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Abstract
We present a methodology for accessing the cation short-range ordering (SRO) in disordered
rocksalt (DRX) materials by decomposing their pair distribution function (PDF) pattern in terms
of a set of basis PDFs, pre-determined via Metropolis non-negative matrix factorisation analysis.
These basis PDFs, underpinned by structure modelling, point to specific SRO types that
subsequently enable identification and quantification of their presence in the DRX structure. Rapid
identification of the evolution of SRO addresses a key bottleneck in the analysis and understanding
of high energy density characteristics of DRX materials.

1. Introduction

Cation disordered rocksalt (DRX) materials represent a series of (typically) metal oxides that share the
rocksalt (NaCl) structure and contain more than one metal species distributed across the cation sublattice.
DRX materials have become increasingly important in the field of lithium-ion batteries, ever since a growing
number of Li-based transition metal (TM) DRX oxides (Li1+xM1−xO2), and their fluorinated derivatives
(Li1+xM1−xO2−yFy), have been reported to show remarkable performance in both cathode and anode
applications [1–4]. In many DRX materials, cation disorder is induced by mechanical forces via ball-milling,
or through rapid quenching [5]. Both approaches lead to metastable phases, distinct from the
thermodynamic phases, in which Li and TM species usually form ordered arrangements (e.g. layered
ordering in LiMO2).

While the distribution of cations in DRXs has conventionally been assumed random, a number of recent
experimental studies have now reported observations of cation short-range ordering (SRO) in DRX oxides
[6, 7]. The form of SRO is important from a functional perspective, since the (local) structure type, as well as
the degree of (dis)order, is now known to affect both Li+-ion mobility and diffusion percolation [8]. A clear
understanding of these materials’ short-range cation arrangement is therefore critical to rationalise their
electrochemical properties. However, the complex nature of disorder, reduced particle sizes and increased
lattice strain, collectively lead to tremendous challenges in the investigation of SRO.

Addressing these challenges not only requires experimental techniques that allow access to atomic
structures but now demands unconventional analytical approaches to determine realistic atomic-scale
models of the SRO consistent with experiment. One important established methodology is that of
cluster-expansion Monte Carlo (MC), which couples first-principles energy calculations of candidate SRO
models with large-scale atomistic simulations [7, 9, 10]. Cluster-expansion MC modelling does not extract
structural information directly from experiment, but can be used to test whether experimental signatures of
the SRO are consistent with calculations based on Boltzmann-weighted occupation of different SRO motifs.
The approach is not directly applicable to metastable phases. Likewise, the application of pair distribution
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function (PDF) modelling approaches (real-space Rietveld, reverse Monte Carlo) to ‘solve’ SRO from
experiment is time-consuming and often relies on access to a suitable starting model [11–13]. Consequently,
we were interested in the prospect of developing new methods [14] for estimating SRO in DRXs from their
PDFs, in a way that would allow rapid interpretation of data measured e.g. during electrochemical cycling.

The core of our methodology combines MC simulations and PDF calculations: both methods assess
material structure in terms of their interatomic (two-body) interactions. Using an MC approach, we
simulated a phase diagram of rocksalt-type A1+xB1−xO2 structures across a range of stoichiometries that are
of potential interest to the battery community. Each structure, containing different degrees and types of
SROs, can be used to calculate a corresponding PDF. These patterns jointly constitute a large collection of
PDFs that can be described in terms of a dramatically smaller set of basis PDFs via the numerical procedure
of Metropolis non-negative matrix factorisation (MMF) [15]. We show that these basis PDFs point to
specific SRO types and can be used to identify SRO in newly-measured PDF data for different DRX samples.

