isotherms under strong sorption
(eq 9c) obey the mathematically analogous fundamental
equation. For this reason, we shall drop the superscript * in eq
9c from now onward, unless there is a need to specify a sorbent/
solution interface. Consequently, we can follow the same
argument (eqs 3a−6c) to derive the cooperative sorbent/
solution isotherm for strong sorption, i.e., eq 7.
Connection to χ. N22 for the sorbent/solution interface in eq

9a (i.e., * and II) has been defined in the constant n1 ensemble
for mathematical simplicity.40,41 Note that this ensemble is
different from the constant μ1 ensemble, in which the relative
and reduced surface excesses have been defined (eqs 8a and 8b).
However, conversion from the constant n1 to constant μ1

ensemble is straightforward via the statistical variable trans-
formation (Supporting Information: Derivation of the
cooperative isotherm for the sorbent/solution interface),
which yields

+ = + + +N
n

v
G G G

v

n

v

n
1 2

22

2

22 11 12

1 2

Ä
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Å
Å
Å
Å
Å
Å
Å
Å
ÅÅ

É

Ö

Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
ÑÑ

(10)

Equation 10 has a clear physical interpretation. N22 + 1, when
viewed in the constant μ1 ensemble, represents the net self-
interaction (i.e., the difference between self-interactions,G11 and
G22, and mutual interaction,G12). The common measure for net
self-interaction is the Flory χ parameter, which is restricted to
the lattice model of solutions,42−44 yet can be generalized
beyond the lattice model as

= +
n

v
G G G( 2 )1
11 22 12 (11)

based on a correspondence in activity coefficients between the
lattice model and the Kirkwood−Buff theory of solutions.45

Using eq 11, N22 can be expressed as

= +N
n

n
( 1)22

2

1 (12)

This marks a departure from the sorbent/gas interface, in which
only the sorbate−sorbate interaction contributes to N22 + 1.
With this interpretation in mind, eq 9a is a general relationship
applicable to all sorbent/solution interfaces, enabling a model-
free elucidation of the sorption mechanism underlying an
isotherm for which the ln−ln plot of the isotherm still plays a key
role.
Penetration of Sorbate and Solvent into the Sorbent. We

have derived our fundamental relationships (eq 2 for sorbent/
vapor and eqs 9a for sorbent/solution) in the framework of
sorption founded on the generalized Gibbs isotherm.11

However, we have shown in the Supporting Information:
Penetration of solvent and sorbate into sorbent, based on a
pair of the Gibbs−Duhem equations for the system and the
reference state under constant temperature and pressure,46 that
our fundamental relationships are valid even when the solvent
and sorbate dissolve into or penetrate the sorbent. Thus, the
same isotherm equations can be applied to adsorption isotherms
and “solubility isotherms”47 alike.

■ RESULTS AND DISCUSSION

Cooperativity of Sorption Isotherms. Convergent
Cooperativity as Diminishing Sorbate Excess Number. In
the Introduction section, we have classified sorption coopera-
tivity into convergent and divergent subcategories (Figure 1). In
the Theory section, we have derived the cooperative isotherm
equation applicable to convergent cooperativity by a novel
approach: a differential equation from fluctuation theory in
combination with the statistical independence of the micro-
scopic patches that constitute an interface. The resultant
cooperative isotherm (eq 7) can also be expressed in the
following linearized form

= +m a Aln
1

ln ln
m2 (13a)

Equation 13a is mathematically identical to the linearized Hill
plot (Figure 2). However, its foundation is different from that of
the Hill model. Unlike the Hill model,7 the fluctuation theory
(eq 3a) does not involve any assumptions on the binding sites,
stoichiometry, or chemical ligand linkage.7,48,49 Our sole
postulate, instead, is the statistical independence of interfacial
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patches with constant m, which was shown to cause a linear
reduction of the sorbate cluster number with θ (Figure 3)

+ =N m1 (1 )22 (13b)

which applies both to sorbent/gas and sorbent/solution
isotherms (hence the superscript *, used for sorbent/solution
systems to denote the interface, was dropped). Here, why excess
sorbate cluster number N22 + 1 decreases linearly with θ can be
understood from the definition of N22 as the excess number
(Figure 4). At low fractional saturation, the presence of the

probe molecule affects the distribution of other sorbates (Figure
4a). However, at high fractional saturation, the interface is
packed already with sorbate regardless of the presence of the
probe sorbate; hence, the number correlation goes down
(Figure 4b). Such a behavior of the characteristic relationship
reflects the geometric organization of the surface. Thus, N22 + 1
diminishing with θ is the cause of the convergent cooperativity,
which captures the effect of surface geometry on sorbate
interactions.
Divergent Cooperativity as the Growing Sorbate Cluster.

