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Abstract

Scenario-based techniques, also known as scenario methods, have been actively employed to

resolve intricate problems for engineering complex software systems. Scenarios are powerful tools

that allow engineers to analyze the dynamics and contexts of complex systems. Despite the

widespread use, there is a lack of a well-established reference framework that systematically or-

ganizes key concepts and attributes of scenarios. This has left engineers without a systematic

guidance at the method level, hindering their ability to utilize the scenario methods effectively. To

address the challenges associated with scenario methods, this study aims to provide a reference

framework and modeling method. By conducting a literature review and suggesting a Conceptual
Scenario Framework (CSF), we establish a conceptual basis that systematically presents the core

concepts and characteristics of scenarios. Additionally, we introduce the Extensible Scenario Mod-
eling Method (ESMM) that empowers engineers to perform scenario modeling and domain-specific

extensions using the framework. With the inclusion of the Extensible Scenario Modeling Language
(ESML), which comprises domain-general model types and classes for scenario description and on-

tological analysis, ESMM facilitates flexible design of domain-specific scenario elements through

language-level extensions. This study assesses the proposed method in comparison to existing sce-

nario development methods in the automated driving system domain. Through an analysis of their

ability to represent scenario data, it was established that the language constructs of ESML possess

semantic expressiveness suitable for serving as a reference framework. Furthermore, the findings

from the case study validate the extensibility of ESMM for specialization in creating a scenario

modeling language tailored to specific domains, while also effectively supporting the ontological

analysis of particular application domains.

1 Introduction

1.1 Research Background

Scenarios are versatile. They serve as user-friendly artifacts that enhance comprehension and commu-
nication by providing intuitive stories involving plausible flows and contexts. Despite originating from
the film industry, the concept of ‘scenario’ has gained widespread acceptance and usage in various as-
pects of life, industries, and academia. In the field of software and systems engineering, scenarios have
become a familiar technique employed as artifacts or tools to capture and convey specifications [15],
fostering better understanding among diverse stakeholders from different backgrounds [16]. This grow-
ing significance of well-crafted scenarios is particularly evident as software systems grow increasingly
complex. Leveraging the adaptability and versatility of scenarios, as depicted in Figure 1, they have
become a frequently utilized approach for addressing intricate problems and specifying requirements
throughout the software/system development process [6, 10], as Figure 2 shows.

∗Corresponding Author: baekym@kaist.ac.kr
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Figure 1: Roles and advantages of utilizing scenarios for engineering purposes

Scenario-based engineering approaches, known as scenario methods, have gained significant traction
in the software industry. These methods serve as crucial tools for a range of engineering purposes, in-
cluding scenario-based analysis and design [15, 16, 28], simulation [25, 32, 35], and testing [27]. Unlike
traditional specifications that focus on specific system aspects, scenarios have the unique ability to in-
corporate diverse information, possibilities, and relevant contexts. This versatility of scenarios enables
more effective communication and decision-making processes, making them valuable for engineers.
Scenarios often go beyond being mere models or documents; they have a profound connection with the
goals and requirements of the systems they represent. As a result, scenarios offer several advantages,
such as providing clear explanations of specifications and resolving inconsistencies among development
artifacts [21]. They act as a medium or proxy for enhancing the readability and comprehensibility of
specifications, allowing stakeholders to grasp the essence of the system more intuitively.

Scenarios plays a vital role in analyzing and verifying the criticality of software/systems. Critical
systems, such as military, aviation, or automotive systems, require accurate and reliable responses
in diverse situations, making systematic scenario development essential. These scenarios not only
validate functional requirements but also aid in identifying defects and their causes. For this purpose,
scenarios are used to analyze system behavior under specific contexts, supporting future designs and
decision making. In addition, scenarios can serve as efficient and user-friendly means of communication,
enabling stakeholders and engineers to build consensus during the initial stages of development based
on shared understanding of the desired features.

1.2 Problem Statement

P1: Lack of a Reference Framework that Establishes a Common Understanding of Sce-
narios and Scenario Methods. Scenarios have garnered increased attention as crucial artifacts
due to the escalating complexity of system specifications and the challenges associated with engineer-
ing intricate contextual information. This trend is evident in Figure 2, which illustrates the growing
number of studies related to scenarios or employing scenarios in the software/systems engineering do-
main over the past two decades. It is important to note that this figure represents the results of a
search conducted on Scopus using the query ((ALL(“software engineering” OR “system* engineering”)
AND ALL(“scenario*”)) AND PUBYEAR > 1999)1. Scenarios have not only been extensively employed
in the domain of requirements engineering but also find application in various other engineering ac-
tivities, including simulation, testing, verification, training, and decision making. Consequently, the
formats and constructs of scenarios exhibit high levels of diversity, and numerous description methods

1It does not imply that each publication necessarily develops or utilizes an independent scenario specification method
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Figure 2: Increasing trend of scenario methods in software and systems engineering fields

(i.e., modeling/specification methods and languages) have been utilized. Despite efforts to formalize
domain-specific scenarios, the theoretical or conceptual basis and shared understanding of scenario
methods are still lacking [43, 24, 45]. In order to effectively utilize scenario methods, engineers in-
volved in scenario development need to possess a comprehensive understanding of scenarios and sce-
nario methods. Existing studies have presented scenarios developed in various manners, encompassing
differences in purpose, semantics, formats or syntax, and the underlying definitions/rules of scenarios.
This abundance of published definitions for the term “scenario” spans a wide range of domains, making
it imperative to establish commonly-shared concepts and characteristics of scenarios through research
on existing scenario methods [1, 38].

One major challenge is the lack of a conceptual (or theoretical) basis that can be universally agreed
upon and shared among engineers and stakeholders. To overcome this challenge, it is essential to
provide a well-established reference framework that guides scenario-based engineering activities in
a systematic manner. This framework can include scenario vocabularies, such as a dictionary, that
enhance understanding of scenario constructs and methods. Moreover, if it is presented in the form of a
conceptual framework, it can serve as a more effective communication and analysis tool for establishing
shared understanding and analyzing developed or to-be-developed scenarios. Even though various
scenario development methods have been proposed particularly in the field of safety/mission-critical
systems engineering [13, 29, 34, 43, 33, 24], they are highly specialized for specific system types and
application domains. This still makes it challenging to utilize or extend them as general reference
approaches or frameworks for future scenario engineering.

P2: Absence of a Scenario Development Method that Effectively Supports Ontological
Analysis and Inter-Model References. Scenarios play a crucial role in the analysis, validation,
and verification of software/systems as they provide detailed contextual information that significantly
impacts system behaviors. Their importance becomes even more pronounced when the failure or
malfunction of a system can lead to significant costs or losses. Therefore, it is essential to employ a well-
designed scenario development method that not only specifies and describes scenarios but also aligns
with system engineering activities such as system modeling, domain engineering, and environment
engineering.

Scenarios are typically developed using scenario description/modeling languages, and it is imperative
to use domain-specific languages when developing real-world domain-specific scenarios. For example,
Figure 3 illustrates a simple scenario where an autonomous vehicle drives on a two-lane road. By
describing the World-Of-Interest (WOI), including scenes, entities, behaviors/states, and contextual
factors, scenarios can be developed and analyzed. A scenario goes beyond simply defining a path
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Figure 3: A simple case example that identifies ontological information from a case/scene description

or flow; it intricately weaves together concrete entities, objects, data, and variables present in the
analyzed WOI, providing a comprehensive representation of the possibilities and interactions within
the system.

To ensure practical effectiveness, scenarios must incorporate domain-specific objects and data. The
most widely used approach for identifying domain information and establishing the boundaries of the
WOI is through the use of ontologies, which provide an explicit specification of a conceptualization [20].
Ontologies not only conceptualize and organize domain information but also ensure consistency by
unifying components within a discourse universe in a technology-independent manner. To enable
a scenario description language to express domain-specific information and contextual factors as an
ontology, it is crucial to provide language-level support for ontology modeling that can be flexibly
extended to meet domain requirements. While some recent studies have highlighted the benefits of
ontologies in scenario development [7, 4], and proposed the use of ontology models in specific domains
like the Operational Design Domain (ODD), there is still a lack of technical proposals and implemen-
tations on how scenario description languages can effectively utilize ontologies. One notable technical
limitation is the lack of support for inter-reference, which establishes links between scenario models (or
objects) and WOI ontology models. In the conventional process of describing scenarios, engineers have
to manually refer to objects or data in external models of the WOI. However, if the modeling method
or language provides support for inter-reference between scenario and WOI components, traceability
can be enhanced, while ensuring better consistency.

P3: Lack of Extensibility of Existing Scenario Development Methods for Domain-Specific
Applications. As discussed earlier, the scope and semantic space covered by scenarios can vary
depending on the target application domain and its requirements. To effectively address the evolving
domain requirements, a scenario development method should offer a suitable level of extensibility and
flexibility at the method level. Currently, scenarios are often used as auxiliary artifacts across different
domains, resulting in a lack of standardization and casual technology. On the other hand, when more
formal approaches are used to develop scenarios, they tend to be developed in highly domain-specific
formats and languages. While these domain-specific methods may excel within their specific domains,
they may not be easily adaptable to other fields, highlighting the need for flexibility.
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Figure 4: Illustration of the lack of a reference scenario framework/method

Figure 4 illustrates this challenge. Even if there is a domain-specific scenario method that effectively
represents and analyzes caseA and domainA, it remains challenging to answer the question: “How can
we develop our own scenario method that supports the most appropriate scenario development language
for our specific case and domain?” Using a domain-specific method and language as a reference to
assess its suitability for the engineer’s target and to adapt it to a new language that aligns with
their application domain can be burdensome and costly. The process of acquiring and understanding
domain-specific information from other domains is time-consuming and tedious, requiring through
checking of scenario description language semantics.

An effective solution to these challenges is to develop a scenario method and provide an intermediate-
level reference method that supports the development of a domain-specific scenario modeling language.
If the reference framework described earlier is well-established and can be provided to scenario engineers
as a reference modeling method, core concepts and a reference language can serve as a starting point
for extension to fit the engineer’s own domain and case. By offering an extensible framework/method
that focuses on scenario characteristics and provides a high-level common foundation, guidance can be
provided on the components and rules for developing a domain-specific scenario method.
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1.3 Research Objectives

Based on the key problems discussed, this study aims to achieve three primary objectives in developing
a reference method for scenario-based software/systems engineering, with a focus on the necessity of
a reference framework and method. The objectives can be summarized as follows: (A) Conducting a
comprehensive literature review to investigate diverse scenario methods, (B) Suggesting a conceptual
framework that conceptualizes scenario variables, data, and information, with the aim of establishing
a shared understanding of the constructs of a scenario method, and (C) Proposing a scenario modeling
method that can serve as a reference method and address the limitations of existing scenario description
languages.

As an initial step in designing a conceptual framework, this objective involves conducting a literature
review of publications from industry and academia that study scenarios or utilize scenario methods.
By analyzing these sources, we can gain insights into the meanings and purposes of employing scenario
methods and identify commonly used conceptual variables and data.

Building upon the conceptual variables identified from the literature review, we propose a Conceptual
Scenario Framework (CSF) that encompasses conceptualized Scenario Variables (SVs) and a Concep-
tual Scenario Model (CSM). The CSF aims to provide guidance to scenario engineers in establishing
a shared understanding of scenarios and scenario methods. The components of CSF facilitate com-
prehensive analysis and development of a scenario method. This framework serves as a reference for
scenario engineers to answer questions such as “What is a scenario?”, “What are the constructs of a
scenario and a scenario method?”, and “What aspects and components should be considered for the
development of a scenario method?”

Leveraging the CSF as an input reference framework, this study also proposes an Extensible Sce-
nario Modeling Method (ESMM), which includes an Extensible Scenario Modeling Language (ESML).
To tackle the challenges discussed in the previous section, our method supports ontology-based sce-
nario development by incorporating an inter-reference mechanism between scenario models and WOI
models/objects. Moreover, scenario engineers seeking to develop a domain-specific scenario language
can utilize the ESML library as a reference scenario modeling language by extending the predefined
scenario constructs.

1.4 Paper Organization

The structure of this paper is as follows. Section 2 provides an overview of related work, focusing on
existing scenario methods and scenario description languages. Section 3 presents the overall approach
and steps for developing the proposed framework and modeling method. Section 4 conducts a semi-
systematic literature review to conceptualize the collected data into a conceptual model, leading to the
development of the CSF. Section 5 introduces the ESMM, which includes a scenario modeling language
and a procedure for language-level extension. The evaluation of the proposed framework and method
is presented in Section 6, which includes case studies with real-world scenarios addressing the research
questions. Section 6 conducts case studies with real-world scenarios according to research questions,
and evaluates the proposed framework and method. Section 7 discusses potential threats to validity,
and Section 8 concludes the paper.

2 Related Work

2.1 Scenario Development Methods

2.1.1 General-Purpose Scenario Development Methods

General-Purpose (GP) scenario development methods aim to establish standard practices for scenario
specification and validation. These methods offer several advantages, such as utilizing well-known
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modeling languages (e.g., graph-based, diagrammatic modeling languages) and providing intuitive and
widely accepted semantics. One traditional and straightforward method for describing scenarios is
to use a semi-formal graph or tree-based model to describe and test possible sequences of states or
events/actions. This approach, known as Scenario Tree (ST), defines functional behaviors or inter-
actions of a system by analyzing alternative paths (branches) and considers executable sequences as
scenarios [36]. An extension of ST called the Scenario Search Tree (SST) explicitly includes con-
ceptual variables along with functionality, states, or events [9]. While these approaches effectively
model system behaviors similar to a behavioral model, they have limitations in expressing contextual
information and environmental conditions that can influence system behaviors.

Another method, called Scenario Description Language Q, was developed as an extension of Scheme2.
It focuses on analyzing and constructing interactions between social agents and humans [22]. By
supporting semantics for variables, cues, actions, commands (guarded or unguarded), agents, and
environment, this method enables specification of state transitions and actions while considering the
external environment. However, it relies on established functions of the software/system and may
lack comprehensive information without the involvement of system engineers. Additionally, it has
limitations in the specification and analysis of functions between software, social agents, and users
from a human-computer interaction perspective.

The ACDATE/ Scenario model provides a more sophisticated representation of general scenario seman-
tics. It specifies scenarios based on actors, conditions, data, actions, timing, and events (ACDATE),
and optionally includes policies (ACDATEP) [37]. This approach supports scenario-oriented require-
ments engineering and planning, particularly in command and control systems, through the Integrated
ACDATE/Scenario Model (IASM). The IASM facilitates static analysis to check completeness, consis-
tency, and analyze service properties, such as reliability. While it supports generic behavioral modeling
of various system types, its low-level (code-like) and fixed set of semantics limit flexible and extensible
scenario specification.

Aside from these methods, many existing approaches have utilized variants of the UML/SysML-style
sequence diagram (e.g., Action Sequence Charts (ASCs) [21], Modal Sequence Diagram (MSD) [16,
17]), semi-formal diagrams (e.g., process mining for scenario discovery [39]), and formal modeling
languages (e.g., Petri Nets (PNs) [11], Hybrid Automata (HA) [8], and Extended Finite State Machine
(EFSM) [44]).

