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Abstract
A new method is introduced to construct approximations to Skyrmions that are
explicit rational functions of the spatial Cartesian coordinates. The scheme uses
ADHM data of a Yang–Mills instanton to produce a Skyrmion with a baryon
number that is equal to the instanton number. The formula for the Skyrmion
involves only the evaluation of the ADHM data, in contrast to the Atiyah–
Manton construction that requires the solution of a differential equation that
can only be solved explicitly in the case of a spherically symmetric Skyrmion.
Examples with baryon numbers one and two are studied in detail. The energy
of the rational Skyrmion with baryon number one is lower than that of the
Atiyah–Manton Skyrmion, which is already within one percent of the energy
of the true numerically computed Skyrmion. A family of baryon number two
Skyrmions is presented, which includes an axially symmetric Skyrmion that
smoothly transforms to a pair of well-separated single Skyrmions as the para-
meter is varied.

Keywords: Skyrmions, ADHM construction, instantons

(Some figures may appear in colour only in the online journal)

1. Introduction

Skyrmions are topological solitons that model baryons within a nonlinear theory of pions,
where the integer-valued topological charge is identified with baryon number [1, 2]. Static
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Skyrmions are obtained by computing solutions of a nonlinear partial differential equation for
the SU(2)-valued Skyrme field, or equivalently by minimizing the static energy within a given
topological sector. This requires numerical methods, as there are no explicit Skyrmion solu-
tions of the Skyrme model. For baryon number one, spherical symmetry may be imposed to
reduce the partial differential equation to an ordinary differential equation for a radial profile
function, but even this profile function must be computed numerically. This lack of explicit
Skyrmions has motivated several methods to obtain Skyrme fields that give reasonable approx-
imations to Skyrmions.

The rational map approximation [3] is a kind of separation of variables, where the angular
dependence of the Skyrme field is specified explicitly in terms of a rational map between
Riemann spheres. This is a semi-analytic method, as the radial dependence is via a profile
function that is computed numerically to minimize the energy. For baryon number one the
rational map approximation is simply a reformulation of the imposition of spherical symmetry.
For baryon numbers greater than one it produces non-spherical fields that, for a suitable choice
of rational map, match the symmetries of the trueminimal energy Skyrmions and have energies
that are accurate to within a few percent [4], at least in the case of massless pions that is the
situation under consideration in the present paper.

The main disadvantage of the rational map approximation is that it does not allow the min-
imal energy Skyrmions to separate into individual Skyrmions, or lower charge clusters. It is
important to have a good description of this situation to understand the interactions between
Skyrmions and their scattering processes. Moreover, it is necessary for providing a suitable
moduli space for quantization that allows more degrees of freedom than simply translations,
rotations and isorotations, as it is known that restricting to such zero mode quantization is
inadequate.

Well-separated Skyrmions can be approximated by a product ansatz, where the Skyrme
fields of the individual Skyrmions are simply multiplied together. However, the product ansatz
fails to provide a good description of Skyrmions once they are no longer well-separated, and
in particular is not suitable to approximate minimal energy Skyrmions with baryon numbers
greater than one. This method is therefore complementary to the rational map approximation,
but unfortunately no way is known to patch these two techniques together.

The only method that is currently capable of describing the whole gamut of Skyrmions,
from a collection of well-separated single Skyrmions all the way through to theminimal energy
Skyrmions formed as they merge, is the Atiyah–Manton instanton holonomy procedure [5, 6].
The starting point for this approach is self-dual Yang–Mills instantons in four-dimensional
space. This is an integrable conformal theory with instantonmoduli spaces that can be obtained
using the ADHM construction [7]. The Atiyah–Manton Skyrme field is equal to the holonomy
of the instanton along lines parallel to the extra dimension, and has a baryon number that is
equal to the instanton number. For a suitably chosen instanton the Skyrme field provides a
good approximation to the minimal energy Skyrmion for any baryon number. Furthermore,
by varying the instanton moduli the minimal energy Skyrmion can be separated into its single
Skyrmion constituents, thereby providing a Skyrmionmoduli space induced from the instanton
moduli space. In the case of baryon number one, the Atiyah–Manton Skyrmion is spherically
symmetric with an explicit profile function that depends on the arbitrary scale of the instanton.
For a particular value of the instanton scale the energy is within 1% of the true Skyrmion
energy.

