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Abstract

Networks are ubiquitous in economic research on organizations, trade, and many
other areas. However, while economic theory extensively considers networks, no gen-
eral framework for their empirical modeling has yet emerged. We thus introduce two
different statistical models for this purpose – the Exponential Random Graph Model
(ERGM) and the Additive and Multiplicative Effects network model (AME). Both
model classes can account for network interdependencies between observations, but
differ in how they do so. The ERGM allows one to explicitly specify and test the
influence of particular network structures, making it a natural choice if one is sub-
stantively interested in estimating endogenous network effects. In contrast, AME
captures these effects by introducing actor-specific latent variables affecting their
propensity to form ties. This makes the latter a good choice if the researcher is
interested in capturing the effect of exogenous covariates on tie formation without
having a specific theory on the endogenous dependence structures at play. After
introducing the two model classes, we showcase them through real-world applica-
tions to networks stemming from international arms trade and foreign exchange
activity. We further provide full replication materials to facilitate the adoption of
these methods in empirical economic research.

Keywords – Inferential Network Analysis, Network Data, Endogeneity, Arms Trade,
Foreign Exchange Networks, Statistical Modeling
JEL classification – C20, C49, F14, F31, L14
Declaration of interest: none

1 Introduction

The study of networks has established itself as a central topic in economic research (Jack-
son, 2008). Within the broader context of the study of complex and interdependent sys-
tems (see e.g. Flaschel et al., 1997, 2007, 2018), networks can be defined as interconnected
structures which can naturally be represented through graphs. In the economic litera-
ture, networks have been extensively considered from a theoretical perspective, with the
primary goal of understanding how economic behavior is shaped by interaction patterns
(Jackson and Rogers, 2007). Indeed, the adequate modelling of such interactions has been
described as one of the main empirical challenges in economic network analysis (Jackson
et al., 2017). Research in this direction on, e.g., organizations as networks, diffusion in
networks, network experiments, or network games, is surveyed in Bramoullé et al. (2016),
Jackson (2014), and Jackson et al. (2017). These theoretical advances find application in
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many different fields in which network structures naturally arise, such as national and in-
ternational trade, commercial agreements, firms’ organization, and collaboration activity.
However, such advances have not yet been accompanied by a corresponding shift in the
standard methods used to empirically validate them. Some recent contributions (see e.g.
Atalay et al., 2011; Chaney, 2014; Morales et al., 2019) develop estimators tailored specif-
ically to their network-based theoretical models, but more generally applicable modeling
frameworks for the analysis of real-world network data have not yet emerged. Statistical
methods specifically designed to empirically test theories where interdependencies arise
from network structures, such as the Exponential Random Graph Model (ERGM), exist
but are not yet widely used by economists. Jackson (2014), for instance, discusses ERGMs
but argues that they “suffer from proven computational problems” (2014, p.76). Jackson
et al. (2017) further explain that “it is practically impossible to estimate the likelihood of
a given network at even a moderately large scale”, concluding that with ERGMs, “there is
an important computational hurdle that must be overcome in working with data” (2017,
p.85).

Contrasting this assessment, we argue that recent work in the realm of empirical
network analysis provides robust and scalable methods with readily available implemen-
tations in the R statistical software (R Core Team, 2021). Computational issues thus
do not represent an insurmountable barrier to employ robust inferential network meth-
ods anymore. In this paper, we demonstrate the effectiveness and usability of some of
those methods by applying them to real economic data. We specifically focus on models
which aim to capture the mechanisms leading to network formation, i.e. to measure how
the probability of forming a tie is influenced by (a) nodal characteristics, (b) pairwise
covariates, and (c) the rest of the network. In particular, our focus is on Exponential
Random Graph Models (ERGM) (Robins et al., 2007) and Additive and Multiplicative
Effect (AME) network models (Hoff, 2021), respectively implemented in the R packages
statnet (Handcock et al., 2008) and amen (Hoff, 2015). We find these two model classes
to be among the most promising ones for applications in the economic sciences, as they
are well suited for answering two broad categories of research questions. The ERGM is
an ideal fit if, based on economic theory, the researcher envisages a particular dependence
structure for the existence of ties in the network at hand and wants to test whether their
theory is corroborated by empirical data. On the other hand, AME, and more generally
continuous latent variable models, are a good choice when the researcher is interested in
capturing the effect of exogenous variables on tie formation without having prior knowl-
edge on which endogenous network dependence mechanisms are at play. In this case,
AME offers the possibility to estimate the effect of both nodal and pairwise covariates
while simultaneously controlling for network effects, which may induce bias if ignored (see
Lee and Ogburn, 2021). In addition, the estimated latent structure can provide insight
on the underlying network mechanisms for which they are controlling.

The principal aim of this paper is to showcase ERGM and AME by focusing on
their value for economic research. After introducing each model class, we demonstrate
their empirical usage by respectively applying them to two relevant economic questions
stemming from real-world networks. We first use the ERGM to model the international
trade of major conventional weapons, where a directed tie exists if one country transfers
arms to another. In line with Chaney (2014), network effects such as directed triadic
closure (e.g. the positive impact of an increase in the volume of trade between countries
A and B on the probability that country C, that already exports to A, starts exporting
to B) are of explicit theoretical interest in this application, and the ERGM allows for
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their proper specification and testing. We then make use of the AME model to study a
historical network of global foreign exchange activity, where a directed edge is present if
one country’s national currency is actively traded within the other country. AME allows us
to estimate how relevant country features, such as per-capita gdp and the gold standard,
and pairwise covariates, such as the distance between two countries and their reciprocal
trade volume, influence tie formation, while controlling for network effects to provide
unbiased estimates. We further compare the two model classes, weighing pros and cons
of each approach and providing guidance on which tool is appropriate for applications to
different empirical settings and research questions. Finally, in addition to a step-by-step
analysis and interpretation of these application cases, we provide full replication code in
our GitHub repository1, allowing for seamless reproducibility. We, therefore, demonstrate
the “off-the-shelf” applicability of these methods, and offer applied researchers a head-
start in employing them to study substantive economic problems.

Our contribution is related to various strands of the growing literature on economic
networks (e.g. Jackson and Rogers, 2007; Jackson, 2008; Bramoullé et al., 2016). Due
to its focus on economic questions, our work differs from surveys in physics (Newman,
2003), statistics (Goldenberg et al., 2010), or political science (Cranmer et al., 2017).
Several articles provide overviews and surveys of existing economic network models from
a theoretical perspective (Jackson, 2014; Graham, 2015; Jackson et al., 2017; De Paula,
2020). None of these articles concentrates on discussing broadly applicable statistical
modeling frameworks, such as ERGM and AME, from an empirical perspective. In this
sense our paper is similar in spirit to van der Pol (2019) who, however, only focuses on
ERGM, without comparing alternative approaches. Indeed, one of the goals of this paper
is to shed light on the emerging AME model class (and, more generally, on latent variable
network models) for future applications in the economic literature.

