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The inference of reliable and meaningful connectivity information from weights representing the affinity

between nodes in a graph is an outstanding problem in network science. Usually, this is achieved by

simply thresholding the edge weights to distinguish true links from false ones and to obtain a sparse set of

connections. Tools developed in statistical mechanics have provided particularly effective ways to locate

the optimal threshold so as to preserve the statistical properties of the network structure. Thermodynamic

analogies together with statistical mechanical ensembles have been proven to be useful in analysing edge-

weighted networks. To extend this work, in this paper, we use a statistical mechanical model to describe

the probability distribution for edge weights. This models the distribution of edge weights using a mixture

of Gamma distributions. Using a two-component Gamma mixture model with components describing the

edge and non-edge weight distributions, we use the Expectation-Maximization algorithm to estimate the

corresponding Gamma distribution parameters and mixing proportions. This gives the optimal threshold

to convert weighted networks to sets of binary-valued connections. Numerical analysis shows that it

provides a new way to describe the edge weight probability. Furthermore, using a physical analogy in

which the weights are the energies of molecules in a solid, the probability density function for nodes is

identical to the degree distribution resulting from a uniform weight on edges. This provides an alternative

way to study the degree distribution with the nodal probability function in unweighted networks. We

observe a phase transition in the low-temperature region, corresponding to a structural transition caused

by applying the threshold. Experimental results on real-world weighted and unweighted networks reveal

an improved performance for inferring binary edge connections from edge weights.

Keywords: structural inference, edge weights distribution, statistical mechanical model.
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1. Introduction

Most systems of interacting objects can be represented as networks and their study has attracted intense

interest in analysing topological patterns. This usually involves aggregating structural or functional

connections into an unweighted or weighted adjacency matrix in complex networks [1]. Much of the

literature focuses on the statistical nature of structural patterns for unweighted networks, such as the

power-law degree distribution for preferential attachment [2, 3]. Rather than representing an unweighted

network as a set of binary connections, most real-world data sets contain fine-grained information for

the strength of connections between each pair of vertices [4–6]. This is usually represented as a set of

© The author 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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edge weights, but this rarely considers statistical properties, such as the detailed weight distribution, in

network structure.

Recently, there have been an increasing number of studies that commence by using the represen-

tation of real-world data as weighted networks and performing inference to transform them into a set

of binary connections [7]. This provides the probabilistic estimation of the binary states (0 or 1) in the

node adjacency matrix. In this form, it is particularly useful in brain imaging to remove inconsistent or

weak connectivity in neuro-anatomical brain regions or drug design using protein-to-protein interaction

networks. In both examples this is achieved by thresholding the given weight matrices to give a set

of binary elements [8, 9]. This raises the controversial question concerning the optimal way to esti-

mate or infer the underlying binary structure from weighted networks without losing potentially useful

information [10].

One simple method for converting the edge weights into conventional binary connections is by

thresholding with a fixed global value [11]. This weight-based method identifies those edges that exceed

a certain constant edge weight value. The networks generated in this way usually have a variable number

of edges, resulting in variations in the density of binary adjacency matrix elements [12]. An alternative

way of thresholding is to retain a constant fraction of the strongest connections. This is a density-based

thresholding method with a fixed number of edge connections. However, thresholding in this way can

mask subtle variations in network topology, with a resulting loss of information conveyed by the patterns

of edge density in individual networks. [5].

While these two different thresholding strategies can certainly reveal the underlying network struc-

ture, they have some limitations that highlight an important dilemma. The variations in the number

of edges or edge density can affect the network topology but this poses problems when transforming

weighted networks into binary connections [13]. A possible alternative is to retain the structural connec-

tions using statistical inference [14, 15]. Both unweighted and weighted networks are highly correlated

structures. Both of them contain component edges and nodes, and the distribution of nodal degree com-

bined with the distribution of edge weights can be used to represent topological patterns in the networks

[7].

Although it is well-known that scale-free networks present a power-law node degree distribution,

for scale-free networks, their statistical characterisation remains less certain. A recent study reveals

that the power-law only fits well in the tail with an exponential cutoff [2]. This suggests a way to

convert weighted networks to binary edge indicators. Provided with a suitable delineation of the two

distributions, edges can be separated from non-edges via a simple thresholding strategy, thus reducing

the redundancy in a heavy-tailed distribution [16].

To improve the performance of the thresholding of weighted networks to binary connections, the

work described in this paper aims to establish an effective statistical method for describing the proba-

bility density function of nodes in weighted networks. We introduce a new way to calculate the degree

distribution in terms of edge weights using an analogy in which the network nodes are particles in a

solid [17]. The resulting distribution of edge weights can be approximated as a Gamma probability

density function. This can be further represented as a mixture of two separate Gamma distributions for

the edge and non-edge states, and their distribution parameters together with their mixing proportions

can be estimated using the Expectation-Maximization algorithm. Using this method, we can find the

optimal value of the threshold for edge weights in a network. This gives a statistical structural inference

procedure for converting a weighted network to a binary adjacency matrix.
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2. Related Work

Thresholding. There is a rich literature on applying a threshold to the weighted network to distin-

guish real connections from spurious ones. To remove inconsistent or weak interactions, we assume

that edges exist when the value of the weight exceeds a certain threshold which generates matrices with

binary elements. Usually, there are two practical approaches to finding the optimal threshold. One

method depends on the value of edge weights. It seeks a constant value to construct a variable number

of edges in the network [18, 19]. An alternative method for thresholding is to retain a constant fraction

of the strongest connections. This produces a fixed number of edges in the networks [20]. Instead of

using these two global thresholding, some methods introduce local thresholding to avoid the problem of

network fragmentation caused by a fixed value of the threshold. This computes thresholds locally at the

node level, rather than over the entire network [21]. However, local thresholding can also create non-

trivial topological structural artefacts which remains a problem in the identification of reliable network

connections. Additional tools, such as integration over a range of thresholds have been introduced to

avoid the arbitrariness in the choice of threshold [22, 23].