2.1.2 Domain-Specific Scenario Development Methods

In recent times, there has been an increasing adoption of domain-specific scenario development meth-
ods, particularly in domains involving critical systems like safety and mission-critical systems. Sce-
narios have emerged as a vital tool for engineers to capture specifications and enhance communica-
tion among stakeholders throughout the development lifecycle. These methods leverage scenarios to
engineer various critical aspects, including features, dynamics and behaviors, processes, and regula-
tions/policies, in accordance with relevant domain standards. By employing scenarios, engineers can
ensure clearer and more comprehensive representation of system requirements and facilitate transpar-
ent communication among project participants.

Scenario-in-the-Loop (SCIL) is a scenario-based methodology for behavior-driven development (BDD)
[42, 41]. It aims to automate testing by defining usage scenarios using a 3-layer composition: communi-
cation and documentation layer, modeling layer, and validation layer. SCIL leverages Gherkin syntax
to systematically generate Scenario Modeling Language for Kotlin (SMLK) specifications, which are
executable and testable models based on ample data from the target system under test. However,
understanding and analyzing Kotlin-based implementation may be required for scenario definition, as
the scenario semantic domain is not clearly defined.

2Scheme is a dialect of Lisp Programming Language.
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Scenario Modeling Language (SML) suggested by Greenyer et al.is a variant of live sequence charts
(LSCs) [16, 18, 19]. It focuses on the interaction aspect and defines situations in which objects within
the system may, must, or must not react. Scenarios developed using SML have high executability due to
their systematic mapping to entities defined in a system model. SML includes elements such as domain
(Controllable, Uncontrollable), operations (Events, Messages), and collaboration (Role, Requirement, Scenario,

Assumption). While SML can respond to various system models and environments, it is a domain-
specific language and may restrict the semantics of information considered in scenario development to
LSC-based syntax. However, it provides rationale for using abstracted models and allows realizability
checking or property violation detection through formal models.

Gherkin3, a line-oriented language developed by Cucumber4, is designed for describing use cases to
generate tests. It follows the syntax of BDD, incorporating keywords such as And, Given, When, Then,
and But. Scenarios written in Gherkin outline the preconditions, action steps, and expected outcomes
using the keywords into a textual form. As a syntax-based language, Gherkin provides a structure for
scenarios but leaves the definition of data semantics, inputs, behaviors, and flows to the discretion of
the developer/designer. Consequently, it can be considered a template-based approach for succinctly
capturing scenarios rather than providing conceptual modeling.

Two notable examples of domain-specific scenario definition languages are the Military Scenario Defi-
nition Language (MSDL) and the Aviation Scenario Definition Language (ASDL). MSDL is a language
standardized by Simulation Interoperability Standards Organization (SISO) for developing scenarios in
the military domain, specifically for modeling and simulation of command and control systems [34, 43].
It provides a specialized ontology tailored to the military domain, enabling detailed analysis, planning,
and execution of operations. Notably, MSDL recognizes the heterogeneous and federated nature of the
military domain, placing significant emphasis on scenario consistency and reusability as key quality
attributes. Being a SISO standard, the MSDL format facilitates the online development of real-time,
collaborative, and geographically-distributed scenarios through interfaces like WebMSDE 5.

Similarly, ASDL offers a methodology for capturing and specifying scenario details related to flight
missions in the aviation domain, including procedures, operations, and communication [24, 23]. It
supports the development of operational, conceptual, and executable scenarios using a model-driven
engineering process, enabling multi-level and multi-purpose scenario development. In the aviation
domain, scenarios require more comprehensive and in-depth analysis of the system and the ever-
changing environment. To facilitate this, an ontology model that defines domain-specific objects (e.g.,
aircraft) and environmental elements (e.g., weather) is used as an input, and the analysis of scenario
elements and communication is supported through the integration of the base object model.

However, the domain-specific nature of MSDL and ASDL can limit their extensibility to other do-
mains. Their structured and standardized methodologies (e.g., the MSDL organization includes Units
and Equipment as mandatory classes) lack the flexibility to adapt to newly discovered problems or
application domains. Therefore, abstracting the domain-specific elements can enhance the flexibility
of the scenario languages, enabling methodologists and engineers to utilize, modify, and extend the
existing methods more easily. Moreover, this flexibility can support scenario-based engineering activi-
ties conducted by independent analysis and domain experts who may have limited information on the
architecture and implementation details of the target systems involved in the simulation.

OpenSCENARIO6, developed by the Association for Standardization of Automation and Measuring
Systems (ASAM), is a standard for traffic simulation scenario development, complemented by Open-

3Gherkin Syntax, https://cucumber.io/docs/gherkin/
4Cucumber, https://cucumber.io/
5Web Military Scenario Development Environment
6ASAM OpenSCENARIO: Version 2.0.0 Concepts,

https://www.asam.net/project-detail/asam-openscenario-v20-1/
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DRIVE 7 and OpenCRG8. While OpenDRIVE and OpenCRG provide static content, OpenSCENARIO
offers dynamic and vendor-independent traffic elements and maneuver libraries. This allows for the
creation of layered environments in scenario development and simulation, facilitating the testing, val-
idation, and certification of driver assistance systems and autonomous driving environment.

Similarly, X. Zhang and S. Khastgir propose the Scenario Description Language (SDL) for the domain
of automated driving systems [45]. SDL stands out for its identification of various models and data
sources (such as accident database and System-Theoretic Process Analysis (STPA) analysis) required
for scenario development. It provides a set of specific models to describe the scenario development
process. SDL-defined scenarios encompass scenery, dynamic elements, base scenarios/elements, and
can include contextual and causal factors as needed. The focus of their research is on testing control
actions specific to the driving system domain and identifying potential unsafe hazards. However,
specifying scenarios using SDL may pose compatibility issues, as they are defined specifically at the
domain-level and may lack the necessary elasticity for engineers with varying goals.

Another scenario description language is Scenic, proposed by Fremont et al. [14]. Scenic allows the
definition of various environmental scenes, such as badly-parked car scenes, which serve as training
data for machine learning to analyze and architect perception systems. The scenarios described in
this work focus on generating synthetic data based on statistical behaviors of environmental elements,
primarily for researchers working on data generation and sampling for the learning within the same
framework and toolset. It also enables the description of elaborate scenes with detailed specifiers
and expresses uncertainty through probability. However, this approach is scene-centric and relies on
a probabilistic programming language to generate data, which limits its ability to specify complex
processes.

In the field of ADS engineering, scenario methods have often emphasized contextual information such
as non-ego vehicles, road network traffic, and weather conditions, similar to other critical systems
like the military and aviation domains. ADS scenarios distinguish between normal baseline scenarios
and critical scenarios based on the criticality (e.g., safety, mission, or security) of the behaviors under
study. While domain-specific approaches support ontological analysis and the application of domain
knowledge, the lack of commonly shared conceptual basis hampers extensibility and flexibility of
these methods. The introduced studies are just a few of scenario studies in ADS domains. Other
scene-focused scenarios (e.g., Ontology-based Scene Creation [4]), infrastructure/environment-focused
scenarios [40], and risk/hazard-focused scenarios [5] also hold important positions in scenario-based
testing and simulation (in the ADS domain).

2.2 Discussion on Related Work

Based on the preliminary investigation of related work, we can compare some major studies that
support techniques, methods, or languages for development. Table 1 first categorizes existing scenario
development methods into general-purpose (GP) and domain-specific (DS) methods depending on
whether they are dependent on particular application domains, and compares some features provided
by the methods to discover the similarities and differences between the approaches. A circle symbol (⃝)
indicates that the method generally supports the feature well, a triangle (△) indicates partial support,
and an × symbol indicates that there is generally no explicit support to represent the semantics. In
the case of triangle-marked cells, the specific method or tool used to support the feature is noted in
parentheses.

In general, GP approaches include narrative or template-based scenarios (e.g., functional test descrip-
tion, use case scenario), model-based diagrams (e.g., sequence diagrams), business process models, and
context diagrams. On the other hand, DS methods encompass code-based language, schema-based
methods, and other simulation-oriented scenario description languages. During the investigation, it

7Open Dynamic Road Information for Vehicle Environment
8Open Curved Regular Grid
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became evident that the most active application and standardization efforts for scenario methods were
observed in critical system domains, such as automotive, aviation, and military. Given that such
critical systems often involve the active engagement of multiple stakeholders and engineers in com-
munication and decision-making processes, the significance of employing scenario methods has been
widely recognized, with scenarios playing a crucial role in system development.

The first feature to be analyzed can be summarized as the question “What aspects of a target are
primarily described/analyzed through scenarios?”. DS methods have primarily focused on supporting
scenario development techniques that effectively analyze the comprehensive relationships between con-
texts, dynamics, and ontologies. In contrast, the semantics of GP (modeling) methods/languages are
more limited. Since most GP methods aim to provide a convenient and unified means of modeling,
they have limitations in expressing the comprehensive and essential information required for scenario
specification.
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Table 1: Preliminary investigation of scenario development methods
UML Sequence Diagram (UML-SD), UML Activity Diagram (UML-AD), Live Sequence Charty (LSC), Business Process Modeling Notation
(BPMN)
*Context Diagram (CD), Open Simulation Interface (OSI)
**Scenario Modeling Language for Kotlin (SMLK), Aviation Scenario Definition Language (ASDL), Military Scenario Definition Language
(MSDL), Scenario Modeling Language (SML)

Unified / General-Purpose Domain-Specific***
Narrative/Template Model-based* Context-oriented** Code-based Schema-based Simulation-oriented

Feature \ ML
Use Case Scenario

UML-SD,
UML-AD,
LSC,BPMN

Context/ Interface
Models (CD, OSI)

GherkinScenario,
SMLK

ASDL,MSDL
OpenSCENARIO,
Scenic Program,SML

Aspect Facet of System’s Behaviors
Contextual

Entity
Event/Action
Sequence

Task/Mission
Description

Description of
Dynamic Content

Domain General-Purpose PL-Specific Aviation Automotive
Specification
Format

Template
Instance

Diagram/Model Schema Script/Code Schema Schema, Script/Code

Formality Informal Semi-Formal | Formal Semi-Formal Semi-Formal Semi-Formal Semi-Formal | Formal
Abstraction
Level

Functional Logical | Concrete Functional Concrete Logical Logical | Concrete

Hypothesis
Definition

Implicit Input X X Input Implicit | Input

Ontological
Analysis

X X O Database O External

Inter-Reference X X X Tool-Dependent Ontology-based External
Semantic
Extensibility

X △ (Stereotype) X X △ (Schema) △ (Namespace)
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When comparing the methods in terms of the formality and abstraction levels of developed scenarios, it
is observed that semi-formal (i.e., model/diagram-based) description techniques are generally preferred
in both industry and academia. Since scenarios are intended to serve as artifacts that facilitate
improved communication among multiple engineers and stakeholders with diverse backgrounds, there
is a tendency to avoid formal or program-like languages that are only interpretable by machines. Some
methods have been identified that support the development or conversion of scenarios into executable
models with concrete values, enabling immediate execution of scenarios from scenario files.

Another observation is that many methods lack support for ontological analysis at the method or
language level. In most cases, engineers need to manually grasp, understand, and utilize specifications
of their domains and worlds to build ontology models. While certain DS methods support the use
of ontologies defined in external models, they do not explicitly provide means or mechanisms for
achieving inter-referencing between scenarios and their target world models. This limitation can lead
to a decrease in synchronization, traceability, and consistency of scenario data.

Furthermore, most scenario languages do not offer semantic extensibility and mechanisms for exten-
sion or specialization at the method level. The lack of extension support makes it challenging to use
them as reference modeling methods and hampers their flexible expansion for specific application do-
mains. Therefore, this study primarily focuses on language-level constructs’ extensibility and proposes
a scenario modeling method that can serve as a reference method/language. Our apporach can be
considered a general-purpose method not tied to a specific engineering/application domain, offering
inherent scalability. Scenarios can be modeled using semi-formally defined models and schemas. Our
method aims to define the contexts and dynamics of a scenario target and, most importantly, provide
means and mechanisms to build ontologies and support the inter-reference relationships.

3 Overall Approach

This study follows the two stages of research processes, as Figure 5 shows. In the first Stage A,
a literature review is conducted to investigate scenario data/information from scenario methods that
were already suggested/developed. The main goal of the Stage A is to develop a CSF that encompasses
conceptual SVs and a CSM supporting/guiding the application of scenario methods. On the basis
of the well-established conceptual framework, the second Stage B develops an ESMM that supports
ontological analysis for scenario specification and domain-specific extension at the method/language-
level. After all these processes, an ESMM library and a modeling tool (ESMM-Tool) will be released
as a reference scenario development/modeling method.

3.1 Stage A: Literature Review & Development of Conceptual Scenario
Framework

A-(i). Design Literature Review: This study first designed search queries to conduct a semi-systematic
literature review on scenarios and scenario methods in both industry and academia. A-(ii). Select
Publications: An initial set of publications was collected from search engines (Scopus and Web of
Science) using the search queries, and they were then reviewed through multiple rounds of selection
processes based on selection criteria. A-(iii). Investigate Scenario Concepts & Data: This step
systematically collected information and data related to scenarios or scenario methods to establish a
comprehensive conceptual background. A-(iv). Classify and Conceptualize Scenario Variables: The
collected scenario data was conceptualized as SVs, which are key elements of the CSF. A-(v). Develop
a Conceptual Scenario Model: Based on the defined SVs, a conceptual model, known as CSM, was
developed, organizing the variables with specific relationships.
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Figure 5: Overall Approach

3.2 Stage B: Development of a Scenario Modeling Method and Its Model-
ing Language

B-(i). Define Classes of World-Of-Interest (WOI) Constructs: WOI constructs were defined to
support ontological analysis in the development of ESML models. Abstract and concrete classes were
defined to express WOI and its components. B-(ii). Define Classes of Scenario Constructs: This
step defines abstract and concrete classes for scenario models based on the SVs from the CSF. B-(iii).
Define Relation Classes: Relation classes are defined to express diverse relationships between model
objects and inter-references. This step focuses on defining relations and specifying constraints between
classes. B-(iv). Define Model Groups and Model Types: By using the defined classes and relation
classes, this step defines 10 model types that classify models into two groups: WOI Model Group and
Scenario Model Group. These components contribute to the development of ESML models, which can
be packaged into exportable files. B-(v). Clarify ESMM Modeling Procedure: The modeling procedure
in ESMM is divided into three phases: Scenario planning with ontological analysis, scenario design,
and scenario specification/modeling. ESMM supports both top-down and bottom-up approaches based
on information ordering.

4 Conceptual Scenario Framework (CSF)

The main objective of Stage A is to establish a conceptual framework for scenario methods, which
encompasses methods related to scenario definition and utilization for various purposes. Following the
steps outlined in Figure 6, this study involves designing search queries and selection criteria, selecting
relevant publications, identifying conceptual variables, and finally, developing a conceptual framework.