A disadvantage of the Atiyah–Manton prescription is that the calculation of the holonomy
requires the solution of a family of ordinary differential equations, that can only be solved
explicitly in the case of a spherically symmetric Skyrmion. This means that the computation
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of minimal energy Atiyah–Manton Skyrmions with baryon numbers greater than one must be
implemented numerically. Such numerical computations reveal that the approximations are
very good, with an energy excess compared to the true numerically calculated Skyrmions that is
typically less than 2%. The success of the Atiyah–Manton construction can be explained by an
exact equivalence between the four-dimensional Yang–Mills theory and the three-dimensional
Skyrme model coupled to an infinite tower of vector mesons [8]. The Atiyah–Manton approx-
imation appears within this framework as the leading order term in a basis expansion when
the vector mesons are neglected.

Recently a new numerical method has been introduced [9] and developed [10] to compute
the instanton holonomy required for the construction of the Atiyah–Manton Skyrmion. The
method is geometrically natural and is based on the theory of parallel transport of an induced
connection. Not only is the scheme more efficient than the standard approach, based on a tra-
ditional differential equation solver, but it removes all issues associated with gauge variations.
In fact, this is a suite of schemes with increasing order to decrease the numerical errors that
appear in any discretization that replaces the line with a finite set of points.

The main idea that lies at the heart of the work in the present paper may at first sight
seem bizarre. The proposal is to use the least accurate of the new numerical schemes with
an extremely coarse discretization. In fact, it is an ultra-discrete approach in which the real
line (along which the holonomy is calculated) is replaced by only five points, ±∞,±µ,0,
where µ is a positive constant. However, the geometry behind the computational scheme saves
the day by preserving the topology, in the sense that the topological charge of the Skyrme field
remains equal to the instanton number.

The advantage of this ultra-discrete method is that it turns the numerical scheme into an
analytic approach. Skyrme fields are obtained in explicit closed form as rational functions
of the spatial Cartesian coordinates by simply evaluating the ADHM data of the instanton.
This is an analytic alternative to the Atiyah–Manton method that avoids the need to solve any
differential equations and instead uses a simple formula for the rational Skyrmion in terms
of the ADHM data. Examples for charges one and two are presented in detail to confirm that
the approach does indeed yield good approximations. In particular, for charge one the rational
Skyrmion has an energy that is even lower than the Atiyah–Manton Skyrmion.

2. Skyrmions and instantons

A Skyrme field U(x) is a smooth map from R3 to SU(2) that satisfies the boundary condition
U→ 1 as |x| →∞. Maps of this form have an associated topological charge, B ∈ Z=
π3(SU(2)), that may be computed as

B=

ˆ
1

24π2
εijkTr(RiRkRj) d

3x, (2.1)

where the su(2)-valued right currents are Ri = ∂iUU−1. Physically, the charge B corresponds
to baryon number.

In suitable units, the static Skyrme energy is

E=
1

12π2

ˆ
−Tr

{
1
2
R2
i +

1
16

[Ri,Rj]
2
}
d3x, (2.2)

and obeys the Faddeev–Bogomolny energy bound [11], which states that E⩾ B. The only
Skyrme field that attains this bound is the trivial vacuum solution U= 1 with B= 0.

The study of Skyrmions begins with finding the minimal energy charge B Skyrmion, that
is, the Skyrme field U(x) that minimizes the energy (2.2) within the sector with topological
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charge equal to B. For B= 1 the minimal energy Skyrmion is spherically symmetric, taking
the hedgehog form

U= cos f + i
sin f
r

x · τ , (2.3)

where τ denotes the triplet of Pauli matrices, r2 = |x|2 = x21 + x22 + x23, and f (r) is a real radial
profile function satisfying the boundary conditions f(0) = π and f(∞) = 0. Substituting (2.3)
into (2.2) reveals that f (r) is determined by minimizing the energy

E=
1
3π

ˆ ∞

0

(
r2f ′2 + 2

(
1+ f ′2

)
sin2 f+

sin4 f
r2

)
dr. (2.4)

The energy minimizing profile function can only be computed numerically and gives the value
E= 1.232 for a single Skyrmion. For B> 1 the minimal energy Skyrmion is not spherically
symmetric, but it is a bound state, as it has an energy that is less than B times the energy of the
charge one Skyrmion.