Statistical Inference. There are three main approaches to the statistical analysis of network mea-

sures, a) omnibus testing, b) mass univariate testing and c) multivariate approaches. Omnibus testing is

the simplest way to infer the network structure. This involves inference on one or more of the global

topological measures, such as the average path length and the mean clustering coefficients [24]. The

method applies standard statistical tests to detect the network structure with the desired characteris-

tics. For example, permutation tests use the observed network structure to estimate the null distribution

empirically, which provides a route to statistical inference where the real distribution of clustering coef-

ficients is unknown [25]. Cantwell et al. propose a model for correlated relational data and explore the

properties of the network ensemble by thresholding edge weights [12]. This is a simple way to obtain

insights into global network properties but lacks specificity and is confined to a specific subset of nodes

or edges.

Mass univariate testing provides a localization based on specific nodes or edges and goes beyond

the use of global metrics. It applies a particular statistical test, such as a t-test, independently across

a large number of nodes or connections. Usually, it focuses on a subset of connections or nodes and

then performs inference on a specific node-specific measure [26]. When used to determine connections,

it often tests connectivity for variations, such as edge weights or betweenness centrality. For example,

Martin et al. propose a principled maximum-likelihood method for inferring community structure. They

estimate the structure of the network from uncertain edge connections [14]. Mass univariate testing

yields a statistical test to reject the null hypothesis at the level of individual nodes, connections or

subnetworks. It allows inference based on local connectome elements or subnetworks [27].

Finally, multivariate approaches are usually combined with machine learning methods for statistical

inference. They seek to recognize and learn the statistical structural patterns among multiple connections

and utilize these patterns for inferential classification or prediction [28]. This includes a broad range of

algorithms in pattern recognition, machine learning and deep learning [29]. For example, graph neural

networks are proposed to learn both global topological structure and the local connectivity structure

within a network [30]. Other algorithms, such as support vector machines, principal component analysis,

or entropic models are also commonly used to perform statistical inference of network structure [31, 32].

3. Statistical Description of Weighted Networks

Let a weighted network G(V,E,ω) with node set V and edge set E ⊆V ×V . The symbol ω is the edge

weight which means the pair of nodes (u,v) contains a real non-negative value w(u,v) for each edge,
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i.e., u ∈V,v ∈V , and u ̸= v.

The adjacency matrix of a graph is A with the degree of node u is du =∑v∈V Auv. Then, the Laplacian

matrix is L =D−A, where D denotes the degree diagonal matrix whose elements are given by D(u,u) =
du and zeros elsewhere.

Aw =

{

w(u,v) if (u,v) ∈ E

0 otherwise.
(3.1)

where, for the undirected network, the weighted adjacency is symmetric, i.e., w(u,v) = w(v,u) for all

pairs of nodes that (u,v) ∈ E,u ̸= v.

We first define the total energy in this network as the summation of all edge weights,

U =
|E|

∑
i=1

ωi = w|E| (3.2)

This takes on an integer value if we assume all edge weights are unity, where w = 1 .

To compute the corresponding network entropy, we need to determine the number combinations in

choosing |E| edges among the available |E|+ |V |− 1 possibilities [1]. This gives the entropy in terms

of a combinatorial expression involving factorials as,

W (U,V ) =
(U + |V |−1)!

U!(|V |−1)!
(3.3)

For large networks, the entropy can be further simplified using Stirling’s approximation logn! ≈
n logn−n with the logarithm of W (U,V ). It gives

S = kB lnW (3.4)

= kB log[(U + |V |−1)!]− log(U!)− log[(|V |−1)!]

≈ kB[(U + |V |−1) log(U + |V |−1)−U logU − (|V |−1) log(|V |−1)]

where kB is the Boltzmann constant. To simplify the calculation, we set the Boltzmann constant to unity.

Finally, we compute the partial derivative of the entropy to energy at fixed the number of nodes in

the graph. This derives the parameter β , which is called the inverse temperature. This is related to the

rate of change of energy for entropy in the network.

β =

(

∂S

∂U

)

|V |

=
1

w
log

U + |V |−1

U
(3.5)

where w is the edge weight variable.

The inverse temperature β = 1/T defined above implies that the temperature T is proportional to

the edge density in the network.

Here, the description of the continuous distribution in edge weights is given by a function g(ω)
which is the density of edge weights. The edge weight in the infinitesimal interval between ω and

ω +dω is given by g(ω)dω and the total number of edge weights is

∫

g(ω)dω =U (3.6)
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Eq.(3.2) defines the total energy to be the summation of edge weights. Here, for each edge, the

weight is distributed over the two dimensions defined by the constituent node degrees of the edge. This

can be extended to a more general case of the directed network with the in-degree and out-degree of the

nodes.

As the nodal degree variables can be represented by a point on a two-dimensional degree-space,

and these points are discrete and uniformly distributed in in-degree and out-degree dimensions. Each

dimension is quantised by increments of unit degree. Single nodal degree-vectors whose magnitude lies

between k and k+ dk lies in one quadrant of a cycle with a radius k and thickness dk. This quadrant

degree-space only allows positive degree values.

Commencing from the degree distribution, we can replace the sum over two component edge degree

vectors in Eq.(3.2) with an integral over the volume element dk. In this way, the discrete summation can

be rewritten as an integral as

∑
k

(· · ·) =
1

4

∫ ∞

0
2πk(· · ·)dk (3.7)

The number of nodes with a degree vector whose magnitude lies between k and k + dk can be

described by the function g(k)dk. This gives the degree density per node as the area in the degree-space

of one quadrant of a cycle surface divided by the total area in degree-space which can be occupied nodal

degree vectors, i.e.

g(k)dk =
|V |2

(2π)2
·2πk ·dk×2 =

|V |2k

π
dk (3.8)

where |V |2 is the number of potential edges in the network, and the factor 2 represents the two possible

edge dimensions.

