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Abstract
We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply,
delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width
if and only if D is monadically dependent. An effective strengthening of delineation for a class C
implies that tractable FO model checking on C is perfectly understood: On hereditary closures of
subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has
bounded twin-width. Ordered graphs [BGOdMSTT, STOC ’22] and permutation graphs [BKTW,
JACM ’22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove
that interval graphs, and even, rooted directed path graphs are delineated. On the other hand,
we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and
visibility graphs of simple polygons are not delineated.

In an effort to draw the delineation frontier between interval graphs (that are delineated) and
axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted
segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs
have unbounded twin-width [BGKTW, SODA ’21]. We show that Kt,t-free segment graphs, and
axis-parallel Ht-free unit segment graphs have bounded twin-width, where Ht is the half-graph or
ladder of height t. In contrast, axis-parallel H4-free two-lengthed segment graphs have unbounded
twin-width. We leave as an open question whether unit segment graphs are delineated.

More broadly, we explore which structures (large bicliques, half-graphs, or independent sets)
are responsible for making the twin-width large on the main classes of intersection and visibility
graphs. Our new results, combined with the FPT algorithm for first-order model checking on
graphs given with O(1)-sequences [BKTW, JACM ’22], give rise to a variety of algorithmic win-win
arguments. They all fall in the same framework: If p is an FO definable graph parameter that
effectively functionally upperbounds twin-width on a class C, then p(G) ⩾ k can be decided in FPT
time f(k) · |V (G)|O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility
graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This
showcases that the theory of twin-width can serve outside of classes of bounded twin-width.
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9:2 Twin-Width VIII: Delineation and Win-Wins

1 Introduction

A trigraph G has a vertex set V (G), and two disjoint edge sets, the black edge set E(G)
and the red edge set R(G). A (vertex) contraction consists of merging two (non-necessarily
adjacent) vertices, say, u, v into a vertex w, and keeping every existing edge wz black if
and only if uz and vz were previously black edges. The other edges incident to w turn red
(if not already), while the rest of the trigraph remains the same. A contraction sequence
of an n-vertex (tri)graph G is a sequence of trigraphs G = Gn, . . . , G1 = K1 such that
Gi is obtained from Gi+1 by performing one contraction. A d-sequence is a contraction
sequence wherein all trigraphs have red degree at most d. The twin-width of G, denoted
by tww(G), is the minimum integer d such that G admits a d-sequence. A graph class C
has then bounded twin-width if there is a constant t such that every graph G ∈ C satisfies
tww(G) ⩽ t. See Figure 1 for an illustration of a 2-sequence of a graph.
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Figure 1 A 2-sequence witnesses that the initial 7-vertex graph has twin-width at most 2.

The main algorithmic application of twin-width is that first-order (FO) model checking,
that is, deciding if a first-order sentence φ holds in a graph G, can be decided in fixed-
parameter time (FPT) f(|φ|, d) · |V (G)| for some computable function f , when given a
d-sequence of G [6]. We recall that there is an ample list of graph classes (or more generally
of binary structures, since the definition of twin-width extends to them) of bounded twin-
width, including bounded clique-width graphs, H-minor free graphs, posets with antichains
of bounded size, strict subclasses of permutation graphs, map graphs, bounded-degree string
graphs [6], as well as Ω(log n)-subdivisions of n-vertex graphs, and some particular classes
of cubic expanders [4]. In contrast, (sub)cubic graphs, interval graphs, triangle-free unit
segment graphs, unit disk graphs have unbounded twin-width [4].

The missing element for an FPT FO model-checking algorithm on any class of bounded
twin-width is a polynomial-time algorithm and a computable function f , that given a constant
integer bound c and a graph G, either finds an f(c)-sequence for G, or correctly reports that
tww(G) > c. The runtime of the algorithm could be ng(c), for some function g. However
to get an FPT algorithm in the combined parameter size of the sentence + bound on the
twin-width, one would further require that the approximation algorithm takes FPT time
in c (now thought of as a parameter), i.e., g(c)nO(1). Such an algorithm exists on ordered
graphs (more generally, ordered binary structures) [5], graphs of bounded clique-width,
proper minor-closed classes [6], but not on general graphs. Let us observe that exactly
computing the twin-width, and even distinguishing between tww(G) = 4 and tww(G) = 5, is
NP-complete [3].

Motivation. We aim to get around the two main caveats of using twin-width for algorithm
design. Namely:

an FPT (or XP) approximation of twin-width is still missing, and
a priori only classes of bounded twin-width are concerned.
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The central theme of this paper is to showcase how to bypass the above caveats using
twin-width and to provide a necessary toolbox. First we show that on certain graph classes,
bounded twin-width is precisely what renders FO model-checking FPT, and the notion of
delineation is introduced to this end. Second, we demonstrate how to summon a win-win
strategy on important graph classes by means of twin-width, which is reminiscent of the
well-known win-win argument based on treewidth.

The main obstacle for computing the twin-width is to get a good vertex ordering.
Geometric graph classes of unbounded twin-width constitute a diverse and intriguing pool for
testing these two avenues: interval graphs, (rooted) directed path graphs, segment graphs,
visibility graphs of polygons and terrains. For all these classes, a vertex-ordering procedure
either comes naturally or can be worked out and efficiently computed.

Global strategy. For our purpose, the following characterization of bounded twin-width
will be pivotal.

▶ Theorem 1 ([5]). A class C has bounded twin-width if and only if there is an integer k such
that every graph of C admits an adjacency matrix without rank-k division, i.e., k-division
such that every cell has combinatorial rank at least k.

Here, a k-division of a matrix is a partition of its column (resp. row) set into k intervals,
called column (resp. row) parts, of consecutive columns (resp. rows). A k-division naturally
defines k2 cells (contiguous submatrices) made by the entries at the intersection of a column
part with a row part. A rank-k division of M is a k-division D such that each of the k2 cells
has at least k distinct rows or at least k distinct columns (that is, combinatorial rank at
least k). The maximum integer k such that M admits a rank-k division is called grid rank,
and is denoted by gr(M). Theorem 1 is effective: There is a computable function f , such
that, given a vertex ordering along which the adjacency matrix of a graph G has no rank-k
division, one can efficiently find an f(k)-sequence for G, witnessing that tww(G) ⩽ f(k).