The Atiyah–Manton construction [5, 6] of Skyrme fields from instantons begins with the
gauge potential Aµ(x,x4) ∈ su(2) of a self-dual Yang–Mills instanton in R4, with instanton
number N. The prescription for the Skyrme field is to take the holonomy of the instanton
along the x4 direction, U(x) = Ω(x,∞), where Ω(x,x4) is the solution of the matrix ordinary
differential equation

∂4Ω(x,x4) = Ω(x,x4)A4 (x,x4) , (2.5)

with initial condition Ω(x,−∞) = 1. The resulting Skyrme field has a topological charge B
that is equal to the instanton number N.

There is an 8N-dimensional moduli space of charge N instantons. In the part of the moduli
space that describes well-separated single instantons, these moduli have the interpretation of
a position in R4, a scale, and an SU(2) orientation, for each individual instanton. For each N,
a suitable point in the moduli space generates a good approximation to the minimal energy
Skyrmion with baryon number B= N. For N= 1, taking an instanton at the origin with scale
λ produces an Atiyah–Manton Skyrmion of the hedgehog form (2.3) with a profile function

f(r) = π

(
1− r√

λ2 + r2

)
. (2.6)

The optimal energy minimizing instanton scale is λ= 1.45, with an energy E= 1.243 that is
less than 1% above the true Skyrmion energy.

The 8N-dimensional moduli space of charge N instantons can be obtained via the ADHM
construction [7], which provides an equivalence between the instanton moduli spaces and cer-
tain quaternionic matrices, known as ADHM data. This data consists of a matrix

M̂=

(
L
M

)
, (2.7)

where L is a row of N quaternions andM is a symmetric N×N matrix of quaternions. ADHM
data must satisfy the condition that the N×N matrix M̂†M̂ is real and non-singular, where †

denotes the quaternionic conjugate transpose. The instanton gauge potential can be obtained
from the ADHM data using quaternionic linear algebra to calculate the kernel of the operator

∆(x,x4) =
(

L
M− (ix1 + jx2 + kx3 + x4)1N

)
, (2.8)

4



J. Phys. A: Math. Theor. 56 (2023) 425401 D Harland and P Sutcliffe

where 1N denotes the N×N identity matrix. Explicitly, let Ψ(x,x4) be an (N+ 1)-component
column vector of unit length, Ψ(x,x4)†Ψ(x,x4) = 1, that solves the equation

Ψ(x,x4)
†
∆(x,x4) = 0. (2.9)

The self-dual gauge potential of the instanton is given by

Aµ =Ψ(x,x4)
†
∂µΨ(x,x4) , (2.10)

which is a pure quaternion that can be identified with an element of su(2) in the standard way,
by relating quaternions to Pauli matrices.

Unfortunately, even when the ADHM construction can be used to obtain an explicit instan-
ton gauge potential Aµ, the ordinary differential equation (2.5) cannot be solved explicitly
in closed form. The only exception to this statement is the case that the holonomy produces a
spherically symmetric Skyrme field of the hedgehog form (2.3). In all other cases the holonomy
must be computed numerically, including all examples for approximations to the minimal
energy Skyrmions with B> 1.

3. Rational Skyrmions from ADHM data

New computational schemes have recently been introduced [10] to calculate the holonomy
Ω(x,∞) of an instanton, given the associated ADHMdata. These are finite differencemethods,
of various orders, that all involve replacing the real line, parameterized by x4, with a set of p
points −∞= t1 < t2 < .. . < tp =∞. The scheme of interest here is the lowest order method
[9], where derivatives are replaced by first-order forward difference approximations.

The starting point to derive the lowest-order scheme is to substitute the formula (2.10) for
the gauge potential into the holonomy equation (2.5) to give

∂4Ω(x,x4) = Ω(x,x4)Ψ(x,x4)
†
∂4Ψ(x,x4) . (3.1)

Applying a forward difference approximation at the point x4 = ti to both derivatives in this
equation, and neglecting the error terms, gives

Ω(x, ti+1)−Ω(x, ti) = Ω(x, ti)Ψ(x, ti)
†
(Ψ(x, ti+1)−Ψ(x, ti)) . (3.2)

Using the fact that Ψ has unit length, this becomes the simple relation

Ω(x, ti+1) = Ω(x, ti)Ψ(x, ti)
†
Ψ(x, ti+1) , (3.3)

with solution

Ω(x,∞) = Ω(x, tp) = Ψ(x, t1)
†
Ψ(x, t2)Ψ(x, t2)

†
Ψ(x, t3) . . .Ψ(x, tp−1)

†
Ψ(x, tp) , (3.4)

given that the initial condition isΩ(x, t1) = Ω(x,−∞) = 1. Furthermore, as |t1|= |tp|=∞,
then the remaining freedom may be fixed by setting Ψ(x, t1) = Ψ(x, tp) = e1, where e1 is the
(N+ 1)-component column vector with first entry equal to 1 and all other entries equal to 0.