The edge weight variable is related to the nodal degree multiplied by a unit of degree increment ε ,

i.e. ω = εk. Substituting into Eq.(3.8), this gives the density of weights for each node as

g(ω)dω =
|V |2

πε2
ωdω (3.9)

From statistical mechanics, we use the partition function to derive thermal quantities [33] for the

network. Here, the logarithm of the partition function is given according to the density of weights as

follows,

logZ =
∫ ωT

0
g(ω)dω log

[

1

1− e−βw

]

=−
∫ ωT

0
g(ω)dω log

[

1− e−βw
]

(3.10)

where ωT is the upper limit boundary for the edge weights. The details will discussed later in Section 6.

Then, the average energy in a network is the partial derivative of the partition function to the inverse

temperature,

Ū =−
∂ logZ

∂β
=
∫ ωT

0
g(ω)dω ·

ω

eβω −1
=

S

πε2

∫ ωT

0

ω2

eβω −1
dω (3.11)

The probability distribution of edge weights is given as

p(ω) =
ω2

eβω −1
(3.12)
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This probability density function is given in closed form by a Gamma distribution. It can be fur-

ther approximated as the combination of Gamma functions. To convert the weighted network to an

unweighted one, we assume there are two separate Gamma distribution functions that decompose this

expression into edge and non-edge components. This mixture of Gamma distributions provides a route

to computing the optimal value of the edge weight threshold [34].

Let ω = {ωi},1 ⩽ i ⩽ N be a set of edge weights in a network. These weights are regarded as inde-

pendent and identical distribution random variables [31]. Eq.(3.12) considers that binary combinations

of Gamma distribution as the mixture

p(ωi | α,β ) =
j=1

∑
j=0

π jGW (ωi | α j,β j) (3.13)

where π j is the probability of the separate Gamma distribution. The condition
j=1

∑
j=1

π j = 1 must hold to

guarantee that p(ωi | α,β ) is a well-defined probability distribution. α j and β j are the parameters of the

component Gamma distributions. Thus, GW (.) i..e the Gamma probability density function is given as

GW (ω | α,β ) =
ωα−1

β αΓ (α)
e−(ω/β ),ω ⩾ 0,α,β > 0 (3.14)

where Γ (α) is the Euler Gamma function that is Γ (α) =
∞
∫

0

xα−1e−xdx, for α ⩾ 0.

Then, the joint distribution of edge weights is

p(W |Θ) =
|E|

∏
i=1

p(ωi | α,β ) (3.15)

These Gamma distribution parameters α,β can be estimated using the Expectation-Maximisation algo-

rithm to find their optimal values [35].

4. Optimal Threshold using the EM Algorithm in Gamma Mixture Distribution

The application of the EM algorithm for the inference of probability distributions and their parameters

is an effective and widely used tool [34–36]. To complete our deviation, we briefly describe the process

to estimate α and β in the Gamma distribution and to find the optimal threshold to convert an edge

weight matrix into binary connections.

E-Step: We use α(n),β (n) to represent the estimate of the parameters in the nth iteration of the EM

algorithm. The expectation step calculates the expected value of the log-likelihood with respect to the

hidden random variable Y ,

Q

(

α,β | α(n),β (n),W
)

= E
Y |α(n),β (n),W{L (α,β | W,Y)}

=
|E|

∑
i=1

j=1

∑
j=0

p
(

Yi = j | ωi,α
(n),β (n)

)

(log p(ωi | α j,β j)+ logπ j)
(4.1)

where p(Yi = j | α,β ) is the probability of ωi to belong to the class j at the nth iteration. This can be
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derived from the Bayes rule as

p
(

Yi = j | ωi,α
(n),β (n)

)

=
p
(

ωi | α
(n)
j ,β

(n)
j

)

p
(

Yi = j | α
(n)
j ,β

(n)
j

)

GW

(

ωi | α
(n)
j ,β

(n)
j

) (4.2)

where the numerator is given Eq.(3.13),

j=1

∑
j=0

p
(

ωi | α
(n)
j ,β

(n)
j

)

p
(

Yi = j | α
(n)
j ,β

(n)
j

)

=
j=1

∑
j=0

π jGW (ωi | α
(n)
j ,β

(n)
j ) (4.3)

Then the maximization step can be decomposed as two independent steps for each term in Eq.(4.1).

The first term depends on π j with the probability constraint that
j=1

∑
j=0

π j = 1. This is the likelihood term

with π j, and we use the method of Lagrange Multipliers to find the optimal solution [36].

M-Step 1: The derived function with the probability constraint in terms of the Lagrange multiplier

λ is given by

L (π,λ ) =
|E|

∑
i=1

j=1

∑
j=0

p(Yi = j | ωi,α
(n),β (n)) logπ j +λ

(

i=1

∑
j=0

π j −1

)

(4.4)

By calculating the derivatives with respect to π j and λ respectively, and letting them equal to 0, we

find the estimated value of π̂ j to be the solution of the Lagrange multiplier.

π̂ j =
1

|E|

|E|

∑
i=1

p(Yi = j | α,β ) (4.5)

Next, we can maximize the log-likelihood in Eq.(4.1) which depends on α j,β j.

M-Step 2: To estimate β j we first set the partial derivative of the log-likelihood for β j to zero

∂

∂β j

{

|E|

∑
i=1

j=1

∑
j=0

p
(

Yi = j | α
(n)
j ,β

(n)
j

)

log p(ωi | α j,β j)

}

= 0 (4.6)

where the log-likelihood of Gamma distribution in p(ωi | α j,β j) is

log p(ωi | α j,β j) = (α j −1) logωi −
ωi

β j

−α j log(β j)− log(Γ (α j)) (4.7)

This gives the optimal solution for parameter β j

β j =
1

α j

∑
|E|
i=1 ξi, jωi

∑
|E|
i=1 ξi, j

(4.8)

where ξi, j = p
(

Yi = j | α
(n)
j ,β

(n)
j

)

is the short notation.