The remainder of the paper is structured as follows. Section 2 discusses existing
literature and presents the mathematical and notational framework used to define and
discuss networks throughout the paper. Section 3 introduces the ERGM and applies it to
the international arms trade network. Section 4 is dedicated to AME and its application to
the global foreign exchange network. Section 5 concludes the paper with a brief discussion
on the two model classes, contrasting their different uses and highlighting pros and cons
of each approach.

2 Economic Networks

2.1 Related literature

Even though network structures naturally arise in many aspects of economics and are
subject of prominent research in the field, much of the previous literature has ignored
the implied interdependencies, instead opting for regression models assuming ties to be
independent conditional on the covariates (e.g. Anderson and Van Wincoop, 2003, Rose,
2004, Lewer and Van den Berg, 2008). This assumption is often unreasonable in practice.
It would, for example, imply that Germany imposing economic sanctions on Russia is
independent of Italy imposing sanctions on Russia, and, in the directed case, even of
Russia imposing them on Germany itself. While no standard framework for the modeling
of empirical network data has emerged in economics so far, a number of contributions in

1https://github.com/gdenicola/statistical-network-analysis-in-economics

3



– or adjacent to – the field do make use of statistical network models. We shortly survey
these works here to show that the models we present are indeed suitable for the analysis of
economic data. Possibly the most obvious kind of economic network is the international
trade network (see Chaney, 2014) and many of these studies accordingly seek to model the
formation of trade ties. In this vein, two early studies (Ward and Hoff, 2007; Ward et al.,
2013) apply latent position models to show that trade exhibits a latent network structure
beyond what a standard gravity model can capture (see also Fagiolo, 2010; Dueñas and
Fagiolo, 2013). More recently, numerous contributions have used the ERGM to explicitly
theorize and understand network interdependence in the general trade (Herman, 2022;
Liu et al., 2022; Smith and Sarabi, 2022) as well as the trade in arms (Thurner et al.,
2019; Lebacher et al., 2021), patents (He et al., 2019), and services (Feng et al., 2021).

That being said, empirical research on economic networks is not limited to trade.
Smith et al. (2019) use multilevel ERGMs to study a production network consisting of
ownership ties between firms at the micro-level and trade ties between countries at the
macro-level, while Mundt (2021) explores the European Union’s sector-level production
network via ERGMs as well as an alternative methodology, the stochastic actor-oriented
model (SAOM). The latter is another prominent tool in the realm of network analysis,
which is suitable for modeling longitudinal network data. As we, in the interest of brevity,
focus on models for static networks (i.e. networks that are observed only at one point
in time), we do not treat the SAOM, and instead refer to Snijders (1996, 2017) for an
introduction to the model class. Going back to empirical research on economic networks
in the literature, Fritz et al. (2023) deploy ERGMs to investigate patent collaboration
networks. Studies on foreign direct investments document network influences using latent
position models (Cao and Ward, 2014), or seek to model them via extensions of the ERGM
(Schoeneman et al., 2022). Finally, economists also study networks of interstate alliances
and armed conflict (see e.g. Jackson and Nei, 2015; König et al., 2017), both of which
have been modeled via ERGMs (Cranmer et al., 2012; Campbell et al., 2018) and AME
(Dorff et al., 2020; Minhas et al., 2022). This short survey indicates that both ERGM and
AME can be used to answer questions which are of substantive interest to economists.

2.2 Setup

Before introducing models for networks in which dependencies between ties are expected,
we briefly introduce the mathematical framework for networks, as well as the necessary
notation. Let yyy = (yi j)i, j=1,...,n be the adjacency matrix representing the observed binary
network, comprising n fixed and known agents (nodes). In this context, yi j = 1 indicates
an edge from agent i to agent j, while yi j = 0 translates to no edge between the two. Since
self-loops are not admitted for most studied networks, the diagonal of yyy is left unspecified
or set to zero. Depending on the application, the direction of an edge can carry additional
information. If it does, we call the network directed. In this article, we mainly focus
on this type of networks. Also note that all matrix-valued objects are written in bold
font for consistency. In addition to the network connections, we often observe covariate
information on the agents, which can be at the level of single agents (e.g. the gdp of a
country) or at the pairwise level (e.g. the distance between two countries). We denote
covariates by xxx1, ..., xxxp, and our goal is to specify a statistical model for YYY , that is the
random variable corresponding to yyy, conditional on xxx1, ..., xxxp. A natural way to do this
is to specify a probability distribution over the space of all possible networks, which we
define by the set Y . Two main characteristics differentiate our modeling endeavor from
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classical regression techniques, such as Probit or logistic regression models. First, for
most applications, we only observe one realization yyy from YYY , rendering the estimation
of the parameters to characterize this distribution particularly challenging. Second, the
entries of YYY are generally co-dependent; thus, most conditional dependence assumptions
inherent to common regression models are violated. Generally, we term mechanisms that
induce direct dependence between edges to be endogenous, while all effects external to
the modeled network, such as covariates, are called exogenous.

3 The Exponential Random Graph Model

The ERGM is one of the most popular models for analyzing network data. First intro-
duced by Holland and Leinhardt (1981) as a model class that builds on the platform of
exponential families, it was later extended with respect to fitting algorithms and more
complex dependence structures (Lusher et al., 2012; Robins et al., 2007). We next intro-
duce the model step-by-step to highlight its ability to progressively generalize by building
on conditional dependence assumptions.

3.1 Accounting for dependence in networks

We begin with the simplest possible stochastic network model, the Erdös-Rényi-Gilbert
model (Erdös and Rényi, 1959; Gilbert, 1959), where all edges are assumed to be inde-
pendent and to have the same probability of being observed. In stochastic terms, each
observed tie is then a realization of a binomial random variable with success probability
π, which yields

Pπ(YYY = yyy) =
n
∏

i=1

∏

j ̸=i

πyi j(1 − π)1−yi j (1)

for the probability to observe yyy. Evidently, model (1), which implies equal probability
for all possible ties, is too restrictive to be applied to real world problems. In the next
step, we, therefore, additionally incorporate covariates xi j by letting π vary depending on
those covariates, leading to edge-specific probabilities πi j. Following the common practice
in logistic regression, we parameterize the log-odds by log

(

πi j

1−πi j



= θ ⊤xi j, where xi j is a
vector of exogenous statistics with the first entry set to 1 to incorporate an intercept, and
get

Pθ (YYY = yyy) =
n
∏

i=1

∏

j ̸=i

(

exp¶θ ⊤xi j♢

1 + exp¶θ ⊤xi j♢

yi j
(

1
1 + exp¶θ ⊤xi j♢

1−yi j

. (2)

From (2), the analogy to standard logistic regression being a special case of generalized
linear models (Nelder and Wedderburn, 1972) becomes apparent. The joint distribution
of YYY can be formulated in exponential family form, yielding

Pθ (YYY = yyy♣x) =
exp¶θ ⊤s(yyy)♢

κ(θ )
, (3)

where s(yyy) = (s1(yyy), ..., sp(yyy)), sq(yyy) =
∑n

i=1

∑

j ̸=i yi jxi j,q ∀ q = 1, ..., p, with xi j,q as q − th

entry in xi j and κ(θ ) =
∏n

i=1

∏

j ̸=i(1 + exp¶θ ⊤xi j♢). In the jargon of exponential families,
we term s(yyy) sufficient statistics.
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Figure 1: Illustration of directed edgewise-shared partner statistics for k agents. Cir-
cles represent agents, and black lines represent edges between them. The names follow
statnet nomenclature: OTP = “Outgoing Two-Path”, ISP = “Incoming Shared Part-
ner”, OSP = “Outgoing Shared Partner”, and ITP = “Incoming Two-Path”.