Wehave shown that the linearizedHill plot for sorption (eq 13a)
comes from the statistically independent microscopic patches
that lead to diminishing excess sorbate clusters with fractional
coverage. Here, we show that the linearized Hill plot (eq 13a)
cannot be applied to divergent cooperativity because of its

opposite signature, i.e., increasing N22 + 1 with the amount of
sorption. This can be demonstrated most straightforwardly
using the AB isotherm (i.e., the simplest type III parameter range
of B > 0 and C = 0 adopted for the ABC isotherm), as14

=n
a

A Ba
2

2

2 (14a)

which can be expressed in a normalized manner, as

=A n
a

K a1
2

2

b 2 (14b)

where Kb = B/A can be interpreted as the sorbate−sorbate
binding constant in the indefinite binding model.14 The excess
sorbate cluster number can be calculated by combining eq 14b
with eq 2, as

+ = = +

= +

N
n

a

Ba

A Ba

K A n

1
ln

ln
1

1 ( )

T

22
2

2

2

2

b 2

i

k

jjjjj

y

{

zzzzz

(14c)

This means that the excess sorbate cluster number increases
linearly with the (normalized) amount of sorption, A⟨n2⟩
(Figure 5). The linearly increasing sorbate cluster number

contrasts with the convergent cooperativity in Figures 3 and 4.
In divergent cooperativity, the interface is not divided into
statistically independent microscopic patches. Since the
sorbate−sorbate interaction is weak for lower amounts of
sorption, the excess sorbate cluster number is small (Figure 6a).
However, since the dominant driving force for sorption is the
sorbate−sorbate interaction,14 a probe sorbate, when the

Figure 3. Excess sorbate cluster number, N22 + 1, against the fractional
saturation θ for the cooperative isotherm (eq 13b) for convergent
cooperativity (Figure 1a) with the parameters m = 0.5 (black), 1.0
(red), and 2.0 (green).

Figure 4. Schematic diagram for the mechanism of convergent
cooperativity (Figure 1a), rationalizing how the statistically independ-
ent patches of microscopic sizes (orange boxes) lead to the decrease of
sorbate excess cluster number N22 + 1 as the increase of fractional
coverage [from (a) to (b)]. (a) At low fractional coverage, filled patches
are distributed sparsely. Therefore, the sorbate cluster around the probe
is localized, leading to a large excess cluster numbers. (b) At high
fractional coverage, filled patches are more common than empty
patches, hence the presence of the probe sorbate does not make the
patch more populated, hence the excess cluster number is closer to zero.

Figure 5. Excess sorbate cluster number, N22 + 1 (eq 14c), against the
normalized amount of sorption A⟨n2⟩ for the AB isotherm (eq 14b) for
divergent cooperativity (Figure 1b) with the parameters Kb = 0 (black),
0.5 (red), and 0.9 (green).

Figure 6. Schematic diagram for the mechanism of divergent
cooperativity (Figure 1b), rationalizing how the increase in the amount
of sorption from (a) to (b) leads to the presence of more sorbate
molecules around a probe sorbate (red with yellow).

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.3c01243
Langmuir XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01243?fig=fig6&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.3c01243?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


amount of sorption is high, can bring in even more sorbate
molecules cooperatively (Figure 6b). Thus, the convergent and
divergent cooperativities exhibit an opposite behavior regarding
how the sorbate cluster number evolves with sorption.
Zero Cooperativity. The cooperative isotherm (eq 7), under

m = 1, reduces to a form identical to the Langmuir model, which
can be understood also from the postulate of statistically
independent microscopic patches (see the Theory section).
While all of the patches are statistically independent in the
absence of a probe (see eq 4c), no additional sorbate can come
into the patch that already contains the probe sorbate (eqs 4a
and 4b with ⟨ν2⟩2 = 0). Thus, as we have clarified in our recent
papers,13,14 sorbate−sorbate exclusion at the interface plays a
key role in the Langmuir model.
Sorbate Excess Number as the Universal Measure of