Similarly to estimate α j, we substitute Eq.(4.8) into Eq.(4.1) and set the resulting partial derivative

to zero
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∂

∂α j

{

|E|

∑
i=0

j=1

∑
j=0

ξi, j log p

(

ωi | α j,
1

α j

∑
|E|
i=1 ξi, jωi

∑
N
i=1 ξi, j

)}

= 0. (4.9)

This gives the result,

|E|

∑
i=1

ξi, j log(ωi)−
|E|

∑
i=1

ξi, j log

(

∑
N
k=1 ξk, jωk

∑
|E|
k=1 ξk, j

)

+
|E|

∑
i=1

ξi, j log(α j)−
|E|

∑
i=1

ξi, jψ (α j) = 0, (4.10)

where ψ (x) is the Digamma function defined as Γ ′(x)/Γ (x).
Then, the corresponding solution for the optimal value of α j is

log(α j)−ψ (α j) = log

(

∑
|E|
i ξi, jωi

∑
|E|
i ξi, j

)

−
∑
|E|
i ξi, j logωi

∑
|E|
i ξi, j

(4.11)

We can use an iterative numerical method to estimate the optional solution of α̂ j in Eq.(4.11), and

the estimate of β̂ j from Eq.(4.8). An alternative is to note that

log(α j)−ψ (α j) = logE[ωi]−E[logωi] (4.12)

Making the approximation

logαi −
Γ ′(αi)

Γ (αi)
≃

1

αi

which applies when α is small, we find that

αi ≃
1

logE[ωi]−E[logωi]
(4.13)

as an approximate non-iterative solution to Eq.(4.11).

Using the estimated parameters from the EM algorithm, we can find the Gamma distribution mix-

ture. This can generate the boundary solution for the threshold by solving the following equation

E[GW (ω∗ | α,β )] = GW (ω | α̂1, β̂1)−GW (ω | α̂2, β̂2) (4.14)

This gives us the value of the threshold ω∗ to convert the weighted network to an adjacency matrix.

5. Statistical Mechanics for Unweighted Network

For an unweighted network, each edge has a unit weight. The corresponding node degrees are analogous

to the discrete energy states. The energy for each node is proportional to the nodal degree, that is

ωu = ωk (5.1)

where ωu is the energy per node which is identical to the node weight; and ω = 1 for an unweighted

network. k is the degree per node; and k ∈ Z which is a positive integer or zero and equal to the number

of edges connecting to the node u. Thus, the occupation number of the energy states depends on the

degree of the nodes connected by edges.
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In the Boltzmann statistics, the nodes in the network are mapped to the particles in the thermal sys-

tem. The probability distribution for individual nodes at the energy state can be given by the exponential

function

Pu =
1

Z
e−βωu (5.2)

where Z is the partition function following the constrain of energy conservation

Z =
|V |

∑
u=0

e−βωu (5.3)

The average energy then can be derived from the corresponding partition function

Ū =−
1

Z

∂Z

∂β
=−

∂ logZ

∂β
(5.4)

This provides a framework to describe a network in the statistical ensemble with the thermal quan-

tities, such as partition function and energy.

The derived temperature in Eq.(3.5) can also be extended to the networks, so that the thermodynamic

partition function in Eq.(5.3) can be represented as a serial expansion

Z =
|V |

∑
u=0

e−βωu =
1− e−|V |βω

1− e−βω
≈

1

1− e−βω
(5.5)

From Eq.(5.2), the probability of each node at a given energy state depends on the nodal degree

P(du = k) =
1

Z
e−βωu =

(

1− e−βω
)

e−βωk (5.6)

From Eq.(5.4), the corresponding energy related to the degree is given by

Ū =
∫ ωT

0

|V |2ω

π
·

k2

eβωk −1
dk =

∫ ωT

0
P(β ,k)dk (5.7)

Therefore, the probability of each node given the degree k and temperature β is

P(β ,k) =
|V |2ω

π
·

k2

eβωk −1
=

|V |2

2π|E|
·

k2

eβωk −1
(5.8)

where U = 2|E|ω . This describes the degree distribution in weighted networks not only relates to the

nodal degree but also depends on the global parameter temperature as well.

6. Boundary and Temperature Limits

Because there is a limit on the total number of edges, we will now assume that the weight of nodes is

possible up to a maximum boundary ωT . This is defined by

∫ ωT

0
g(ω)dω = 2|E| (6.1)
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which, using Eq.(3.9), implies that

ωT =

(

4π
|E|

|V |2

)1/2

ω (6.2)

This allows us to rewrite Eq.(3.9) as

g(ω)dω =
4|E|ω

ω2
T

dω (6.3)

Now we substitute Eq.(6.3) into Eq.(3.10) to get the logarithm of the partition function as

logZ =−
4|E|

ω2
T

∫ ωT

0
ω log

[

1− e−βw
]

dω (6.4)

According to Eq.(5.4), the average energy can be found that

Ū =
4|E|

ω2
T

∫ ωT

0

ω2

eβw −1
dω =

4|E|

ω2
T β 3

∫

xT
β

0

x2

ex −1
dx (6.5)

where x = βω = βωk. This equation is quite complicated and not obvious to see what the temperature

dependence of average energy will be. This is because the exponential term is both degree and temper-

ature dependent and the integral is degree dependent. But we can analyse the temperature limits for this

equation.

High-temperature Limit: At high temperature, β → 0 and hence ex → 1+ x. Hence, the average

energy Ū behaves as

Ū →
|V |2

πω2β 3

∫ ωk

0
xdx =

|V |2

2π
·

k2

β
(6.6)

The corresponding nodal probability in Eq.(5.8) is

P(β ,k) =
|V |2

2π|E|
·

k

β
∼ kβ−1 (6.7)

Low-temperature Limit: At low temperature, β → ∞ and hence ex ≫ 1. The average energy is given

by

Ū →
|V |2

πω2β 3

∫ ∞

0

x2

ex
dx =

|V |2

πω2β 3
IB(2) (6.8)

where IB(2) = ζ (3)Γ (3) is the Bose integral, which is the constant that ζ (3) is Riemann zeta function

and Γ (3) is the gamma function.