Suppose that for a graph class C, a canonical vertex ordering can be obtained. Either the
consequential adjacency matrix has no rank-k division – and we get a favorable contraction
sequence by Theorem 1 – or it does have such a division. In the latter case, a large structured
object of variable complexity may be found, such as a biclique, a half-graph (or ladder), or
even an obstacle to an FPT FO model checking in the form of a transversal pair of half-graphs
(or transversal pair, for short) or some variant of it; see the middle figure in Figure 2, Section 3
for a formal definition, and for why transversal pairs indeed are such obstacles.

Delineation. For monotone (i.e., closed under removing vertices and edges) classes, the
FPT algorithm of Grohe, Kreutzer, and Siebertz [20] for FO model checking on nowhere
dense classes, is complemented by W[1]-hardness on classes that are somewhere dense (i.e.,
not nowhere dense) [13], and even AW[∗]-hardness on classes that are effectively somewhere
dense [23]. The latter two results imply that, for monotone classes, FO model checking
is unlikely to be FPT beyond nowhere dense classes. Thus the classification of monotone
classes admitting an FPT FO model checking is complete. However such a classification
remains an active line of work for the more general hereditary classes of graphs and binary
structures [15,18,19]. It is conjectured (see for instance [18, Conjecture 8.2]) that:

▶ Conjecture 2. For every hereditary class C of structures, FO model checking is FPT on C
if and only if C is monadically dependent.1

1 A model-theoretic notion which roughly says that not every graph G can be built from a nondeterministic
O(1)-coloring of some S ∈ C by means of a first-order formula φ(x, y), in the relations of S and the
added colors, imposing the edge set of G; see Section 2 for a definition.
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Figure 2 Biclique, half-graph (or ladder), transversal pair of half-graphs, matching, anti-matching,
all of height 9. Bicliques and half-graphs are semi-induced by default. The number next to each
leftmost vertex v of the transversal pair indicates the height of the neighbor of v in the central
column which is not also a neighbor of the vertex just below v.

If for every hereditary closure D of a subclass2 of C, D has bounded twin-width if and
only if D is monadically dependent, we say that C is delineated by twin-width (or simply,
delineated). Although not stated in those terms, permutation graphs were already proven to
be delineated [6], as well as ordered graphs [5]. We add interval graphs and rooted directed
path graphs (see Section 3 for a definition) to the list of delineated classes. Therefore,
for every hereditary subclass of these classes the classification of FPT FO model checking,
Conjecture 2, is now provably settled.3 In contrast, we rule out delineation for directed path
graphs (with multiple roots), intersection graphs of pure axis-parallel segments with two
distinct lengths, and visibility graphs of simple polygons.

▶ Theorem 3. Interval graphs, and more generally rooted directed path graphs, are delineated.

A (variant of a) transversal pair plays the key role to establish Theorem 3. We show that
on a class C, if a (variant of a) transversal pair can systematically be found as a result of
unbounded twin-width, then the classification of FPT FO model checking for hereditary
subclasses of C is entirely settled by the algorithm on graphs of bounded twin-width [6].

Twin-width win-wins. If segment graphs and visibility graphs of simple polygons do not yield
in their subfamilies of unbounded twin-width complex enough structures to settle Conjecture 2,
unbounded twin-width still imply in those classes that some other graph parameters are
unbounded. This gives rise to a win-win approach to compute these parameters. To give a
context, we draw a parallel with what happens with treewidth.

The algorithmic use of a parameter like treewidth extends beyond classes wherein treewidth
is bounded. Any problem admitting an FPT algorithm parameterized by treewidth (like
MSO definable problems [9]), and a trivial answer (such as a systematic YES or a systematic
NO) when the treewidth is large, subjects itself to a straightforward win-win argument. This
is at the basis of the so-called bidimensionality theory [17]. Since a problem like k-Vertex
Cover admits a 2tw(G)nO(1)-time algorithm [10] and a systematic NO answer in presence of
a, say, (2

√
k + 1)× (2

√
k + 1) grid minor, one then derives for this problem an FPT algorithm

running in time 2O(
√

k)nO(1) in planar graphs.

2 The reason we do not simply quantify over hereditary subclasses of C is to have a notion that is also
meaningful when C is not hereditary.

3 We actually need an effective strengthening of delineation that also holds for these classes and will be
defined in Section 2.
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Let us forget one moment the intermediary role of the grid minor. Efficiently computing
a parameter p(G) – like the vertex cover number τ(G) – can boil down to establishing an
upperbound of the form tw(G) ⩽ f(p(G)).

We explore such upper bounds, and resultant win-wins, with twin-width in place of
treewidth. Given two graph parameters p, q, and a graph class C, we will write p ⊑ q on C
to signify that there is a computable function f such that ∀G ∈ C, p(G) ⩽ f(q(G)). By a
similar argument to what was presented in the previous paragraphs, one gets the following.

▶ Theorem 4 (informal). Let C be a graph class and p be a graph invariant such that
1. computing p is FPT in the combined parameter p + tww on C, and
2. tww ⊑ p on C.

Then, computing p is FPT on C.

First-order logic yields a natural pool of invariants p that are fixed-parameter tractable
with respect to p + tww [6]. As a first example of Item 2, we show the following.

▶ Theorem 5. Biclique-free segment graphs have bounded twin-width. Furthermore, if a
geometric representation is given, an O(1)-sequence of the graph is found in polynomial time.

A reformulation is that, in segment graphs, twin-width is upperbounded by a function
of the largest biclique; or, denoting by β(G) the largest integer t such that G admits a
biclique Kt,t as a a subgraph, it holds that tww ⊑ β on segment graphs. The corresponding
problem k-Biclique was famously shown W[1]-hard by Lin [25], after its parameterized
complexity has been open for over a decade [11]. From Theorems 5 and 19 one rederives4

that k-Biclique is FPT on segment graphs given with a geometric representation.

The counterpart of the large grid minor (in treewidth win-wins) is a large rank division
in every adjacency matrix of the graph (recall Theorem 1). Large twin-width in a class C in
particular implies a large rank division in the adjacency matrix along a vertex ordering that,
at least partially, respects the structure of C. In turn, this complex structure – despite being
along a canonical order – may help lowerbounding other parameters (like the grid minor was
lowerbounding the vertex cover number in our example). We give two such examples, both
on classes of visibility graphs.