2. Results and discussion

For the purposes of this proof-of-principle study, we use an intentionally simplistic microscopic model
governing cation arrangements in DRXs: namely, the so-called J1-J2 model

H= J1
∑

⟨i,j⟩

eiej + J2
∑

⟨⟨i,j⟩⟩

eiej. (1)

Here, J1 > 0 captures the energy penalty associated with placing cations of the same type on
neighbouring sites on the fcc cation sublattice, and J2 (which may be positive or negative) captures the
energy loss/gain associated with next-nearest-neighbour cation pairs. The ei are Ising states denoting cation
occupancies (e.g.=+1 for Li,−1 for transition-metal), with the average ⟨e⟩ fixed by stoichiometry. The
Hamiltonian (equation (1)) is often frustrated, which gives rise to structural complexity across the J1/J2/⟨e⟩
phase diagram; the model has been applied to many different (pseudo)spin systems, from rocksalt
antiferro-magnets [16] to half-Heusler thermoelectrics [17].

Using an MC implementation of this model, we simulated many different A1+xB1–xO2 structures (see
Methods for details) corresponding to different relative (next-)nearest-neighbour interaction strengths J′

(=J2/J1), compositions ⟨e⟩ (=x), and effective MC temperatures T′ (=T/J1). The library of structures
composes a coherent phase diagram (figure 1(a)) where each voxel at (J′, x, T′) is correlated with an MC
energy given by equation (1). At the ideal ABO2 stoichiometry (x = 0), the phase diagram includes three
well-defined phase fields at low T′ and for various J′. As T′ decreases, a discontinuity in energies is evident,
denoting a disorder-to-order transition of the A-B arrangement. To isolate distinct A-B ordering types, we
incorporate the order parameters (Ψ) calculated against the propagation vectors of the different magnetic
structures previously identified in the fcc AB lattice (see Methods for details) [4]. For consistency with the
literature, we adopted the nomenclature of these antiferromagnetic (AF) structures to describe the cation
orderings in ABO2—hence denoted as AF-I, AF-II and AF-III (figures 1(b)–(d)), with their ground-state
structures respectively found in γ-LiTiO2 (I41/amd) [18], LiCoO2 (R-3m) [19] and γ-LiFeO2 (I41/amd)
[20]. According to the derived Ψ values, these ordering types distinguish themselves from the phase diagram
where AF-I, AF-II and AF-III structures (figures 1(f)–(h)) respectively locate within the J′ ranges of J′ < 0,
J′ > 0.5, and 0< J′ < 0.5.

An alternative spinel-type A-B ordering, known as AF-IIb (figure 1(e)), also emerges at J′ > 0.5 and has a
Ψ value twice that of AF-II. Its ground-state structure can be found in the low-temperature (LT) LiCoO2

(Fd-3m) [19] phase, where both A and B cations show a spinel-like arrangement, i.e. analogous to the
B-ordering in the spinel AB2O4 phase. We should note that whilst AF-II and AF-IIb orderings are associated
with distinct Ψ values, they correspond to identical (next-)nearest-neighbour pair correlations [16], and so
cannot be distinguished either in terms of the energies (equation (1)) nor in terms of the corresponding
(idealised) PDFs. This is a limitation of the simplistic J1-J2 model.

For the non-stoichiometric A1+xB1−xO2 phases, their structures can also be modelled via MC simulation
to study both Li-rich and -deficient metal oxides. Given the current interest in Li-excess materials for
electrochemical energy storage [8], we focus on the range 0< x ⩽ 2/3. The ground states of these
nonstoichiometric structures are related to the identified AF orderings in stoichiometric ABO2, especially at
low x. As x increases, and hence a higher A:B ratio, the MC energies of these structures rise progressively due
to a growing number of A-A neighbours.
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Figure 1. (a) The (J′, x, T′) phase space of A1+xB1−xO2 (0⩽ x ⩽ 2/3), where the x= 0 slice (indicated with dashed line)
highlights the (J′, T′) phase diagram of the stoichiometric ABO2 composition. MC energy is weighted by the number of AB sites.
Structure representations of the (b) AF-I, (c) AF-III, (d) AF-II, and (e) AF-IIb type antiferromagnetic orderings are also shown,
where A (spin up) and B (spin down) species are respectively denoted by white and blue atoms. Ψ maps calculated against
different magnetic vectors: (f) q ∈ 2π ⟨100⟩∗ for the AF-I ordering, (g) q ∈ 2π

⟨

0 1
2
1
⟩

∗

for the AF-III ordering, and (h)

q ∈ 2π ⟨ 1
2
1
2
1
2
⟩∗ for the AF-II and AF-IIb (red) orderings (see Methods for calculation details).