4.1 Literature Review of Scenario Methods

During the literature review process, the focus is on designing appropriate search queries and selection
criteria to ensure a comprehensive collection of diverse scenario methods and concepts.
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Figure 6: Overall process to develop the CSF

4.1.1 Design of Literature Review

Targets of this survey9 are (a) scenarios defined or specified/modeled in selected publications, and (b)
scenario-based/driven engineering approaches (i.e., methods, techniques, methodologies) suggested
or utilized in the reviewed publications. The ultimate goal of this literature review is to develop a
conceptual basis for scenario methods. Therefore, this study focuses on identifying as much conceptual
data and defining them as conceptual scenario variables, shortly SVs.

Search Engines and Search Keywords. In the survey, initial raw publications were first collected
using the most well-known search engines in the engineering and science fields, Scopus and Web of
Science (WoS). The first step of our literature review process is the construction of search queries
and keywords. To research a tuned set of scenarios and scenario methods used in software/systems
engineering domains, we refined the search and determined three main keywords. First, like the
initial search, “software/system(s) engineering” was included in the search term to limit the engineering
domain of publications to software and systems engineering studies. Second, “scenario” was certainly
included to research scenarios and scenario-based methods, techniques, and methodologies. To get
more elaborate results, “scenario-based/driven” and “event” were also included in the actual search
query to retrieve scenario methods that consider events. Finally, “requirement,” “validation,” “test,”
and “simulation” were included in the query, because they were deemed the four most representative
engineering activities employing scenario methods, based on the preliminary investigation of Section 2.

Following are the search queries for Scopus and WoS, respectively10.

ALL(”software engineering” OR ”system engineering” OR ”systems engineering”) AND TITLE-ABS-
KEY((”scenario*” OR ”scenario-based” OR ”scenario-driven”) AND ”event*”) AND TITLE-ABS-
KEY(”requirement*” OR ”validation*” OR ”test*” OR ”simulation*”) AND PUBYEAR > 1999 AND
(LIMIT-TO (SUBJAREA , ”COMP”)) AND (LIMIT-TO (LANGUAGE , ”English”))

”software engineering” OR ”system engineering” OR ”systems engineering” (All Fields) and ”scenario*”
OR ”scenario-based” OR ”scenario-driven” (All Fields) and ”event*” (All Fields) and ”requirement*”
OR ”validation*” OR ”test*” OR ”simulation*” (All Fields) and 2000-2021 (Year Published) and
English (Language) and Engineering or Computer Science (Research Areas)

The reason why this is a semi-systematic literature review is that (a) we only use two major search
engines (Scopos, WoS) and (b) the search keywords are not incrementally designed or refined during the

9Y. M. Baek, E. Cho, D. Shin, and D. H. Bae, “Literature Review to Collect Conceptual Variables of Scenario
Methods for Establishing a Conceptual Scenario Framework”, arXiv:2205.08290 [cs.SE], 2022.

10Note that the research area was limited to computer science and engineering (i.e., COMP) for both search engines.
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Figure 7: A publication selection process for the literature review

survey process (i.e., Our survey does not use a snowball method to find more literature from selected
publications). Therefore, the selection process, introduced in Section 4.1.2, only excludes publications
that are away from our interests and intentions, which are to identify constructs and variables used in
scenario methods.

Selection Criteria. To ensure efficient examination of publications, specific inclusion and exclusion
criteria were designed. The inclusion criteria were designed to encompass publications that contribute
data, concepts, and values related to scenarios or scenario methods.

• Studies of scenario development, such as modeling and specification methods (and languages),
techniques, processes, and methodologies

• Scenario-based or -driven engineering studies, which explicitly specify scenarios for specific en-
gineering purposes, such as scenario-based requirements engineering, validation, design, testing,
simulation, and verification

Conversely, the exclusion criteria were applied to filter out publications during the search process.
Two levels of exclusion processes were implemented: title-abstract-exclusion-criteria for rounds 2 and
3, and ARP-FSP-exclusion-criteria for rounds 4 and subsequent rounds. These criteria ensure that
the survey focuses on relevant publications and narrows down the scope of the investigation.
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Table 2: Selection of publications from Round 1 to Round 4

Round Criteria Output Selected Excluded

R1-a: Collect
Publications

-
Raw Publications
(RPs)

1071

R1-b: Remove
Publications

title-abstract-
selection-criteria

Duplicate-removed
Publications (DRPs)

992 79

R2: Review Titles
Title-reviewed
Publications (TRPs)

851 141

R3: Review Abstracts ARP-FSP-
selection-criteria

Abstract-reviewed
Publications (ARPs)

765 86

R4-a: Review
Overall Approaches
& Uses of Scenarios

Finally Selected
Publications (FSPs)

354 411

R4-b: Select 100
Most-Relevant
Publications

relevance-criteria FSP-100 100 254

• title-abstract-exclusion-criteria (Exclusion criteria for title and abstract review): Inapt publica-
tion type (e.g., whole proceedings, an entire book, newspaper articles, web pages, etc.); Unrelated
engineering domain, which is not related to software or systems engineering (e.g., chemical, bi-
ological, medical engineering or non-engineering publications); Unrelated system or application
domain (e.g., political or organizational system, international ecosystem); and Unrelated ap-
proach, which does not utilize scenarios for an engineering purpose, and less than or equal to 3
pages

• ARP-FSP-exclusion-criteria (Exclusion criteria for reviewing abstract-reviewed publications (ARPs)
and finally-selected publications (FSPs)): Scenarios only used as a term to simply represent a
system, a system type, a paradigm, or a case; Scenarios (or scenario methods) not explicitly used
or mentioned (i.e., unable to retrieve in a document); Absence of scenario instances or insufficient
semantic data of scenarios or event; Totally informal scenarios (i.e., narrative descriptions)

4.1.2 Selection of Publications & Data Collection

In Round 1 (R1), we first collected raw data from the search engines using the search terms. The
initially collected publications are called raw publications (RPs) and the set of publications after the
duplicate removal is called duplicate-removed publications (DRPs). In Round 2 (R2), we reviewed
and excluded publications based on the selection criteria title-abstract-exclusion-criteria to obtain
title-reviewed publications (TRPs). Since some papers out of scope or not fit the purpose of this
investigation, they are simply considered as unrelated studies by reviewing their titles. In Round 3
(R3), we manually reviewed abstracts of TRPs, along with their introduction and conclusion sections
to extract more detailed insights and information beyond what could be obtained solely from the titles.
Like R2, this round also uses the title-abstract-exclusion-criteria to exclude less relevant publications
and generate a set of abstract-reviewed publications (ARPs). In the final round (Round 4 (R4)),
we reviewed key sections of the ARPs based on the ARP-FSP-exclusion-criteria. From this review,
we obtained a set of finally-selected publications (FSPs) that were then prioritized for a full-read
review, and then selected 100 most-relevant publications were selected (FSP-100 ). Table 2 provides
an overview of the selected and excluded publications, including statistics for each selection round.
The overall process for data collection is illustrated in Figure 7.
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4.2 Conceptualization of Scenario Variables (SVs)

In this study, SVs are defined as key constructs of a conceptual framework and they are further
classified into primary variables and subordinate variables, as Table 3 summarizes. Also, the collected
SVs from the FSPs have been classified into four levels of a scenario method. Each level is intended
to be addressed by different engineers/stakeholders who possess expertise in specific areas, enabling
them to focus on more targeted issues, knowledge, and information. For instance, a system engineer
would have extensive knowledge about system states and features required to specify the event-level
scenario constructs that define actions or functions, which require understanding of internal structures
and behaviors. The following descriptions provide summaries of the levels and the SVs.

• Method-level SVs. The highest-level SVs pertain to the selection or development of a sce-
nario method for specific engineering purposes. The method-level SVs involve the collaboration
of different stakeholders to establish the overall goals and scope of the scenario method. A
suitable method is determined to analyze a universe of discourse (UoD), encompassing relevant
goals/requirements, plans, decisions, technologies, and potential risks at the project level.

• Scenario Suite-level SVs. A scenario suite represents a coherent set of multiple scenarios
that share a common viewpoint and aligned goals. To ensure coherence and alignment, scenario
engineers must systematically identify and analyze the shared information among these scenarios.
This process involves narrowing the gap between scenario engineers from diverse backgrounds by
defining clear targets and objectives.
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Table 3: SVs identified and collected from the literature review
Level Primary SV Subordinate SVs

Method ScenarioPurpose TargetWOI, TargetProblemDomain, TargetVisionIntent (UseOfScenario), Hypothesis, StrategyTactic
ScenarioSpecification SpecType, SpecSemantics, SpecSyntax, SpecLanguage, SpecFormality
ScenarioExecution ExecType, ExecDriver, ExecDondition, ExecAutomation, ExecOutput, ExecMedia, ExecCoverage

ScenarioSuite SuiteScaleMeta SuiteScale, SuiteCohesion
SuiteViewpoint SuitePerspective, SuiteBaselineScenario
SuiteHypothesis HypothesisAssumption, HypothesisAssertion
SuiteTarget SystemDomainOntology, IntangibleFactorOntology
SuiteConstituents SuiteScenarioPool, SuiteEventPool, SuiteDataPool
SuiteInput SuiteInputConfiguration, SuiteInputData, SuiteInputModel
SuiteScenarioComposition InterScenarioAssociation, InterScenarioConcurrency, InterScenarioCausality

Scenario ScenarioMeta ScenarioType, ScenarioLifecycle
ScenarioParticipant ScenarioParticipant
ScenarioUnit ScenarioUnit, ScenarioInterUnitRelationship, ScenarioInterUnitTransition, ScenarioPattern
ScenarioCriticalityAnomaly ScenarioTargetCriticality, ScenarioTargetAnomaly
ScenarioInput ScenarioInputConfigurationMode, ScenarioInputModel, ScenarioInputDataParameter
ScenarioOutput ScenarioOutputData, ScenarioOutputModel, ScenarioIndicatorOracle
ScenarioCondition ScenarioCondition (Pre/Post), ScenarioConstraintInvariant
ScenarioTemporalData ScenarioTemporalScale, ScenarioTimeUnit, ScenarioTemporalData
ScenarioSpatialData ScenarioSpatialScale, ScenarioSpatialUnit, ScenarioSpatialData
ScenarioChange ScenarioChangeDriverAttribute
ScenarioInteraction ScenarioUserInteraction, ScenarioEnvInteraction, ScenarioInterSysInteraction
ScenarioUncertainty EventTransitionUncertainty, ScenarioEnvUncertainty

ScenarioUnit UnitMeta UnitTypeGranularity, UnitSource, UnitFrequency
UnitInput UnitInputParameter, UnitInputModel
UnitOutput UnitOutputData
UnitCondition UnitConstraintInvariant, UnitCondition (Pre/Post)
UnitBehaviorOccurrence UnitActor, UnitAction, UnitOccurrenceMeasure
UnitInteraction UnitUserInteraction, UnitInteractionMessage
UnitTemporalData UnitTime, UnitSynchronization
UnitSpatialData UnitLocation
UnitUncertainty UncertaintySource, UncertaintyRepresentation
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Figure 8: A CSM and three aspects of scenario methods

• Scenario-level SVs. Building upon the higher-level SVs, scenario-level SVs focus on the spec-
ification of individual scenarios. Individual scenarios may have different abstraction levels, se-
mantics (configurations, properties), contexts and data. To sufficiently express the information,
scenario-level SVs include participants, inputs/outputs, conditions, configuration, and scenario-
level uncertainty.

• Scenario Unit/Event-level SVs. The lowest and most detailed level of information is captured
by event-level SVs, which represent the behavioral aspects and dynamics of a scenario. Events, as
defined in conventional modeling approaches, refer to occurrences that elicit a response from the
system or any interactions. They are characterized by action(s) that can be triggered/performed
either internally or externally, when specific preconditions are met. Various studies distinguish
between events, acts, actions, activities, and stimuli based on their causes and types. However,
we adopt a broad definition of an event, considering all behavioral information and data can be
abstracted as events and their occurrences.

4.3 Conceptual Scenario Model (CSM)

Based on the collected SVs, we construct CSM, as depicted in Figure 8. The CSM serves as a meta-
model that conceptualizes essential information about a scenario method and its specification. It
comprises three types of meta-classes represented by different colored boxes in the figure. Further-
more, the CSM comes up with relationships between the classes, leveraging the four-level hierarchy
established for the SVs, which serve as constructs for scenario development. The role of the CSM
is crucial in bridging and organizing the meta-classes extracted from three different sources (WOI
(System), hypotheses, and scenario elements).

In applying a scenario method, it is important to begin with analysis of the WOI, which represents a
scenario target that scenario methods aim to describe and analyze. In essence, the WOI encompasses
all the entities (e.g., system, environment, situations, and scenes) that the scenario engineer intends
to examine. Therefore, the WOI is often highly domain-specific, reflecting engineers’ particular focus

19



Figure 9: Development of ESML and ESMM-Tool (Scenario Modeler) of ESMM

on the scenario analysis. Ontology, which refers to an explicit specification of a conceptualization [20],
is the most widely used method for defining the boundaries of the WOI. An ontology model serves
multiple purposes: it conceptualizes and organizes entities, ensures consistency of information across
different engineering activities and phases, and enhances interoperability. For instance, when analyzing
the WOI for highway autonomous driving, one can construct ontologies such as the highway ontology
(e.g., road network, traffic, regulatory elements), vehicle ontology (e.g., driving functions, maneuvers),
and weather ontology (e.g., temperature, humidity, precipitation).

Next, the scenario method extracts the main contents and objectives for scenario specification, aligning
them with the goals and objectives of engineering WOI. Traditional software engineering processes
often rely on use cases and scenarios based on system goals or requirements. However, different
viewpoints and hypotheses may result in varying definitions of scenarios even within the same WOI.
By establishing a viewpoint, specific situations, behaviors, and scenes within the WOI and its system
can be more specifically identified and analyzed. Once the viewpoint is established, the dynamics of
scenarios need to be specified, analyzed, and observed. These dynamics are typically described as
paths or flows, consisting of a sequence of scenario units that align with use cases, tasks, or missions.
Scenario-level context is incorporated to account for situations that interact with or are affected by
scenario execution.

The lowest level of scenario specification is the event or scenario unit, which specifies behavioral
information or occurrences. Event-level SVs, such as input/output, behavior, interaction, tempo-
ral/geospatial information, and uncertainty, are utilized as data for event execution and configured
as parameters. The event-level context also includes specific triggering conditions for execution and
event transitions. For example, an ADS scenario may specify scenario units, such as driving functions,
maneuvers (e.g., full-brake), external events (e.g., pedestrian crossing), and environmental event (e.g.,
weather change). Each event can contain temporal and spatial information and requires logical or
concrete parameters (e.g., vehicle performance, acceleration rate, initial traffic scene).

5 Extensible Scenario Modeling Method

5.1 Overview of Extensible Scenario Modeling Method

Based on the component definitions of a modeling method proposed in [26], the ESMM comprises
two fundamental elements: (a) ESML and (b) the ESMM-Tool, which encompasses the ESML and a
modeling procedure.
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5.1.1 Extensible Scenario Modeling Language

ESML is a modeling (or specification/description) language actually used by scenario engineers to
develop scenario-oriented models. It provides semantics, syntax, and notations necessary for scenario
modeling and WOI analysis to help engineers specify scenarios based on SV s. Major building blocks
of the ESML are abstract classes, concrete classes, relation classes, and model types. An ESML
abstract class is a non-instantiable class that contains shared attributes in common at a higher level, in
scenario constructs and WOI constructs, respectively. On the other hand, ESML concrete classes are
instantiable subclasses that inherits the attributes of their parent abstract/concrete class, and is used
to define specific scenario/WOI elements. Relation classes of ESML are defined as a directed edge
from a source class (from) to a destination class (to). Each model type of ESML is a sub-collection
of classes and relation classes to represent/demonstrate a particular aspect of scenario engineering.
Therefore, a model type are instantiated as an independent diagram, which includes a set of classes
and additional constraints or rules (e.g., class cardinality).