A simple polygon is a polygon without holes. Two vertices (more generally, points)
of a polygon see each other if the line segment defined by these vertices (or points) is
entirely contained in the polygon. The following problem is sometimes advertised as hiding
(people) in polygons, and its solution is called a hidden set. It is NP-complete [27], even
APX-hard [16], and can be equivalently defined as k-Independent Set in visibility graphs
of simple polygons given with a representation.

▶ Theorem 6. Given a simple polygon P and an integer k, finding k vertices of P pairwise
not seeing each other is FPT.

A key step for proving Theorem 6 is to turn a large rank division in the adjacency matrix
along a Hamiltonian path describing the boundary of the polygon into a large independent set.
In conclusion: we establish tww ⊑ α in visibility graphs of simple polygons (where α(G) is
the independence number of G), which immediately implies Theorem 6 thanks to Theorem 4.

4 This fact can alternatively be obtained via the algorithmic theory of Sparsity [13, 14], and the existence
of truly sublinear balanced separators in Kt,t-free segment graphs [24].

IPEC 2022
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In contrast, k-Dominating Set remains W[1]-hard on visibility graphs of simple poly-
gons [7], thus likely does not admit an FPT algorithm. We remark that Hliněný et al. [22]
conjectured that FO model checking is FPT on weak visibility graphs of simple polygons
additionally parameterized by the independence number. Our proof that tww ⊑ α on
visibility graphs of simple polygons confirms this conjecture, even for the more general
(non-weak) visibility graphs. We observe that the approach would not work with a classic
width measure, since none of the three items hold replacing twin-width by clique-width;
this mainly because grids and long paths of consistently ordered half-graphs have bounded
twin-width but unbounded clique-width.

A 1.5D terrain (or here, terrain for short) is an x-monotone polygonal chain in the
plane. Two vertices of a terrain see each other if the line segment they define entirely lies
above the terrain. Let λ(G), the ladder index of G, be the greatest height of a semi-induced
half-graph in G. A folklore structural property of terrains, often called Order Claim, imposes
the existence of large half-graphs in a large rank division along the left-right ordering. Thus
tww ⊑ λ in visibility graphs of 1.5D terrains. We conclude:

▶ Theorem 7. k-Ladder and k-Biclique are FPT on visibility graphs of 1.5D terrains
given with a geometric representation.

The full version of this paper is available on arXiv, where all missing proofs can be found.

2 Preliminaries

We may denote the set of integers between i and j by [i, j], and [k] may be used as a short-hand
for [1, k].

2.1 Graph theory
We use the standard graph-theoretic definitions and notations. We denote by V (G), and
E(G), the vertex set, and the edge set, of a graph G, and by G[S] the subgraph of G induced
by S ⊆ V (G). When A, B ⊆ V (G) are two disjoint sets, we denote by G[A, B] the bipartite
graph (A, B, {ab : a ∈ A, b ∈ B, ab ∈ E(G)}). We denote by Adj≺(G) the adjacency
matrix of G along the total order ≺ of V (G).

A biclique and half-graph (or ladder) of height t play a central role in this paper. The
formal definition can be found in the long version, and See Figure 2 for illustrations. A
bipartite graph H is semi-induced in G if there are two disjoint A, B ⊆ V (G) such that
H is isomorphic to G[A, B]. A graph is Kt,t-free (resp. Ht-free) if it does not contain Kt,t

(resp. Ht) as a semi-induced subgraph.

2.2 Model checking, interpretations, transductions, and dependence
A relational signature σ is a finite set of relation symbols R, each having a specified arity
r ∈ N. A σ-structure A is defined by a set A (the domain of A) and a relation RA ⊆ Ar for
each relation symbol R ∈ σ with arity r.

A binary structure is a relational structure with symbols of arity at most 2. The syntax
and semantics of first-order formulas over σ (or σ-formulas for short), are defined as usual.
We recall that a sentence is a formula without free variable. Most of the time we will consider
σ-structures with σ consisting of a single binary relation symbol E, and identify them to
graphs. But we will also deal with binary structures that are graphs augmented with a total
order (called totally ordered graphs, or ordered graphs for short) and/or some unary relations.
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Interpretations, transductions, and monadic dependence. Let σ, τ be relational signatures.
A simple FO interpretation (here, FO interpretation for short) I of τ -structures in σ-structures
consists of the following σ-formulas: a domain formula ν(x), and for each relation symbol
R ∈ τ of arity r, a formula φR(x1, . . . , xr). If A is a σ-structure, the τ -structure I(A) has
domain ν(A) = {v ∈ A : A |= ν(v)} and the interpretation of a relation symbol R ∈ σ of
arity r is RI(A) = {(v1, . . . , vr) ∈ ν(A)r : A |= φR(v1, . . . , vr)}. If C is a class of σ-structures,
we set I(C) = {I(A) : A ∈ C}.

Let σ ⊆ σ+ be relational signatures. The σ-reduct of a σ+-structure A, denoted by
reductσ+→σ(A), is the structure obtained from A by deleting all the relations not in σ.
A monadic h-lift of a σ-structure A is a σ+-structure A+, where σ+ is the union of σ and
a set of h unary relation symbols, and reductσ+→σ(A+) = A.

A simple non-copying FO transduction (here, FO transduction for short) T of τ -structures
in σ-structures is an interpretation of τ -structures in σ+-structures, where the σ+-structures
are monadic h-lifts of σ-structures for some fixed integer h. As there are many ways of
interpreting the extra unary relations, a transduction (contrary to an interpretation) builds
on a given input structure several output structures. If C is a class of σ-structures, T(C)
denotes the class of all the τ -structures output on any σ-structure A ∈ C.

We say that a class C interprets a class D (or that D interprets in C) if there is an
interpretation I such that D ⊆ I(C). Further, a class C efficiently interprets D if additionally
a polytime algorithm inputs A ∈ D, and outputs a structure B ∈ C such that I(B) is
isomorphic to A. Similarly, we say that a class C transduces a class D (or that D transduces
in C) if there is a transduction T such that D ⊆ T(C). Two classes C and D are transduction
equivalent if C transduces D, and D transduces C. We will frequently use the fact that one
can compose transductions: If C transduces D, and D transduces E , then C transduces E .

The following is a particularly useful fact to bound the twin-width of a class.