Collectively, this phase space represents a family of many different DRX cation arrangements with
varying types and degrees of SRO. The MC structures at every voxel (J′, x, T′) can be used to generate a
library of calculated PDF patterns G. Given that there are not so many different SRO types—certainly many
fewer than there are voxels—the next step in our approach is to decompose the many PDFs in G into a much
smaller set of fundamental (basis) PDFs. This set of basis PDFs, g, might then be used to identify and
quantify the SRO encrypted in the experimental PDF of any target DRX material.

The deconvolution procedure follows the MMF [15] approach through which the entire library of
calculated PDFs G is decomposed into a set of fundamental components g (figure 2(a)) and their
corresponding weightings w via Gi ≈

∑

ij wij · gj. A total of five basis gj were employed. Three of these were
fixed to the PDFs of the known ordered phases (AF-I, AF-II, AF-III), and the remaining two basis PDFs were
allowed to vary as required to best account for the variation observed in G. We use Roman (I–III) and Arabic
(4,5) numerals to denote fixed and free basis functions, respectively.

With respect to the weightings, whilst every row wi consists of five elements, the implicit MMF constraint
(
∑

j wij = 1) means there are in practice only four independent variables, which we represent using the
CMYK coordinate vector Ki. So whereas the phase map shown in figure 1(a) is coloured according to MC
energy, that in figure 2(a) is coloured according to the weights of each basis function contained within the
corresponding PDF. We see easily that the AF-I, AF-II, and AF-III phase domains light up with the colours of
the corresponding basis PDFs (cyan, magenta, and yellow). In the case of the g4 and g5 components, a
broader distribution is observed without an obvious J′ dependence. Judging by an increasingly darker hue
(larger K component) as the composition progressively approaches A2O2 (i.e. as x→ 1), the presence of g4

3
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Figure 2. (a) The basis PDFs: gI (cyan), gII (magenta), gIII (yellow), g4 (black) and g5 (grey) for the MMF analysis. (b) Phase space
coloured using the CMYK code (Ki) converted from the MMF-derived weighting row vectors (wi) where the voxels dominated by
gI (AF-I), gII (AF-II/IIb) and gIII (AF-III) are highlighted by their respective colours. Domains with a weighting of⩾0.35 of (c) g4
and (d) g5 are additionally extracted for a better view.

becomes more prominent and less dependent on T′ (figure 2(c)). We interpret this observation as implying
that g4 corresponds to the PDF of an ideal (single cation) rocksalt structure. In contrast, g5 is most prevalent
at high T′ and low x regions, implying its correlation with random A-B ordering in high-entropy structures,
e.g. α-LiFeO2. This high-entropy pattern shows relatively broadened peak widths with less distinct peaks,
particularly in the high r, indicating a lack of long-range order (or a higher degree of disorder). Additional
analysis incorporating five free gi components gave consistent results and is discussed further in the SI.

With every A1+xB1−xO2 structure (Gi) decrypted into a weighted set of SRO models (gj), we can use the
latter as structure identifiers to access the SRO in DRX materials by reverse mapping their structures onto the
phase space. To demonstrate this mapping, we use synthetic PDFs G∗(r) as experimental input. These
patterns were selected from the phase space, G∗ = G (J′, x, T′) since the corresponding structures and SRO
contained within are already known (figure 3(a)). Taking a representative combination of J′, x, T′ in phase
space, the corresponding PDF was projected onto the MMF basis PDFs gj, to give five weights which we
assemble into a weighting vector w∗ (G∗ =