5.1.2 ESMM-Tool powered by ADOxx Metamodeling Framework

ESMM and its components are developed based on ADOxx Platform (Version 1.5), which is the meta-
modeling development and configuration platform for developing modeling methods11. The ADOxx
supports the effective development of a modeling method/tool to provide users with a graphical mod-
eling language, and core elements (e.g., pre-defined abstract classes with their attributes) for meta-
modeling a language to be developed in advance. As shown in Figure 9, a modeling method developed
with ADOxx can be released as an application library, and it includes definitions of a set of model
types and set of classes (and their attributes).

5.2 Key Features of ESMM

Definition of Reference Scenario Classes. The ESMM serves as a reference method to sup-
port scenario planning, design, and development, providing scenario engineers with tailored constructs
for scenario specification. To achieve this, the abstract/concrete classes, relation classes, and their
attributes are derived from the SVs and CSM developed in CSF. Based on our investigation in Sec-
tion 4.1, the SVs became fundamental concepts that represent the essential elements of scenario con-
structs. As a result, the classes defined within the framework can be utilized as foundational materials
for scenario development in various application domains, allowing for domain-specific extensions.

Support of Ontological Analysis. In Section 1, we highlighted the problem of acquiring data for
scenario specification, specifically for the scenario target WOI, as existing scenario description tech-
niques lack support for ontology building. This limitation prevents engineers from effectively utilizing
information about scenario components, such as entities, data/variables, and events, as they are not
integrated with the available and accessible models of the WOI elements. Incorporating ontological
analysis becomes crucial in order to define an accessible data set, particularly when dealing with highly
domain-specific objects and data. Additionally, for scenarios that need to be executable, parameter-
izing WOI components based on the developed ontologies becomes essential. The parameterization of
objects and behaviors can be achieved through the ontological analysis process supported by ESMM.

Inter-Reference between Scenario Constructs and WOI Objects. Even if a scenario develop-
ment technique does not directly support ontology definition, ontological analysis on a WOI can still be
conducted using an external model separate from the scenario models. However, this approach has a
limitation: the elements of the scenario model cannot directly access the domain object/data to express
the information required to adequately specify scenarios. As mentioned earlier, to effectively reference
a scenario target, a mechanism that establishes links (inter-references) between the WOI models and
scenario models is necessary. In the case of ESMM, scenario elements can have inter-reference-typed

11Introduction to ADOxx : https://www.adoxx.org/live/introduction-to-adoxx
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Figure 10: Classification of abstract classes into ESML Construct and WOI Construct

attributes that enable referencing model instances or objects in the WOI, thereby facilitating direct
access to the WOI model or its objects. Furthermore, ESMM supports the separation of concerns for
engineers involved in scenario development activities by enabling independent and parallel engineering
of the WOI domain/system and scenario development tasks.

Flexibility & Extensibility. As discussed earlier, the classes in ESMM are derived from the SVs
of CSF, making them domain-general classes specifically designed for scenario development. However,
when applied to a specific application domain, there may be limitations. To address this, the open-
source form of ESML allows for additional customized extensions to create a domain-specific scenario
modeling language (DS-SML) that aligns with the preferences of domain engineers. Methodologists
can specialize ESML into a DS-SML by importing the ESML library and defining additional domain-
specific classes based on the predefined ESML classes. This flexibility enables the adapation of ESMM
to various application domains.

Tool Support. The aforementioned features of ESMM are accompanied by a dedicated modeling
tool called ESMM-Tool, which allows scenario engineers to effectively engage in practical scenario
development. With this tool, scenario engineers can create 10 different types of diagrams tailored to
the specific scenario target. Moreover, methodologists who are involved in customizing or developing
new scenario languages to meet the requirements of their respective engineering domains can utilize
the ESML library to assess and modify the internally-defined classes and model types.

5.3 ESML Constructs

5.3.1 Class Definitions

The constructs defined in ESML can be classified into two main element types, one is ESML Construct

and the other is WOI Construct . ESML supports the definition of sub levels of abstract/concrete
classes by inheriting the top-level abstract classes. Classes with two underscores before and after the
class name (e.g., ClassName ) are ADOxx-predefined abstract-classes, and ESMM-predefined-abstract-
classes follow the naming convention with one underscore on the front and back (e.g., ClassName ).
Figure 10 shows the classification of highest-level of abstract classes and inter-reference relationships,
and Figure 11 introduces key abstract classes defined in ESML.

Definition of ESML Construct Classes. The ESML Construct is the highest level abstract class to
define the elements to be derived in the process of scenario analysis and specification centering on the
scenario semantics defined in our conceptual framework. Figure 12 defines abstract and representative
concrete classes inheriting ESML Construct .
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Figure 11: Highest-level of abstract classes defined in ESML

• ESML Method : Almost all classes under ESML Construct are used in a scenario method (SM).

• ESML Element : This class is an abstract class to commonly define attributes of scenario ele-
ments that play the most pivotal role in ESML, such as ScenarioSuite, Scenario, and Scenar-
ioUnit. All concrete classes derived from the different levels of ESML Element are commonly
characterized by their own participants, contexts, and inputs/outputs included at the different
levels of the elements.

• ESML ElementIO : This abstract class represents the information that is either required for
scenario execution (i.e., input) or can be obtained when the element is executed or observed
during the execution time (i.e., output).

• ESML ElementContext : This abstract class derives all possible contexts, conditions, and con-
straints, since the ultimate purpose of applying an SM is to identify and analyze the contextual
information.

• ESML Artifact : ESML Artifact is utilized to define subclasses for referencing external models,
data, and documents with independent URIs to address the needs of scenario engineers.

• ESML Specification : This abstract class is used to define specification classes/objects, which
are closely related to hypotheses and viewpoints.

• ESML Statement : The lowest level statements that need to be modularized and reused are
defined/declared through this ESML Statement class12.

• ESML InterRef : This abstract class is a parent class of the reference type classes used to refer
to other model(s) or instance elements under WOI Construct . It is mainly used to refer to WOI
objects and instances, but it can also be used to refer to the ESML construct defined in one
model type from another model type.

Definition of WOI Construct Classes. This is an abstract class for defining WOI elements (i.e.,
ontological analysis) accessed from (i.e., (inter-)referenced by) scenario elements (i.e., concrete classes

12There are several subclasses to describe the occurrence of observable events (StmtOccurrence), to describe unit
actions (StmtBehavior), to describe time (StmtTime) and location (StmtLocation), to describe probability
(or probability distribution) (StmtProbability), to declare assertion statements (StmtAssertion), to
describe assumptions (StmtAssumption), to express constraint information (StmtConstraint), to specify
propositions requiring a true/false judgement (StmtProposition), and to specify arguments having a
specific domain (StmtParameter).
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Figure 12: Scenario constructs (classes under ESML Construct ) defined in ESML

from ESML Construct ). The WOI Construct class is defined based on the Meta-Model for Systems-of-
Systems (M2SoS)—a meta-model that conceptualizes structural components of an SoS—proposed in
the author’s previous study [3]. Figure 13 defines abstract and representative concrete classes inheriting
WOI Construct .

• WOI Class : To define class types, instances, events, variables, sets, which are major components
of WOI constructs, it is used to define elemental and structural aspects of a WOI model. The main
reason for using the term class is that the WOI objects are modeled through the instantiation
of class types, according to the object-oriented paradigm (OOP).

– WOI Type : This class abstracts participant types, and two representative types of WOI Type

in ESML are EntityTypeand DataType.

– WOI Instance : A concrete class inheriting WOI Instance (e.g., TypedEntityInstance,

EnvFactorObjectInstance ) can be defined by instantiating WOI Type -based classes pre-
defined in the WOI, and supports fields for initializing instances of WOI object accessed by
scenarios.

– WOI Event : Classes inheriting the WOI Event are used to specify occurrence elements that
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Figure 13: WOI constructs (classes under WOI Construct ) defined in ESML

are expected to occur during the execution of scenarios.

– WOI Variable : Specific data objects should be accessible by a scenario so that scenario
elements perform CRUD (create, read, update, delete) operations on WOI elements. Vari-
ables are classified into 3 specialized types: WOI DataVar stores typed data according to its
data type, WOI StateVar stores state information, and WOI DimVar expresses a dimension of
any unit.

– WOI Set : The last abstract class among the subclasses of WOI Class is a WOI Set that
expresses sets of multiple class objects by tying them together.

• WOI ContainerClass : WOI Container classes need to be defined so that multiple participants
of a scenario (or a scenario suite) can be selectively included as a bundle.

• WOI Domain : While engineering scenarios, each variable serves to provide a place to be as-
signed a value of an appropriate type. All WOI variables in ESML must be modeled to include
their WOI Domain , which limits the values that the variables can contain, by defining varType,
allowedVals, minVal, maxVal, etc.

• WOI Unit : WOI Unit refers to an abstract class that defines domain-specific multi-dimensional
units to describe items that need to be defined through a measurable unit based on a particular
metric in a WOI.

• WOI Action : To describe capability element of a WOI entity expressed in scenarios, ESML
statically describes the executable function through this WOI Action class. ESML simply ab-
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Figure 14: Support of inter-reference relationships between scenario models and WOI models

stracts these elements into Actions and supports engineers to further refine and specialize the
action classes.

5.3.2 Model Type Definitions

The model types of ESML can be classified into two groups: one is WOI Model Group that models
WOI Construct to represent different aspects of the target WOI and its components; the other is
the Scenario Model Group that models ESML Construct to specify hypotheses and scenario elements,
which references the WOI objects. As explained in Chapter 1, inter-reference relationships between
scenario models and WOI models need to be supported by ESML. As Figure 14 illustrates, the proposed
ESML supports both object-to-model and object-to-object inter-references. In summary, ESML provides
10 model types in total, and Table 4 summarizes the components (included classes and relation classes)
of each model type.

5.4 ESMM Modeling Tool (ESMM-Tool)

5.4.1 ADOxx Meta-modeling Platform.

The ADOxx Metamodeling Platform was initially developed by the OMiLAB at the University of
Vienna and is recognized as one of the most innovative tools for developing modeling methods, along-
side frameworks like the Eclipse Modeling Framework (EMF). This platform offers extensible features,
libraries, and comprehensive support for the entire development process of a modeling method and
creation of GUI-based modeling tools [12]. The framework supports two types of language formats for
outputs: the ADOxx Library Language (ABL) and the ADOxx Model Language (ADL). The ADL is
used to describe and store modeled results such as diagrams, objects, and values, making it the pre-
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Table 4: Concrete classes and relation classes defined in the ESML model types
Model Model Type Classes Relation-Classes

WOI Model
Group

Target WOI
Model

{WOI, WOI TypedEntityInstance,
WOI InstanceSet, MapModelArtifact,
WOI Constant, WOI DataVar,
WOI VarDomain, WOI TmpUnit,
WOI SptUnit, WOI DimVar,
WOIRefWOI, WOIRefContainer,
WOIRefInstance, WOIRefSet,
WOIRefVariable}

{WoiClassHasConstant, WoiHasDataVar,
WoiHasInstance, WoiHasInstanceSet,
WoiContainsElement, WoiHasMap,
WoiHasUnit, MapHasDimVar,
UnitHasDimVar, VarHasDomain}

WOI
Type Definition
Model

{WOI EntityType, WOI DataType,
WOI EntityAction, WOI StateVar,
WOI DataVar, WOI Constant,
WOI VarDomain, ModelArtifact}

{TypeSubclassOf, TypeHasState,
TypeHasData, WoiClassHasConstant,
TypeCapableOf, ActionHasParam,
StateTransition, VarHasDomain}

WOI
System Group
Model

{WOI SystemGroup,
WOI TypedEntityInstance,
WOI InstanceSet, WOI Constant,
WOI DataVar, WOI VarDomain,
WOI CommAction}

{ContainerHasInstance, ContainerHasInstanceSet,
SetHasInstance, WoiClassHasConstant,
ActionHasParam, VarHasDomain}

WOI
Infrastructure
Model

{WOI Infrastructure,
WOI TypedEntityInstance,
WOI InstanceSet, WOI Constant,
WOI DataVar, WOI VarDomain,
WOI CommAction}

{ContainerHasInstance, ContainerHasInstanceSet,
SetHasInstance, WoiClassHasConstant,
ActionHasParam, VarHasDomain}

WOI
Environment
Model

{WOI Environment,
WOI TypedEntityInstance,
WOI EnvFactorObjectInstance,
WOI InstanceSet, WOI Constant,
WOI DataVar, WOI VarDomain,
WOI CommAction}

{ContainerHasInstance, ContainerHasInstanceSet,
SetHasInstance, WoiClassHasConstant,
ActionHasParam, VarHasDomain}

Scenario Model
Group

Hypothesis
Model

{HypothesisSpec, ViewpointSpec,
StmtAssumption, StmtAssertion,
EvidenceArtifact, StmtProposition}

{ViewpointHasHypothesis, HypothesisHasAssumption,
HypothesisHasAssertion, AssumptionHasConstraint,
StmtHasEvidence}

Scenario Method
Model

{ScenarioMethod,
WOIRefWOI,
ESMLRefScenarioSuite, ESMLRefScenario,
ESMLRefScenarioUnit, SpecRefViewpoint,
SpecRefHypothesis}

{MethodToTargetWOI, MethodToRefElement,
MethodToRefSpec, ScnElementToRefElement,
RefElementToRefElement}

Scenario Suite
Model

{ScenarioSuite,
ElementIOModel,
ElementContextCondition,
ElementContextConstraint,
WOIRefInstance, WOIRefType,
ESMLRefScenarioSuite, ESMLRefScenario,
ESMLRefScenarioUnit, StmtInitialization}

{ParticipateIn, ScnElementHasPrecondition,
ScnElementHasPostcondition, ScnElementHasConstraint,
ScnElementToRefElement, RefElementToRefElement,
ScnElementInitializedAs, ScnElementHasInput,
ScnElementHasOutput}

Scenario
Model

{Scenario,
ElementIOParam, ElementIOModel,
ElementContextCondition,
ElementContextConstraint,
WOIRefInstance, WOIRefType,
ESMLRefScenario, ESMLRefScenarioUnit,
StmtProbability, StmtInitialization}

{ScnElementHasPrecondition, ScnElementHasPostcondition,
ScnElementHasConstraint, ScnElementToRefElement,
RefElementToRefElement, ScnUnitRefTransition,
ParticipateIn, ScnElementHasInput, ScnElementHasOutput,
ScnElementInitializedAs}

Scenario Unit
Model

{ScenarioUnit,
ElementIOParam, ElementIOModel,
ElementContextCondition,
ElementContextConstraint,
WOIRefInstance, WOIRefType,
ESMLRefScenarioUnit,
RandomGenerator, StmtOccurrence,
StmtProbability, StmtInitialization}

{ScnElementHasPrecondition, ScnElementHasPostcondition,
ScnElementHasConstraint, ScnElementToRefElement,
RefElementToRefElement, ScnElementHasInput,
ScnElementHasOutput, ParticipateIn, ScnUnitOccursAs,
ScnElementInitializedAs}

27



Figure 15: Overview of ESMM-Tool and ADOxx environment

ferred format for scenario designers and modelers to create and manage model instances. On the other
hand, the ABL serves as a method-level library that stores all meta-level information of a modeling
method, including class definitions, model type definitions, and optionally mechanisms and algorithms.
By deploying and releasing an ABL-formatted library or tool, other method engineers can engage in
refinement or extension activities, as it contains all the necessary data to serve as a reference modeling
method.