Then, the corresponding probability of node in Eq.(5.8) is

P(β ,k) =
C

ω2β 3
·

(

−
1

k2
T

)

∼ k−2
T β−3 (6.9)

where C = |V |2IB(2)/π is the constant, and kT = ωT/ω .
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7. Experiments

7.1 Datasets

To analyse real-world data, we use both weighted and unweighted networks. Each kind of network

contains four examples. For weighted networks, we study four specific examples, namely, a) airports in

the United States (USAir)[37], b) Mammalia Hyena Network (MHN) [38], c) Condensed Matter Col-

laborations (CMC) [39], and d) Facebook-like Forum Network (FFN) [25]. For unweighted networks,

the data comes from the complex networks in KONECT. These are the arXiv hep-ph network [40],

the Facebook friendships network[41], the Google Orkut network [42] and Livemocha online language

learning networks [43].

To provide a set of networks for our parameter clustering experiments, we use the data from synthetic

and real-world networks. The synthetic groups of networks are generated from the typical network

models containing Erdös-Rényi random graphs, Watts-Strogatz small-world networks [44], and Scale-

free networks [2]. For the real-world data, we use the tumour mutation networks [45] and fMRI brain

networks [46]. Each data contains a weighted network structure with different groups of patients.

7.1.1 Weighted Network Datasets

USAir: The United States air transport dataset contains the 500 airports with the actual air travelling

flows among different urban regions [37]. The network represents the pair-wise airport connections

with direct flights, where nodes are urban areas and the edges are air travel fluxes. The corresponding

air transportation network comprises 332 nodes and 2126 edges. The edge weight corresponds to the

frequency of flights between two airports.

MHN: This Mammalia-hyena data comes from the Animal Social Network Repository(ASNR) [38].

This data recorded the interaction of mammalian hyenas in the real world within four months. The

dataset contains 35 nodes and 521 edges. Spotted hyenas(Crocuta crocuta) are large mammalian car-

nivores, their societies are called ’clans’. The nodes in the data represent individual hyenas, and the

edges are association patterns that were recorded based on the co-occurrence of each pair of individuals,

during the period for which they were concurrently present in the clan. This animal social network

was collected during periods of low prey abundance. The edge-weights represent the strength of social

relations for pairs of hyenas, which is calculated by the ratio between the total association indices with

all clan-mates to the sum of the number of other potential associations [38].

CMC: This is the network of co-authorship who have submitted manuscripts to the e-Print Archive

on the topic of condensed matter physics between 1995 and 1999. The network contains 16,726 nodes

and 47,594 edges. Edge weights are estimated using Newman’s method, i.e. wi j = ∑k δ k
i δ k

j /(nk − 1),

where nk is the number of co-authors in the kth paper, and δ k
i is 1 when the ith co-author appears the kth

paper, and 0 otherwise.[39].

FFN: The Facebook-like Forum Network contains users activity in the forum [25]. It comes from an

online community with 899 users and 522 topics. Edge weights are assigned to the ties by considering

the number of characters that a user posts to a topic. The edge weights are normalised between 0 and 1.

This network contains 899 nodes and 33,720 edges [25].

7.1.2 Unweighted Network Datasets The arXiv hep-ph network is the collaboration graph of authors

of scientific papers from arXiv’s High Energy Physics-Phenomenology (hep-ph) section. An edge

between two authors represents a common publication [40]. There are 28,093 nodes and 4,596,803

edges in the network. Facebook friendships network is the undirected network containing the friendship
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data of Facebook users. A node represents a user and an edge represents a friendship between two users

[41]. There are 63,731 nodes and 817,035 edges in the network. The Google Orkut network is the social

network of Orkut users and their connections. There are 3,072,441 nodes and 117,185,083 edges in the

network [42]. The Livemocha dataset consists of social networks which describe the friendships in the

world’s largest online language community [43]. There are 104,103 nodes and 2,193,083 edges in the

network.

7.1.3 Network Group Datasets

Synthetic Networks: The synthetic networks include three groups, i.e., Erdös-Rényi random graphs,

Watts-Strogatz small-world networks [44], and Scale-free networks [2]. Each network contains 1,000

nodes, and there are 500 networks in each group. For the random graph, the probability of connection

between two nodes is 0.5. For the small-world model, the mean nodal degree is 50 with a rewiring

probability 0.15. For the scale-free model, the probability of adding a new node connected to an existing

node is 0.7, and the probability of adding an edge between two existing nodes is 0.2. The edge weights

are computed according to the node degree as w = dudv/E, where du and dv are nodal degrees between

two ends of the edge.

Tumour Mutation Networks: The tumour mutation dataset contains networks representing gene

mutation patterns for three major cancers taken from Cancer Genome Atlas (TCGA). These are a) ovar-

ian cancer, b) uterine cancer and c) lung adenocarcinoma [47]. There are 356 subjects with mutations

in 9,850 genes in the ovarian cancer cohort, 248 subjects with mutations in 17,968 genes in the uterine

endometrial cancer cohort and 381 subjects with mutations in 15,967 genes in the lung adenocarcinoma

cohort [45]. Each subject is characterized by a sequence of gene indicators. The mutation networks

were mapped onto gene interactions by aggregating information from several pathways and interaction

databases, describing physical protein-protein interactions (PPIs) and functional relationships between

genes in both regulatory, signalling and metabolic pathways [48, 49]. The edge weights are the strengths

of interactions between different genes.

Brain Networks: The brain network data comes from fMRI images in the ADNI database. These

record the Blood-Oxygenation-Level-Dependent (BOLD) signals for different anatomical brain regions

[46]. The Anatomical Automatic Labeling atlas (AAL) is used as a template to separate the brain into 90

regions of interest (ROIs) [50]. Weighted networks are constructed by computing the cross-correlation

coefficients between the BOLD signals between each pair of ROIs. There are two categories of patients

in the Alzheimer’s disease study. One group has 105 subjects with fully developed Alzheimer’s disease

(AD), and the second group has 193 normal healthy control subjects (NC).