∑

j w∗
j · gi). We then attempt to locate the PDF in J′, x, T′-space

by evaluating the agreement between G∗ and each voxel Gi in terms of the effective distance ϵi between their
weighting vectors

ϵi =

√

√

√

√

∑

j

(

w∗
j −wij

)2
. (2)

Voxels for which ϵi is less than some critical threshold ϵ0 then correspond to candidate values of J′, x, T′

relevant to G∗. Using a threshold ϵ0 = 0.006 (figures 3(b)–(d)), we found that nearly any synthetic PDF
could be located accurately in J′, x, T′-space, albeit that PDFs corresponding to low-T′ (strongly ordered)
voxels were less precisely placed (see e.g. the dark brown data in figure 3). The difficulty at low T′ arises
because ordered domains contain structures with essentially identical structures. Nevertheless, comparing
between the input data and the analysis output, the high consistency is remarkable, given that the mapping
between J′, x, T′ and basis PDF weights is highly nonlinear.

How do we envisage the method working in practice with experimental data? A measured PDF is
projected onto the MMF components to give the corresponding weight vector w∗ (figure 4). The most
relevant values of J′, x, T′ are then identified using the thresholding described above. These parameters
identify immediately the stoichiometry (x) and dominant SRO characteristics present in the sample; they can
also be used to generate representative MC configurations if so desired. In contrast to cluster expansion MC,
no knowledge of the underlying energetics is required, and the method can be used even when a system is far
from equilibrium. We anticipate this approach being particularly useful for the analysis of large datsets of

4
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Figure 3. (a) Selected structures whose PDF patterns were employed as input data for reverse mapping. The resulting voxels with
different threshold values (b) ϵ0 = 0.025, (c) ϵ0 = 0.015, and (d) ϵ0 = 0.006 (see table S1 for the voxel coordinates).

Figure 4.Methodology pipeline. The experimental PDF is projected onto the MMF components to obtain w∗. This allows for
identification of the closest voxel in J′, x, T′ space, from which a corresponding MC run would give an atomistic representation.

parameteric PDF measurements—as collected during electrochemical cycling, for example. In this way, one
might hope to track the trajectory of compositional and SRO changes through J′, x, T′ space as Li+ is
inserted/removed.

Using experimental data introduces some additional considerations. First, the generation of G—and
subsequently the MMF basis functions g—requires a set of pre-defined physical parameters, e.g. lattice
constants. Whilst these parameters have little influence on our interpretation of the MMF components, the
weightings derived from reverse mapping and consequently the values obtained for ϵI will be affected.
Therefore, a good estimation of these structure parameters via preliminary data handling (such as
refinement against an average DRX structure) is necessary to ensure the reliability of the protocol. Secondly,
the extent to which the weighting vector extracted from experimental data is represented in J′, x, T′-space is
not always clear. Hence, the threshold value ϵ0 may need to be adjusted for different systems. Our experience
is that whenever a slight adjustment of ϵ0 does not lead to a significant change of the number of voxels
mapped, the corresponding solution is probably credible.

A final point we make concerns the J1-J2 model we have exploited in this proof-of-principle study. We
make no claim that this model provides an accurate description of DRX structure; indeed we have discussed
already that it cannot distinguish AF-II and AF-IIb orderings. We are aware of ongoing studies that aim to
develop a more sophisticated understanding of microscopic interactions governing cation distributions in
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DRXs [10, 20, 21]. Whatever interaction model emerges, the methodology we set out here should
nevertheless provide an approach for identifying the model parameters most relevant to a given DRX sample
for which the corresponding PDF has been measured. A strength of interpreting PDFs in terms of underlying
interactions (we would argue) is that the solution suffers less from uniqueness problems, and yet can still be
used to develop atomistic models for comparison against additional experimental data, such as XRD, ED,
and NMR [22]. Moreover, although our methodology is established for A1+xB1−xO2 systems as a proof of
concept, it is straightforward to expand the method’s scope to address even more complex compositions,
such as those with both cation or anion disorder. Likewise, the approach might equally well be applied to
entirely different materials families, wherever the microscopic interactions governing structural complexity
can be couched in terms of a relatively simple Hamiltonian.