Cooperativity. We have shown that the difference between
convergent and divergent cooperativities comes down to how
N22 + 1 changes with sorption. This means that we should simply
adoptN22 + 1 as the universal measure of sorption cooperativity.
Indeed, the excess number relationship betweenN22 + 1 and the
ln−ln plot of an isotherm (eq 2 for sorbent/gas and eq 9a for
sorbent/solution) is universal for any interface. Based on this
generalization, we can summarize three different types of
cooperativities as.

• positive cooperativity = sorbate−sorbate attraction,N22 >
0;

• negative cooperativity = sorbate−sorbate repulsion,N22 <
0;

• zero cooperativity = net zero sorbate−sorbate interaction,
N22 = 0.

Sorption Isotherms from Differential Equations. The
ease and insights with which the cooperative isotherms have
been generalized to the sorbent/solution interface owe to the
novel approach to deriving sorption isotherms presented in the
Theory section, founded directly on the fluctuation sorption
theory. The key to our new approach can be summarized as

(1) the excess number relationship as the fundamental
equation of the fluctuation solution theory, relating the

isotherm gradient [e.g.,( )n

a
T

ln

ln

2

2

for sorbent/gas (eq 2)

and
a

T

ln

ln

2
(1)

2

i

k
jjj

y

{
zzz for sorbent/solution (eq 9a)] to sorbate

fluctuation [e.g., N22 + 1 for sorbent/gas (eq 2) and [Ke

(N22* + 1)− (N22
II + 1)]/(Ke − 1) for sorbent/solution (eq

9a)];

(2) a characteristic relationship on sorbate fluctuation, such as
its linear decrease with fractional coverage (eq 13b) for
convergent cooperativity;

(3) solving a differential equation from (1) and (2) to derive
an isotherm.

Our new approach is not restricted to the derivation of
cooperative isotherms alone. Other useful isotherms can also be
derived by the same approach (Supporting Information:
Isotherms via differential equations); not only can the
already-known statistical thermodynamic isotherms, such as
the ABC isotherm (i.e., the model-free generalization of the
Langmuir, BET, and GAB models) be derived but also other
isotherms that have been proposed previously.50,51 Moreover,
the AB isotherm for divergent cooperativity (eq 14a) can also be
derived, starting from the postulate of linearly increasing sorbate

cluster number (Supporting Information: Divergent coopera-
tivity via the differential equation approach).
Sorbent/Solution Cooperative Isotherm in the Mole

Fraction Scale. Sorbate activity, which has a direct relationship
with the chemical potential, is a fundamental quantity in the
thermodynamics of sorption. However, in practice, a2 is rarely
used in reporting sorbent/solution isotherms. Instead, the
sorbate concentration in the solution phase has been used
commonly in the experimental literature. Therefore, it is
necessary to formulate our theory using the sorbate concen-
tration. Since the cooperative isotherms in sorbent/solution
systems fall under the “partially miscible” category (with regard
to sorbate and solvent) of isotherm classification with typically
very low x2,

26,27,29we can apply Raoult’s Law,52,53 a2 ≃ x2, which
transforms the cooperative isotherm (eq 7) into the mole
fraction-based form, as

=

+

A x

A x1

m

m

m

m

2

2 (15)

A generalization to m < 1 will be carried out in the next
subsection.
Statistical Thermodynamic Foundation for Isotherm

Classifications. We have recently demonstrated that the two
statistical thermodynamic isotherms (the ABC and cooperative)
can, in combination, fit all six IUPAC sorbent/gas isotherm
types.14,24,25 Following this success, here, we show that our
generalized isotherms can be applied for sorbent/solution
isotherm classifications. Sorbent/solution isotherms are classi-
fied into the “fully miscible” and “partially miscible” categories
based on the sorbate−solvent miscibility in the solution phase.29