▶ Theorem 8 ([6]). Every FO transduction of a class with bounded twin-width has bounded
twin-width.

Furthermore, given an FO transduction T and a class C on which 0(1)-sequences can be
computed in polynomial time, one can also compute O(1)-sequences for graphs of T(C) in
polynomial time.

We will not need the original definition of monadic dependence; solely the following
characterization:

▶ Theorem 9 (Baldwin and Shelah [1]). C is monadically dependent if and only if C does not
transduce the class G of all finite graphs.

Since FO model checking on the class of all graphs is AW[∗]-hard [12], one notices that if C
efficiently interprets the class of all graphs then FO model checking on C is AW[∗]-hard[1,12].
Conjecture 2 anticipates that every hereditary class of structures not transducing the class
of all graphs admits an FPT FO model checking, and no other hereditary class does.

2.3 Rank divisions, universal patterns and twin-width
A division D of a matrix M is a pair (DR,DC), where DR (resp. DC) is a partition of
the rows (resp. columns) of M into intervals of consecutive rows (resp. columns). Each
element of DR (resp. DC) is called a row part (resp. column part). A k-division is a division
satisfying |DR| = |DC | = k. We often list the row (resp. column) parts of DR (resp. DC)
R1, R2, . . . , Rk (resp. C1, C2, . . . , Ck) when Ri is just below Ri+1 (resp. Cj is just to the left
of Cj+1). For every pair Ri ∈ DR, Cj ∈ DC , the (contiguous) submatrix Ri∩Cj is called cell

IPEC 2022



9:8 Twin-Width VIII: Delineation and Win-Wins

or zone of D, or more precisely, the (i, j)-cell of D. Note that a k-division defines k2 zones.
We say that a cell, or more generally a matrix, is empty or full 0 if all its entries are 0.
The dividing lines of DR = R1, R2, . . . (resp. DC = C1, C2, . . .) are the strips (of width 2)
made by the last row of Ri and the first row of Ri+1 (resp. last column of Cj and the first
column of Cj+1. A dividing line of DR (resp. DC) stabs a set of rows (resp. of columns) if it
intersects it. We may call regular k-division a k-division where every row part and column
part have the same size.

A rank-k division of M is a k-division D such that for every Ri ∈ DR and Cj ∈ DC the
cell Ri ∩Cj has at least k distinct rows or at least k distinct columns (that is, combinatorial
rank at least k). By large rank division, we informally mean a rank-k division for arbitrarily
large values of k. The maximum integer k such that M admits a rank-k division is called
grid rank, and is denoted by gr(M).

An adjacency matrix M of a binary structure encodes in any bijective fashion the atomic
type of every pair of vertices (u, v) (i.e., the set of atomic propositions the pair (u, v) satisfies)
at position (u, v) in M . We denote by Adj≺(A) the adjacency matrix of A along ≺, a total
order on A. The grid rank of a binary structure A, denoted by gr(A), is the least integer k

such that there is a total order ≺ of A satisfying gr(Adj≺(A)) = k.
We will not need the original definition of twin-width (presented in the introduction)

generalized to binary structures.5 So we do not reproduce it here. Instead we recall that
the twin-width and the grid rank of a binary structure are functionally equivalent, and we
encourage the reader to think of the twin-width of A, tww(A), simply as its grid rank gr(A).

Instead we give the following useful characterization of bounded twin-width, readily
generalizable to classes of other binary structures than graphs. The twin-width of the binary
structure is then defined as the twin-width of the unordered matrix M , denoted by tww(M).
The precise value of tww(M) is also defined by contration

▶ Theorem 10 ([5]). There is a computable function f : N→ N such that for every binary
structure A, the following two implications hold:

If tww(A) ⩽ k, then there is a total order ≺ of A such that gr(Adj≺(A)) ⩽ f(k), and
If there is a total order ≺ of A such that gr(Adj≺(A)) ⩽ k, then tww(A) ⩽ f(k).

Furthermore there are computable functions g, h : N→ N and an algorithm running in time
h(k) · |A|O(1) which inputs an adjacency matrix Adj≺(A) without rank-k division and outputs
a g(k)-sequence of A.

▶ Theorem 11 (informal version, see [5]). Twin-width and grid rank are effectively tied.

It was shown in a previous paper of the series [5] that highly-structured rank divisions
can always be found in large rank divisions. We now make that statement precise. Let
Mk(0) be the k2 × k2 permutation matrix such that if Mk(0) is divided in k row parts and
k column parts, each of size k, there is exactly one 1 entry in each cell of the division, and
this 1 entry is at position (i, j) of the (j, i)-cell; see leftmost matrix in Figure 3. For every
positive integer k and s ∈ {1, ↑, ↓,←,→}, let Mk(s) be the k2 × k2 0, 1-matrix defined from
Mk(0) by doing one of the following operations:

switching 1 entries and 0 entries, if s = 1,
turning 0 entries into 1 entries if there is a 1 entry somewhere below them, if s = ↑,
turning 0 entries into 1 entries if there is a 1 entry somewhere above them, if s = ↓,
turning 0 entries into 1 entries if there is a 1 entry somewhere to their right, if s =←,
turning 0 entries into 1 entries if there is a 1 entry somewhere to their left, if s =→.

5 The definition is similar with red edges appearing between the contraction of u and v, and vertex z
whenever (u, z) and (v, z) have different atomic types. We refer the curious reader to [6].
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We call Mk(s) a universal pattern and {Mk(s) : k ∈ N} a permutation-universal family;
see Figure 3.

Figure 3 The six universal patterns with k = 3. The black cells always represent 1 entries, and
white cells, 0 entries. From left to right, M3(0), M3(1), M3(↑), M3(↓), M3(←), and M3(→). We
always adopt the convention that the matrix entry at position (1, 1) is the bottom-left one.

It was shown that, taking the adjacency matrix of a graph G along some order, either yields
a matrix with bounded grid rank, and Theorem 1 effectively gives a favorable contraction
sequence of G, or yields a matrix with huge grid rank, wherein a large universal pattern can
be extracted:

▶ Theorem 12 ([5]). Given M an adjacency matrix of an n-vertex graph G, and an integer k,
there is an f(k)nO(1)-time algorithm which either returns
Mk(s) as an off-diagonal submatrix of M , for some s ∈ {0, 1, ↑, ↓,←,→},
or a contraction sequence certifying that tww(G) ⩽ g(k).

where f and g are computable functions.

