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 PROBABILISTIC ANALYSIS OF THE RESPONSE OF PLATES SUBJECTED TO 
NEAR-FIELD BLAST LOADING 

Lewis TETLOW1, Sam RIGBY2, Genevieve LANGDON3, Andy TYAS4 & 
Genevieve PEZZOLA5 

Abstract: Accurate prediction of the response of structures subjected to close proximity blast 
loads is a pressing engineering concern; the landscape of global terror has shifted away from 
large and indiscriminate bombings towards much smaller and more targeted attacks (e.g. against 
critical infrastructure and/or transport). In such close-proximity blast events (in the so-called ‘near-
field’), interaction between the expanding detonation products and air shock gives rise to complex 
hydrodynamic features which introduce localised variations in the pressure field. The resultant 
loading (typically defined in terms of specific impulse since loading durations act on timescales 
considerably shorter than structural response) is therefore highly uncertain, and even nominally 
identical experiments produce loading distributions with a high degree of local variability. Current 
predictive approaches either grossly simplify or neglect entirely the inherent ‘fuzziness’ of near-
field blast loading, to the extent where it is currently unknown what effect this has on structural 
response, how sensitive plate structures are to uncertainties in loading distribution, and how this 
varies with plate properties and loading condition (e.g. charge mass and stand-off distance). This 
paper presents a numerical study aimed at answering these questions, where specific impulse 
distributions are probabilistically simulated with varying degrees of localised variations and 
mapped onto a range of different plates. This work aims to shed light on the fundamentally 
stochastic nature of close-proximity blast, with a view to implementing the findings in fast running 
engineering models for prediction of plate response under near-field blast loading. 

Introduction 

If blast protection engineers are to protect structures against targeted explosive attacks then the 
tools need to be available for predicting structural response to close proximity loading. It is 
particularly important in the near-field where the magnitude of pressure is greatest and time 
duration of loading is small (Tyas, 2019). It is in this region that attackers can cause significant 
damage to key structural members or protective apparatus. 

During near-field loading the expanding detonation product cloud (DPC) is still in contact with the 
blast wave (Tyas, 2019). In an idealised scenario a target in close proximity to an explosive charge 
will experience a centrally localised specific impulse distribution (Pannell et al., 2021). However, 
interactions between the DPC and shock wave result in a hydrodynamically complex 
environment. 

During the early/extreme near-field, loading is consistent with little variation (S E Rigby et al., 
2020; Pannell et al., 2021). However, as scaled distance increases into the late near-field, 
hydrodynamic structures such as Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities 
develop and grow (Fuller et al., 2016; Tyas et al., 2016; S. E. Rigby et al., 2020). These 
instabilities are formed at the fluid interface between the DPC and shock wave, where a light fluid 
(DPC) accelerates into a heavy fluid (compressed air within the shock wave) (Zhou et al., 2021) 
and can form protrusions within the fireball. These hydrodynamic structures give rise to spatially 
complex and variable blast loading that is stochastic in nature (S E Rigby et al., 2020). When 
impinging on a plate this can result in off-center or asymmetric loading of the plate, as well as a 
locally increased specific impulse. 

Testing was performed by Rigby et al. (2019) on cylindrical and spherical charges at two scaled 
distances (to account for directional loading of cylindrical charges). The study noted a marked 
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increase in variability and loading offset in the case of the larger stand-off cylindrical charges, 
which was attributed to the formation of RT and RM instabilities. Balakrishnan et al. (2010) found 
that the formation of these instabilities is exacerbated by charge surface imperfections, meaning 
two nominally identical tests can result in vastly different loadings.  

These complicated interactions between the DPC and shock wave make near-field blast loading 
inherently variable and stochastic. If protective engineers are to accurately predict blast loading 
in the near-field, then they must fully account for this intrinsic variability. In order to do this, fast-
running predictive models should move away from a deterministic approach and instead employ 
probabilistic methods to assess loading and structural response. Only in this way can the full 
range of loading and deflection outcomes be captured. 

This paper presents a series of Monte Carlo analyses of structural response using numerical 
modelling to determine structural plate response to variable loading profiles impinging upon it. In 
this way several factors of variability are assessed by their effect on plate response variability. 

Method of Analysis 

In order to perform a numerical study of a near-field blast loaded plate, models of both loading 
distribution and the resultant structural response were employed. The models used to determine 
these parameters are described below. 

Specific Impulse Model 

To evaluate the specific impulse distribution applied across the plate or target structure, a loading 
model established by Pannell et al. (2021) was used. This model is shown in equation 1. 