Our focus in this paper is the partially miscible category which
contains the four main classes of isotherms according to Giles et
al.:27,28,54 S, L (“Langmuir”), H (“high affinity”), and C
(“constant partition”). They are distinguished from one another
by the second-order derivative.28 Of these classes, the IUPAC
report (1986) has identified classes S and L with saturation as
“the two extreme forms”.29 The classes L, H, and C can be
captured by the ABC isotherm when generalized for sorbent/
solution. The class S can be modeled successfully by our
sorbent/solution cooperative isotherm, as demonstrated using
the sorption of dyes from aqueous solutions on a cross-linked
polyhydroxamate55 (Figure 7 and Table 1). To facilitate fitting

Figure 7. Fitting of the cooperative isotherm (eq 16a) to the
experimental adsorption data of cresyl blue (CB), nile blue (NB),
and cresyl violet (CV) on cross-linked hydroxamate polymers
containing ethylene glycol dimethacrylate (CHP-E) at 25 °C using
the data reported by Saraydın et al.55 The fitting parameters are
summarized in Table 1.
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and sense checking of the resultant parameters, we have
rewritten eq 15 in the following form

=

+

( )
( )

n Nm

1

x

x

m

x

x

m2

2

s

2

s (16a)

where Am = xs
−m and θ = ⟨n2⟩/Nm. The advantage of this

rewriting is two-fold: (1) to facilitate fitting while θ = 1 is hard to
locate from the data and (2) to make clear that xs corresponds to
the point at which the isotherm gradient is the steepest.25

Indeed, it is possible to examine the location of xs that
approximately corresponds to such a point (Table 1). Note that
the use of the mole fraction (x2) for the abscissa may strike as
different from the convention (i.e., mole or mass of sorbate per
volume). This was necessitated by Raoult’s law for dilute sorbate
solutions. As a result, xs has a clear physical interpretation. Since
−RT ln Am is the free energy of transferringm sorbate molecules
cooperatively from saturated vapor to the interface,24 xs, through
its relationship to Am, can be interpreted as

=

RT

m
A RT xln ln
m s (16b)

which shows that RT In xs is the transfer free energy per sorbate.
Thus, together with our previous papers,24,25 we have
demonstrated that the isotherm fitting can yield parameters
with a clear statistical thermodynamic interpretation.

Negative Sorption Cooperativity. Differential Equation
for Negative Cooperativity. Our argument on the statistically
independent patches in the Theory section presupposed a
positive cluster number (N22 + 1 > 0) due to eq 1, even when the
probe itself was included in the counting. Therefore, it is
necessary to extend our cooperative sorption theory to
incorporate negative cooperativity. In the previous subsections,
we have established that (i) N22 < 0 is the measure of negative
cooperativity and (ii) isotherms are derived from the excess
number relationship (eq 2 for sorbent/vapor and eq 9c for
sorbent/solution) that links N22 to the ln−ln gradient of an
isotherm by solving differential equations. Therefore, following
the above (i) and (ii), we will construct an isotherm with
negative cooperativity. We shall start from the following simplest
characteristic relationship for the excess number

+ =N
m

1
1

22

F (17a)

with the parameter range ofmF > 1, which corresponds to N22 <
0. Just like the parameterm in eq 4b, the Freundlich constantmF

is a constant that does not depend on a2, x2, or ⟨n2⟩. Combining
eq 17a with the fundamental excess number relationship (which
encompasses eq 2 for sorbent/vapor and eq 9c for a strong
surface−sorbate interaction) yields
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n

a m
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2 F

i

k
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(17b)

where *, signifying the interface for sorbent/solution, was
omitted. Integrating eq 17b yields

=n k a
m

2 F 2
1/ F (17c)

where kF is the integration constant. Equation 17c can be
rewritten in the familiar form of the Freundlich model by
changing a2 to p (the gas pressure) via a2 = p2/p2

o for sorbent/
vapor isotherms. For the sorbent/solution isotherms, changing
a2 to the sorbate concentration in the solution phase, c2, using
the dilute ideal condition, a2 ≃ x2 ≃ c2/c1, yields the common
form of the Freundlich model for sorbent/solution interface, as

=n k c
m

2 F 2
1/ F (17d)

When the sorbate−surface interaction is not as strong, we
must base our discussion on eq 9a for the sorbent/solution
interface. Our characteristic equation

* + +
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K N N

K m

( 1) ( 1)