A simplification that was overlooked in [10] is that

Ψ(x,x4)Ψ(x,x4)
†
= Q(x,x4) , (3.5)

whereQ(x,x4) is the projector onto the kernel of∆(x,x4) that is given by the (N+ 1)× (N+ 1)
quaternionic matrix

Q(x,x4) = 1N+1 −∆(x,x4)
(
∆(x,x4)

†
∆(x,x4)

)−1
∆(x,x4)

†
, (3.6)
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and the ADHM construction requires that ∆(x,x4)†∆(x,x4) is a real non-singular matrix.
Substituting (3.5) into (3.4) allows the discrete holonomy to be calculated by simply eval-
uating the ADHM data at the p− 2 interior lattice points

Ω(x,∞) = e†1Q(x, t2)Q(x, t3) . . .Q(x, tp−1)e1. (3.7)

The errors in the finite difference approximation mean that Ω(x,∞) will not be a unit qua-
ternion, therefore to identify the discrete holonomy with a Skyrme field U(x) requires a final
normalization step,

U(x) =
Ω(x,∞)

|Ω(x,∞) |
, (3.8)

to produce the unit quaternion U(x), that is identified with an element of SU(2) by relating
quaternions to Pauli matrices.

This computational schemewill now be converted into an analytic method by using an ultra-
discrete version with only 5 lattice points, t1, . . . , t5 =−∞,−µ,0,µ,∞, where µ is a positive
parameter. The Skyrme field is therefore obtained by evaluating the ADHM data at only 3
interior points, 0,±µ, and is given explicitly by the formula

U(x) =
e†1Q(x,−µ)Q(x,0)Q(x,µ)e1
|e†1Q(x,−µ)Q(x,0)Q(x,µ)e1|

. (3.9)

It would appear that (3.9) gives a Skyrmion that is an algebraic function of the Cartesian
coordinates, rather than a rational function, because of the modulus in the denominator.
However, in all the examples considered here, it turns out that the Skyrmion is rational. The
explanation for this surprising result is that (almost) all of the ADHM data investigated have
the property that

kM=−Mk and kL= Lk. (3.10)

Equivalently, M=M1i+M2 j and L= L3k+L4 for real matrices M1,M2,L3,L4. This is also
equivalent to the instanton having an axial symmetry in the (x3,x4)-plane. Axially-symmetric
instantons correspond to hyperbolic monopoles [12], so this constraint is natural and not too
restrictive.

The proof that (3.10) is a sufficient condition for the Skyrme fieldU to be rational proceeds
by first establishing the identity.

e†1 (Q(x,0)Q(x,µ)−Q(x,−µ)Q(x,0))e1 = 0. (3.11)

To prove this, first note that (3.10) implies that

∆(x,µ)†∆(x,µ) = ∆(x,0)†∆(x,0)+µ21N =∆(x,−µ)
†
∆(x,−µ) . (3.12)

Using this identity, and the definition ofQ, the left hand side of (3.11) can be written in terms of
the real non-singular matrix R defined to be R=∆(x,0)†∆(x,0). After several cancellations
this leads to

e†1 (Q(x,0)Q(x,µ)−Q(x,−µ)Q(x,0))e1 = µLR−1 (M− x1N)
(
R+µ21N

)−1

×L† −µL
(
R+µ21N

)−1
(M− x1N)R−1L†.