Newcomb (1979) observed that many observed networks exhibit complicated relational
mechanisms, including reciprocity, which we can account for by extending the set of suf-
ficient statistics. Under reciprocity, an edge Yji influences the probability of its reciprocal
edge Yi j to occur. Analyzing social networks, we would expect that the probability of agent
i nominating agent j to be a friend is higher if agent j has nominated agent i as a friend.
Holland and Leinhardt (1981) extended model (1) to such settings with the so-called p1

model. To represent reciprocity, we assume dyads, each of them defined by (Yi j,Yji), to be
independent of one another, which again yields an exponential family distribution similar
to (3) with sufficient statistics that count the number of mutual ties (sMut(yyy) =

∑

i< j yi jy ji),
of edges (sEdges(yyy) =

∑n
i=1

∑

j ̸=i yi j), and the in- and out-degree statistics for all degrees
observed in the networks2. Agents’ in- and out-degrees are their number of incoming
and outgoing edges, and relate to their relative position in the network (Wasserman and
Faust, 1994).

Next to reciprocity, another important endogenous network mechanism is transitivity,
originating in the structural balance theory of Heider (1946) and adapted to binary net-
works by Davis (1970). Transitivity affects the clustering in the network, implying that a
two-path between agents i and j, i.e. yih = yh j = 1 for some other agent h, affects the edge
probability of Yi j. Put differently, Yi j and Ykh are assumed to be independent iff i, j ̸= k

and i, j ̸= h. Frank and Strauss (1986) proposed the Markov model to capture such de-
pendencies. For this model, the sufficient statistics are star-statistics, which are counts
of sub-structures in the network where one agent has (incoming and outgoing) edges to
between 0 and n − 1 other agents, and counts of triangular structures. If the network
is directed it is possible to define different types of triangular structures, as depicted in
Figure 1.

3.2 Extension to general dependencies

Starting from the Erdös-Rényi-Gilbert model, which is a special case of a generalized
linear model, we have consecutively allowed for more complicated dependencies between
edges, resulting in the Markov graphs of Frank and Strauss (1986). Over this course,
we showed that each model can be stated in exponential family form, characterized by a
particular set of sufficient statistics. We now make this more explicit to allow for more
general dependence structures, and specify a probabilistic model for YYY directly through

2We provide more details on this derivation in the Supplementary Material.

6



the sufficient statistics3. Wasserman and Pattison (1996) introduced this model as

Pθ (Y = y) =
exp¶θ ⊤s(y)♢

κ(θ )
, (4)

where θ is a p-dimensional vector of parameters to be estimated, s(y) is a function cal-
culating the vector of p sufficient statistics for network y, and κ(θ ) =

∑

ỹ∈Y exp¶θ ⊤s(ỹ)♢
is a normalizing constant to ensure that (4) sums up to one over all y ∈ Y . To estimate
θ , Handcock (2003) adapted the Monte Carlo Maximum Likelihood technique of Geyer
and Thompson (1992), approximating the logarithmic likelihood ratio of θ and a fixed θ0

via Monte Carlo quadrature (see Hunter et al., 2012, for an in-depth discussion).
A problem often encountered when fitting model (4) to networks is degeneracy (Hand-

cock, 2003; Schweinberger, 2011). Degenerate models are characterized by probability dis-
tributions that put most probability mass either on the empty or on the full network, i.e.,
where either all or no ties are observed. To detect this behavior, one can use a goodness-
of-fit procedure where observed network statistics are compared to statistics of networks
simulated under the estimated model (Hunter et al., 2008). To address it, Snijders et al.
(2006) and Hunter and Handcock (2006) propose weighted statistics that, in many cases,
have better empirical behavior. Degeneracy commonly affects model specifications encom-
passing statistics for triad counts and multiple degree statistics. For in-degree statistics,
we would thus incorporate the geometrically-weighted in-degree,

GWIDEG(y,α) = exp¶α♢
n−1
∑

k=1

(

1 − (1 − exp¶−α♢)k


IDEGk(y), (5)

where IDEGk(y) is the number of agents in the studied network with in-degree k and α is
a fixed decay parameter. One can substitute IDEGk(y) in (5) with the number of agents
with a specific out-degree, ODEGk(y), to capture the out-degree distribution. We term
these statistics geometrically weighted since the weights in (5) are a geometric series4. A
positive estimate implies that an edge from a low-degree agent is more likely than an edge
from a high-degree agent, resulting in a decentralized network. If, on the other hand, the
corresponding coefficient is negative, one may interpret it as an indicator for a centralized
network.

To capture clustering, we have to define the distribution of edgewise-shared partners
(ESP). This distribution is defined as the relative frequency of edges in the network with
a specific number of k shared partners, that we denote by ESP(y) for k ∈ ¶1, ..., n − 2♢.
As shown in Figure 1, various versions of edgewise-shared partner statistics can be found
in directed networks, depending on the direction of the edges between the three agents
involved. Geometrically weighted statistics can be stated for them in a similar manner as
for degree statistics. For example, for the outgoing two-path (OTP, see Figure 1a), this
is

GWOT P(y,α) = exp¶α♢
n−2
∑

k=1

(

1 − (1 − exp¶−α♢)k


OT Pk(y). (6)

3Alternatively, (4) can also be derived as the equilibrium distribution of a strategic game where
players myopically reassess and update their links to optimize their utility in the network (see Mele,
2017; Boucher and Mourifié, 2017).

4Geometrically weighted statistics require setting the decay parameter α. We set α = log(2), though
it can also be estimated as an additional parameter given sufficient data (Hunter and Handcock, 2006).
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In this case, a positive coefficient indicates that sharing ties with third actors increases
the probability of observing an event between two agents.

Along with capturing endogenous network statistics, it is also possible to extend the
ERGM framework to include the temporal dimension, that is, to model longitudinal
network data. This is done quite naturally through use of a Markov assumption on the
temporal dependence of subsequently observed networks, giving rise to the Temporal
Exponential Random Graph Model (TERGM). As we here focus on static networks, we
do not cover this in depth, and refer to Hanneke et al. (2010) for an introduction to the
TERGM, and to Fritz et al. (2020) for a more general discussion on temporal extensions
to the model class.

In summary, the ERGM allows to account for network dependencies via explicitly
specifying them in s(y). A large variety of potential network statistics, such as those
given in (5) and (6), can be included in s(y), enabling to test for their influence in the
formation of the observed network. By allowing for this explicit inclusion and testing
of network statistics, the ERGM requires researchers to at least have an implicit theory
regarding what types of network dependence should exist in the network they study.
Without such theory to guide the selection of network statistics, the range of potential
network dependencies, and corresponding statistics, is virtually endless5. As a result,
the ERGM is best suited for research questions that explicitly concern interdependencies
within the network. If these interdependencies are, instead, only a potential source of
bias the researcher wants to control for, the AME model (introduced in Section 4) may
be a better fit.