1

1e 22 22
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in combination with eq 9a yields
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whose integration leads to

= k a
m

2
(1)

F 2
1/ F (18c)

This, under the dilute ideal condition,52,53 yields

= k c
m

2
(1)

F 2
1/ F (18d)

which is known as the Freundlich model. The Freundlich model
is often seen as an indication of interfacial heterogeneity.56,57

Such an interpretation, however, is based on an assumption that
the interface be comprised of the Langmuir adsorption sites with
the distribution in adsorption energies, which, in the case of the
Freundlich model, is broad and exponential.58−62 In contrast,
our theory derives negative cooperativity directly from the
excess number relationship, with a clear interpretation, as
discussed in the next paragraph.
Interactions Underlying the Freundlich Model. In the

previous paragraph, we have derived what is known as the
Freundlich model simply from the constant, negative sorbate−
sorbate excess number, i.e.

=N
m

1
1

22

F (19)

Because mF > 1, N22 < 0, which means sorbates are excluded
from one another at the interface, reflecting a strong repulsive
interaction between sorbates (Table 2 presents a calculation of
N22 from the reported Freundlich constants). Explicit
consideration of the surface excess is required for weaker
interactions using eq 18a, which shows that mF > 1 signifies a
weaker self-association at the interface compared to the bulk
because Ke is positive in eq 9b (see eqs 11 and 12). This means
that the presence of the interface makes sorbates more separated
than that in the bulk. Note, however, thatN22 in the bulk tends to
0 for dilute sorbate concentrations, which again leads to the
conclusion that N22 at the interface is negative, even for weaker
sorbate−surface interactions. Thus, sorbate−sorbate repulsion
at the interface is the interaction underlying the Freundlich
model.We emphasize here that sorbate−sorbate interactions are

Table 1. Fitting Parameters for eq 16a for the Adsorption of
Dyes on CHP-E (Figure 7)

sorbate N mmol mol−1 xS m

cresyl blue 6.55 4.72 × 10−7 3.36

nile blue 5.91 2.11 × 10−7 3.28

cresyl violet 7.84 1.61 × 10−7 1.81
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conditional to the presence of the interface (for example, a
strong, site-specific interaction separates the sorbate molecules,
acting as sorbate−sorbate repulsion). To summarize, a
successful fit by the Freundlich model shows constant negative
cooperativity, which reflects the effective sorbate−sorbate
repulsion at the interface.
Cooperative Isotherm. Is the cooperative isotherm (eq 15)

valid for negative cooperativity? Indeed, the Sips model63 is
mathematically identical to this case, i.e., eq 15 withm < 1. Such
an isotherm can be derived by solving the differential equation
identical in form to eq 6a, with the only difference of m < 1
instead ofm≥ 1. This means that the characteristic equation (eq
13b) starts at θ = 0 from sorbate−sorbate exclusion (N22 =m− 1
< 0) which decreases further with the fractional coverage, θ, of
the interface. Unlike the m ≥ 1 case, the m < 1 characteristic
relationship (eq 13b) cannot be interpreted using the statisti-
cally independent microscopic patches because the presence of a
probe sorbate makes m < 1 impossible to fulfill. Based on this
argument, we conclude that the cooperative isotherm for m < 1,
known as the Sips model,63 signifies the sorbate−sorbate
exclusion getting stronger with the fractional coverage, yet
cannot be captured by the statistically independent microscopic
patches that were useful for m ≥ 1.

Significance. Our novel approach is complementary to the
current experimental and computational approaches, providing
a link and a common ground between an isotherm (which is
macroscopic by nature) and the underlying microscopic
interactions (such as van der Waals interactions and Hamaker
constants).
Experimental Isotherm → Underlying Interactions. The

excess number relationship (eqs 9a and 9c) plays a central role in
evaluating the sorbate excess numbers, the signature of
microscopic interactions underlying an isotherm, from the ln−
ln gradient of an experimental isotherm (eqs 9a and 9c). The
excess number relationship is also the foundation of deriving
isotherm equations, whose parameters signify how the excess
number changes with activity or interfacial coverage.
Redeployment of Existing Isotherm Models. Evaluating the

sorbate excess numbers is crucial for quantifying the interactions
underlying an isotherm. Our rederivation of the commonly used
isotherms (such as Freundlich and Sips) has opened up a new
possibility: the wealth of Freundlich constants available in the
literature can be converted straightforwardly (via eq 19) to the
sorbate excess numbers, as has already been demonstrated in
Table 2. Not only have the empirical models been given a clear
interpretation but also be redeployed to yield the underlying
sorbate excess numbers as the mechanistic signature of an
isotherm.
Intermediary between Computational and Experimental