5.4.2 Modeling Environment and Two Roles Who Use ESMM/ESML

Figure 15 briefly shows how ESMM/ESML was developed as a library and modeling tool on the ADOxx
framework environment described above. This figure is largely divided into the ESMM part, which is
implemented and operated on the development environment, and the ESMM-Tool part, which is made
in the form of an actual modeling tool and executed on the modeling environment. In order for us to
develop ESMM, the ADOxx framework must be installed, and a database must be running for storing
a modeling method, models being created, and library and user information13. ESMM was distributed
as a library or tool (i.e., serve as a reference scenario modeling method), and the latest version of the
ESMM Library can be downloaded from GitHub14.

In the figure, two arrows go out from the ESMM box. One is simply exporting and packaging the
ESMM in ABL-formatted library (ESML.abl), and the other is deploying it as a tool through the
database so that modeling activities can be practically performed. Both internally contain exactly the
same modeling method information (i.e., ESMM component definitions), but the difference is that the
ESMM-Tool can support actual modeling activities by providing a graphical user interface, realized
by the middleware of the ADOxx modeling environment. The development environment is a space for
method developers who want to newly develop modeling methods/languages or modify/extend existing
libraries. If a modeling language developer wants to develop a domain-specific scenario modeling
language (DS-SML) by extending our ESML, the process of importing the ESML library and adapting

13The database of ADOxx Framework is executed based on MS-SQL.
14ESMM Library Repository: https://github.com/AnthonyBaek/esmm
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it to suit his or her own domain can be performed on the development environment in the same way
as the above process. In this respect, ESML can be the starting point of the specialization process
required to develop the DS-SML suitable for their domains or particular cases.

As a second role, scenario developers can perform actual modeling activities for scenarios/WOI specifi-
cations using the ESMM-Tool. The screenshots of utilizing ESMM-Tool from scenario developers’ point
of view are shown in Figure 16, and scenarios can be developed by developing the model types defined
in ESML. When a modeler develops an actual model instance, he/she performs the instantiation of
class objects on the canvas, modifies attributes, and creates relationships between the objects defined.
Finally, the models created by the scenario developer on the tool can be exported as ADL-formatted
models, XML files, or images15. Some of the results of actual modeling using the tool are introduced
in Section 6.

6 Case Study

In this section, case studies will be conducted to evaluate whether CSF and ESMM/ESML proposed in
the previous chapters can provide essential information and features as a reference method/methodology.

6.1 Research Questions

As discussed in Section 1, a crucial criterion for a method to be considered a reference method is its
ability to capture the general semantic information present in real-world scenarios. This is accomplished
through the use of constructs, which correspond to the SVs and are represented by the class definitions
in ESML. Furthermore, in order for ESMM to serve as an effective guideline for scenario engineers as
a reference method, it is important to assess its applicability to practical scenario specification and
modeling activities. To address these considerations, the following research questions (RQs) have been
formulated.

RQ1: To what extent do the SVs defined in CSF cover the semantic spaces of existing scenario devel-
opment methods?

RQ2: Does ESML encompass scenario constructs and WOI constructs (i.e., class definitions) that
effectively facilitate the development and analysis of real-world scenario models?

RQ3: How well can the constructs (i.e., model types and classes) defined using ESMM/ESML be
extended to develop a domain-specific scenario modeling language?

The analysis of RQ1 involves mapping the information from five existing methods to the primary SVs
using a semantic mapping table, which shows how the semantics of existing methods are covered by our
CSF. To answer RQ2, semantic mapping is also performed between 10 scenario instances from existing
methods and the ESML classes. By answering RQ3, it examines the potential for extending ESML into
a domain-specific scenario modeling language (DS-SML) for driving systems’ scenarios. It investigates
whether ESML actually supports the necessary specialization mechanism to define domain-specific
objects, such as data, instances, actions, and behaviors.

6.2 Analyzed Scenario Development Methods and Scenario Instances

Scenario Development Methods. To evaluate the semantic space expressed by the SVs and
CSM developed in this study, we use 6 scenario development/specification techniques suggested in
the automated driving system (ADS) domain. Because the ADS domain, along with several critical
system domains (e.g., military, aviation), is one of the most active field of research and standardization
of scenario-based engineering (See Chapter 2), scenario methods employed in the ADS domain were
selected as a representative application domain.

15Only XML- and ADL-formatted models are modifiable on the tool.
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Table 5: Scenario instances used for the case study
Instance
Category

Scenario Method Scenario Instance(s)/Input(s) Abstraction
Level

Category A OpenSCENARIO-CARLA SET A:
{LaneChange,
FollowLeadingVehicle,
PedestrianCrossing}

Logical/Concrete

OpenSCENARIO-NHTSA SET B:
{PedestrianCrossing AtIntersection,
TurningLeftAtRoundabout}

Functional/Logical

OpenSCENARIO-SOTIF SET C:
{SuddenLaneChange}

Functional/Logical

W.Chen, et al., 2018 SET D:
{InsertionOfVehicles
OfHighway}

Logical

X. Zhang, et al., 2020 SET E:
{StraightMotorwayYJunc,
STATS19 Accident}
SET F:
{EuroNCAP CCRs}

Logical

Category B Euro-NCAP AEB C2C Test
Test Procedure Description

NCAP CCR TEST SET:
{NCAP Test CCRs,
NCAP Test CCRm,
NCAP Test CCRb}

Logical/Concrete

Category C SESAR Engage KTN
Drone Flight Mission

BVLOS DRONE TEST SET:
{UCS 1 StateSurveillance,
UCS 2 MedicalSupplyMission,
UCS 3 OffshoreInspection,
UCS 4 UrbainAirMobility,
UCS 5 CoastguardSearchRescue,
UCS 6 WindfarmInspection,
UCS 7 PackageDelivery,
UCS 8 FireandRescueService}

Functional/Logical

The first and second methods are ASAM OpenSCENARIO (v2.0), a standard for testing and validation
of ADSs, and PEGASUS, a methodology of scenario-based safety analysis and testing. These methods
define engineer-friendly domain-specific scenario description language for expressing driving scenarios
at multiple abstraction levels. Both methods also support the development of scenario execution models
(i.e., test/simulation scenarios) for industrial application. Additionally, other methods proposed by
B. Schutt et al. [31], J. Bach et al. [2], C. M. Richard et al. [30], and D. J. Fremontet al. [14] were
analyzed in terms of scenario constructs from a modeling perspective. The first four methods develop
scenarios for the test development, while the fifth method aims for scenario-based task analysis and
workload estimation, and the sixth method aims to propose a probabilistic programming language for
scene generation.

Scenario Instances. In order to analyze the overall feasibility and applicability of whether the
proposed ESMM/ESML can be used (i.e., useful) for actual scenario development, inputs of real-world
scenario instances are essential. Because standardization efforts are being most actively conducted in
the ADS domain, many scenario(-relevant) instances are publicly available and can be obtained by this
study. Instances introduced in Table 5 are categorized into three groups (Category A∼C ), according
to the collection method of scenario instances. Instances in Category A are based on driving scenarios
collected from the web and literature, while Category B are scenario instances based on test procedure
descriptions defined by the Euro NCAP test protocols. Finally, as part of Category C, we include a
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group of instances to assess the universal extensibility of ESML across different application domains.
Specifically, we present eight instances of drone flight mission scenarios in the unmanned aerial vehicle
(UAV) domain.

6.3 RQ1: Expression of Scenario Semantics using SVs

This RQ is answered by Table 6, and semantics of ESMM are mapped and compared with the languages
of existing scenario development methods introduced in Section 6.2. For better readability, similar
SVs centered around primary SVs were merged to identify data corresponding to 3 method-level
SVs, 3 suite-level SVs, 8 scenario-level SVs, and 7 event-level SVs. Similar to the literature review,
data was manually extracted and analyzed based on keywords from exemplary scenario instances and
explanation introduced in each method’s representative publication(s). Analysis of the SVs does not
directly show whether a scenario development method is superior or more effective than other methods.
Instead, it provides information on which semantic domain each method primarily focuses on. Because
the SVs were defined by investigating the actual scenario instances, we expect conceptual data used
in the existing methods can be adequately analyzed at meta-class levels. The information contained
in each cell of the table can be viewed as a class or instantiated data for scenario specification.

The investigated methods contain different types of data depending on the engineering activity, phase,
and purpose even when applied in the same application domain. As described above, a set of conceptual
data of a method is considered as a semantic domain for scenario specification. Therefore, it is helpful
in establishing the general requirements needed for appropriately employing a scenario method. For
example, C. M. Richard et al.’s approach provides semantics (e.g., workload demand, bottlenecks)
focused on engineering activity of scenario-wide task analysis, but does not provide an actual test
development. On the other hand, J. Bach et al.’s approach supports visualization tools (scenario
editors) to effectively support the development of test scenarios, while other methods support the
specification by providing formal/textual scenario description languages.

Based on the comparison, we could carry out comparative analysis of scenario semantics of the in-
vestigated scenario development methods, with respect to four levels (method, suite, scenario, and
unit/event).

• Method-level. Although the method-level data shared similarities, the level of abstraction sup-
ported by SpecMethod and the observation/evaluation/validation criteria of ExecMethod differed.
Most methods in the ADS domain utilized means of generating logical or concrete scenarios from
abstract/functional scenarios, which shows the necessity of supporting multiple abstraction levels
for both specification and execution. Also, the SVs that capture the goal-oriented nature can be
leveraged to analyze and define data at the method level. This includes the explicit definition
of hypotheses for scenario development and testing, as well as the ability to define assumptions
and evidence for method selection and utilization.

• Suite-level. Suite-level data could be classified according to the viewpoints, which showed sig-
nificant difference in inputs of each method. The widely used viewpoints in the automotive
domains were typically an ADS (i.e., ego vehicle) and traffic infrastructure. The ontologies of
target vehicle, infrastructure, and environment were defined differently depending on the view-
point. In addition, the composition method to coherently formulate multiple scenarios decided
scenario classification criteria (e.g., ordinary-critical, baseline-alternative) within a scenario suite
according to MethodPurpose at method-level. Additionally, unlike simple programs defined at a
functional or logical levels, the suite-level inputs on physical setting, environment, and regulatory
artifacts were usually required. When data-driven approach is supported (PEGASUS Method,
C. M. Richard et al.’s), historical data related to driving function and ADS users are also often
required to develop a test suite. Compared to the first five methods, Scenic, proposed by D. J.
Fremont et al., is more specialized to develop realistic scenario suites based on prescribed scenes,
thus it requires more specific requirements and data to create the suite-level scenario data.
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• Scenario-level. Based on the scenario-level inputs of ADS scenarios, the detailed specification
of environmental context each scenario faces (or interacts with) were crucial. All the listed
methods utilized the environmental and operational context such as weatherCondition and sta-
tionaryCondition to process the runtime context of each scenario. These data are used to define
scenario-level condition (e.g., initialCondition, terminalCondition) and constraints (e.g., hard-
ware/software Constraints, regulatoryConstraints).

The most central data at the scenario level is provided by parameterization. Logical scenario
utilizes parameter range to specify the scenario dynamics, and concrete scenario provides a
set of concrete parameter values within the range. Additionally, due to the characteristic of
ADS scenarios which defines the dynamics of participants according to the flow of time within
a region, temporal and geospatial abstraction are considered as important scenario-level data.
Based on the target timeframe/timeline of each scenario, temporal abstraction is detailed through
phases, stages, or milestones. Geospatial abstraction mainly details a road network (e.g., layout,
geometry) and geospatial changes to effectively represent scenario-level participants’ movements.

• ScenarioUnit/Event-level. Event-level data mostly contained similar semantic domain, including
behavioral, temporal, spatial, and uncertainty properties. According to the each specification
method, the unit behavior of an event and its granularity may differ, which are often act, action
(e.g., maneuver), communication (e.g., interrupt, stimuli), and activity. At the scenario unit
level, behavioral information is commonly represented by specifying event occurrences and their
associated properties. The proposed SVs encompass a wide range of elements at this level,
including input/output, conditions, temporal/spatial data, and uncertainty. Because an event is
the most generally used unit accessing actual states or data of scenario participants (i.e., entities),
the semantic domain of each information on unit event can be varied depending on each method.
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Figure 16: Execution and use of ESMM-Tool on ADOxx Modeling Environment
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Table 6: Analysis of scenario specification methods in terms of primary scenario variables
Source ASAM OpenSCENARIO V2.0 PEGASUS Method [Barbara Schütt,

2020]
[J. Bach, 2016] [C. M. Richard, 2006] [D. J. Fremont,

2019]
Instances Cut-in, SlowPrecedingVehicle, EndOfTrafficJam,

TrafficJam, DoubleLaneChanger, Overtaking,
SynchronizedArrival, CloseVehicleCrossing,
FastOvertakeWithReinitialization,

PEGASUS Exemplary Scenarios (Tesla
Model S AccidentScenario) Cut-in, In-
cidentEnvironment

UrbanIntersection Single-lane Approach-and
-Follow

Left Turn onGreen Light
Straight on Yellow Light
Right Turn on Red Light
Stop on Red Light

GTAV Scene Descrip-
tion

M

MethodPurposeTest-basedSimulation, TestCompleteness Test-basedSafety Analysis,
Verification & Validation

Test Development TestDevelopment Scenario-WideTask/Segment
Analysis (& Resource Estimation),
Planning, Safety Analysis

TestDevelopment
(Generation of Synthetic
Data Set)

SpecMethod AbstractionLevel (Abstract/Concrete),
DecompositionOfFlows

AbstractionLevel
(Functional/Logical/Concrete)

AbstractionLevel,
Modularity (Database,
Library)

Model-basedSpatial and
Temporal Abstraction,
Visualization

SegmentDiagram, ScenarioDetails Scene,Distribution
(Configuration)

ExecMethod Simulation-basedTesting, Measurement (Channel),
Metric, AcceptanceCriteria, SafetyChecker,
Evaluators, Coverage

Testing,Prototyping, Pass/Fail Criteria Simulation-based Testing,
Pass/Fail Criteria

(Simulation-based)
Testing

SimulationGame, Training,
Testing, Debugging

St

Viewpoint&
Ontology

ADS/Traffic-focused ADS-focused, Safety-focused ADS-focused Actor
(Vehicle, Pedestrian)