Here, an off-diagonal submatrix of a square matrix is entirely contained strictly above
the diagonal, or entirely contained strictly below it. In particular, its row indices and column
indices are disjoint.

3 Delineation: intersection graphs of trees and paths

In this section we present a tool for showing that a class D is delineated, and explore the
delineation of intersection graphs of trees and paths, i.e., certain (subclasses of) chordal graphs.
Our proofs of (effective) delineation will follow the same path. Either an O(1)-sequence of
the graph is found (bounded twin-width) or an arbitrarily large semi-induced generalized
transversal pair is detected. We shall see that the latter implies monadic independence
(hence, in particular, unbounded twin-width).

A generalized transversal pair of half-graphs consists of 3 + ℓ sets A = {ai,j : i, j ∈ [t]},
B0 = {b0

i,j : i, j ∈ [t]}, . . . , Bℓ = {bℓ
i,j : i, j ∈ [t]}, and C = {ci,j : i, j ∈ [t]} such that

there is an edge between ai,j and b0
i′,j′ if and only if (i, j) ⩽lex (i′, j′), for k ∈ [ℓ] there is

an edge between bk−1
i,j and bk

i′,j′ if and only if (i, j) = (i′, j′) and there is an edge between
bℓ

i,j and ci′,j′ if and only if (j, i) ⩽lex (j′, i′), where ⩽lex denotes the lexicographic (left-right)
order. We denote this graph by Tt,ℓ, and a semi-induced Tt,ℓ is such a graph with possibly
some extra edges between two sets X, Y ∈ {A, B0, . . . , Bℓ, C} with no predefined edges. Note
that A ∪B0 and Bℓ ∪C both induce a half-graph, but the “order” these two half-graphs put
on the endpoints of the paths (b0

i,j , . . . , bℓ
i,j) is different. We define Tk := Tk,0 and we call Tk

a transversal pair (of half-graphs); see middle of Figure 2.

▶ Lemma 13. Let ℓ be a fixed non-negative integer. Let C be a hereditary class containing
a semi-induced generalized transversal pair of half-graphs Tn,ℓ, for every positive integer n.
Then C is monadically independent.
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Proof. It is folklore that the classMb of all totally ordered bipartite matchings is monadically
independent (see for instance [5, 8]). By totally ordered bipartite matching, we mean two
sets X, Y of same cardinality, with a total order over X ∪ Y such that X and Y are each an
interval along that order, and a matching between X and Y . We shall just argue that Mb

transduces in C. We first show the lemma when ℓ = 0, that is, C contains a semi-induced
Tn,0 = Tn for every n.

Let (G = (X, Y, E(G)),≺) be any member of Mb. Let x1 ≺ x2 ≺ . . . ≺ xn be the
elements of X, and y1 ≺ y2 ≺ . . . ≺ yn, the elements of Y . Finally let π be the permutation
such that, for every i ∈ [n], xiyj ∈ E(G) if and only if j = π(i).

Let (A, B, C) be the tripartition of a semi-induced Tn in C. The transduction T guesses
the tripartition (A, B, C) with 3 corresponding unary relations. Eventually (X, Y ) will be a
subset of (A, B). We interpret a total order on A ∪B by

x ≺ y ≡ (A(x) ∧ B(y)) ∨
(
x ̸= y ∧ A(x) ∧ A(y) ∧ ∀z(B(z) ∧ E(x, z))→ E(y, z)

)
∨

(
x ̸= y ∧ B(x) ∧ B(y) ∧ ∀z(C(z) ∧ E(x, z))→ E(y, z)

)
.

We then interpret a matching between A and B by φ(x, y) ≡ A(x) ∧ B(y) ∧ E(x, y) ∧ ∀z(z ≺
x→ ¬E(z, y)). Observe that φ and ≺ define a universal structure for totally ordered bipartite
matchings on 2n vertices.

In particular, a fourth unary relation can guess the domain (X ⊆ A, Y ⊆ B), by
picking the rows and columns of the biadjacency matrix Adj≺(A, B, {ab : Tn |= φ(a, b)})
corresponding to the 1 entries, which, in the regular n-division falls in the (i, π(i))-cells with
i ∈ [n]. Thus T(Tn) outputs (G,≺).

We now deal with the general case by reducing it to ℓ = 0. For that, we transduce
a semi-induced Tn in a semi-induced Tn,ℓ. The transduction is imply based on the definition
of generalized transversal pairs. It uses 3 + ℓ unary relations A, B0, . . . , Bℓ, C, redefines the
domain as A∪B0 ∪C, keeps the edges between A and B0, and adds an edge between x ∈ B0
and y ∈ C if and only if there is a path from x to y going through B1, B2, . . . , Bℓ, in this
order. All of this is easily expressible in first-order logic. ◀

From Lemma 13, one can easily deduce the following.

▶ Lemma 14. Let ℓ be a fixed non-negative integer. Let f : N → N be any computable
function, and C be a graph class. If for every natural k and G ∈ C, either G admits an
f(k)-sequence or G has a semi-induced generalized transversal pair Tk,ℓ, then C is delineated.

Furthermore, if the contraction sequence can be found in time g(k) · |V (G)|O(1) for some
computable function g, then C is effectively delineated.

By Theorem 1, the f(k)-sequence of G in Lemma 14 can be replaced by an adjacency matrix
of G of grid rank at most f(k).

Showing that a class D is effectively delineated establishes that, as far as efficient (that is,
FPT) FO model checking is concerned, twin-width gives a complete picture of what happens
on D. Indeed it is unlikely that a monadically independent class admits an FPT algorithm
for FO model checking (see Section 2.2). Trivially, every class with bounded twin-width is
delineated, and every class where O(1)-sequences can be found in polynomial time (see [4])
is effectively delineated. We now list some non-trivial examples of (effectively) delineated
classes.

▶ Theorem 15 ([5, 6, 21] + this paper). The following classes of binary structures are
effectively delineated: permutation graphs [6], and even, circle graphs [21], ordered graphs [5],
interval graphs, and even, rooted directed path graphs.
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The proof of Theorem 15 relies on finding a good vertex ordering ≺ for interval graphs or
rooted directed path graphs so that for any graph G which is an interval or a rooted directed
path graph, Adj≺(G) already has small grid rank or G contains a semi-induced generalized
transversal pair Tk,ℓ. Then Lemma 14 is applicable, especially for the last two classes, thus
implies Theorem 15.