(3.13)

Using the identity (R+µ21N)−1 = R−1(1N+µ2R−1)−1, this can be rearranged to

e†1 (Q(x,0)Q(x,µ)−Q(x,−µ)Q(x,0))e1 = µLR−1
[
M− x1N,

(
1N+µ2R−1

)−1
]
R−1L†. (3.14)
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The commutator of
(
1N+µ2R−1

)−1
with x1N vanishes because the former is a real matrix and

the latter is a multiple of the identity matrix. By (3.10), the commutator withM can be written
in the form [

M,
(
1N+µ2R−1

)−1
]
= C1i+C2 j. (3.15)

Moreover, the real matrices C1,C2 are antisymmetric, because M and R are symmetric. The
right hand side of (3.14) can be rewritten as

µLR−1 (C1i+C2 j)R
−1L† = µTrR−1LtLR−1 (C1i+C2 j) (3.16)

because k anticommutes with i and j and L is written in terms of 1 and k. This expression
vanishes because it is the trace of a product of a symmetric matrix and an antisymmetric matrix,
and so (3.10) implies the property (3.11).

This property, which is a kind of centering condition in the x4 direction, in turn implies that
the Skyrmion is rational. The proof of this is as follows. As Q(x,x4) projects onto the kernel
of ∆(x,x4), which is spanned by the unit vector Ψ(x,x4), then

Ψ(x,x4) =
Q(x,x4)e1
|Q(x,x4)e1|

, (3.17)

therefore

Q(x,x4) = Ψ(x,x4)Ψ(x,x4)
†
=
Q(x,x4)e1e

†
1Q(x,x4)

|Q(x,x4)e1|2
. (3.18)

Using this result,

e†1Q(x,−µ)Q(x,0)Q(x,µ)e1 =
e†1Q(x,−µ)Q(x,0)e1e

†
1Q(x,0)Q(x,µ)e1

|Q(x,0)e1|2
(3.19)

=
e†1Q(x,0)Q(x,µ)e1e

†
1Q(x,0)Q(x,µ)e1

|Q(x,0)e1|2
=

(
e†1Q(x,0)Q(x,µ)e1

|Q(x,0)e1|

)2

, (3.20)

where property (3.11) has been used to obtain the first expression in the final line. This shows
that the numerator in (3.9) is the square of a quaternion, hence dividing by the modulus indeed
yields a rational rather than an algebraic expression.

3.1. Charge one

Consider N= 1 with L= λ and M= 0, then (3.9) gives a rational hedgehog Skyrmion

U=
r2
(
r2 +λ2 +µ2

)2 −λ4µ2 + 2iλ2µ
(
r2 +λ2 +µ2

)
x · τ(

(r2 +λ2)
2
+µ2r2

)
(r2 +µ2)

. (3.21)

Writing this Skyrmion in the hedgehog form (2.3) gives the profile function

f(r) = tan−1

(
2λ2µr

(
r2 +λ2 +µ2

)
r2 (r2 +λ2 +µ2)

2 −λ4µ2

)
. (3.22)

Minimizing the spherical energy (2.4) with this profile function yields a value E= 1.236,
obtained for λ= 2.03, µ= 1.43. This energy is only 0.3% above the true Skyrmion energy
E= 1.232, and is lower than the value E= 1.243 obtained by the Atiyah–Manton profile func-
tion (2.6) with the optimal instanton scale λ= 1.45. Note that the profile function (3.22) decays

7
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Figure 1. The profile function of the charge one rational Skyrmion (blue), the Atiyah-
Manton profile function (red), and the true profile function (black) obtained numerically.

like r−3. In contrast, the Atiyah–Manton profile function (2.6) and the true profile function of
the Skyrmion both decay like r−2.

Figure 1 displays the rational Skyrmion profile function (3.22) as the blue curve, and for
comparison, the Atiyah–Manton profile function (2.6) as the red curve, and the true profile
function obtained numerically as the black curve. This confirms that the charge one rational
Skyrmion is an excellent approximation to the true Skyrmion and is even better than the
Atiyah–Manton approximation.