3.3 Application to the international arms trade network

We next make use of the ERGM to analyze the international arms transfer network.
Recent studies on trade in Major Conventional Weapons (MCW), such as fighter aircraft
or tanks, not only emphasize its networked nature, but also argue that this very nature
is of substantive theoretical interest (Thurner et al., 2019; Fritz et al., 2021). In line
with Chaney (2014), triadic trade structures are held to reveal information regarding the
participants’ economic and security interests. Explicitly modeling these structures allows
us to test hypotheses regarding their effects on further arms transfers. Accordingly, we
seek to model the network of international arms transfers in the year 2018, where countries
are nodes and a directed edge indicates MCW being delivered from country i to country j.
Our interest here mainly lies in uncovering the network’s endogenous mechanisms. MCW
trade data come from SIPRI (2021), and the resulting network is depicted in Figure 2,
obtained using the Yifan Hu force-directed graph drawing algorithm (Hu, 2005) with the
software Gephi (Bastian et al., 2009).

For estimating the parameters characterizing the ERGM, we use the R package ergm

(Handcock et al., 2008). Since evaluating κ(θθθ ) from (4) necessitates calculating the
sum of ♣Y♣ = 2n(n−1) terms, we rely on MCMC approximations thereof to obtain the
maximum likelihood estimates (see Handcock, 2003 and Hummel et al., 2012 for additional
information on this topic). As discussed above, the ERGM allows us to use both exogenous
(node-specific and pair-specific) attributes as well as endogenous structures to model the
network of interest. Here, we select both types of covariates based on existing studies on
the arms trade (Thurner et al., 2019; Fritz et al., 2021). In addition to an edges term,
which corresponds to the intercept in standard regression models, we include importers’

5For a survey of possible endogenous terms, see Morris et al. (2008).
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Figure 2: Illustration of the international arms trade network in 2018. Countries are
labeled by their ISO 3166-1 codes, and a directed edge from node i to node j indicates
major conventional weapons being delivered from country i to country j.

and exporters’ logged GDP, whether they share a defense pact, their absolute difference
in “polity” scores (a type of democracy index), and their geographical distance6. We lag
these covariates by three years, reflecting the median time between order and delivery
for MCW delivered in 20187. More importantly, for the purpose of demonstrating how
to model network data with the ERGM, we specify five endogenous network terms. In-
and out-degree (IDEG and ODEG) measure, respectively, importers’ and exporters’ trade
activity, and thus capture whether highly active importers and exporters are particularly
attractive trading partners, or if they are instead less likely to form additional trade ties.
Moreover, we specify a reciprocity term to capture whether countries tend to trade MCW
uni- or bidirectionally. We further include two types of triadic structures, which represent
transitivity and a shared supplier between countries i and j. The transitivity term counts
how often country i exports arms to j while i exports to k, which in turn exports to
j, thus capturing i’s tendency to directly trade with j if they engage in indirect trade
(OTP, see Figure 1a). In contrast, the shared supplier term counts how often country i

sends arms to j while both import weapons from a shared supplier k (ISP, see Figure 1b).
Note that, given the issue of degeneracy discussed above, we use geometrically weighted
versions of all endogenous statistics except reciprocity. Finally, we include a repetition
term capturing whether arms transfer dyads observed in 2018 had already occurred in
any of the three previous years. Results of this ERGM, as well as, for comparison’s sake,
a logistic regression that includes the same exogenous covariates but does not capture

6Data for these covariates come from the peacesciencer package (Miller, 2022).
7We use the median as the distribution of times between order and delivery is quite skewed. As shown

in the Supplementary Materials, our substantive results remain unchanged when using 4- and 5-year lags
instead, which reflect the average time between order and delivery. In particular, the ERGM outperforms
the logistic regression model regardless of lag choice.
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ERGM Logit

Intercept −15.356 (2.017)∗∗∗ −28.197 (1.731)∗∗∗

Repetition 3.254 (0.141)∗∗∗ 3.957 (0.141)∗∗∗

Distance −0.081 (0.087) −0.239 (0.088)∗∗

Abs. Diff. Polity −0.001 (0.010) −0.003 (0.012)

Alliance 0.350 (0.207) 0.209 (0.207)

log-GDP (Sender) 0.300 (0.050)∗∗∗ 0.588 (0.045)∗∗∗

log-GDP (Receiver) 0.166 (0.049)∗∗∗ 0.355 (0.039)∗∗∗

Mutual −0.311 (0.438)

GWIDEG −1.478 (0.296)∗∗∗

GWODEG −2.848 (0.296)∗∗∗

GWOTP −0.146 (0.104)

GWISP 0.210 (0.083)∗

AIC 1769.718 1891.984

BIC 1866.053 1948.179

Log Likelihood −872.859 −938.992
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Table 1: Estimated coefficients and standard errors (in parentheses) of the ERGM and
the logistic regression model for the international arms trade network in 2018.

any of the endogenous network structures, are presented in Table 1. These results can be
compared directly, as, just like in a logistic regression model, coefficients in the ERGM
indicate the additive change in the log odds of a tie occurring in association with a unit
change in the respective variable. In this sense, the logistic regression model can be viewed
as a special case of the ERGM in which the network effects are omitted. From the table,
we can see how the two models differ both in their in-sample fit, as captured by AIC and
BIC8, as well as in the substantive effects they identify for the exogenous covariates. The
repetition coefficient is positive and statistically significant in both models, but differs
substantially in its size. An arms transfer edge having occurred at least once in 2015-
17 increases the log odds of it occurring also in 2018 by 3.96 in the Logit, but only by
3.26 in the ERGM. Similarly, both models agree that the log odds of an arms transfer
occurring increase with the economic size of the sender and receiver, as captured by their
respective GDPs, but the coefficients retrieved by the Logit are approximately double the
size of those in the ERGM, thus attributing more explanatory power to them. Also in this
vein, the effect of the geographical distance between sender and receiver is three times as
large in the logistic regression as in the ERGM and, while statistically significant in the
former, indistinguishable from zero in the latter. Finally, both models report small and
statistically insignificant effects for countries’ polity difference and alliance ties. Taken
together, however, there are clear, substantively meaningful differences in the effect sizes

8As shown in the Supplementary Material, the ERGM also outperforms the Logit model when as-
sessing their respective areas under the receiver-operator and precision-recall curves. In line with Hunter
and Handcock (2006), one could also calculate the likelihood ratio test statistic from the log likelihoods
reported in Table 1 for the same purpose.
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and, in the case of geographical distance, even statistical significance of the coefficients
that the ERGM and Logit recover for the exogenous covariates.

