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Abstract. We present a biomimetic model of motivated behaviour based
on the network architecture of the mammalian hypothalamus and its in-
teraction with brain systems involved in reward, memory and decision-
making. Speciőcally, a novel model of the hypothalamus, viewed as a
layered structure, is integrated with a previously-developed model of the
hippocampal-striatal network controlling a simulated robot in a naviga-
tion task. Hypothalamic modulation of model dopamine signals allows
the robot to learn the location of reward while regulating simulated food
intake. When ’satiated’ the robot explores, when ’hungry’ it moves to-
wards the learned food source. We discuss the potential uses and future
challenges of such models in the development of autonomous robots.

Keywords: Hypothalamus · Motivation · Reinforcement learning · Nav-
igation

1 Introduction

Behaviour in animals is orchestrated to satisfy different needs arising from the
homeostatic constraints that make life possible [23]. A hungry animal, for ex-
ample, needs to forage for food while remembering the location of reliable food
sources that can be exploited in the future. On the other hand, a satiated animal
is free to explore and engage in other behaviours, typically in order to the satisfy
other needs (e.g. mating, nesting, etc.). Robots lack natural needs and therefore
have no intrinsic motivational grounding for their behaviour [14]. The absence
of any genuine needs has been argued to be a fundamental and immutable dif-
ference between robots and animals [4]. On the other hand, one could argue that
robots can have needs in the sense that they require certain resources and inputs
(power and maintenance, for example) to function properly. The instantiation
of goals, provided by humans, in robot control systems can also play a similar
role to natural needs in co-ordinating behaviour.

⋆ Supported by Horizon 2020, Horizon Europe, and UK Research and Innovation.



2 Jimenez-Rodriguez et al.

Many animal physiological needs, for instance, to maintain blood oxygen and
sugar levels, hydration, body temperature and so on, are regulated by the cen-
tral and autonomic nervous systems. A layered architecture of brain systems is
involved in this regulation [8, 25, 26, 29], where the hypothalamus, a forebrain
structure situated near the midline of the brain, plays a critical role. In this
work, we propose a biomimetic model of the hypothalamus and its interaction
with brain systems involved in decision-making (basal ganglia) and navigation
(hippocampus). We show that this model can simulate alternation between con-
summatory behaviour and learning through the regulation of simulated physi-
ological variables. Our long-term goal is to better understand the neural basis
of motivated behaviour in animals, including humans. We consider that such an
understanding could help illuminate these critical differences between evolved
organisms and intelligent artefacts such as robots.

2 The role of the hypothalamus in motivated behaviour

As noted, in mammalian brains, the hypothalamus plays a critical role in the
orchestration of motivated behaviour. In particular, it acts as an integrator for
bodily signals that provide an up-to-date picture of homeostatic needs, and de-
livers outputs based on these signals to a wide network of brain regions that drive
different aspects of behaviour [5,25]. The hypothalamus is a heteregeneous struc-
ture composed of multiple subregions, of particular importance, to the current
work, are the dorsal and lateral areas. The dorsal hypothalamus (DH) is in con-
tact with physiological milieu and generates signals that correlate with lower and
higher levels of a variety of substances within the body. Those signals are used to
drive a motivational state representation in the lateral hypothalamus (LH) that
also integrates signals from other cortical and subcortical structures [3, 10,24].

Approach and avoid signals generated by the LH are used to modulate the
downstream dopaminergic neurons in the ventral tegmental area (VTA) [17,
24] which project to major areas of the brain, and prominently to the nucleus
accumbens (NAcc), which is an input structure for action selection systems in
the basal ganglia [9, 21]. VTA dopamine acts as both a motivational proxy and
as a saliency signal that drives learning [13, 16, 21]. Motivational functions of
dopamine include stimulation of behavioural activation, effort and appetite [1]
and modulation of action selection in the basal ganglia [19], Phasic increases and
decreases in dopamine, locked to environmental stimuli, allow for the modulation
of reinforcement learning in regions including the striatum and the hippocampus
[22]. Hence, in the current model simulated dopamine signals act as both a
learning signal and to activate different motivational systems. GABAergic signals
from the VTA have been found to act along with dopamine to allow associative
learning in the NAcc [7]. In this work we use a similar chollinergic signal to
modulate the plasticity of the hippocampal-striatal network.

In previous work, we presented a robotic model of the hippocampal-striatal
network that allows the robot to learn the location of a reward [28]; we have also
separately introduced a layered dynamical model of motivation [11]. The current
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model combines simulation of some of the neuronal networks involved in moti-
vation, representing the different regions discussed in the previous paragraphs.
This model is integrated with the hippocampal network in a layered architec-
ture [18, 29] and tested using a simulation of the animal-like robot platform,
MiRo-e [15].