ADS/Traffic-focused
Vehicle, Participant

Infrastructure/TrafficScene-
focused, ADS-focused

Scene-focused

Inputs Map/Template,Scene (Graph), Configuration,
InitAction (Global/User-Defined/Private),
FunctionalGoals, DomainModel

Scene, SafetyArgument, Failure-
Tree, RegulatoryElement, Accep-
tanceModel, RegionOfInterest, Vir-
tual/RealDataSource, RoadUser-
Data, AccidentModel

TrafficSequence,
Setting (using
Functional Scenario
or Misc)

Scene, RegulatoryElement,
Domain Model, Rule Sets,
ManeuverType,
PerceptionLayers

RegulatoryElement,
Historical/Operational Data

Scenario(Default)
Requirements,
Property,ImagesOfCars

Composition Scene-based,Causality, Baseline-
Alternative

Ordinary-Critical Situation-based Main-Alternative,
Causality

ScenarioSegments

Scn

Constituent-
Events

Serial/Sequential,Parallel,
Synchronized, Event-driven, XOR

BaseEvent,
Faulty/FailureEvent

EventConnection,
Join, Sync

Act-based,Event-driven Sequential

Target TestDescription Description ofAutomated
Driving Functions, Criticality

Multi-levelBehavior
Description

BehaviorDescription Task

Inputs ScenarioMeta-Data, Story,Route, Procedure,
Entities/ScenarioObjects (Vehicles (Movable,
Stationary), Driver), Parameters (Distribution)
File, Weather, StationaryCondition,
ManeuverGroup, CatalogReference

EnvironmentCondition (Weather),
SAELevel, Risk, Actor (Vehicle),
Sensors, Parameters
(FrequencyDistribution)

Weather, Actor(Wheeler,
Pedestrian), Parameter
(Range)

Scenery (RoadNetwork),
Participant, Route,
Situation, Weather

Vehicle,Scenario Segments
Assumption, Workload
Demand (with Bottlenecks),
Configuration, Milestones,
Parameters

Objects, ScenarioFile,
Statement,
GlobalParameters

Outputs ScenarioLibrary/Element,
ParameterMeasurementResults

TestSpecification, Probability and Security
of occurrence of (harmful) outcomes

Scenario File Test Cases, Recorded
Data

WorkloadProfile

Condition EnvironmentCondition, EntityConstraints
Software/Hardware Constraints,
TerminationCondition,

EnvironmentCondition, Traffic TransitionCondition
(Situation)

TrafficCondition, DriverCondition,
TimeConstraints, ResourceConstraints

Hard/SoftConstraints,
Traffic/RoadCondition

Temporal ScenarioTime, Timeline Time-Continuity, Start/End Time Timeline/TimeFrame,
Temporal Milestones, Interval

Geospatial SpatialAbstraction of RoadNetwork
(Intersection, Lane, Highway, Trajectory)

SpatialAbstraction of Road (Lane,
Highway, TrafficDensity, Geometry)

SpatialAbstraction of
RoadNetwork

SpatialAbstraction
of RoadNetwork

Region,Layout,Infrastructure EgoObjectAbstraction
Geometry, Distribution

Changes &
Uncertainty

ArbitraryPosition/Direction,
StochasticDistribution

OccurrenceLikelihood WorkloadRatings Mutation,Noise,
ProbabilityDistribution

Evn

Input EventParameter, ControlStrategy Severity,Controllability, Criticality,
EventParameter (with Unit)

ActionParameter EventSource Equations,Variables,
AssumedValues

Output ExecutionCount
Condition EventCondition(StartTrigger, StopTrigger),

ActionCondition, Parameter/ActionConstraints
ActionCondition
(ConditionNode)

ManeuverCondition (Distance,
Time, Speed), ParticipantState

ManeuverCondition,
EnvironmentCondition

EventFrequency

Behavioral&
Interaction

Act, Actor,Event, Maneuver,
EnvironmentAction, Calculation

Event, Action,Maneuver Actor, Ac-
tion,Maneuver

Participant,Act, Maneuver,
Perception, Interaction,
ADAS Function

Actor,Activity, Event
Perceptual/Cognitive/Psychomotor
Task, V2V Interaction (Adjacent)

Actor (Ego),Vision

Temporal Duration,(Relative) Time, TimeReference Time Time (Relative)Timing,Duration
Geospatial (Cartesian)Coordinate, Speed

(Relative/Absolute), Position,
Direction/Angle, Distance

Coordinate,Distance, Velocity/Speed,
Orientation

Radius,Direction,
Velocity

Lane,Position, Distance Distance,Direction, Speed LocalCoordinate, Offset,
Direction, Position, Spot,
Distance

Uncertainty StochasticEvent ProbabilityOfOccurrence, Controllability,
Fluctuation, Variability

ProbabilityDistribution
(of Params)

Distribution of Information
Perceived

ProbabilityDistribution
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Table 7: Expression of scenario data of real-world scenarios using ESML constructs
WOI Semantics Scenario Semantics

ScnSet World/Scene EnvInfra SysOntology Abstraction Participant Context Uncovered

SET A RoadNetwork RoadEnvironment
(Time,Weather,
RoadCondition),

EnvVehicle,
RoadNetwork

VehicleCatalog,
ControllerCatalog,
ManeuverCatalog

Storyboard-
Story-Act-
Maneuver-

Event-Action

Actor/Vehicle,
Pedestrian

RoadCondition,
ElementState,

EntityCondition,
ValueCondition,

Dist/PosCondition

Animation,
BoundingBox,

Road
Geometry

ODDElementRef
Detection
Algorithm,

Road
Geometry

SET B Intersection/
Roundabout

Weather
Condition

Scenario-
Maneuver-

Event/Interaction-
Maneuver

RoadwayUser,
Non-RoadwayUser

TrafficCondition,
RoadCondition,
BoundaryFailure,

Condition
SET C Motorway Weather

Condition
(Sight)

SceneGraph-
Scene-Event-

Action

EgoVehicle,
EnvVehicle

Event/Action,
Condition

SET D Highway
(HighwayOntology)

Weather
Ontology

VehicleOntology,
ControlActions

Scenario-
Situation-
Action

ADS,
MobileElement,
StaticElement

WeatherCondition,
ActionCondition

Road
Geometry

Weather
Condition

Scenario-
Phase-
Action

EntityCondition
(WHEN)

Road
Geometry

SET E Motorway/
Junction

AgentObject EgoVehicle,
EnvVehicle

SET F TestEnvironment System
Specification

VehicleUnderTest,
VehicleTarget

6.4 RQ2: Expressiveness of ESML Constructs

If the RQ1 analyzed the semantic space defined in scenario development methods to validate the
expressiveness of SVs, this RQ2 evaluates the expressive power of ESML constructs based on scenario
instances actually developed with several existing description langauges. The RQ2 performed analysis
on the scenario development methods and their instances in Category A of Table 5. The above three
sets are XML-based xosc files16 written based on OpenSCENARIO (SET A) and scenarios defined as
use cases in official documents provided by the OpenSCENARIO user guide (SET B, SET C ). The
other three sets below are scenario instances developed in the studies by W. Chen, et al. [7] and X.
Zhang, et al. [45]. Since each instance had different levels of abstraction, the analysis through them
can be regarded as a case study of the different types of scenario instances used in practice. Table 7
summarizes WOI and ESML classes at the abstract class level, and A17 shows all semantic mapping
contents at the concrete class level through 6 tables.

First, the world modeling method such as ontology must be supported so as to effectively express and
interweave the world model’s instances and scenario elements/data. Focusing on these properties, the
first comparison criterion can be how the scenario description languages express the WOI semantics
(See WOI Semantics in Table 7). In SET A, SET E, and SET F, the model for the world was not
explicitly supported at the level of the scenario language, but most of them received external catalogs
or system models as inputs to use system/environment data. However, based on the importance of on-
tology in scenario modeling, it was confirmed that some scenario development methods are supporting
the development of ontology-based models at the language level. Like the NHTSA scenario, the auto-
motive domain often uses Operational Design Domain (ODD) that defines system and environmental
entities used for the automotive engineering. More specifically, the ODD is a taxonomy-based stan-
dard that provides essential concepts necessary to describe conditions for safety driving, and supports
ontological analysis on scenery, environmental conditions, and dynamic elements. In the fourth group,
W. Chen, et al.’s study, defines domain-specific ontologies, such as highway, weather, and vehicle on-
tologies, to effectively describe a target world and to secure high reusability of the ontologies within
the domain. From this point of view, it can be analyzed that the performance of ontological analysis
through the development of the world model group of ESML can guide the ontology-based scenario
development.

The second most notable part was that the dynamics represented by the scenarios was different for each

16*.xosc: The file format used in OpenSCENARIO
17Each Case of the tables refers to the scenario instances of from SET A to SET F in order.
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scenario description languages (See Scenario Semantics - Abstraction in Table 7). For example, the
OpenSCENARIO defines their scenarios based on the ‘Storyboard-...-Maneuver-...-Action’ hierarchy,
and a SceneGraph is defined as a core unit in the SOTIF scenarios. Based on this, it was confirmed that
different scenario languages have defined their own hierarchical structures to express scenario semantics,
and the lowest level units are defined domain-specifically. Since all the analyzed instances are developed
in the ADS domains, the lowest level units are often defined as action or maneuver of dynamic entities.
From the ESML construct point of view, engineers can flexibly select the granularity and behavior
abstraction of the scenario units without limiting what information these units and suites contain.
Therefore, ESML’s scenario hierarchy divided into ‘Method-ScenarioSuite-Scenario-ScenarioUnit ’ can
be expected to effectively respond to various abstraction levels of real-world scenarios.

Lastly, although most of semantics expressed by the scenario instances can be mapped to (i.e., covered
by) classes defined in ESMM, some data could not be fully covered by the ESML. The semantic space
that is not covered by ESML is organized on the far right of Table 7, and there are three main reasons
why these types of data could not be expressed with ESML constructs. First, data such as animation,
bounding box, and object group detail are elements defined for the purpose of providing visualization of
scenario objects in simulation engines. Second, because ESMM/ESML treats Actions as a black-box,
it was unable to express function-level internal data or logic. In the case of the NHTSA scenario’s
detection algorithm, it is inevitable to express it as an abstraction as an external reference for the
algorithm or just to abstract it as ‘detectAction’. Third, it was not possible to directly cover the
road geometry models/data (e.g., traffic map) used in various scenario languages. In fact, for the
scenario instances under investigation, the geometry-data/models were developed as external files and
were imported by the scenarios, and the data was using a method to express a very specific road
scenery data for each scenario. By taking this approach, we can conclude that ESMM/ESML, being
a generally scalable framework, does not take into account inputs and content that need to adhere to
specific requirements of a particular domain.

Through this semantic mapping of the RQ2, we can first gain insight into what variables can be mapped
to the data of real-world scenario instances, which were developed by existing methods. The other
implications can be checked through specific semantic mapping data for each concrete class shown in
A. From this result of the semantic mapping, we were able to confirm that ESML itself can sufficiently
express (and have possibility to be extended to express) the semantic space of real-world scenarios
with only the modeling language constructs before it has extensibility. For some uncovered semantics,
the ‘essence of a scenario’ can be the ground to explain that the exclusion of such special data is
natural (and a practice) while developing scenarios. According to the scenario definition, the common
information that should be included in a scenario can be summarized as: (a) temporal development
of dynamics/possibilities (i.e., path), (b) context(s), and (c) a participant(s). Here, the temporal
development can be expressed as a path of one or more scenario units by a scenario model, (b) can be
expressed as a (parameter) range through conditions, constraints or domains of elements in the model,
and (c) can be expressed using the ontology through the WOI models.

6.5 RQ3: Extensibility of ESML Constructs for Developing a Domain-
specific Scenario Modeling Language

The final RQ aims to assess the extensibility of ESML and examine its potential as a domain-specific
scenario modeling language. Figure 17 provides an overview of the process employed to address RQ3.
The evaluation utilizes the NCR CCR TEST SET and BVLOS DRONE TEST SET introduced ear-
lier and extends ESML by analyzing accessible documents (i.e., Euro NCAP test description, BVLOS
drone use case scenarios). Through the extension and specialization of ESML constructs (classes and
model types), an attempt is made to develop domain specific scenario modeling languages known as
Scenario Modeling Language for EuRo NCAP (SML-ER-NCAP) and BVLOS Drone Missions (SML-
BVLOS-FLIGHT-MISSION), respectively.
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Table 8: Identification of domain-specific classes and instances from Euro NCAP Test Procedures
Construct ESML Class Domain Classes Class Instances (Objects)

ESML Construct
(Scenario Element)

ScenarioSuite VehicleTestScenarioSuite {AEB C2C TestSuite}

Scenario Car2CarTestScenario {C2C RearStationary TestScenario,
C2C RearMoving TestScenario,
C2C RearBraking TestScenario}

ScenarioUnit OnRoadTestEvent {PedestrianPassing, OnRoadCollision}

ElementContext TestCondition {TestPrecond, DrivingCond, TestTerminationCond}

DrivingConstraint {MaxSpeed, ProhibitedAction}

Specification FormulaSpecification {LateralPathErrorSpec, LateralOverlapSpec}

ExternalArtifact ReferenceArtifact {MeasurementReference, VehicleTargetReference,
VehicleDataMeasurement, ReferenceSystem}

WOI Construct
(WOI Element)

WOI VehicleTestWOI {AEBC2CTestWOI}

WOI Env VehicleTestEnvironment

WeatherEnvironment {Temperature, TrackTemperature, Visibility, Wind,
Precipitation, Illumination}

PredefEnvEvent {WrongPathEvent, IndividualCarAccident,
CarToCarCollisionContact}

WOI Map TestTrackMap {AEBC2CTestTrackMap}

WOI EntityType VehicleEntityType {VUT, GVT, SOV}

PedestrianEntityType {PedestrianEntity, BicycleRiderEntity}

WOI EntityAction VehicleAction {StartMoving, Steer, Accelerate, Decelerate, StopMoving}

VehicleDrivingAssistAction {AutonomousEmergencyBraking, ForwardCollisionWarning,
DynamicBrakeSupport, AutonomousEmergencySteering,
EmergencySteeringSupport}

WOI Unit SpeedUnit {VehSpeedUnit, WindSpeedUnit}

AccelerationUnit {VehAccUnit}

AngularVelocityUnit {VehAngVelocityUnit}

CoefficientUnit {PeakBreakingCoeffUnit}

TemperatureUnit {AmbientTempUnit, TrackTempUnit}

VisibilityUnit {HorizontalVisibilityUnit}

PrecipitationUnit {TrackPrecipitationUnit}

DirectionUnit {VehDrivingDirUnit, WindDirUnit}

IlluminationUnit {AmbientIlluminationUnit}

LengthUnit {VehWidthUnit, VehLengthUnit}

MassUnit {VehMassUnit}

ErrorUnit {LongPathErrorUnit, LatPathErrorUnit}

OverlapUnit {C2CLateralOverlapUnit}

WOI DataVar VehiclePropertyVar {VehWidth, VehLength, VehMass}

VehicleActionVar {SpeedVar, AccVar, AngVelocityVar}

TestEnvCondVar {AmbTemperature, TrackTemperature, WindSpeed,
WindDirection, AmbIllumination}