Furthermore, three of the endogenous statistics included in the ERGM exhibit sta-
tistically significant effects on the probability of arms being traded. The results for in-
and out-degree replicate the finding by Thurner et al. (2019), showing that highly ac-
tive importers and exporters are less likely to form additional trade ties. In the ERGM,
coefficients can also be interpreted at the global level, in addition to the edge-level in-
terpretation given above. The shared supplier term having a (statistically significant)
positive coefficient indicates, at the edge level, that an exporter is more likely to transfer
weapons to a potential receiver if both of them import arms from the same source. Glob-
ally, on the other hand, the same coefficient means that the observed network exhibits
more shared supplier configurations – where country i sends weapon to j while both re-
ceive arms from k – than would be expected in a random network of the same size. On the
whole, the results presented in Table 1 offer an example for the striking differences that
modeling network structures (instead of assuming them away) can make. The ERGM
and Logit, while identical in their non-network covariates, report substantively different
effects for these covariates, and, in the ERGM, network effects are also found to drive the
formation of arms transfer edges.

4 The Additive and Multiplicative Effect Network

Model

4.1 Latent variable network models

Another way to account for network dependencies is by making use of latent variables.
Models within this class assume that latent variables Zi are associated with each node
i. Depending on the type of model, these latent variables can either be discrete (e.g.
indicating group memberships for each node) or continuous, and affect the connection
probability in different ways (Matias and Robin, 2014). An early (but still popular)
approach in this direction is the stochastic blockmodel, which assumes that each agent
possesses a latent, categorical class (or group membership). Nodes within each class are
assumed to be stochastically equivalent in their connectivity behavior, meaning that the
probability of two nodes to connect depends solely on their group memberships (Holland
et al., 1983; De Nicola et al., 2022). This family of models is attractive due to its sim-
plicity in detecting and describing subgroups of nodes in networks. In many applications,
however, discrete groupings fail to adequately represent the observed data, as agents be-
have more heterogeneously. Moving from discrete to continuous latent variable network
models, another prominent approach is the latent distance model. The latter postulates
that agents are positioned in a latent Euclidean “social space”, and that the closer they
are within it, the more likely they are to form ties (Hoff et al., 2002). More precisely,
the classical latent distance model specifies the probability of observing an edge between
nodes i and j, conditional on Z, through

Pθ (Yi j = 1♣Z) =
exp¶θ ⊤xi j − ∥zi − z j∥♢

1 + exp¶θ ⊤xi j − ∥zi − z j∥♢
, (7)

where Z = (z1, ..., zn) denotes the latent positions of the nodes in the d-dimensional
latent space, and θ is the coefficient vector for the covariates xi j. The latent positions
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Z are assumed to originate independently from a spherical Gaussian distribution, i.e.
Z ∼ Nd(0, τ2IIId)), where IIId indicates a d-dimensional identity matrix.

Latent distance models are particularly attractive for social networks in which tri-
adic closure plays a major role, and where nodes with similar characteristics tend to
form connections with each other (i.e. homophilic networks, see Rivera et al., 2010). It
is also possible to add nodal random effects to the model, to control for agent-specific
heterogeneity in the propensity to form edges (Krivitsky et al., 2009). The model then
becomes

Pθ (Yi j = 1♣Z, a, b) =
exp¶θ ⊤xi j − ∥zi − z j∥ + ai + b j♢

1 + exp¶θ ⊤xi j − ∥zi − z j∥ + ai + b j♢
, (8)

where a = (a1, ..., an) and b = (b1, ..., bn) are node-specific sender and receiver effects
that account for the individual agents’ propensity to form ties, with a ∼ Nn(0, τ2

a In) and
b ∼ Nn(0, τ2

b In).
Despite its advantages and its fairly simple interpretation, a Euclidean latent space is

unable to effectively approximate the behavior of networks where nodes that are similar
in terms of connectivity behavior are not necessarily more likely to form ties (Hoff, 2008),
such as, e.g., many networks of amorous relationships (Ghani et al., 1997; Bearman et al.,
2004). More generally, the latent distance model tends to perform poorly for networks
in which stochastic equivalence does not imply homophily and triadic closure, i.e., when
nodes which behave similarly in terms of connectivity patterns towards the rest of the net-
work do not necessarily have a higher probability of being connected among themselves.
This is often the case in economics, where real-world networks can exhibit varying degrees
and combinations of stochastic equivalence, triadic closure and homophily. Moreover, it is
often a priori unclear which of these mechanisms are at play in a given observed network.
In this context, agent-specific multiplicative random effects instead of the additive latent
positions allow for simultaneously representing all these patterns (Hoff, 2005). Further
developments of this innovation have led to the modern specification of the Additive and
Multiplicative Effects network model (AME, Hoff, 2011), which, from a matrix repre-
sentation perspective, generalizes both the stochastic blockmodel and the latent distance
model (Hoff, 2021).

4.2 AME: Motivation and framework

The AME approach can be motivated by considering that network data often exhibit
first-, second-, and third-order dependencies. First-order effects capture agent-specific
heterogeneity in sending (or receiving) ties within a network. For example, in the case
of companies and legal disputes, first-order effects can be viewed as the propensity of
each firm to initiate (or be hit by) legal disputes. Second-order effects, i.e., reciprocity,
describe the statistical dependency of the directed relationship between two agents in the
network. In the previous example, this effect can be described as the correlation between
(a) company i initiating a legal dispute against company j and (b) j doing the same
towards i. Of course, second-order effects can only occur in directed networks. Third-order

effects are described as the dependency within triads, defined as the connections between
three agents, and relate to the triangular statistics previously illustrated in Figure 1. How
likely is it that “a friend of a friend is also my friend”? Or, returning to the previous
example: given that i has legal disputes with j and k, how likely are disputes to occur
between j and k?

The AME network model is designed to simultaneously capture these three orders
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of dependencies. More specifically, it extends the classical (generalized) linear modeling
framework by incorporating extra terms into the systematic component to account for
them. In the case of binary network data, we can make use of the Probit AME model.
As is well known, the classical Probit regression model can be motivated through a latent
variable representation in which yi j is the binary indicator that some latent normal random
variable, say Li j ∼ N (θ ⊤xi j,σ 2), is greater than zero (Albert and Chib, 1993). But an
ordinary Probit regression model assumes that Li j, and thus the binary indicators (edges)
yi j, are independent, which is generally inappropriate for network data. In contrast, the
AME Probit model specifies the probability of a tie yi j from agent i to agent j, conditional
on a set of latent variables W , as

P(Yi j = 1♣W ) = Φ(θ ⊤xi j + ei j), (9)

where Φ is the cumulative distribution function of the standard normal distribution,
θ ⊤xi j accommodates the inclusion of dyadic, sender, and receiver covariates, and ei j can
be viewed as a structured residual, containing the latent terms in W to account for the
network dependencies described above. In the directed case, ei j is composed as

ei j = ai + b j + uiv j + εi j. (10)

In this context, ai and b j are zero-mean additive effects for sender i and receiver j ac-
counting for first-order dependencies, jointly specified as

(a1, b1), ..., (an, bn)
i.i.d.
∼ N2(0,Σ1), with Σ1 =





σa σab

σab σb



. (11)

The parameters σa and σb measure the variance of the additive sender and receiver effects,
respectively, while σab relates to the covariance between sender and receiver effects for the
same node. Going back to (10), εi j is a zero-mean residual term which accounts for second
order dependencies, i.e. reciprocity. More specifically, it holds that

¶(εi j, ε ji) : i < j♢
i.i.d.
∼ N2(0,Σ2), with Σ2 = σ 2





1 ρ

ρ 1



, (12)

where σ 2 denotes the error variance and ρ determines the correlation between εi j and
ε ji, thus quantifying the tendency towards reciprocity. Finally, ui and v j in (10) are d-
dimensional multiplicative sender and receiver effect vectors that account for third-order
dependencies, and for which (u1, v1), ..., (un, vn) ∼ N2d(0,Σ3) holds.