Setting λ= 2, µ=
√
2, which are close to the numerically determined values, does not

change the energy at the level of the precision given above. The rational hedgehog Skyrmion
then simplifies to

U=
r6 + 12r4 + 36r2 − 32+ 8

√
2i
(
r2 + 6

)
x · τ

(r2 + 8)(r2 + 2)2
. (3.23)

3.2. Charge two

The ADHM data for an axially symmetric charge two Skyrmion is

M̂=

(
L
M

)
=

λ

2

√
2

√
2k

i j
j −i

 , (3.24)

from which the formula (3.9) produces a rational Skyrmion that will be written in the form

U=
σ̃+ iπ̃ · τ√

σ̃2 + π̃2
1 + π̃2

2 ++π̃2
3

. (3.25)

Motivated by the parameter values from the N= 1 case, setting λ= 2 and µ=
√
2N= 2

simplifies the expression for the Skyrmion, which when written in terms of x1,x2,x3,r2 and
ρ2 = x21 + x22 is

8
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π̃1 = 64
(
x21 − x22

)(
r2 + 4

)((
r2 + 8

)2 − 4ρ2
)

π̃2 = 128x1x2
(
r2 + 4

)((
r2 + 8

)2 − 4ρ2
)

(3.26)

π̃3 = 16x3
(
r4 + 12r2 + 4ρ2 + 32

)((
r2 + 8

)2 − 4ρ2
)

σ̃ = r12 + 36r10 +
(
−12ρ2 + 512

)
r8 +

(
−288ρ2 + 3520

)
r6 +

(
48ρ4 − 2496ρ2 + 11008

)
r4

+
(
576ρ4 − 9728ρ2 + 8192

)
r2 − 64ρ6 + 1792ρ4 − 16384

(
ρ2 + 1

)
.

The ADHM data (3.24) satisfies the condition (3.10), therefore the Skyrmion is rational. An

explicit calculation confirms that Ξ =
√

σ̃2 + π̃2
1 + π̃2

2 + π̃2
3 is given by

Ξ =
(
r8 + 24r6 + 8

(
24− ρ2

)
r4 + 96

(
6− ρ2

)
r2 + 16

(
ρ4 − 28ρ2 + 32

))(
r4 + 12r2 − 4ρ2 + 32

)
.

The energy is E= 2.418, which is very close to the energy E= 2.416 of the rational map
approximation, with both being 2.5% larger than the true minimal energy E= 2.358. For com-
parison, the energy E= 2.384 of the numerically computed Atiyah–Manton axial charge two
Skyrmion has an error of only 1.1%. Calculating the rational Skyrmion for general λ and µ
reveals that the energy is minimized for the parameter values λ= 1.99, µ= 2.06, which are
close enough to the chosen values λ= µ= 2 that the energy is unchanged at the level of the
precision given.

A family of charge two Skyrmions in the attractive channel is obtained from the ADHM
data [13]

M̂=
λ

2

√2(1− a2)
√
2(1− a2)k

(1+ a) i (1− a) j
(1− a) j −(1+ a) i

 , (3.27)

where a ∈ (−1,1) controls the separation of the pair of Skyrmions, with the axial case
recovered when a= 0, and the separation tending to infinity as |a| → 1. This ADHMdata satis-
fies the condition (3.10) and, using the notation (3.25), yields the family of rational Skyrmions

π̃1 = 2
(
1− a2

)
µλ3H1H2, π̃2 = 4

(
1− a2

)
µλ3x1x2H1H3, π̃3 = 2

(
1− a2

)
µλ2x3H1H4,

σ̃ =−µ2

4

(
1− a2

)5
λ10 − µ2

4

(
1− a2

)4(
2µ2 + 2ρ2 + 3H3

)
λ8 −

(
1− a2

)
2

H2
1

(
µ2 +H3

)
λ2

− µ2

4

(
1− a2

)3(
µ4 +µ2

(
2ρ2 + 4H3

)
+ 2ρ2H3 + 3H2

3 − 2H1

)
λ6 −µ2H2

1H3 +H3
1

−
(
1− a2

)2
4

(
µ6H3 +

(
2H2

3 − 2H1

)
µ4 +

(
−4ρ2H1 +H3

3 − 2H1H3

)
µ2 + 2H2

1

)
λ4,

(3.28)

where the following functions have been introduced for notational convenience

H1 = λ4 +
(
2
(
x21 − x22

)
a+ 2r2 + 2µ2 −

(
1+ a2

)
ρ2
)
λ2 +

(
µ2 + r2

)2
,

H2 =
(
x21 − x22

)(
λ2
(
1− a2

)
+µ2 + 2r2

)
+
(
λ4 +

(
µ2 + 2r2

)(
λ2 − ρ2

)
+ r4 + r2µ2

)
a,

H3 = λ2
(
a2 + 1

)
+ 2r2 +µ2,

H4 = λ4 +
(
a2ρ2 − 2

(
x21 − x22

)
a+ 2r2 +µ2 + ρ2

)
λ2 + r4 + r2µ2. (3.29)
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Figure 2. (a) The parameters λ and µ as a function of a, together with their asymptotic
approximations (dotted curves), valid for a≈ 1. (b) The energy as a function of the
Skyrmion separation.