7.2 Experimental Evaluation

7.2.1 Weighted Network Analysis

We first provide a numerical analysis of the density distribution of edge weights in Eq.(3.12). This

shows how the probability density function varies with the edge weight ω and inverse temperature β .

Fig.1 plots the three-dimensional variation in the edge-weight probability with edge weight and

temperature. The overall probability increases with the value of edge weights. This is especially obvious

in the high-temperature region (low value of β ). In the meanwhile, the probability exponentially decays

as the temperature decreases (inverse temperature β increases).

An important feature is that there is a nontrivial phase transition that occurs in the low-temperature

region. We show this in Fig.2 by fixing the value of β = 1,1.5,2. As shown in Fig.2, the probability of

edge weight increases up to a maximum and then decreases in the low-temperature region. When the
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FIG. 1. Three dimensional plot of the probability density function for edge weights. There is a phase transition in the low

temperature region (red circle).

value of inverse temperature increases, this peak corresponding to the phase transition shifts towards

zero. Since the parameter of temperature is proportional to the edge density in the network, this shows

that the phase transition is more likely to happen in sparsely connected networks.
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FIG. 2. The probability function changes with the edge weight in the lwo temperature region. The parameter of inverse temperature

is fixed at β = 1,1.5,2.

We now turn our attention to real-world datasets. To explore the nontrivial phase transition described

above, we plot the histogram of edge weights for four types of real-world networks. These networks

have high values of β which means that the corresponding temperatures are low. Fig.3(a) shows the

distribution of normalized edge weights for the USAir, MHN and FFN datasets. We observe a similar

transition pattern as shown in Fig.2. This verifies that small edge weights exist with a higher probability

in low-temperature networks. A more extreme example is shown in Fig.3(b) for the CMC network.

Here we observe a large value of β corresponding to an extremely low temperature, and where there is
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a large fraction of edge weights having very small values.
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 = 51.415
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FIG. 3. The histogram of edge weights in the real-world networks with high value of β . (a) United States air transport network

(β=2.006), Mammalia-hyena animal network (β=1.286), Facebook-like forum network (β=2.587). (b) Extreme low temperature

case: co-authorship network in condensed matter physics of arXiv e-prints (β=51.415).

Furthermore, we examine the histogram of edge weight distribution with the Gamma distribution

functions and represent this function as a mixture by estimating the parameters using the EM algorithms

with two Gamma mixture components. The overlap boundary of these two Gamma distributions will be

used to set the optimal threshold to infer binary connection indicators from edge weights.

Fig.4 shows the edge-weight distributions for the four different real-world networks. These networks

come from the complex network datasets, which are the United States air transport network, Mammalia-

hyena animal social network, co-authorship in e-Print in condensed matter physics of arXiv e-prints, and

Facebook-like forum network. In Fig.4, the black dots indicate the link strength is the original weight

distribution. The blue curve is the generalised Gamma function fitted to the edge-weight distribution.

The red curve is the Gamma mixture distribution with two different Gamma functions. The decomposi-

tion of each distribution can be applied to the EM algorithm to estimate the corresponding parameters.

This is shown by the green curves. We observe that the edge-weight distribution in real-world networks

fits well with our derived probability density function. This distribution can be approximated and further

decompose the combination of Gamma distribution functions into a mixture.

Finally, we set the threshold by decomposing the mixture Gamma distribution into two mixing com-

ponents. This can be calculated using Eq.(4.11) to set the threshold for the edge weights. We take the

CMC dataset as an example to compare the structures resulting in weighted and unweighted representa-

tions of the networks. Fig.5 shows the network structure before and after setting the threshold.It is clear

to observe that the proposed threshold can keep the main structure of the weighted network, which can

be applied to reduce the redundant information and to figure out the backbone of the weighted network.

7.2.2 Unweighted Network Analysis

For unweighted networks, we conduct the numerical analysis on the node probability in Eq.(5.6).

Fig.6 shows how the node probability changes with the degree k and inverse temperature β , respectively.

In Fig.6(a), there is a phase transition for the node probability as the node degree varies. As the inverse

temperature β increases the peak value of the node probability moves towards zero. In Fig.6(b), the

node probability decays exponentially with the inverse temperature. The larger the value of the nodal

degree, the faster the exponential decay.
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FIG. 4. Applying the mixture Gamma functions to fit the edge weight distribution on the real-world networks. The black line is

the original weight distribution. The blue curve is the generalized Gamma distribution to fit the original weights. The red curve

is the mixture of Gamma distribution with the EM algorithm. Green curves are two decomposed components. The cross point

of two green line components generates the value of the threshold to convert weighted networks to binary connections. (a) The

United States air transport network; (b) Mammalia-hyena animal network; (c) co-authorship network in condensed matter physics

of arXiv e-prints; (d) Facebook-like forum network.

（a) （b)

FIG. 5. The visualization of co-authorship network before and after thresholding. Edge weights are normalised between 0 and 1,

and the threshold value is 0.5121. (a) Original weighted network. (b) Binary connections after thresholding.

We now analyse the energy in Eq.(5.7) and explore how it varies with node degree and temperature.

The expression in Eq.(5.7) is quite complicated and the functional dependence on these two quantities is
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FIG. 6. The node probability changes with the degree k and inverse temperature β in Eq.(5.6). (a) node probability with degree;

(b) node probability with inverse temperature

not obvious by inspection. The reason for this is that the exponential term is both degree and temperature

dependent and the integral is also degree dependent. In Fig.7, we show the full degree of dependence

for the energy. The energy increases with the degree while reaching a constant value when the node

degree becomes large. The energy decreases rapidly as the inverse temperature β increases.
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FIG. 7. The network energy changes with the degree according to Eq.(5.7)

Finally, we turn our attention to the real-world datasets. We investigate the node probability in

Eq.(5.6)for the complex network dataset. Fig.8 shows the degree distributions for four different complex

networks. The blue curves are the actual degree distributions and the red curves are the predictions of

our model. The four networks come from the KONECT which are the arXiv hep-th networks, the

Facebook network, the Google Orkut user network, and Livemocha social networks. It is clear that

instead of following a power law the degree distribution is better fitted by the predictions of Eq.(5.6) for

low values of node degree. At the high-degree end, the distribution more closely follows the power law.