3. Conclusions

In summary, we have presented a proof-of-concept study based on a methodology that combines MC
simulations and PDF calculations to evaluate the cation SRO in DRX materials. The MC simulations allow
for the construction of an A1+xB1−xO2 phase space across a range of stoichiometries that are of interests to
the battery community. The structures in the phase space then constitute a library of calculated PDFs, against
which MMF method can be applied to decompose them into a set of basis PDFs, each pointing to a specific
cation SRO motif. Using these motifs as structure identifiers, we can access the SRO in DRX materials by
reverse mapping their structures via these basis PDFs onto the phase space. In contrast to the established
method via cluster expansion MC, our method does not require underlying energetics, and can be used in
systems that are far from equilibrium, which is often true within a battery. In addition, this method has a
potential to extend its application to more complex compositions that also involve anion SRO.

4. Methods

4.1. Monte Carlo simulation of A1+xB1–xO2 phase space
MC simulations [23] were performed on a supercell constructed using 6× 6× 6 A1+xB1−xO2 unit cell with
the periodic boundary conditions applied. The a-lattice parameter (4.099 Å) of the unit cell was estimated
from the least-square refinement using an α-LiFeO2 structure against the XPDF data of a DRX-Li2MnO2F
sample prepared by high-energy ball milling. The A:B ratio was defined by x, and their distribution in the
cation sublattice is randomly initialised. A series of MC simulations were performed across a defined range of
compositions (0⩽ x ⩽ 2/3), relative interaction strengths (−2⩽ J′ ⩽ 2), and effective MC temperatures
(0.01⩽ T′ ⩽ 100). The MC energy was calculated on the basis of equation (1) whereas eA =+1 and eB =−1.
At each MC step, a randomly selected A (or B) atom was swapped with another randomly selected B (or A)
atom. The energy change (∆E) due to the move was calculated. The move was automatically accepted if
∆E ⩽ 0; for a positive energy change, the acceptance was subject to the Metropolis algorithm [23] given by
P = e(–∆E/kT′), where k is the Boltzmann constant and T′ is the effective MC temperature. Moves were
continuously proposed, and accepted or rejected until either the number of accepted moves is greater than 5
times total number of atoms or the total number of attempted moves is greater than 25 times of total number
of atoms. For a given composition and effective interaction strength, MC simulations were started at an
effective temperature T′ = 100 and, after equilibration, cooled at a constant rate of 0.8. The same cooling rate
was used for all subsequent cycles such that the relevant T′ values are regularly spaced in log(T′).

4.2. Isolation of the ordered phases and order parameter calculation
The ordered ground-state phases of the ABO2 system have been studied previously [16, 24] with their
corresponding fcc representations shown in figure 5. Each ordering type has a set of corresponding
symmetry-equivalent compositional variation propagation vectors, q, which are in reciprocal space. They
however reflect a real space conjugational periodicity, analogous to the magnetic propagation vectors, k.
Similar to the single and multi k structures described in magnetic structures [4, 25], these ordered systems
can be described by either individual or multiple q. For the ground state where J′ < 0, referred to as the AF-1
(type-I antiferromagnetic/AF ordering), the ground state MC energy (in units of J1) per unit site is
E0 = 2+ 3J2. It consists of three magnetic lattices whose vectors belong to q ∈ 2π⟨100⟩∗ with ferromagnetic
(100) planes coupled antiferromagnetically (figure 5(a)). For 0< J′ < 0.5, type-III AF ordering dominates
(figure 5(b)). This ordering is characterised by two q ∈ 2π

〈

0 1
21
〉∗
, with E0 =−2+ J2. For 0.5< J′, the
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Figure 5. Equivalent fcc representations of the four ordered structures, with Ising spin representations shown on the left and the
corresponding atomic configuration representations shown on the right (O atoms omitted). (a) Type-I AF ordering, q= 2π [001]
shown. (b) Type-III AF ordering, two of q ∈ 2π ⟨0 1