As noted above, AME is able to represent a wide variety of network structures, gener-
alizing several other latent variable model classes. This generality comes at the price of a
high level of complexity for the estimated latent structure. This can make the model class
a sub-optimal choice if one wants to interpret the latent structure with respect to, e.g.,
clustering. On the other hand, its flexibility makes it an ideal fit when the underlying
network dependencies are unknown, and the researchers’ interest mainly lies in evaluating
and interpreting the effect of dyadic and nodal covariates on tie formation while control-
ling for network effects. This strength has led to AME being used for several applications
of this type (Koster, 2018; Minhas et al., 2019, 2022; Dorff et al., 2020). We next showcase
the AME framework by applying it to the world foreign exchange activity network as of
1900, originally introduced and studied by Flandreau and Jobst (2005, 2009). This appli-
cation highlights how using AME instead of classical regression can allow us to reconsider
existing, influential answers to relevant questions via replication.
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Figure 3: Illustration of the global foreign exchange activity network in 1900. Countries
are labeled by their ISO 3166-1 codes, and an edge from node i to node j indicates active
trading of the currency from country j within a financial center of country i.

4.3 Application to the global foreign exchange activity network

In 1900, every financial center featured a foreign exchange market were bankers bought
and sold foreign currency against the domestic one. Foreign exchange market activity
was monitored in local bulletins, which allowed Flandreau and Jobst (2005) to collect a
global dataset with all currencies used in the world at that time. In the resulting network
structure, laid out in Figure 3, countries are nodes, and a (directed) edge from country
i to country j occurs if the currency of country j was actively traded in at least one
financial center within country i. From the graph representation, laid out using a variant
of the Yifan Hu force-directed graph drawing algorithm (Hu, 2005), we observe that the
most actively traded currencies at the time belonged to large European economies, such
as Great Britain, France and Germany. To determine the drivers of currency adoption,
Flandreau and Jobst (2009) model this network as a function of several covariates by
employing ordinary binary regression. As we show, it is possible to use AME to pursue
the same goal while taking network dependencies into account.

We specify the AME model as in (9), using directed edges yi j as response variable. The
nodal covariates we use, sourced from and described in detail in the replication materials
of Flandreau and Jobst (2009), are (log)per-capita GDP, democracy index score, coverage
of foreign currencies traded in the country, and an indicator of whether the country’s
currency was on the gold standard. We also include, as dyadic covariates, the distance
between two countries as well as their total trade volume. As specified in (10), the
structured residual term ei j comprises additive effects ai and b j for each node, which
capture country-specific propensities to send and receive ties, respectively. Multiplicative
effects ui and v j are included to account for third order dependencies. We here set the
dimensionality of the multiplicative effects to two, which we assume to be sufficient given
the relatively small size of the network.

To estimate the AME model, we make use of the R package amen (Hoff, 2015). As the
likelihood involves intractable integrals arising from the combination of the transformation
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and dependencies induced by the the model, closed form solutions are not available. The
package thus uses reasonably standard Gibbs sampling algorithms to provide Bayesian
inference on the model parameters. More details on the estimation routine can be found
in Hoff (2021).

The results of the analysis, as well as, for comparison’s sake, a Probit regression
including the same covariates but ignoring network dependencies, are displayed in Table 2.
Note that the classical Probit regression model can be seen as a special case of AME Probit
in which both additive and multiplicative node-specific effects are omitted. Additional
model diagnostics and goodness of fit measures, together with the estimated variance
and covariance parameters, are provided in the Supplementary Material. The estimated
coefficients (for both models) can be interpreted as in standard Probit regression: For
the nodal covariate per-capita GDP, for example, a unit increase in the log-per-capita
GDP for country i corresponds to a decrease of 0.453 in the linear predictor, therefore
negatively influencing the expected probability of the country to send a tie. The same
unit increase in the log-per-capita-gdp for country i corresponds to an increase of 0.426
in the linear predictor, and has therefore a positive impact on the expected probability
of that country to receive a tie. In the case of a dyadic covariate, such as distance, a
unit increase in distance between two countries leads to a decrease of 1.019 in the linear
predictor, resulting in a decrease in the expected probability of the two countries to form
a tie in either direction. Overall, we find that the principal drivers of the formation of a tie
between i and j are the magnitude of the foreign exchange coverage of the two countries
involved, the distance between them, and their reciprocal trade volume. These results
correspond to the thesis of Kindleberger (1967) and to Flandreau and Jobst (2009), who
suggest that the most important determinants of international adoption for a currency
are size and convenience of use. At the same time, we note that, as for the ERGM in the
arms trade example, the results of the Probit and AME model differ in several regards.
In particular, several effects are statistically significant in the Probit but not significant in
the AME model. Indeed, unacknowledged network dependence can cause downward bias
in the estimation of standard errors, leading to spurious associations (Lee and Ogburn,
2021). This finding once again highlights how accounting for network dependencies can
make a difference when it comes to the substantive results.

As a final note, we add that in this case we went with AME over ERGM as our
interest lies in answering the research questions addressed by Flandreau and Jobst (2005,
2009), that is assessing the effect of the exogenous covariates in Table 2 on tie formation.
AME allows us to do that without specifying the configuration of the endogenous network
mechanisms at play, which are instead accounted for through the imposed latent structure.
If, on the other hand, the researcher expects some specific network effects to play a role,
and wishes to test for their presence and measure their influence on network formation,
the ERGM may be a better tool. The latter model class can, for example, directly answer
questions such as “Does the fact that both countries A and B trade the currency of country
C influence the probability of A and B to be connected? And if so, to what extent?”.
AME, on the other hand, is limited to accounting for those effects via the latent variables,
without explicitly identifying them, to provide unbiased inference for the covariate effects.
The choice between the two model classes is thus a matter of what assumptions can be
made about the network and where the researcher’s interest lies.