 𝑖(𝑍, 𝜃,𝑊) = 0.557𝑍−1.663𝑒− 𝜃2007𝑊1 3⁄  (1) 

For 0.11 Z  0.55 m/kg1/3, where i – specific impulse (MPa.ms); Z – scaled distance (m/kg1/3) ; θ 
– angle of incidence (°); W – charge mass (kg). 

The model developed by Pannell et al. (2021) describes an idealised specific impulse profile 
where the localisation centre coincides with the centroid of the plate. To model asymmetric 
loading within this study, the localisation centre was offset by altering the angle of incidence 
coordinate system. All specific impulse distributions in this study were evaluated using a charge 
mass of 80g.  

 

Figure 1: Specific impulse distributions derived using model presented by Pannell et al. (2021) 
at both scaled distances used within this study.  

Numerical Model 

A lagrangian finite element model was created using LS-DYNA (Hallquist, 2006), to model a 
400x400x3 mm square DOMEX 355 MC steel plate with a mesh density of 2 mm. All four sides 
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of the plate were restrained against all translation and rotation. The plate was modelled using a 
simplified Johnson-Cook material model of the same parameters and properties as those used in 
studies by Rigby et al. (2019) and Rigby et al. (2021). 

The specific impulse distribution impinging on the plate was converted to initial velocities and 
applied at each node using the *INITIAL_VELOCITY_NODE keyword. The results were then used 
to determine the maximum displacement of the plate, zmax. 

Monte Carlo Analyses 

Due to the inherent variability and stochastic nature of near-field blast loading, a probabilistic 
approach has been used to define the maximum displacement of a plate in close-proximity to an 
explosive charge. A series of Monte Carlo analyses have been undertaken, where variable input 
parameters are sampled from a pre-determined probability distribution which describes both the 
magnitude and variability of that parameter. Each sample input is run through the specific impulse 
and LS-DYNA plate models described above. By running multiple sample models and recording 
the zmax results, the output probability distribution can be determined for the given input 
distribution. 

In this family of Monte Carlo analyses, three variable input parameters are used: 

• Scaled Distance 

• Localisation Centre Offset in the x direction 

• Localisation Centre Offset in the y direction 

Analyses are performed at two scaled distances (0.172 m/kg1/3 and 0.415 m/kg1/3) and each 
variable input parameter is sampled from a normal distribution. Two different normal distributions 
are used for each input parameter to represent “Small” and “Large” variation of loading. The 
distribution parameters are shown in Table 1. 

Input 
Parameter 

Variation Mean Value, μ Standard 
Deviation
, σ 

Normalised Standard 
Deviation σ/ μ or 
σ/Plate Width 

Type 

Scaled 
Distance, Z 

Large 0.172 or 0.415 
m/kg1/3 

0.166 
m/kg1/3 

0.4 Normal 

Small 0.172 or 0.415 
m/kg1/3 

0.021 
m/kg1/3 

0.05 Normal 

Fixed 0.172 or 0.415 
m/kg1/3 

- - - 

x Offset Large 0 mm 80 mm 0.2 Normal 

 Small 0 mm 20 mm 0.05 Normal 

y Offset Large 0 mm 80 mm 0.2 Normal 

 Small 0 mm 20 mm 0.05 Normal 

Table 1: Parameters for input probability distributions used in Monte Carlo analyses. 

 

Figure 2: Illustration of Monte Carlo analyses undertaken in this study. 

Two separate families of Monte Carlo Analyses were performed: 

• Set A – values of offset in the x and y direction are sampled from the Small or Large 
probability distributions and are therefore variable for each sample model. Scaled distance 
is kept constant for each sample model (i.e. either 0.415 or 0.172 m/kg1/3). 
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• Set B - Offset in x and y direction are kept variable as in Set A, whilst scaled distance is 
sampled from either the Small or Large distributions and is therefore variable for each 
sample model. 

In both Set A and B, Monte Carlo analyses are performed for “Large” and “Small” variation of the 
input parameters at both scaled distances. This results in a total of 8 Monte Carlo analyses, as 
summarised in Table 2. 

Set Analysis Sample Models Z [m/kg1/3] X Offset [mm] Y Offset [mm] 

μz σz μx σx μy σy 

A i 30 0.415 - 0 80 0 80 

ii 30 0.415 - 0 20 0 20 

iii 30 0.172 - 0 80 0 80 

iv 30 0.172 - 0 20 0 20 

B v 30 0.415 0.166 0 80 0 80 

vi 30 0.415 0.021 0 20 0 20 

vii 30 0.172 0.166 0 80 0 80 

viii 30 0.172 0.021 0 20 0 20 

Table 2: Summary of Monte Carlo Analyses performed. 