On the contrary, the class of subcubic graphs is not delineated. Indeed the whole class is
monadically dependent (see for instance [26]), even monadically stable, but has unbounded
twin-width [4]. We will see that the classes of segment graphs (even with some further
restrictions) and visibility graphs of simple polygons are also not delineated. In some sense,
what we do is to reduce to the easy case of subcubic graphs.

It is known [4, 8] that classes of bounded twin-width have exponential growth. Thus
by the contrapositive, classes of super-exponential growth, like the following ones, have
unbounded twin-width.

▶ Theorem 16 ([4]). The following classes have unbounded twin-width:
the class G⩽3 of every subcubic graph;
the class B⩽3 of every bipartite subcubic graph;
the 2-subdivision of every biclique Kn,n.

▶ Lemma 17. If C admits a subclass which is transduction equivalent to G⩽3 or to B⩽3, then
C is not delineated.

In what follows, we sketch the key ideas for settling the last piece toward Theorem 15,
stated below.

▶ Proposition 18. There exist a computable function f : N → N such that the following
holds. For any interval graph, or rooted directed path graph G, there exists a vertex ordering
≺ on V (G) such that for every natural k, either Adj≺(G) had grid rank at most f(k) or G

has a semi-induced generalized transversal pair Tk,ℓ for some ℓ.

The class of interval graphs is delineated, proof idea. Let G be an interval graph and
IG = {Iv : v ∈ V (G)} be an interval representation of G, where the interval Iv is of the
form [ℓv, rv] for some integers 1 ⩽ ℓv ⩽ rv. We further assume some minimality on the
representation I, i.e., if ℓu < ℓw for vertices u, w ∈ V (G), there exists a vertex v ∈ V (G)
such that ℓu ⩽ rv < ℓw.

Let C be a hereditary class of interval graphs of unbounded twin-width. For each graph
G ∈ C with an interval representation I, we associate a total order ≺, following a lexicographic
order on I. For any integer t, and any interval graph G ∈ C of sufficiently large twin-width we
use a large rank division of the adjacency matrix Adj≺(G) to find a semi-induced transversal
pair Tt and obtain delineation of interval graphs by Lemma 13. To find Tt using the rank
division we extract two groups {A1, . . . , Af(t)} and {B1, . . . , Bf(t)} of vertex disjoint blocks
from the rank division of A≺(G) such that A1 ≺ · · · ≺ Af(t) ≺ B1 ≺ · · · ≺ Bf(t). We can
now assign an interval Ii to each block Ai and an interval Ji to each block Bj containing all
respective start points. After some cleaning we can assume that these intervals are disjoint.
By picking out appropriate selections a1, . . . , at2 , ai ∈ Ai and b1, . . . , bt2 , bi ∈ Bi we can
force the ai’s and bi’s to form a half-graph which induce any order we wish on the ai’s using
the large rank of each cell. Furthermore, using the minimality assumption, and the order and
disjointness of intervals Ii we can find c1, . . . , cℓ forming a half-graph with the ai’s inducing
the natural order on the ai’s. Appropriate selections of ai, bi and ci will therefore yield a
transversal pair.
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The class of rooted directed paths is delineated, proof idea. Directed path graphs are the
intersection graphs of directed paths of an oriented tree. In other words, there is a collection
{Pv : v ∈ V (G)} consisting directed paths of an oriented tree T such that (u, w) ∈ E(G) if
and only if V (Pu) ∩ V (Pw) ̸= ∅. If T in a tree model of G is an out-tree, we say that G is
a rooted directed path graph. For v ∈ V (G) we denote by high(v) and low(v) the nodes of
Pv that are closest and furthest from the root, respectively. Notice they are not necessarily
distinct. We extend this notation to sets of vertices by defining high(X) = {high(v) : v ∈ X}
and low(X) = {low(v) : v ∈ X} for X ⊆ V (G).

Since interval graphs can be visualized as the intersection graph of subpath of a directed
path, they form a subclass of rooted directed path graphs.

In general, directed path graphs are not delineated. This can be observed by subdividing
the edges of a subcubic bipartite graph G and making a clique of the newly added vertices
to generate a directed path graph G′ that encodes G, and then applying Lemma 17 to the
family of all directed path graphs constructed this way. Since this class is chordal, this also
implies that chordal graphs, and even split graphs, are not delineated. On the positive side,
we show that rooted directed path graphs are delineated.

We start by extracting the vertices of a rooted directed path graph G which consist of
two collections associated with row and column parts of a rank-f(t) division of Adj≺(G) as
an off-diagonal submatrix: we may assume A = {Ai : i ∈ [f(t)/2]} be the first f(t)/2 parts of
the row division and B = {Bi : i ∈ [f(t)/2]} to be the last f(t)/2 parts of the column division.
Then, for each Ai and Bi we take vertices ai, bi to represent the sets, respectively, define
Ao to contain all ai and Bo to contain all bi. The goal is to use Ao and Bo to distinguish
between two cases in the proof.

We first observe that there is a directed path P of T containing all high(u) where u is a
vertex defining some adjacency between sets of A and B and that P defines an order <P on
both Ao and Bo. We denote by p(u) the node in V (Pu) ∩ V (P ) that is closer to low(u) and
say that u ⩽P v if and only if p(u) ⩽T p(v). From this point, we prove a series of claims to
show that, to organize large parts of A and B in a desirable way, we can focus on organizing
large parts of Ao and Bo.

The easier case is when both Ao and Bo contain sufficiently large strictly increasing
chains with respect to <P . Since <P may not agree with ≺, we apply the Erdős-Szekeres
theorem to extract a large monotone sequence of both chains, and keep only the vertices
appearing in those sequences in Ao and Bo. We then use those sequences to define, for each
Ai associated with a vertex in the new Ao, an exclusive subpath Ii of P that contains p(a)
for every a ∈ Ai, and do the same for each Bi. This is done by observing that no p(a) can
be “very far away” from p(ai) with respect to the monotone sequence. With these subpaths,
we construct an interval graph and then solve this case as in the proof of delineation for this
class.