15



AME Classical Probit

Intercept −4.845 (5.310) −3.211 (1.580)∗

Sender



























Gold standard −0.629 (0.397) −0.354 (0.155)∗

log-GDP per-capita −0.453 (0.419) −0.259 (0.152)

Democracy index −0.033 (0.064) −0.025 (0.026)

Currency coverage 1.418 (0.405)∗∗∗ 0.470 (0.137)∗∗∗

Receiver



























Gold standard −0.599 (0.667) −0.468 (0.191)∗

log-GDP per-capita 0.426 (0.703) 0.240 (0.159)

Democracy index 0.121 (0.102) 0.066 (0.019)∗∗∗

Currency coverage 2.734 (0.691)∗∗∗ 1.363 (0.181)∗∗∗

Dyadic







Distance −1.019 (0.151)∗∗∗ −0.471 (0.064)∗∗∗

log-trade volume 0.488 (0.081)∗∗∗ 0.346 (0.036)∗∗∗

∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Table 2: Estimated coefficients and related standard errors (in parentheses) for the AME
model and the corresponding Probit model for the global foreign exchange activity network
in 1900.

5 Conclusion

Complex dependencies are ubiquitous in the economic sciences (Chiarella et al., 2005;
Flaschel et al., 2008), and many economic interactions can be naturally perceived as
networks. This area of research has thus received considerable interest in recent years.
However, this attention has not yet been accompanied by a corresponding general take-up
of empirical research methods tailored towards networks. Instead, researchers either de-
velop their own estimators to reproduce the features of their theoretical network models,
or use standard regression methods that assume conditional independence of the edges
in the network. Against this background, this paper seeks to provide a hands-on intro-
duction to two statistical models which account for network dependencies, namely the
Exponential Random Graph Model (ERGM) and the Additive and Multiplicative Effects
network model (AME). These two classes serve different purposes: While the ERGM is
most appropriate when explicitly interested in testing the effects of endogenous network
structure, the AME model allows one to control for network dependencies while substan-
tively focusing on estimating the effects of exogenous covariates of interest. We present
the statistical foundations of both models, and demonstrate their applicability to eco-
nomic networks through examples in the international arms trade and foreign currency
exchange, showing that modeling network dependencies can alter the substantive results
of the analysis. We, moreover, provide the full data and code necessary to replicate these
exemplary applications. We explicitly encourage readers to use these replication materials
to get started with analyzing economic networks via ERGM and AME, beginning with
the examples covered here to then transfer the code and methods to their own research.

We especially want to encourage the use of such methods as not accounting for inter-
dependence between observations when it exists can lead to biased estimates and spurious
findings. Our two applications demonstrate that this bias can result in very different em-
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pirical results, and thus affect substantive conclusions. It is therefore vital to account
for network structure when studying interactions between economic agents such as indi-
viduals, firms, or countries, regardless of whether one is substantively interested in this
structure. As shown by Lee and Ogburn (2021), our applications are just two examples
of how unaccounted dependence in the observed data may lead to spurious findings.

At the same time, this paper can only serve as an introduction to statistical network
data analysis in economics. We covered two general frameworks in this realm, but, in
the interest of brevity, focused only on their simplest versions that apply to networks
observed at only one time point and with binary edges. However, both frameworks have
been extended to cover more general settings. For the ERGM, there are extensions for
longitudinal data (Hanneke et al., 2010), distinguishing between edge formation and con-
tinuation (Krivitsky and Handcock, 2014), as well as to settings where edges are not
binary but instead count-valued or signed (Krivitsky, 2012; Fritz et al., 2022). As for
AME, approaches for longitudinal networks are described by Minhas et al. (2016), while
versions for undirected networks as well as for non-binary network data are presented by
Hoff (2021). Both the ERGM and the AME frameworks are thus flexible enough to cover
a wide array of potential economic interactions. We believe that increasingly adopting
these methods will, in turn, aid our understanding of these interactions.
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S.1 Details on the p1 model

To represent reciprocity, the p1 model assumes dyads, defined by (Yi j,Yji), to be indepen-
dent of one another. The resulting bivariate distribution of each dyad (Yi j,Yji) comprises
three parameters and a constraint:

mi j = P(Yi j = Yji = 1)

ai j = P(Yi j = 1,Yji = 0)

ei j = P(Yi j = Yji = 0)

mi j + ai j + a ji + ei j = 1.

The joint distribution of the network is then given by:

Pθ (YYY = yyy) =
∏

i< j

m
yi jy ji

i j a
yi j(1−y ji)
i j a

(1−yi j)y ji

ji e
(1−yi j)(1−y ji)
i j

=
exp

{

∑

i< j ρi jyi jy ji +
∑

i ̸= j θi jyi j

}

κ(θ )
, (1)

where ρi j = log
(

mi jei j/a2
i j



for i < j, θi j = log (ai j/ni j) for i ̸= j, and κ(θ ) is the
normalizing constant. To estimate the parameters in (1) we need to introduce some
homogeneity assumption to avoid overparametrization. Following Holland and Leinhardt
(1981), we assume

ρi j = θRep ∀ i < j

θi j = θEdges + θOut,i + θIn, j ∀ i ̸= j
n
∑

i=1

θOut,i =
n
∑

i=1

θIn,i = 0,

where θRep is the global effect of reciprocity, θEdges quantifies the general sparsity in the
network, and θOut,i and θIn,i indicate the general tendency for all agents i ∈ ¶1, ..., n♢ to
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form out- or in-going ties. Combining these homogeneity assumptions with (1) yields

Pθ (YYY = yyy) ∝ exp


θRepsRep(yyy) + θEdgessEdges(yyy)+

n
∑

i=1

θOut,isOut,i(yyy) +
n
∑

i=1

θIn,isIn,i(yyy)
}

, (2)

where sRep(yyy) =
∑

i< j yi jy ji is the number of reciprocal ties, sEdges(yyy) =
∑n

i=1

∑

j ̸=i yi j the
number of edges, and sOut,i(yyy) and sIn,i(yyy) the number of out- and in-going ties of agent i.

Note that all these statistics are functions of the observed network and are the sufficient
statistics, i.e. they contain all necessary information for determining all coefficients in (2).
This sufficiency principle translates to sOut,i(yyy) = sOut, j(yyy) ⇒ θOut,i = θOut, j. This, in turn,
allows us to write all agent-specific terms in (2) in terms of degree statistics:

Pθ (YYY = yyy) ∝ exp


θRepsRep(yyy) + θEdgessEdges(yyy)+

n
∑

i=1

θOutdeg,isOutdeg,i(yyy) +
n
∑

i=1

θIndeg,isIndeg,i(yyy)
}

, (3)

where sOutdeg,i(yyy) and sIndeg,i(yyy) are statistics counting the actors with out/in-degree i in
yyy.

S.2 Further results of the application to the interna-

tional arms trade network

S.2.1 Model diagnostics and goodness of fit

To evaluate the goodness of fit of of an estimated ERGM, the standard approach is
to compare the statistics observed in the real world network with the distribution of the
same statistics calculated on networks simulated from the model (Hunter et al., 2008). The
results of this comparison are depicted in Figure S.1, where we investigate the goodness of
fit of the ERGM estimated on the 2018 international arms trade network. The black line
in each subfigure represents the distribution of the respective network statistic observed
in the real network. For instance, the top right figure indicates that approximately 10%
of all nodes (countries) in the network had an in-degree of 2. The boxplots then show the
distribution of each value of a given statistic over the simulated networks. A good model
will thus generally result in boxplots that include the observed values of the network
statistics under consideration. In Figure S.1, this is almost always the case, though it is
also visible that the real network included less countries with an in-degree of 0 but more
with an in-degree of 1 than the large majority of networks simulated from the ERGM.