Approaches. The major hindrance to a mechanistic under-

standing of sorption, in our view, has been the disconnect
between the isotherm models and computational approaches.
Computational approaches, such as the density functional
theory64−66 and molecular dynamics,67 are capable of
simulating, based on intermolecular interactions, not only
isotherms but also the underlying molecular distribution
functions as a route to mechanistic insights.68−71 In contrast,
the common isotherm models for fitting experimental data are
not founded on molecular distribution functions.14 Such a long-
standing disconnect between experimental and computational
approaches has been rectified by the sorbate excess numbers,
defined as the integration of the sorbate−sorbate distribution
function.11−13 Our intention was to consecrate the excess
number as the common language shared by theory and the
experiment.
Temperature Dependence.This paper has focused on excess

sorbate numbers based on sorbate number correlations. To
understand how sorption changes with temperature, not only
the number−number correlation but also the number−energy
correlation must be considered. Such an approach by our recent
paper32 has provided a rigorous theoretical foundation for the
adsorption potential theory72,73 and shed light on how
temperature dependence may be affected by the pore size
distribution. However, our previous paper is limited to gas and
vapor sorption, and its extension to solid/solution systems is
necessary.32

■ CONCLUSIONS

Cooperativity in sorption isotherms (Figure 1) is driven by a
strong sorbate−sorbate interaction. This paper has established

i. the universal measure of sorption cooperativity, i.e., the
sorbate excess number around a probe sorbate,N22, which
is applicable to sorbent/gas and sorbent/solution
isotherms alike;

ii. a general method for deriving sorption isotherms via
solving differential equations, set by a combination of the
excess number relationship (eqs 2 and 9a) in conjunction
with a characteristic relationship (eq 5 and Supporting
Information: Isotherms via differential equations)
describing how N22 changes with interfacial coverage or
sorbate activity;

iii. that our fundamental excess number relationship and
isotherms are applicable even when solvent and sorbate
molecules dissolve into or penetrate the sorbent (e.g.,
polymer).

Sorbate excess number can quantify sorption cooperativity for
both convergent and divergent isotherms (Figure 1), revealing
the sorbate−sorbate interaction that underlies cooperativity
[see (i), above]. The characteristic equation for the convergent
cooperative isotherm (eq 7, Figure 1a) is the linearly
diminishing N22 with the interfacial coverage (eq 13b) while
that for the divergent isotherm (the AB isotherm, eq 14a and
Figure 1b) is the linearly increasingN22 with the sorbate activity
(eq 14c), both of which can be derived by solving the differential
equation (eqs 2 and 9c). The Freundlich model (eq 17d) can
also be derived from the characteristic equation (eq 17a) that
expresses sorbate−sorbate exclusion.
Our theory can be applied to sorbates in gas and solution alike

without a need for distinguishing adsorption and dissolution/
penetration. The key difference is in the interpretation of N22.
While N22 for sorbent/gas is simply the sorbate−sorbate
interaction, N22 for sorbent/solution is the net self-interaction,

Table 2. Sorbate−Sorbate Excess Numbers, N22, Calculated
from the Freundlich Constant from Water on Activated
Carbon at 20 °C from the Parameters in ref 74, mF, via eq 19

dye mF N22

basic blue 69 1.47 −0.318

basic yellow 21 2.71 −0.631

basic red 22 7.52 −0.867

disperse blue 7 5.00 −0.80

victoria blue 3.11 −0.678

deorlene yellow 6.90 −0.855

telon blue 9.35 −0.893
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i.e., the difference between the self- (sorbate−sorbate and
solvent−solvent) and mutual- (sorbate−solvent) interaction
that can be considered as the generalization of the Flory χ. The
relationship to sorption hysteresis will be clarified in a
forthcoming paper.
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