In the following sections we introduce the main components of the archi-
tecture: the motivational model, the cholinergic network and the navigational
model. Then we present some simulation results.

3 The motivational model

As described in the introduction, our motivational model is composed of three
layers as shown in figure 1. In each layer we have abstracted a network motif
that performs specific computations relevant for the encoding motivational state
of the agent and the corresponding modulation of learning and behaviour. Each
of the neurons in the model is a rate neuron:

τ
dxk
dt

= −xk + f(
∑

wjkxj + θk), (1)

where, xk is the firing rate of the kth neuron, wjk the synaptic weights and θi a
bias term. The activation function is sigmoidal f(x) = 1/(1 + exp(−βx)). Table
1 shows the different neuron populations in the model.

Table 1: Abbreviations used for the different neuron populations in the model

Variable Description

xs Sensitive neurons in the Hammel network
xi Insensitive neurons in the Hammel network
xh Hunger neurons
xs Satiety neurons
xapp Approach pathway neurons
xav Avoid pathway neurons
xacc Nucleus accumbens neurons
xvta_gaba VTA GABA neurons
xda Dopaminergic neurons
xmsn Medium Spiny Neurons in the striatum
xcin Collinergic interneurons

In the upper layer or ventricular part, representing the dorsal hypothalamus,
we propose a version of the network motif known as the Hammel model [6] in
order to encode “hunger” and “satiety” states. This mechanism effectively defines
a set-point based upon physiological signals, which are modeled as first order
ODEs:

τ
du

dt
= α(1− u)− ur(t), (2)
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Fig. 1: Motivational circuit inspired by the hypothalamus architecture. The ven-
tricular part, modelled on the dorsal hypothalamus, is in contact with the phys-
iological millieu, and drives hunger (H) and satiety (S) signals that activate
approach and avoid channels in the Lateral Hypothalamus (LH). These sig-
nals are reinforced by the nucleus accumbens. The approach pathway drives
behavioural activation by disinhibiting VTA dopamine neurons (DA), shown
here in the monoaminergic layer, by removing tonic inhibition from GABA cells.
Inset: From the accumbens perspective, different dopamine regimes drive explo-
ration/explotation trade-offs. See text for further explanation.

where r(t) is the reward obtained from the environment, α, an accumulation
rate, and τ a time constant that determines the timescale. Physiological signals
accumulate indicating increasing levels of thirst, hunger, etc. The four neurons
in the mechanism evolve according to the dynamics:

τs
dxs
dt

= −xs + f(wuu),

dxi
dt

= 0,

τ
dxh
dt

= −xh + f(ws→hxs + wi→hxi),

τ
dxst
dt

= −xst + f(ws→stxs + wi→stxi).

(3)

Here, the sensitive neurons xs need to overcome the constant firing rate of the
insensitive ones xi to elicit hunger xh state; otherwise the output xst indicate a
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satiety state. We assume τ = 1 for the rest of the model, except for τs which is
adjusted to the particular choice of physiological signal.

The intermediate layer is composed of the approach and avoid channels of the
LH. The approach channel is GABAergic [10] and the avoid one is glutamatergic.
In the current model they do not interact.

dxapp
dt

= −xapp + f(wacc→appxacc + wh→appxh),

dxav
dt

= −xav + f(wst→avxst),

(4)

Note that this channel is modulated by higher order areas in the brain, however,
we focus on the connection with the NAcc whose dynamics we model with the
equation:

dxAcc

dt
= −xAcc + f(wxAcc + θda). (5)

Here, the dopamine input, acts as a bifurcation parameter. From figure 2 we
can see that the accumbens undergoes a cusp bifurcation and it is therefore
bistable. As dopamine increases, the population transitions from a high frequency
firing regime to a low frequency one. Finally, in the monoaminergic layer, the
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Fig. 2: Bifurcation diagram of the nucleus accumbens showing a cusp catastro-
phe. The dopamine signal drives the firing rate to a low frequency firing in an
abrupt change. This allows for sharp transition between motivated behaviour
and exploration.
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VTA is composed of two populations. The GABAergic VTA neurons inhibit the
dopaminergic neurons and are excited by the the avoid pathway while inhibited
by the approach pathway. Thus, behavioural activation works by disinhibition
of dopamine neurons. The full model of the VTA is:

dxvta_gaba

dt
= −xvta_gaba + f(wapp→vta_gabaxapp + wav→vta_gabaxav)

dxda
dt

= −xda + f(wvta_gaba→daxvta_gaba + θorexin).