In Figure S.2, we further compare the performance of the fully specified ERGM against
that of the logistic regression model including the same exogenous covariates as the
ERGM, but of course omitting all endogenous network statistics. We already noted
that the ERGM appears to do a better job at in-sample prediction than the Logit model
given its lower AIC and BIC values. Figure S.2 documents both models’ respective areas
under the receiver-operator (ROC) and precision-recall curves (PR). Here, a higher value
of each curve indicates better predictive performance, and again, the ERGM appears to
outperform the logistic regression model for both metrics. Figure S.2 thus offers further
evidence that in the case of the international arms trade, model performance is improved
by accounting for endogenous network effects.
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Figure S.1: Goodness of fit plots for the application to the international arms trade
network in 2018. The metrics show a reasonably good fit for our model.
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Figure S.2: In-sample prediction performance of the two models in Table 1. Left panel:
ROC. Right panel: PR curve. ERGM outperforms Logit in both metrics.

S.2.2 Robustness checks

In the analysis presented in Section 3.3, we lag all covariate information by three years.
Since this choice is based on the heuristic that there are considerable delays between the
order and delivery date of arms, we next show the results of the ERGM with different time
lags, namely four and five years, in Table S.1. From these results, we conclude that the
results are robust to different specifications of the time lags between the modeled network
and the exogenous covariates. Moreover, one can observe that the ERGM consistently
achieves lower AIC and BIC values compared to its classical logistic counterpart, under-
pinning the finding that accounting for network dependencies is necessary for analyzing
the international arms trade. We further corroborate this point through a ROC as well
as a PR analysis, both shown in Figures S.3(a) and (b).
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ERGM Logit ERGM Logit

Covariate Lag 4 years 4 years 5 years 5 years

Edges −15.46 (2.10) −28.22 (1.73) −13.82 (3.19) −23.11 (3.04)

Repetition 3.25 (0.14) 3.96 (0.14) 3.25 (0.14) 3.95 (0.14)

Distance −0.08 (0.09) −0.24 (0.09) −1.68 (2.49) −5.93 (2.47)

Abs. Diff. Polity −0.00 (0.01) −0.00 (0.01) −0.00 (0.01) −0.00 (0.01)

Alliance 0.37 (0.20) 0.21 (0.21) 0.40 (0.20) 0.24 (0.21)

log-GDP (Sender) 0.30 (0.05) 0.59 (0.04) 0.30 (0.05) 0.59 (0.04)

log-GDP (Receiver) 0.17 (0.05) 0.35 (0.04) 0.16 (0.05) 0.35 (0.04)

Mutual −0.34 (0.43) −0.33 (0.44)

GWIDEG −1.48 (0.31) −1.49 (0.30)

GWODEG −2.84 (0.30) −2.85 (0.30)

GWOTP −0.15 (0.11) −0.15 (0.11)

GWISP 0.22 (0.09) 0.22 (0.09)

AIC 1772.34 1891.65 1773.36 1893.14

BIC 1868.67 1947.84 1869.69 1949.34

Log Likelihood −874.17 −938.82 −874.68 −939.57

Table S.1: Estimated coefficients of ERGMs and corresponding logistic regression models
for the international arms trade network in 2018 with covariates lagged by 4 and 5 years,
resepectively.
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(a) s = 4
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(b) s = 5

Figure S.3: In-sample prediction performance of the four models in Table S.1. Upper row:
Results when lagging the covariates four years. Lower row: Results when lagging the
covariates five years. Left column: ROC. Right column: PR curve. ERGM outperforms
Logit in both cases and for both metrics.

S.3 Further results of the application to the global

foreign exchange activity network

S.3.1 Variance and covariance parameters

In Section 4.3 of the paper, we showcased the AME model by fitting it to the historical
network of global foreign exchange activity in 1900. In illustrating the results we, for
brevity, focused on the main effects of the covariates included, reported in Table 2. But
the AME model also estimates several variance and covariance parameters, which also
have a meaningful interpretation. The estimates for those parameters are reported in
Table S.2. The first two parameters, σ 2

a and σ 2
b , represent the estimated variances of
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Estimate Standard deviation

σ 2
a 0.557 0.165

σ 2
b 1.863 0.860

σab −0.350 0.250

ρ 0.364 0.319

Table S.2: Estimated variance and covariance parameters for the AMEN model fitted on
the global foreign exchange network in 1900.

the additive sender and receiver effects, respectively. We can see that receiver effects are
much more variable then sender effects. This makes intuitive sense given that there are
a few currencies which are traded by a large number of countries, while many currencies
aren’t traded at all outside of their origin countries. The skewness in the distribution of
incoming ties thus induces a relatively large variance in the receiver effects.

The coefficient in the third row, σab, measures the (global) correlation between sender
and receiver effects of the same node. In this case, we can see that there is a slight
negative correlation between the two, meaning that countries that trade many foreign
currencies within their financial hub do not necessarily tend to have their home currency
traded in many countries. Finally, the coefficient ρ indicates the covariance between
the residuals on the same node-pair, εi j and ε ji. This parameter quantifies the tendency
towards reciprocity in the network. In this case, we can see that there is a slight positive
tendency for ties to be reciprocated.

S.3.2 Model diagnostics and goodness of fit

Similarly as for ERGM, the goodness of fit for AME models is evaluated by comparing the
statistics observed in the real world network with the distribution of the same statistics
calculated for networks simulated from the model. Figure S.4 depicts this comparison
for first order effects (top panel) and for second- and third-order dependencies (bottom
panel), as done by default in the R package amen (see Hoff, 2015 for details). All in all,
we can see that the model does a reasonably good job in preserving the network statistics
in question.

We can also compare the goodness of fit of the AME model with that of the Probit
model including the same exogenous covariates, but of course omitting the latent vari-
ables. Figure S.5 depicts the same comparison of observed with simulated statistics just
described, but for Probit instead of AME. From the plots therein we can see how the
Probit model does a markedly worse job than the AME in reproducing first and third
order dependencies, thus demonstrating an overall worse performance in capturing the
mechanisms at play in the network.

In Figure S.6, also produced by default by the amen package, we can further check how
the coefficients and their variance vary across the MCMC iterations. In general, the fit is
considered to be acceptable if no visible trends emerge in the chains. If, to the contrary,
trends in the estimates are visible, the researcher must consider running the chain for
more iterations and/or using alternative model formulations. In the case of Figure S.6,
visual inspection gives us confidence that the AME model has reasonably converged.
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Figure S.4: Goodness of fit plots for the AME model applied to the global foreign exchange
network in 1900. The model does an overall good job in replicating the observed network
statistics.

Figure S.5: Goodness of fit plots for the classical probit model applied to the global foreign
exchange network in 1900. The model performs visibly worse than AME in replicating
the observed network statistics.
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Figure S.6: MCMC diagnostics for the AME model applied to the global foreign exchange
network in 1900. Visual inspection gives us confidence that the model has reasonably
converged.
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