MeasurementErrorVar {AllowedErrorVar}

WOI Constant MapConditionConst {TrackDryness, TrackPavement, TrackUniformity,
TrackSlopeLevel, TrackPBC}

WOI StateVar VehicleTestStateVar {Idle, OnDriving, OnCollision}
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Table 9: Identification of domain-specific classes and instances from Category C
Construct ESML Class Domain Classes Class Instances (Objects)

ESML Construct
(Scenario Element)

ElementContext VolumeContext {X, Y, Zu, Za}

PhaseContext {U2, U3}

Scenario FlightProcedure {TakeOffProcedure, FlightBackProcedure}

SafetyProcedure {BuiltinSafetyProcedure}

ScenarioUnit AbnormalFlightBehaviorSU {AbnormalExcursion}

ExternalAttackSU {ExtDroneInfringement, SignalSpoofing, MaliciousCode}

DataSignalErrorSU {LossDataIntegrity, SignalInterference, HighElectroMagnetic,
HighSignalDensity}

CommLinkEventSU {DataTransmissionFailure, LinkBroken, LinkRecovered}

InternalMalfunctionSU {OnboardMalfunction}

HazardSU {LossOfControl, MidAirCollision, LALT, SEC, LVLOS}

WOI Construct
(WOI Element)

WOI DroneOperatingEnvironment {CitySurveillanceWOI, MedicalSupplyWOI, OffshoreInspectionWOI,
UrbanAerospaceWOI, CoastguardWOI, WindfarmWOI,
PackageDeliveryWOI, FireRescueWOI}

WOI Infra CommuniationInfra {GroundCommChannel, C2CCommChannel, RadioCommChannel}

FlightInfra {TakeoffLandingInfra, ExclusionZone}

WOI Env AirTrafficEnvironment {AirspaceTrafficEnv}

FlightAreaEnvironment {HighRiseBuildingEnv}

MeteorologicalEnvironment {Fog, Wind, Visibility}

HumanEnvironment {Crowd}

PredefEnvEvent {BirdStrike, Smoke, Fire}

WOI Map USpaceMap {UrbanFlightSpaceMap, OffshoreFlightSpaceMap,
CoastguardFlightSpaceMap, WindfarmAreaMap}

OnMapData {PrearrangedWaypoint}

WOI SptUnit AirborneLocUnit {AirXYZCoordinateUnit}

GroundLocUnit {GroundXYCoordinateUnit}

WOI EntityType PilotEntity {RemotePilot(, AttackerPilot)}

DroneEntity {BVLOSDrone(, ExternalDrone, AttackerDrone)}

DeviceEquipEntity {Multi-Rotor, RemotelyPiloted, DAAEquipment,
FlightAssistSensor}

WOI DataType FlightActivityData {SurveillanceData}

CommunicationData {PilotRequestData}

WeatherData {WeatherInfoData}

WOI Constant FlightConstant {SpeedLimit, AltitudeRestriction}

WOI EntityAction DroneFlightManeuver {StationaryFlightManeuver, RouteFlightManeuver,
AreaFlightManeuver, AutonomousFlightManeuver, DitchingManeuver}

DroneUnitFlightAction {TakingOffAction, DescendingAction, LandingAction,
MissionPauseAction, MissionResumeAction, DAAAction,
EmergencyLandingAction}

DroneMissionAction {TelemeteringAction}

DroneCommAction {TelemetryTransmissionAction}

PilotAction {SeizeEquipmentAction, EmergencyNotiAction, MonitoringAction}

WOI Unit DroneStatusUnit {DroneFuelUnit, DroneSpeedUnit, DronAltUnit, DroneVisualSightUnit}

DataSignalUnit {DataIntegrityUnit, ElectromagneticIntensityUnit, InterferenceUnit,
SignalIntensityUnit}

FlightEnvUnit {WindSpeedUnit, FogDensityUnit, VisibilityUnit}

WOI DataVar DroneStatusVar {VisualSight, Altitude, Speed}

CommunicationVar {DataSignalIntensity}

FlightActivityVar {RouteDeviationRate, PowerConsumptionRate}

FlightAreaVar {AreaVolume, AreaType, AreaDensity/Population}
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Figure 17: Extension of ESML into a scenario modeling language for Euro-NCAP test description

Step 1. Following each step, the extension process is explained as follows. In Step 1, the Euro NCAP
test description, which describes tests of autonomous emergency braking (AEB) function and forward
collision warning (FCW) function in a car-to-car situation, is received as an input specification. This
step extracts domain-specific data from the given specification to understand the semantic space of the
target domain and identify constructs that need to be extended/specialized to cover the semantic space.
This extraction step takes two sub tasks, which are (i) extraction of scenario data and (ii) extraction of
WOI/domain data (i.e., ontology). The scenario data may require the specialization of classes under
ESML Construct to describe domain-specific scenario elements, contexts, i/o, and statements. The
WOI and domain data may require the specialization of classes under WOI Construct to build a
domain-specific ontology, which consists of domain types, objects/entities, units, variables, and events.
The Table 8 provides a summary of the domain classes and instances extracted in Step 1. It allows us
to identify the necessary class definitions under ESML abstract classes to express domain instances.

Step 2. In this step, amodeling language developer (See Figure 15) needs to extend the classes defined
in ESML. First, the engineer imports the ESML library and its internal definitions on the ADOxx
Development Environment. To do this, he/she should access to the database with an authenticated
account and import the published ESML Library18 into the development toolkit and name it as
SML-ER-NCAP-Library for further manipulation and extension. The engineer can enter the library
management mode and add domain-specific classes or class attributes into the existing ESML class
definitions. Based on the extracted data from Step 1, specialized classes (i.e., domain-specific classes)
can be newly defined considering the overall class hierarchy. Not only concrete classes can be added
into the existing library, but relation classes (e.g., has: A→B) also can be built on the library to
represent class-to-class relationships. If a class is completely newly defined, internal attributes should
be specified, including graphical notations.

Step 3. In Step 3, the developer can extend the existing ESML model types by including domain-
specific classes, which were defined/extended in the previous step. Only instantiable classes and
relation-classes can be included in the model types, and it is recommended to specify graphical nota-

18Current version of ESML Library: 1.15
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Figure 18: Extension (Step 2 and Step 3 ) of ESML constructs to develop SML-ER-NCAP

tions before this model type extension process. After this step, the developer can export this extended
library into an ABL-formatted file (e.g., ESML Euro NCAP AEB C2C.abl, and another scenario en-
gineer can use the released library as a modeling tool or a library (i.e., a modeling method/language)
iteself. The processes of Step 2 and Step 3 are summarized in Figure 18.

Step 4. At the last step, a scenario developer (i.e., modeling engineer, modeler) can perform
actual modeling activities to specify Euro-NCAP world ontology and test scenarios. The modeler
can create his/her own models using a graphical user interface, supported by the ADOxx Framework.
Some actual modeling results are attached as figures: Figure 19 is a WOI model to describe the
Euro NCAP domain ontology, by specifying domain-specific objects, such as a map, time/space units,
domain-specific units (e.g., acceleration rate unit), predefined events, environment elements, instances,
constants, and variables; Figure 20 shows one of type definition models that specify a type of a vehicle
under test (VUT); Figure 21 is a scenario suite model that composes participant objects, constituent
scenarios, and relevant conditions and constraints; Figure 22 shows an example scenario model that
describes contexts and a path to test a Car-to-Car Rear Stationary (CCRs) case.

By following the four steps outlined above, it becomes evident that ESML not only supports funda-
mental scenario modeling activities but can also be flexibly extended to serve as a DS-SML. Traditional
scenario description languages focus solely on accurately representing scenario semantics, which limits
their ability to handle domain-specific requirements related to additional domain entities and data.
ESML, on the other hand, overcomes this limitation by distinguishing between ESML constructs and
WOI constructs at the abstract class level. The ESML constructs provide domain-independent sup-
port for scenario semantics, while WOI constructs enable domain-specific class definitions for domain-
focused descriptions. This distinction allows scenario models to incorporate domain knowledge as an
ontology base, making them more intuitive and understandable.

In addition to the Euro NCAP test procedure discussed earlier, an additional language extension
was performed to validate the applicability of ESML in different domains. This extension was based
on drone flight mission scenarios from the UAV domain, included in Category C of Table 5. The
extended language (SML-BVLOS-FLIGHT-MISSION ) developed through this process encompasses
eight major scenarios related to the flight missions of Beyond Visual Line of Sight (BVLOS) drones,
which operate beyond the pilot’s field of view. The extension process for ESML followed the same steps
as the previous SML-ER-NCAP, and the domain terms and data were collected based on the technical
reports of Single European Sky ATM Research (SESAR) published in 202119. This data was then used
to define subclasses and attributes of abstract classes of ESML and update the corresponding model

19Jacob Blamey et al., “(C12) Safe Drone Flight - Assuring telemetry data integrity in U-Space scenarios,” 2021.
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Figure 19: A WOI model developed using SML-ER-NCAP

type. Due to space limitations, detailed descriptions of each step and modeling results were omitted,
and instead, the derived domain classes were summarized in Table 9. The modeling language library
of SML-BVLOS-FLIGHT-MISSION was also uploaded to the ESMM Github repository20.

The DS-SMLs, which are extensions of ESML, proved to be effective for both domain-specific class
definitions and ontology-based scenario development. However, they have certain limitations because
ESML is originally designed for conceptual modeling that describes black-boxed scenario data. For
instance, they primarily allow for the specification of observable actions/events, thus it is challenging
to express the detailed technical data/objects (e.g., blockchain, encryption/cryptography, authentica-
tion, mobile apps) or domain-specific algorithms (e.g., detection and avoidance algorithms). Another
observation is that extending the language for a specific domain often necessitates well-defined domain-
specific variables (WOI DataVar) and well-defined units (WOI Unit) to be used in the variables. A clear
definition of the values, domains, and units of the variables in the model is particularly crucial to trans-
form them into concrete scenarios that can be utilized as inputs in real-world tests and simulations
based on functional/logical scenarios.

20ESMM Library Repository: https://github.com/AnthonyBaek/esmm
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Figure 20: A type definition model (VUT) developed using SML-ER-NCAP

Figure 21: A scenario suite model developed using SML-ER-NCAP
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Figure 22: A scenario model developed using SML-ER-NCAP

6.6 Summary of Case Study using ESML

The ESMM modeling tool (ESMM-Tool) basically supports scenario modeling activities, which are
to be performed by scenario engineers (i.e., modelers). By providing user interfaces, controllers, and
graphical notations/visualizations, the engineers can receive practical help from the tool. In addition,
the manipulation and import/export of the library enables a method engineer to easily develop a new
domain-specific scenario modeling method, aided by the ADOxx development environment. These
supports, as a result, facilitate the customization of the general-purpose modeling language or method
on the open modeling environment, such as OMiLAB21.

As designed in Section 5.3, ESML provides basic scenario constructs, which represent essential infor-
mation to describe scenarios and a WOI. As this case study showed, the ESML constructs could play
a role as base constructs that scenario engineers can easily understand and extend. In other words, a
method engineer can efficiently include domain-specific knowledge by extending the pre-defined classes,
and the metamodeling of domain-specific classes can expand overall semantic space of the language. If
these processes are not supported at the method-level, the engineer might need to manually dismantle
other domain-specific languages and implement a new domain-specific tool from scratch. In summary,
ESML is a domain-independent language specifically designed to be extensible and adaptable, making
it suitable as a reference method for scenario development.

7 Discussion

Content and Construct Validity. Content validity refers to the extent to which a survey covers
a representative sample of the target domain it aims to measure, while construct validity pertains to
the legitimacy and accuracy of the survey in measuring what it claims to measure. In this study,
content validity was achieved by designing search keywords and queries specifically tailored to the
software and systems engineering domain that is highly relevant to scenario usage. However, due to
the impracticality of analyzing over 50,000 research results, the search was narrowed down to event-
based methods and target engineering activities such as analysis, design, simulation, and testing.

21OMiLab Community - Projects - Modeling Tools:
https://www.omilab.org/activities/projects/details/
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These activities were selected based on a preliminary investigation that identified the primary scenario-
utilizing practices, ensuring the collected data was representative of the overall contents.

To address construct validity, this study designed the research questions and survey process metic-
ulously. However, there are three elements that may impact this validity. Firstly, conducting a
comprehensive manual review and in-depth inspection of conceptual data for all 354 all FSPs was
impractical, resulting in random selection of 100 FSPs for questionnaire-based manual investigation.
Secondly, keyword-based searches were conducted on the textual descriptions of methodologies and
scenario development methods, which means data collection was limited to explicitly mentioned infor-
mation, potentially excluding implicitly included data. Thirdly, a manual inspection was performed
during the full-read step, although the use of a well-structured questionnaire and lookup tables based
on high-level variables helped minimize missing data and ensure consistency in data collection.

Internal and External Validity. Internal validity pertains to the extent to which causal rela-
tionships can be inferred based on the measures used, research settings, and overall research design.
External validity, on the other hand, refers to the generalizability of internally valid results to other
cases. In this study, internal validity was addressed by defining characteristics and concepts based on
the consolidation and classification of survey data (i.e., SVs), avoiding subjective definitions by the
authors. The selected papers were reviewed not only from a technical perspective but also considering
actual scenario instances. The SCF, which abstracts the entire collected dataset, is expected to encom-
pass equivalent or similar results from independent scenario investigations. Therefore, the concepts
defined in this study are grounded in the survey data, ensuring the internal validity.

Furthermore, the investigated scenario instances were not solely developed for academic purposes
but also for practical industrial use, including actual tests and simulations. As a result, the scenar-
ios developed based on the CSF and ESMM can be seen as incorporating real-world scenario data.
Domain-specific data can be mapped to higher-level abstract concepts in the SCF and ESMM classes
through a generalization step, and if necessary, domain-specific objects can be created. Thus the pro-
posed methods have external validity as they can be extended and applied to scenario development in
external real-world cases.