Our derived expression for the node degree distribution can be used to fit the degree distributions

of real complex networks. The corresponding energy and temperature are associated with the network

structure.
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FIG. 8. Degree distribution of real-world networks. The blue curves are actual degree distributions and the red curves are the

simulation from Eq.(5.6). (a) ArXiv’s High Energy Physics–Phenomenology (hep-ph) containing 28,093 nodes and 4,596,803

edges. (b) Facebook networks with 63,731 nodes and 817,035 edges. (c) the collection of social network in Google Orkut users,

consisting of 3,072,441 nodes and 117,185,083 edges. (d) Livemocha social network with 104,103 nodes and 2,193,083 edges.

7.3 Network Group Analysis

7.3.1 Synthetic Network Evaluation

Here, we investigate whether the estimated parameters α and β can be used to cluster different types

of networks. We generate synthetic networks in three groups, i.e., Erdös-Rényi random graphs, Watts-

Strogatz small-world networks [44], and Scale-free networks [2]. Each network contains 1,000 nodes,

and there are 500 networks in each group.

After applying the EM algorithm to estimate edge weight distribution in the Gamma mixture model,

we evaluate whether the two pairs of parameters α and β for the different mixing components can be

used to group different network structures. Fig.9 shows the three dimensional scatter plot of α1, α2

and β1 for three groups. Since the scale-free network follows the power-law distribution, the shape

parameter α plays the dominant role in distinguishing this structure. The small-world network and the

Erdos-Renyi random graph have a similar distribution when the rewiring probability approaches unity.

The estimated parameters can still be used to cluster these different networks into two groups.

7.3.2 Tumour Mutation Network

Next, we turn our attention to the gene mutation networks. These contain three different groups of

gene interaction networks in cancer, i.e., lung adenocarcinoma, ovarian cancer and uterine endometrial.

In Fig.10, we visualise the three-dimensional space of the estimated parameters in the Gamma mixture
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FIG. 9. Three dimentional scatter plot of α1, α2 and β1 for different network models. Erdös-Rényi random graphs in red circle,

Small-world networks in blue cross, and Scale-free networks in green star.

model. The different coloured points represent the three different types of cancers for the subjects.

α α!

β!

FIG. 10. Three dimentional scatter plot of α1, α2 and β1 for tumour mutation networks (lung adenocarcinoma in red circle, ovarian

cancer in blue star, and uterine endometrial in green cross).

The scatter plot reveals clusters corresponding to the three different classes of tumour mutation

networks. The clusters exhibit a compact statistical structure, with little cross-class contamination.

Moreover, the different groups of cancer networks are well separated in the space of parameters of

α1, α2 and β1. This is especially so for the lung adenocarcinoma and uterine endometrial with two
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distinguished high-density clusters. This further illustrates the effectiveness of the estimated parameters

in distinguishing different classes of real-world networks.

7.3.3 fMRI Brain Networks

To analyse the distribution of the edge weight parameters, we plot the histogram of α and β for fMRI

brain networks. There are two groups in the sample studied, i.e. those with Alzheimer’s disease and

the normal control sample. As shown in Fig.11(a) and Fig.11(b), although the separate distribution of

α and β are overlapped for the two groups of patients, there are two-well separated parameter clusters.

This is because we treat the edge weight distribution as a two-component Gamma mixture distribution.

Each set of parameters α and β is estimated from one of the Gamma components.

We also observe the distribution of threshold between the two groups of subjects. In Fig.11(c), the

AD subjects have a narrower and more concentrated spread of thresholds when compared to the normal

healthy sample.
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FIG. 11. The distribution of parameters α and β in the mixed Gamma functions between two groups of patients. The blue areas

are the histogram of weights in AD group and the red areas are the histogram of edge weights in normal healthy group. (a) The

distribution of parameter α . (b) The distribution of parameter β . (c) The distribution of the value of threshold.

We can also investigate the relationship between the two parameters α and β for two groups of

Alzheimer’s subjects (AD and NC). In Fig.12(a) and Fig.12(b), the scatter plots show that both the

iterative numerical method and the non-iterative approximation for α present a similar linear correlation

with β , especially when the value is small. This is because we decompose the distribution of weights

into a mixture of two Gamma functions. The distribution of small values of weights presents a very

similar pattern and the shape of this distribution depends on the parameter α .
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FIG. 12. The scatter plot of parameters α and β in the mixed Gamma functions between two groups of subjects. (a) The

distribution of iterative numerical estimation of α with β . (b) The distribution of non-iterative approximation of α with β .
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Therefore, we conclude that the estimated parameters for the edge weight Gamma mixture distribu-

tion can be used as features to distinguish different types of network structures.

7.4 Discussion

To demonstrate the advantages of our proposed method, we compare the corresponding results to both

typical and state-of-the-art thresholding methods. Two of these methods are global threshold selec-

tion using a fixed value or maintaining the edge density. An alternative method is the Disparity Filter

which applies a localized threshold [51]. The final method studied is structural inference to locate true

connections using the edge weights [14]. These methods serve as baselines for comparison.

Here, we compare our proposed method to different baselines. We measure four commonly used

statistical properties in complex networks, i.e., average degree, clustering coefficients [52], average path

length and communicability [53] for the real-world weighted networks. This reveals the different effects

of these models after thresholding the structure of the edge weight distributions. In Table1, we present

a comparison of results for the USAir, MHN, CMC and FFN networks.