(6)

Note that we have added an orexin related modulation term to modulate the
excitability of the dopaminergic neurons and therefore the timescales used by
acetylcholine in the next section. As shown in figure 1, the approach and avoid
pathways in the intermediate part are subject to modulation from different brain
areas [5].

4 Cholinergic signal

To modulate learning, we generate a transient signal λach by combining the
GABAergic and dopaminergic outputs from the VTA in two steps circuit similar
to [7]:

dxmsn

dt
= −xmsn + f(wvta_gaba→msnxvta_gaba + θmsn)

dxcin
dt

= −xcin + f(wda→cinxda + wmsn→cinxmsn + θcin)

, (7)

with λach = Θ(xcin − b). Note that the GABA input disinhibits the cholinergic
output which is being excited by dopamine; the parameters are chosen in such
a way that the CIN output tracks the start and end of the consummatory be-
haviour (see figure 3). On the other hand, the teaching signal is a binary value
that determines when learning should occur (see next section).

5 The navigation model

The hippocampal-striatal model has been previously published in [28], here we
show only an overview of the important parts of its integration with the motiva-
tional model. The main parts of the model are shown in figure 4. For the model
we assume the MiRo-e is located in a simulated open arena and its coordinates
are known at each step.

5.1 Hippocampal network

The hippocampal network is composed of 100 place cells connected in a grid to
their immediate neighbours (figure 4). Their firing rate is given by:

xj =











0 if x
′

j < 0

100 if x
′

j > 100

x
′

j otherwise.

(8)
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Fig. 3: The activity of the Cholinergic interneurons tracks the start and end of
behavioural activation. Shown is a fraction of the simulation DA and CIN time
series to illustrate this behaviour.

with the rate defined as rectified function of its current:

x
′

j = α (Ij − ϵ)

The dynamics of this current are given by:

τI
d

dt
Ij = −Ij + ψjI

syn
j + Iplacej , (9)

where, Isynj is the synaptic current from neighboring place cells, ψj is the intrinsic

plasticity (see paper [28] for details) and Iplacej is the input due to a place field
given by:

Iplacej = Ipmaxexp

[

−
(xcMiRo − xcj)

2 + (ycMiRo − ycj)
2

2d2

]

, (10)

where the position of the robot is assumed to be known. The synaptic input
is modulated by the cholinergic output of the motivational model (see previous
section). Additionally it possesses depression and facilitation terms Dk and Fk

to ensure the correct dynamics during learning:

Isynj = λach

8
∑

k=1

wplace
jk xkDkFk, (11)

see [28] for details on the depression and facilitation dynamics.

5.2 Action cells

There are 72 action cells, each coding for 1/360 degrees of orientation. Firing
rates are drawn from a normal distribution

yi ∼ N
(

ỹi, σ
2
)

, (12)
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Fig. 4: Hippocampal striatal network. A. Each place field is a Gaussian centered
at a given preferred position. B. The network is composed of the hippocampal
network that has a feed-forward projection to action cells. C. The simulations
are performed in a circular arena with the robotic platform MiRo-e.

where the mean is computed according to

ỹi =
xda

1 + exp
[

−c1
∑100

j=1 w
PC-AC
ij xj − c2

] , (13)

and where xda is the output of the dopaminergic cells in the VTA. Note that
firing rate is modulated by the place cells. The target direction of the robot is
computed by tallying the preferred directions of all cells weighted by their firing
rates:

θtarget = arctan

(∑

i yi sin θi
∑

i yi cos θi

)

. (14)

The magnitude of the activation in that direction is computed as the magnitude
of the population vector.

mtarget =

√

√

√

√

(

∑

i

yi sin θi

)2

+

(

∑

i

yi cos θi

)2

, (15)
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this is used in action selection (exploration vs. consummatory behaviour).

5.3 PC → plasticity

The synapses from the place cells are plastic and are updated using a policy gra-
dient RL methods (see full derivation in [28]). The weights are updated according
to:

dwPC-AC
ij

dt
=

η

σ2
Reij , (16)

where R = λach in this case and eij is the eligibility trace that evolves according
to

deij
dt

= −
eij
τe

+ (yi − ỹi) (1− ỹi) ỹixj . (17)

6 Results

We performed a continuous simulation during 300000 steps where the simulated
MiRo-e robot could behave freely in an open arena using Gazebo 11 and the
MiRo MDK (v201904). In each step of the simulation, the motivational model is
integrated first and then its output is fed to the navigational model whose output
is the presence or absence of reward. Once a Acetylcholine signal is detected,
behaviour is stopped for as long as it lasts; during this time, the weights are
updated using the policy gradient method.