If only Ao, for instance, contains a large strictly increasing chain with respect to <P then
there must be a node p ∈ P on which a large subset of {p(bi) : bi ∈ Bo} is concentrated.
Although we can, to some extent, predict the behavior of the paths associated with vertices
in Bo after they leave P through p, we cannot use a minimality assumption on the tree
model to find in G vertices distinguishing each of the parts of B associated with vertices of
Bo. This is the crucial difference that makes finding a semi-induced Tt,2 in this configuration
much harder than in the first one.
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4 Win-wins via twin-width: segment graphs and visibility graphs

A graph parameter p is said FO definable if there is a function that inputs a positive integer k

and outputs a first-order sentence φk such that for every graph G, p(G) = k if and only if
G |= φk. It is further effectively FO definable if an algorithm realizes that function and takes
time f(k) for some computable function f .

We say that a parameter q is p-bounded on class C, denoted by q ⊑ p on C or q ⊑C p, if
there is a non-decreasing function f such that for every graph G ∈ C, q(G) ⩽ f(p(G)). We
say that twin-width is effectively p-bounded on C, denoted by tww ⊑eff p on C or tww ⊑C

eff p,
if further there is an algorithm that outputs a g(p(G))-sequence for every graph G ∈ C in
time h(p(G)) · |V (G)|O(1) for some computable functions g, h.

The following reduces the task of showing that an FO definable parameter p is FPT on C
to showing that tww ⊑C

eff p holds.

▶ Theorem 19. Let p be an effectively FO definable parameter, and C a class such that
tww ⊑C

eff p. Then p(G) ⩾ k for G ∈ C can be decided in FPT time f(p(G)) · |V (G)|O(1) for
some computable function f .

4.1 Segment graphs
Pure (hence triangle-free) axis-parallel unit segment graphs were shown to have unbounded
twin-width [4], by constructing a family of such graphs with super-exponential growth. This
family contains arbitrarily large bicliques (see [4, Figure 4]). We will show that bicliques
are necessary to make the twin-width large, even when we lift the requirements that the
segments are axis-parallel and unit.

Techniques to show Theorem 5. We first FO transduce Kt,t-free segment graphs from a
class F of 2-edge-colored graphs that, we next show, has bounded twin-width. Once this is
done, it follows from Theorem 8 that Kt,t-free segment graphs have twin-width at most h(t)
and h(t)-sequence can be obtained from Theorem 8.

To capture a suitable graph class F , imagine a representation of Kt,t-free segment graph
G which uses thin rectangles in place of segments. Using bounded degeneracy of Kt,t-free
segment graphs [24], each rectangle can fragment into at most d + 1 sub-rectangles at
places stabbed by a rectangle preceding it in the d-degeneracy ordering. This fragmented
representation preserves the adjacency of G in the form of local adjacency between sub-
rectangles, and the former can be restored by FO transduction from the latter. It can be
naturally translated to a superposition of two graphs over the same vertex set, namely a
plane graph P = (V, E) and a matching graph H = (V, M) which is nicely aligned with
respect to a packing C of facial cycles partitioning V (P ), see Figure 4.

Our task then boils down to showing that a plane graph P admits a vertex ordering ≺
which circularly orders each the facial cycle of C so that (P,≺) has bounded twin-width. It
turns out that a variant of BFS discovery order works, with two important features: The
edges are considered in the cyclic order during the exploration phase of a vertex v, and the
vertices of a facial cycle C ∈ C are processed in batch, when ordered in the cyclic order
around the face.

In the previous theorem, one cannot relax the Kt,t-freeness assumption to Ht-freeness.
Let Bn be the graph obtained from the 2-subdivision of a biclique Kn,n by adding back the
edges of the original biclique. The left part of Figure 5 shows that, for every n ∈ N, the
graph Bn is realizable with axis-parallel segments of two different lengths. Note however
that Bn has no semi-induced H4, and that limn→∞ tww(Bn) =∞.
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<
<

Figure 4 Left: Original segment representation. Center: Thin rectangle stabbed by its predecessor
in the degeneracy ordering. Right: Plane graph with a nicely aligned matching, preserving the
information of the original segment graph.

To establish the latter claim, one can for instance “remove” the edges of the biclique by
means of an FO transduction, and invoke Theorem 8 and the third item of Theorem 16. The
transduction first marks the long horizontal segments by unary relation U1 (color 1), and
the long vertical segments, by unary relation U2 (color 2), and interpret the new edges as
φ(x, y) ≡ E(x, y) ∧ ¬(U1(x) ∧ U2(y)) ∧ ¬(U1(y) ∧ U2(x)).

Figure 5 Left: An axis-parallel H4-free two-lengthed segment graph realizing Bn (here drawn
with n = 8), whose twin-width grows with n. Right: Axis-parallel segment graphs are transduction
equivalent to B⩽3, thus not delineated.

Similarly the 2-subdivision of any subcubic bipartite graph, augmented with the biclique
between its two partite sets, is realizable with axis-parallel segments of two different lengths
(see right-hand side of Figure 5). Indeed those graphs – let us denote by C the class they
form – are induced subgraphs of some Bn. We claim (see right of Figure 5 and long version,
for a proof) that C and B⩽3 are transduction equivalent, and by Lemma 17, two-lengthed
axis-parallel segments are not delineated.

In the construction of Figure 5, we use two different lengths for the segments. We
show that with a unique length (unit segments), axis-parallel Ht-freeness implies bounded
twin-width.

▶ Theorem 20. Axis-parallel Ht-free unit segment graphs have bounded twin-width.

Actually we prove a stronger statement than the previous theorem, where segments are
not necessarily unit, but the ratio between the largest and the smallest lengths is bounded.
Again it shows that the fact that this ratio is unbounded in Figure 5 (left) is unavoidable.

Techniques to show Theorem 20. We face again the challenging task of finding a “good”
linear order on objects from a two-dimensional space. We place a virtual grid whose cells are
of size 1× 1, and cut the segments along this grid, adding some junction vertices in between
the cut pieces corresponding to the same segment. We first prove by FO transduction that
if this new graph has bounded twin-width, then the original segment graph has bounded
twin-width. For the newly built graph, a natural order consists of locally enumerating the
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segments counter-clockwise according to where they cross the grid, and globally enumerating
the cells of the grid row by row. Note that the dimension of the grid cells imposes that every
segment crosses the grid.