This family is invariant under the transformation (a,x1,x2,x3) 7→ (−a,x2,−x1,x3) together
with the compensating isospin rotation (σ,π1,π2,π3) 7→ (σ,−π1,−π2,π3). Therefore, to study
separated Skyrmions it is enough to restrict to the case a ∈ (0,1), where the pair of Skyrmions
are positioned on the x1-axis.

To consider the well-separated limit a≈ 1, write λ= λ1/
√
1− a, where λ1 is independent

of a. In this limit the ADHM data (3.27) simplifies to

M̂=

 λ1 λ1k
iλ1/

√
1− a 0
0 −iλ1/

√
1− a

+O
(√

1− a
)
, (3.30)

and describes well-separated instantons [14] because the diagonal entries ofM are much larger
than any of the other entries of M̂. This generates a pair of well-separated Skyrmions positioned
on the x1-axis at x1 =±λ1/

√
1− a, with scale λ1. From the earlier analysis of the charge one

case, in this limit the energy minimizing parameters are λ1 ≈ 2, µ≈
√
2.

Figure 2(a) displays the energy minimizing parameters λ and µ, as a function of a. The
dotted curve is the asymptotic approximation λ≈ 2/

√
1− a, that is derived for a≈ 1, but

turns out to be a reasonable approximation for all a ∈ [0,1). The dotted line is the asymptotic
approximation µ≈

√
2, which is only valid for a≈ 1. Figure 2(b) plots the energy as a function

of the separation between the two Skyrmions, where the Skyrmion positions are defined to be
the points at whichU=−1. The dotted line is the asymptotic value at infinite separation, given
by twice the energy of a single rational Skyrmion. This graph clearly illustrates the attractive
force between the pair of Skyrmions, and is the first time that such a calculation has been
performed using an explicit Skyrme field that is applicable for all separations.

Isosurfaces on which the baryon density (the intergrand in (2.1)) is equal to 0.05 are dis-
played in figure 3 for the values a= 0,0.3,0.6. This shows how the axial charge two Skyrmion
separates into a pair of charge one Skyrmions as the parameter a is increased from zero.

There is a spherically symmetric charge two Skyrmion that is a saddle point of the energy.
It is given by the hedgehog form (2.3) with a profile function f (r) that satisfies the boundary

10
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Figure 3. Baryon density isosurfaces for charge two rational Skyrmions with a=
0,0.3,0.6.

conditions f(0) = 2π and f(∞) = 0. The value of the energy is E= 3.667, which is substan-
tially larger than twice the energy of a single Skyrmion. A rational Skyrmion approximation
to this saddle point is obtained from the ADHM data

M̂=

λ λ
ν 0
0 −ν

 , (3.31)

where λ and ν are real positive parameters. Note that this ADHM data does not have axial
symmetry in the (x3,x4)-plane, with (3.10) not satisfied. However, a direct calculation confirms
that (3.11) is satisfied for this data and therefore it yields a rational Skyrmion. This example
shows that (3.10) is a sufficient but not necessary condition for the Skyrmion to be rational. A
full investigation of which ADHM data lead to rational Skyrmions is beyond the scope of this
paper.

The energy is minimized for the parameter values, λ= 3.50, ν = 2.94, µ= 3.94, giving
an energy E= 3.820, which is 4.2% above the true value. Setting the parameter values to
λ= 7/2, ν = 3, µ= 4,which are close enough to the numerical values to have the same energy
to the given precision, produces the profile function

f(r) = tan−1

(
392r

(
2r8 + 217r6 + 6839r4 + 64395r2 − 55125

)
4r12 + 668r10 + 38545r8 + 842540r6 + 4439626r4 − 35758240r2 + 4862025

)
. (3.32)

The Atiyah–Manton approximation to the spherical charge two Skyrmion has an energy
E= 3.711, which is only 1.2% above the true value. The reason that the rational Skyrmion has
a relatively large error for this example is that the instanton has a more complicated x4 depend-
ence than the earlier examples, where the instanton was localized around x4 = 0. Sampling the
ADHM data at only three interior points, x4 = 0,±µ, is therefore less accurate in this situation.