8 Conclusion

This study addresses the lack of a conceptual basis and a reference method for scenario development,
which has posed challenges for scenario engineers who lack well-established understanding and need
to develop their own scenario methods. To tackle this issue, this sutdy introduces CSF and ESMM as
a solution. Firstly, to establish a comprehensive understanding of scenarios and scenario methods, a
semi-systematic literature review was conducted to conceptualize SVs, which form the core concepts
of the CSF. Secondly, building upon the CSF, this study developed ESMM, which offers a graphical
modeling language called the ESML. By designing the constructs of ESMM/ESML in a domain-
independent manner, the proposed method provides scenario engineers with extensible semantics that
can be customized for domain-specific requirements. In the future, the proposed CSF and ESMM
will serve as a reference method for (a) method developers seeking to create domain-specific scenario
modeling languages suitable for their respective domain, and (b) modeling engineers aiming to specify
scenarios that accurately capture the characteristics of their scenarios using the provided scenario
language.
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A Semantic Mapping of ESML Constructs with Real-world
Scenario Instances

Table 10: Concept Mapping - Scenario Constructs: Cases 1-3
Category Abstract Classes Concrete Classes Case 01 Case 02 Case 03

ESML
Specification

ViewpointSpec ScenarioObject

HypothesisSpec TargetSpeed Comparison
(TestAssertionCriteria: EqualTo, LessThan)

Execution
Method

MaxExecutionCount, SimulationTimeCondition

ESML Element ScenarioSuite StoryboardElement
Scenario (Concurrent) Story
ScenarioUnit (Parallel) Act (Behavior),

ManeuverGroup (ManeuverSequence),
Maneuver

ESML
ElementIO

ElementParam
(Scenario-level)

ScenarioObjectParam

ElementParam
(ScenarioUnit
(Event)-level)

(ParameterDeclaration)
Value, Rule, Ref

ElementInput
Model

RoadNetwork
(LogicFile(Town),
SceneGraphFile),

Car Model
(vehicle.tesla.model3,

vehicle.lincoln.mkz 2017),
UserDefinedAction

RoadNetwork
(LogicFile(Town),
SceneGraphFile),

CarModel
(vehicle.volkswagen.t2),

Pedestrian Model
(walker.pedestrian.0001),

UserDefinedAction
ElementOutput

ESML
ElementContext

ElementContext
Condition
(Scenario Level)

RoadCondition,
StartTrigger (OverallStartCondition),

StopTrigger (EndCondition)
ElementContext
Condition
(ScenarioUnit
(Event) Level)

StoryboardElement
StateCondition,
ConditionGroup,
EntityCondition,
ValueCondition,

ParameterCondition,
TriggeringEntity (Rule),

TraveledDistanceCondition,
RelativeDistanceCondition

StoryboardElement
StateCondition,
ConditionGroup,
EntityCondition,
ValueCondition,

ParameterCondition,
TriggeringEntity (Rule),

TraveledDistanceCondition,
RelativeDistanceCondition,
ReachPositionCondition

ElementContext
Constraint

EventConstraint
(KeepsVelocity)

ESML
Statement

StmtOccurrence Event (GlobalAction,
EnvironmentAction, PrivateAction)

StmtBehavior Action and ActionDynamics,
ElementState,

VehicleAction/Maneuver (Same as WOI Action )
StmtTime StartTime, Delay
StmtLocation Position, Distance
StmtProbability ParameterProbabilityDistributions (e.g., Uniform, Normal)
StmtAssertion Rule

(e.g., LessThen)
StmtAssumption
StmtParameter ParameterDeclaration, ActionParameter

ESML
ExtArtifact

ModelData
Artifact

VehiclesCatalog,
ControllersCatalog,
ManeuversCatalog,
PedestriansCatalog,

RoutesCatalog

Scenario
Construct

ESML InterRef ScenarioObject (Actors),
ElementRef (EntityRef),

ParameterRef
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Table 11: Concept Mapping - WOI Constructs: Cases 1-3
Category Abstract Classes Concrete Classes Case 01 Case 02 Case 03

WOI
ContainerClass

WOI RoadNetwork
(LogicFile)

WOI Geographical
(Map)

RoadScene (External)

SystemGroup Catalogs (VehiclesCatalog,ControllersCatalog)
from ModelDataArtifact

Infrastructure RoadNetwork
Environment TimeOfDay,

Weather,
RoadCondition

WOI Type EntityType Actor,
VehicleCategory,

Vehicle (with VehicleCapability
(Acceleration/Deceleration/Speed))

VehicleCategory
Vehicle (with

VehicleCapability
(Acceleration/
Deceleration/

Speed)),
Pedestrian

DataType SunType (Elevation, Azimuth, Intensity),
Fog (VisualRange),

PrecipitationType (Intensity, PrecipitationType)
WOI Instance TypedEntity

Instance
EgoVehicle,

SimulationVehicle
EgoVehicle,
Pedestrian

EnvFactor
ObjectInstance

Weather, RoadCondition

WOI Event PredefEvent Event
(Adversary
Accelerates,
Adversary

ChangesLane)

Event
(LeadingKeeps

Velocity,
LeadingWaits)

Event
(PedestrianStops

AndWait,
AfterPedestrian

Walks)
WOI Variable DataVar VehicleCategory,

VehicleLocalProperty,
PerformanceVariable,

(Deceleration/Acceleration)
StateVar ControlValueStateActive

(Throttle,Brake,Clutch,ParkingBrake,SteeringWheel,Gear)
DimVar World Position (X, Y, Z, H),

DynamicsDimension
WOI Set StateSet

EventSet
VariableSet MiscObjectCatalog
InstanceSet Actors (ActorSet)
ActionSet EnvironmentAction,

ManeuverCatalog,
ManeuverGroup

WOI Domain VarDomain DynamicsShape
WOI Unit TmpUnit DateTime

SptUnit WorldPosition,
RoadPosition,

Lane
OtherUnit Speed,

Acceleration,
Mass,
Angle,

LightIntensity
WOI Action EntityAction ControllerAction,

Maneuver
(LongitudinalAction,

LateralAction),
TeleportAction

ControllerAction,
Maneuver (LongitudinalAction),

TeleportAction

WOI
Construct

CommAction/
Interaction

RelativePosition Reach
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Table 12: Concept Mapping - Scenario Constructs: Cases 4-5
Category Abstract Classes Concrete Classes Case 04 Case 05

ESML
Specification

ViewpointSpec ADS-Viewpoint

HypothesisSpec AutomatedVehiclePolicy
(ExpectedHazard, UnexpectedEvents,

CriticalDrivingManeuvers, EvaluationCriteria),
FailureMode

ESML Method Specification
Method
Execution
Method

TestEquipment, TestFacility,
ExecutionOfProcedure, Metrics

ESML Element ScenarioSuite ScenarioTotal
Scenario BaselineScenario Scenario
ScenarioUnit Maneuver

(with param, e.g., SV speed, location, POVs)
ESML
ElementIO

ElementParam
(Scenario-level)

GPS Location,
StartingPosition,
EndPosition,

ExpectedSDVParams,
OperationalParams

(Visibility, Sensing, Delay)

RoadwayTypes,
RoadwaySurfaces,

RoadwayConfiguration
(LaneWidth)

ElementParam
(ScenarioUnit
(Event)-level)

Latency,
ErrorRates

ActorParam (Speed)

ElementInput
Model

Operational Design Domain (ODD),
Map/Template

ElementOutput BehaviorCompetencyComparison,
MeasureOfObservation(Test)

ESML
ElementContext

ElementContext
Condition
(Scenario Level)

InitialCondition (Position,Speed,etc.),
BoundaryCondition/FailureCondition,

AmbientConditions,
TrafficCondition,

Weather-induced RoadwayCondition
ElementContext
Condition
(ScenarioUnit
(Event) Level)

InstantTrafficCondition,
DrivingCondition

ElementContext
Constraint

OperationalConstraints
(SpeedLimit, TrafficCondition),

LimitOfConditionBehaviorDomain,
ConstrainedResource

(+DomainConstraints, provided by ODD)
ESML
Statement

StmtOccurrence Event, Interaction Failure
(Expected)Event

(Crash, Collision),
Interaction, Detection

StmtBehavior Maneuver
(with ScenarioParams),

DynamicResponse
StmtTime Timeout Timezone,

Period (StartToEndTime)
StmtLocation Distance, Position
StmtProbability Probability
StmtAssertion
StmtAssumption
StmtParameter TestParameters

(TestingVariables,TestingCondition),
OperationalParams

ESML
ExtArtifact

ModelData
Artifact

Map/Template Digital Infrastructure
(GPS, Maps,
WeatherData,

InfrastructureData)

Scenario
Construct

ESML InterRef ODDElementRef
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Table 13: Concept Mapping - WOI Constructs: Cases 4-5
Category Abstract Classes Concrete Classes Case 04 Case 05

WOI
ContainerClass

WOI Intersection
(N Scottsdale Rd
E Thomas Rd)

Defined by ODD Elements
- Physical Infrastructure
- Operational Constraints

- Environmental Conditions
- Connectivity

- Zones
WOI Geographical
(Map)

RoadMap

SystemGroup RoadUserSystemGroup
Infrastructure RoadInfrastructure Physical Infrastructure, Signage

(Signs, TrafficSignals,
Crosswalks, etc.),InfrastructureSensors

Environment Weather
WOI Type EntityType RoadwayUsers (VehicleTypes, StoppedVehicles,

MovingVehicles, Pedestrians, Cyclists),
Non-roadwayUser (Obstacles/Objects)

DataType WeatherData,
InfrastructureData,

MapData
WOI Instance TypedEntity

Instance
All ODD Instances

EnvFactor
ObjectInstance

ODD Environmental Conditions

WOI Event PredefEvent
WOI Variable DataVar For all ODD Element Properties

StateVar TrafficSignState
DimVar Map Dimensions (3D)

WOI Set StateSet For all ODD Element States
EventSet VehicleEventInteractions,

PedestrianEventInteractions,
PedalcyclistEventInteractions,
AnimalEventInteractions,
DebrisEventInteractions,
DynamicObjectEvents,
TrafficSignsEvents,
TrafficSignalsEvents,
VehicleSignalEvents,

EmergencyVehicleEvents,
SchoolBusesEvents

VariableSet ODD Predefined Variables
InstanceSet RoadwayUserSet
ActionSet ManeuverActionSet

WOI Domain VarDomain RangeOfOperationalParams
WOI Unit TmpUnit Seconds

SptUnit Meters, Miles, Zone, Region/State
OtherUnit ODD-provided Speed, Temperature, Illumination

WOI Action EntityAction VehicleAction (BehaviorCapability),
TrafficSignAction

WOI
Construct

CommAction/
Interaction

ODD-Defined Connectivity
(V2V, Infra)
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Table 14: Concept Mapping - Scenario Constructs: Cases 6-8
Category Abstract Classes Concrete Classes Case 06 Case 07 Case 08

ESML
Specification

ViewpointSpec Birdeye-Viewpoint

HypothesisSpec RelativeSpeed
(Equal-to),

SafetyHazard
ESML Method Specification

Method
Abstraction Level

Execution
Method

ESML Element ScenarioSuite Case
Scenario Scene Graph Scenario ScenarioDescription

(Lv1,2)
ScenarioUnit Scene Situation

(models Scene)
DO (Phases)

ESML
ElementIO

ElementParam
(Scenario-level)

RoadType,
SightCondition,

Weather/
SightCondition

Number-of-Vehicles,
InitialStateVariables

WorldType,
RoadType,

CarriagewayHazard,
Ego

(with EgoPosition)
Vehicle,

VehiclePosition
ElementParam
(ScenarioUnit
(Event)-level)

ActionParam
(Speed, Distance)

Duration,
ActivityParams

ActionParam,
RelativeActionParam,

LocationParam
ElementInput
Model

RoadLayout VehicleModel
(PEPA),

Infrastructure
(PEPA),

Visiblity (PEPA)

RoadNetworkModel

ElementOutput
ESML
ElementContext

ElementContext
Condition
(Scenario Level)

TriggeringCondition InitialState,
WeatherCondition

RoadSurface
Condition,

WeatherCondition,
LightingCondition,

TerminationCondition
ElementContext
Condition
(ScenarioUnit
(Event) Level)

ActionCondition
(Vehicle/Driver)

INITIAL (EgoState),
WHEN

ElementContext
Constraint

SpeedLimit SpeedLimit

ESML
Statement

StmtOccurrence Event Situation DO-statements

StmtBehavior VehicleAction
(Same as

WOI Action )

VehicleAction
(Same as

WOI Action ),
Activity

Drive Towards,
Drive Away,

LaneChgLeft CutIn,
Stop Away,
Going Ahead

StmtTime ActionLength Length,
ScenarioLength,
InstanceTime
(e.g., Daytime)

StmtLocation Distance Direction, Position AbsolutePosition
StmtProbability Probability,

Steady-state
Probability,
Distribution

StmtAssertion
StmtAssumption
StmtParameter SpeedParameter

(min,max),
DistanceParameter

EntityFunction
Param,

ActivityParam,
WeatherParameter

DynamicElement
Param,

SceneryElement
Param,

EnvironmentElement
Param

ESML
ExtArtifact

ModelData
Artifact

SOTIF
(SafetyIntended
Functionality)

RoadNetworkModel,
Enums

Scenario
Construct

ESML InterRef ODDElementRef (Scene)Ontology
Reference

ODDElementRef
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Table 15: Concept Mapping - WOI Constructs: Cases 6-8
Category Abstract Classes Concrete Classes Case 06 Case 07 Case 08

WOI
ContainerClass

WOI Road Highway (RoadWay,
RoadPart, Symbol)

Junction,
Road

WOI Geographical
(Map)

RoadLayout
(RoadStructure)

Carriageway
(ThroughLane),

EntranceLane with
Shoulder (Soft/Hard)

RoadLaneConnection,
Junction, Zone,
Length, Lane

(Number, Width)
SystemGroup Traffic Jam

Chauffeur (TJC)
Infrastructure RoadPart (Toll,

Tunnel, Bridge),
Symbol, Line,
RoadwaySymbol

JunctionNetwork,
Map-Roads,

Connection Control,
RoadSign, TrafficLight,

RoadsideFeature
Environment Weather,

SightCondition
Weather (Lighting

(DayLight),
Temperature,
Humidity,

Pressure, Wind,
WindDirection,
Fog, Haze)

EnvironmentElement
(Environment with
Wind, Clouds,
Precipitation,

Visibility, Time,
Illumination,
Connectivity)

WOI Type EntityType EgoVehicle,
EnvVehicle

Autonomous
Vehicle (Ego),
MobileElement,
StaticElement

Agent/Object,
VehicleUnderTest

(VUT),
VehicleTarget (GVT)

DataType EntityPropertyType
(e.g., Lane, Symbol)

WOI Instance TypedEntity
Instance

EgoVehicle,
EnvVehicle

EgoVehicle Ego (Vehicle),
On-Road Vehicle
(EnvVehicle),
TrafficLight

EnvFactor
ObjectInstance

Instances of
Weather

Instances of
EnvironmentElement

WOI Event PredefEvent VehicleMerging
Event,

VehicleStrong
DecelerationEvent

RoadWorkEvent CarriagewayHazard

WOI Variable DataVar VehicleLocalProperty,
RoadVariable, JunctionVariable

StateVar State TrafficLight:
TrafficSign

ManeuverAngle,
Car-to-car rear

stationary (CCRs)
DimVar Length, Width Dimensions

(Width, Depth)
WOI Set StateSet VehicleActionState,

VehicleLightState
EventSet
VariableSet
InstanceSet Highway

ComponentSet
(e.g., RoadPartSet,

HighwaySet,
LaneSet, etc.)

ActionSet ActionSet JunctionControl
WOI Domain VarDomain MinMax Enumeration
WOI Unit TmpUnit Milli-Seconds,

Seconds
SptUnit Meters Lane, Section

(AccelerationSection,
Taper)

Zone,
AbsolutePosition

OtherUnit Speed Speed AbsoluteSpeed
WOI Action EntityAction VehicleAction

(Drive, Reach,
Continue, Merge,

Decelerate)

VehicleManeuver/
Action (Run,
Acceleration,
Deceleration,
GoLeftLane,

GoRightLane, Wait)

VehicleManeuver
(AbsoluteManeuvers

(Types) (Drive,
LaneChangeRight,etc.),
RelativeManeuvers

(Cut-in)),
Emergency Braking

WOI
Construct

CommAction/
Interaction

TurnOn
DirectionLight,
RadarDetection

Collide
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