2
1⟩∗ shown. (c) Type-II AF ordering, q= 2π

[

1
2
1
2
1
2

]

shown. And (d) type-IIb

AF ordering, four of q ∈ 2π ⟨ 1
2
1
2
1
2
⟩∗ shown.

ground state is in competition between the classical layered type-II and the spinel-like (i.e. B-ordering in
spinel AB2O4) type-IIb AF orderings (shown in figures 5(c) and (d), respectively). Similar to AF-I, AF-II is
also characterised by a single q ∈ 2π

〈

1
2
1
2
1
2

〉∗
, whereas AF-IIb has an equal fraction of each q ∈ 2π

〈

1
2
1
2
1
2

〉∗
,

both have a degenerate ground state of E0 =−3J2. Even though the magnetic ordering lies along the [111]
direction, a factor of 1/2 is in the propagation vectors as the periodicity takes two fcc cells to repeat. The
degeneracy of the AF-II and AF-IIb types has been found to be extremely robust and hence both states are
expected to be observed in the MC simulation, explaining why the plot in figure 1(h) is streaked.

For any given J′, T′, an MC structure can be generated and its order parameter ψ (qk) for each q-type can
be calculated using the following equation

ψ (qk) =

∣

∣

∣

∣

∣

∣

1

N

∑

j

ejexp
(

iqk · rj
)

∣

∣

∣

∣

∣

∣

, (3)

where N is the total number of lattice sites, ej represents the value of the spin at site j and rj is the position of
spin j within the lattice. A summation of these ψ (qk) will derive the order parameter of the system:

Ψ =
∑

k

ψ (qk) . (4)

4.3. MMF
The MMF approach followed closely the method reported earlier [15], which interfaces a MC algorithm with
conventional NMF [26]. The MMF analysis was performed on renormalised PDFs to satisfy the non-negative
criterion of NMF. The renormalised G(r) were derived from the calculated Gcalc (r) using equation [27]
Gcalc (r) = 4π rρ0 (G(r)− 1), in which ρ0 refers to the number density of the structure model. The structure
parameters used in the PDF calculation (e.g. lattice constant and Uiso) took reference from the XPDF
refinement of the DRX-Li2MnO2F sample. Five fundamental components gi (r) (i= 5) were employed in the
analysis. The goal of the analysis was to identify these gi (r) and associated weights wij (j corresponds to the

number of renormalised calculated Gj (r)) to minimise |G*
j (r)−Gj (r)|2, where G

*
j (r) =

∑5
i = 1wijgi (r).

Additional constraints were applied to ensure non-negative gi (r) for all i and r, and that
∑5

i = 1wij = 1 for all j.
In our first analysis, the initial g1(r), g2(r) and g3(r) were calculated using the AF-I, -II and -III type

ground-state structures, respectively, representing the known components, whereas the unknown g4(r) and
g5(r) and all wij were assigned randomly subject to the various constraints listed above. Each iteration
involved random variation of these parameters, followed by the calculation of the change in
|G*

j (r)−Gj (r)|2. The acceptance or rejection of the variation follows MC algorithm. The variation was
repeated under increasingly stringent acceptance criteria using simulated annealing until convergence was
achieved. To verify if the result, a second analysis employing all free gi (r) was also attempted. The result
shows well defined phase domains that are highly consistent with the first attempt (figure 6).
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Figure 6. CMYK-coded J′, x, T′-phase space of A1+xB1−xO2 (0⩽ x ⩽ 2/3) produced using (a) three fixed (known) and two free
gi (r) and (b) five free gi (r). Both plots use the same CMYK-codes. (c) Comparison of the MMF-derived components between 3
fixed+ 2 free gi (r) (coloured solid lines) and 5 free gi (r) (dashed red lines).
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available upon reasonable request from the authors.
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