In figure 5 we show the dynamics of the main variables of the motivational
model during the whole session. We chose the hormone Ghrelin to act as the
physiological proxy of hunger. The robot manages to keep the hormone levels
from saturating and therefore is able to survive. Note that the location of the
reward is not known before hand. If learning is turned off (figure 6), the robot
only randomly satisfies its needs when passing by the location of the rewards.

It is useful to investigate the trajectories from the start to the end of be-
havioural activation, as indicated by the cholinergic signal (figure 3). When
learning is activated, the trajectories clearly converge to the reward position
during the consummatory behaviour and away from it when the robot is sati-
ated (figure 7). The transparency of the trajectories has been made proportional
to the index of the consummatory event. On the other hand, when learning is
deactivated, trajectories remain random (figure 8)

7 Conclusions and future work

We have proposed a model of motivated consummatory behaviour that inte-
grates hypothalamic and hippocampal-striatal networks showing that this model
is able to modulate learning whilst satisfying certain homeostatic constraints.
The simulated MiRo-e robot, with this control architecture, is able to find and
remember the reward location, satisfying its needs continuously, while perform-
ing exploratory behaviour whenever the energy budget allows.
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Fig. 5: Time series of the main variables of the motivational model during the
whole recording session. Note that the needs are better satisfied over time. From
top to bottom. The hormone representing hunger increases over time and de-
creases once the reward has been consumed. The hunger and satiety signals
alternate depending upon the hormone levels. The approach and avoid path-
ways drive behavioural activation. Dopaminergic and GABAergic signals in the
VTA alternate to modulate behaviour and learning.

Fig. 6: Time series without learning. The robot satisfies its needs only when it
finds the reward by accident.

Although our motivational model simplifies the dynamics of each of the re-
gions involved we consider that it captures important roles of key circuits in-
volving the hypothalamus and VTA in the control of behavioural activation.
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Fig. 7: Trajectories of MiRo during consummatory and exploratory behaviours.
The starting point of the trajectory is marked with a circle, while the ending
point with a diamond. The place of the reward is marked with a cross. The alpha
channel represents time, with opaque trajectories representing later trials. Left.
Trajectories of consummatory behaviours when the robot gets hungry, it can be
seen that the location of the rewards has been learn and performance improves
over time. Right. Once the robot is satiated, it is free to engage of exploration
away from the reward until its energy reserves are depleted.

Fig. 8: Trajectories without learning. Same as before. Note that the black tra-
jectories are almost absent, meaning that the robot is hungry most of the time.

In particular, it demonstrates that a push-pull motivational system that oper-
ates through parallel approach and avoid channels can allow the orchestration of
motivational systems in order to satisfy needs and to generate useful reward pre-
diction errors. We intend to explore potential uses for this model in biomimetic
control of autonomous robots for continual learning, and as a platform to inves-
tigate motivation-related disorders such as addiction and compulsive eating.
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Future work will also include developing a more detailed model of the avoid
pathway that involves serotonin and different regions of the nucleus accumbens
[27]. This will allow extinction and punishment to be explored alongside reward.
The role of acetylcholine in the model should also be refined and, importantly,
the roles of nucleus accumbens and amygdala in motivational phenomena such
as “wanting” and “liking” [2], the current model can be considered to represent
only wanting.

Even though the model comprises just one explicit motivation vs. an explicit
drive to explore, we think that the layered architecture presented could harbor
multiple motivations as a result of the separation between physiological state (in
the ventricular layer) and motivational state (in the intermediate layer). Indeed,
this excitatory-inhibitory balanced networks have been shown to support the
creation of multiple assemblies and are a good target for modulation of higher
areas as shown in figure 1.

Overall, this work is a contribution to the ongoing effort to integrate mo-
tivational aspects in robotic cognitive architecture and in machine learning in
general [12,20,29]. Looking further ahead, in animals, needs and motivation are
closely related to emotions and feelings, and are processed in similar areas of
the brain. This relationship between the motivational and experiential aspects
of being is poorly understood, however, as noted by Craig:

"...our affective feelings derive from the brain networks that generate flexible
and adaptable emotional behaviors, which evolution built by expanding upon
the ancient homeostatic neural systems that automatically take care of the body.
In other words, the affective feelings that you experience are interoceptive re-
flections of emotional motivations, which are expressed by activity throughout
the peripheral and central autonomic systems of your body and your brain and
which produce behavior that you “feel” as it happens." [8](p. 12).

We therefore consider that robot modelling that illuminates the neural basis
for motivation could ultimately provide a better understanding of the role of the
brain in generating affective experience.
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