The crux is then to argue that the circular order along the boundary of a cell yields
adjacency matrices with bounded grid rank. Somewhat surprisingly this part leverages the
same argument as we will later use for Ht-free visibility graphs of terrains; a forbidden
pattern like the Order Claim.

4.2 Visibility graphs
We first show that visibility graphs of terrains without arbitrarily large ladders have bounded
twin-width.

▶ Theorem 21. Ht-free visibility graphs of 1.5D terrains have bounded twin-width.

Rather naturally, we choose the order ≺ along the boundary of the terrain. Due to the Order
Claim (see Lemma 22 and Figure 6) the obtained adjacency matrices exclude a pattern (right
of Figure 6) that, combined with Ht-freeness, prevents large universal patterns. Hence we
conclude by Theorem 12.

▶ Lemma 22 (Order Claim [2]). If a ≺ b ≺ c ≺ d, a see c, and b see d, then a and d also see
each other.

a

b
cc

d

a b

c

d

Figure 6 Left: The Order Claim. The dashed black edges imply the dashed blue edge. Right: In
the thus ordered adjacency matrix, the 1 entries at (a, c) and (b, d) implies the 1 entry at (a, d).

In stark contrast, we can exhibit a subclass of visibility graphs of simple polygons
whose hereditary closure has unbounded twin-width but is monadically dependent, and even
monadically stable. This transduction is more involved than the previous ones, so we give
full details (in the long version). Finally, we show that the twin-width of simple polygons is
bounded by a function of their independence number α.

▶ Theorem 23. Twin-width is α-bounded in visibility graphs of simple polygons, and effectively
α-bounded if a geometric representation is given.

Proof (Sketch). Let P be a simple polygon, and G its visibility graph. We identify a vertex
of G with its corresponding geometric vertex of P . Let ≺ be the total order whose successor
relation is a Hamiltonian path of the boundary of P. Visibility graphs of simple polygons
satisfy the double-X property: If b′ ≺ a ≺ b ≺ c ≺ d ≺ c′, and ac, bd, ac′, db′ are all in E(G),
then ad is also an edge of G (see Figure 7).

This excludes that the complement of a(n arbitrary) permutation is realized by the
adjacency matrix of G ordered along ≺. That is, the second universal pattern in Figure 3
would not appear in Adj≺(G).

We now upperbound the size of a universal pattern in Adj≺(G) (among the other five
patterns) in terms of α(G), and conclude by Theorem 12. We will actually not need the
universal pattern in its whole, but simply a decreasing subsequence of it. (This is made
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a

b c

d

c′b′

b′ a b

c
d
c′

Figure 7 Left: The double-X property. Right: What it implies in the adjacency matrix ordered
along the boundary of the polygon; the four 1 entries in black force the central one in blue.

formal in the next paragraph, where we extract a large anti-diagonal induced matching or
half-graph.) This is convenient since we can thus apply Ramsey’s theorem while keeping the
“complexity” of the initial structure.

Let p = Ram(Ram(4, α(G)), α(G)), where Ram(s, t) is the function of Ramsey’s theorem
which enforces a monochromatic clique on s or t vertices in a 2-edge-colored complete
graph on Ram(s, t) vertices. Note that if the twin-width of G is larger than a certain
function of p, we can find in each of the five allowed universal patterns 2p vertices of G:
a1 ≺ a2 ≺ . . . ≺ ap−1 ≺ ap ≺ bp ≺ bp−1 ≺ . . . ≺ b2 ≺ b1 such that aibj ∈ E(G) if and only if
i = j (resp. i ⩽ j, resp. i ⩾ j). We denote {a1, . . . , ap} (resp. {b1, . . . , bp}) by A (resp. B).
We now work toward finding a contradiction.

Let A′ ⊆ A induce a clique in G with |A′| = Ram(α(G), 4). Let B′ be the vertices of B

with the same index as a vertex of A′, and let B′′ ⊆ B′ induce a clique in G of size 4. Finally
let A′′ be the vertices in A′ (or A for that matter) with same index as a vertex in B′′. We
relabel the eight vertices of A′′ ∪B′′ by α1 ≺ α2 ≺ α3 ≺ α4 ≺ β4 ≺ β3 ≺ β2 ≺ β1.

First observe that, since they form a clique, α1, α2, α3, α4 are in convex position. For
α2β2 and α3β3 to be in E(G), the vertices β2 and β3 have to be in the convex (possibly
infinite) region delimited by the line segment α2α3, the ray starting at α2 and passing
through α1, and the ray starting at α3 and passing through α4. Since β2 comes after β3
in the boundary order, the quadrangle α2α3β3β2 has to be non self-intersecting (otherwise
α2β2 and α3β3 cannot both be edges, see left of Figure 8). We now claim that α2α3β3β2
is a convex quadrangle. Assume for the sake of contradiction that β2 is in the interior of
the triangle α2α3β3 (this is without loss of generality). As α2β2 is an edge of G, the line
segment α2β2 cuts P into two simple polygons: P− containing α1, and P+ containing α3.
Observe that no line segment starting at β3 and fully contained in P can intersect P− \ {β2}.
Indeed, since β2 is in the interior of α2α3β3, the ray starting at β3 and passing through β2
remains entirely within P+. However α1 is in P−. Therefore β3 and β1 cannot see each
other; a contradiction (see middle of Figure 8).

α1

α2

α3 α4

β2

β3

α1

α2

α3 α4

β2 β3
P−

P+

α1

α2

α3 α4

β2

β3

Figure 8 Left: If α2α3β3β2 is self-intersecting, at least one edge of α2β2, α3β3 (here α3β3) is
missing from G. Center: If β2 lies in the interior of α2α3β3, vertices β1 (in P+) and β3 cannot see
each other without blocking the edge α2β2. Right: If α2α3β3β2 is in convex position (in this order),
then both α2β3 and α2β3 are edges; another contradiction.

Since the four sides of the convex, non self-intersecting quadrangle α2α3β3β2 are edges
of G, the two diagonals α2β3 and α3β2 are also edges (since P cannot intersect the interior
of α2α3β3β2, see right of Figure 8); a contradiction to the induced matching or half-graph in
between A and B. ◀
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Combined with the FO model checking algorithm in [6], generalizes a conjecture of Hliněný,
Pokrývka, and Roy [22], and shows in particular that k-Independent Set is FPT on
visibility graphs of simple polygons.
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