4. Algebraic Skyrmions

In the previous section it has been demonstrated that a good rational approximation to
Skyrmions can be generated using only five points in the formula (3.7). Fewer points lead
to simpler formulae, so it is tempting to investigate versions of the scheme with even fewer
points. The simplest scheme is a 3-point formula that uses the points t1, t2, t3 =−∞,0,∞, but

11
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this turns out to be trivial, as it generates only the vacuum Skyrme field U= 1. This is easily
shown as follows,

U(x) =
e†1Q(x,0)e1
|e†1Q(x,0)e1|

=

(
e†1Q(x,0)e1

)†
|e†1Q(x,0)e1|

= U(x)† , (4.1)

which implies that U= 1.
The 4-point scheme with points t1, t2, t3, t4 =−∞,−µ,µ,∞, is

U(x) =
e†1Q(x,−µ)Q(x,µ)e1
|e†1Q(x,−µ)Q(x,µ)e1|

, (4.2)

and does generate Skyrmions, although they are algebraic rather than rational.
Taking the N= 1 data L= λ and M= 0 gives a hedgehog Skyrmion

U=

(
r2 +µ2

)2
+λ2

(
r2 −µ2

)
+ 2iλ2µx · τ

(r2 +µ2)

√
(r2 +µ2 +λ2)

2 − 4µ2λ2
, (4.3)

with charge one, providing µ ∈ (0,λ). The corresponding profile function is

f(r) = tan−1

(
2λ2µr

(r2 +µ2)
2
+λ2 (r2 −µ2)

)
, (4.4)

with a minimal energy E= 1.240 obtained when λ= 2µ= 2.48. This energy is very slightly
lower than the energy of the Atiyah–Manton profile, but it is above that of the rational
Skyrmion.

Using the ADHM data (3.24) yields the axially symmetric charge two algebraic Skyrmion

π̃1 = 2λ3µ(2µ2 +λ2 + 2r2)(x21 − x22),

π̃2 = 4λ3µ(2µ2 +λ2 + 2r2)x1x2,

π̃3 = 2λ2µ((x23 +λ2)2 + 2(µ2 + ρ2)x23 +(2µ2 + 3ρ2)λ2 +(µ2 + ρ2)2)x3,

σ̃ = (x23 −µ2)λ6 +((−3ρ2 + 2x23)µ
2 + ρ4 + 3ρ2x23 + 3x43 −µ4)λ4

+(µ2 + ρ2 + 3x23)(µ
2 + r2)2λ2 +(µ2 + r2)4, (4.5)

which again requires that µ ∈ (0,λ). The energy is minimized for the parameter values λ=
2.34, µ= 1.28, giving E= 2.468, which is 4.7% larger than the true minimal energy, so almost
twice the 2.5% error of the corresponding rational Skyrmion.

5. Conclusion

A new method has been introduced that provides a simple formula to produce explicit rational
approximations to Skyrmions from ADHM instanton data. The method is an improvement
on the related Atiyah-Manton procedure, that obtains approximate Skyrmions as instanton
holonomies, in that the Skyrme field is obtained in closed form using only linear algebra,
and does not require the solution of any differential equations. Despite this simplification, the
new method has a similar level of accuracy to the Atiyah–Manton approach, and is a better
approximation for a single Skyrmion.

The moduli space of charge N instantons induces a moduli space of charge N rational
Skyrmions. As an illustration, rational Skyrmions have been used to provide the first example
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of a family of explicit charge two Skyrme fields that includes a pair of well-separated
Skyrmions, the axially symmetric charge two Skyrmion, and all intermediate Skyrmions in
the attractive channel with any separation. Moduli spaces of rational Skyrmions should prove
useful in the quantization of Skyrmions, with simplifications resulting from the availability of
explicit Skyrme fields.

Finally, there are several known examples of ADHM data that are appropriate for study-
ing minimal energy Skyrmions with charges greater than two, including families that contain
separation parameters to deform the minimal energy Skyrmion into individual Skyrmions or
clusters in a particularly symmetric way. All of these examples are related to hyperbolic mono-
poles and the ADHM data has an axial symmetry that guarantees a rational Skyrmion. It might
be interesting to investigate the details.
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