Thresholding with a fixed value or edge density has identical effects on corresponding networks.

Although these are simple and intuitive approaches, they may lose important network structures. This

is illustrated in Table1 where both methods fail to preserve all five structural properties for the recon-

structed networks. The measurements of average degree and clustering coefficients reveal this perfor-

mance. These demerits are obvious in the datasets of USAir, CMC and FFN, especially when the size

of networks becomes large.

Local thresholding methods such as the Disparity Filter [51], provide potential solutions to the prob-

lem of loss of fat-tailed weight distributions of edge weights. The method computes the value of the

threshold at the local level of each node, rather than over the entire network. In the table for the USAir

dataset, the Disparity Filter preserves the backbone of the networks by slightly improving the clustering

coefficients and average path length.

However, simple thresholding can corrupt the network’s structural properties. Specifically, the net-

work connectivity may become sparse and begin to fragment with an unreasonable choice of threshold.

Statistical inference estimates the community structure on uncertain networks [14]. This improves struc-

tural inference from the weighted network to give more reliable edges. In Table1, when the networks

become large, the structural properties from uncertain inference improve the performance in terms of

average path length and communicability. This is most obvious for the CMC and FFN networks.

When compared to the alternative method, our proposed approach improves the statistical structural

properties, especially communicability. As well as outperforming in terms of the average degree and

clustering coefficients for the MHN and FFN networks, we also preserve better network structure in

terms of communicability. This is best observed in the USAir, MHN and FFN datasets. Even though

uncertain inference performs well on large-scale complex networks, such as CMC, our model exhibits

better performance in each of the structural properties.

Our novel approach based on the mixture Gamma model fits accounts well for the empirically

observed distribution of edge weights. Compared to alternative thresholding methods, our approach

provides an optimal way to filter out redundancy and maintain the network backbone structure with

better performance in terms of describing the observed statistical properties.
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Table 1. Comparsion across other thresholding methods in real-wrorld weighted networks with different structural properties

Network Nodes Threshold Model Edges Ave. Degree Clust. Coeff. Ave. Path Length Communicability

U.S. Air Transport

Network (USAir)
332

Original 2126 12.807 0.625 1.738 8.081×1017

Fixed Value 853 5.139 0.163 1.442 2.103×1011

Density 853 5.139 0.163 1.442 2.103×1011

Disparity Filter 863 5.103 0.205 2.150 1.957×1010

Uncertain Inference 848 5.111 0.163 1.442 1.968×1011

Our Model 875 5.271 0.173 1.430 3.283×1011

Mammalia-hyena Social

Network(MHN)
35

Original 521 29.771 0.922 0.124 1.736×1013

Fixed Value 210 12.000 0.558 0.735 2.760×106

Density 210 12.000 0.558 0.735 2.760×106

Disparity Filter 209 11.943 0.422 0.671 1.193×106

Uncertain Inference 259 14.809 0.623 0.612 3.851×107

Our Model 270 15.429 0.660 0.599 6.025×107

Condensed Matter

Collaborations(CMC)
16,726

Original 47594 5.853 0.638 5.627 7.437×1010

Fixed Value 25890 3.184 0.467 6.395 7.131×105

Density 25890 3.184 0.467 6.395 7.131×105

Disparity Filter 26239 3.119 0.295 6.161 2.095×105

Uncertain Inference 26726 3.287 0.530 6.122 1.511×106

Our Model 26649 3.277 0.475 6.356 1.456×106

Facebook-like Forum

Network(FFN)
899

Original 7046 15.675 0.076 1.832 1.699×1014

Fixed Value 1717 3.820 0.009 2.947 7.641×104

Density 1717 3.820 0.009 2.947 7.641×104

Disparity Filter 1820 4.017 0.011 2.610 5.603×104

Uncertain Inference 1486 3.830 0.013 3.104 1.905×104

Our Model 1946 4.329 0.026 2.818 1.567×105

8. Conclusion

In this paper, we describe a new method to infer binary edge indicators from the distribution of edge

weights via the setting of an optimal threshold. To this end, we make use of the statistical mechanical

model to describe the probability distribution function for edge weights. Using this idea, we apply

the network structure to define a temperature parameter. This provides the physical interpretation of

temperature in terms of the number of nodes and edges. This is proportional to the edge density. We can

further apply the statistical mechanical approach to derive further derive additional physical parameters

of the network.

Using an analogy in which the nodes of the network are particles in the solid model, edge weights are

analogous to the microstate energies in a two-dimensional solid lattice. This allows us to derive a proba-

bility density function for edge weights which depends on the values of the edge weights and the global

temperature parameter which is related to the configuration of nodes and edges. The corresponding dis-

tribution function is represented in closed form as a Gamma distribution. We represent the distribution

function by a mixture of Gamma functions, and extract the mixing proportions and parameters of the

mixture components using the Expectation-Maximization algorithm. Minimizing the overlap between

two Gamma distributions provides the optimal value for inferring a set of binary edge indicators from

the distribution of edge weights.

Furthermore, the edge weights can be regarded as being uniform in unweighted networks. This

gives an exponential expression for the probability density function for nodes, which is identical to

the degree distribution. It depends on both the edge weights and the global parameter of temperature

related to the configuration of nodes and edges. The nodal probability density function together with

the cumulative distribution function for the energy reveals a phase transition for both the degree and

temperature dependence.

We conduct numerical experiments that demonstrate the existence of this phase transition in net-

work sparsity that occurs in the low-temperature regime. Experimental results on real-world weighted
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network datasets reveal the distribution of edge weights fits well with our derived function with a two

Gamma function mixture model. The threshold can be further used to filter out redundancy and maintain

the network backbone structure.
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52. Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and Janos Kertesz. Generalizations of the

clustering coefficient to weighted complex networks. Physical Review E, 75(2):027105, 2007.

53. Ernesto Estrada, Naomichi Hatano, and Michele Benzi. The physics of communicability in complex networks.

Physics Reports, 514(3):89–119, 2012.