Results and Discussion 

Analysis Set A 

 

Figure 3: Histograms of zmax from Monte Carlo Analysis Set A. 

Ref Variation Scaled Distance, Z 
[m/kg1/3] 

Output standard 
deviation, σz [mm] 

Output Mean, µz 

[mm] 

i. Large Variation 0.415 1.805 16.844 

ii. Small Variation 0.415 0.123 18.348 

iii. Large Variation 0.172 3.060 30.027 

iv. Small Variation 0.172 0.458 32.906 

Table 3. Results from Monte Carlo Analysis Set A 

i) 

ii) iv) 

iii) 
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Figure 3 displays histograms of maximum displacement (zmax) of each model for the four Monte 
Carlo analyses performed in Set A. As previously discussed, the only source of input variation for 
Set A is from offset of the specific impulse localisation centre. The mean and standard deviation 
values of each output sample are shown in Table 3. 

By qualitatively comparing the histograms at the two scaled distances, it seems that when 
Z=0.415 m/kg1/3 there appears to be a skew towards larger values of zmax, meaning smaller values 
are  more variable. This infers that as the offset of the localisation centre moves towards the 
restrained edges of the plate, which is when smaller values of displacement will be achieved, then 
zmax is more variable. It should be noted that to determine the output distribution shape more 
accurately, more models should be run. However, these analyses serve to give a general 
description of skew or variability in model outputs. 

It is clear from the values in Table 3 that zmax was more varied at the smaller scaled distance 
(0.172 m/kg1/3) when the input variation is the same (comparing iii and iv). This is likely due to the 
magnitude of specific impulse being globally greater at a smaller scaled distance and the degree 
of spatial localisation also being increased. This result would be true if the probability/likelihood 
of variation in loading was the same at both scaled distances. However, the findings of various 
studies that instabilities increase as the DPC grows (i.e. as scaled distance increases) (Fuller et 
al., 2016; Tyas, 2019; S E Rigby et al., 2020) and that specific impulse distributions are more 
consistent and subject to less variability in the extreme near-field (Rigby, Tyas, et al., 2019; 
Pannell et al., 2021) show this not be the case. This means a more physically valid comparison 
would be between the results of the Small input variation at Z=0.172 m/kg1/3 and the large input 
variation at Z=0.415 m/kg1/3 (i against iv). In this case a significantly greater standard deviation of 
zmax is seen at the larger scaled distance. Although the values of input variation were selected  
with little physical evidence they serve as an indication of how input variability, which is affected 
by scaled distance, relates to output variability. 

Analysis Set B 

 

 

Figure 4: Histograms of zmax from Monte Carlo Analysis Set A. 

 

 

v) vii) 

vi) viii) 
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Ref. Variation Scaled Distance, 
Z [m/kg1/3] 

Output standard 
deviation, σz [mm] 

Output Mean, µz 

[mm] 

v. Large Variation 0.415 5.898 17.577 

vi. Small Variation 0.415 0.439 18.268 

vii. Large Variation 0.172 16.230 35.441 

viii. Small Variation 0.172 1.581 33.043 

Table 4. Results from Monte Carlo Analysis Set B 

Figure 4 shows the histograms of the zmax output distribution for Monte Carlo analysis Set B. In 
these models the scaled distance input value was varied, as well as the offset of localisation 
centre. This is indicative of the plate being subjected to a protrusion within the DPC or charge 
shape directionality causing a greater or smaller impulse at the plates location (e.g. a cylindrical 
charge may cause a larger impulse on the plate from its axial blast wave than a spherical charge 
at the same stand-off distance).  

Comparing values in Table 4 to their respective results in Set A, the standard deviation of zmax is 
significantly increased: 3.3 - 3.6 times greater at Z=0.415 m/kg1/3 and 3.5 - 5.3 times greater at 
Z=0.172 m/kg1/3. This suggests that either variation in specific impulse is more significant in its 
effect on zmax or  its combined effect with offset variation results in a far more significant spread 
in output results. Similarly to Set A variation of zmax is far more significant at the smaller scaled 
distance when input variation is consistent, which does not account for the interaction between 
scaled distance and loading variability seen in other studies. 

Inspection of histograms v and vii shows that large input variations result in a skew of the output 
distribution probability to smaller values of zmax. This suggests that models with larger plate 
deformations are more variable in their maximum response. This can be explained by peak 
specific impulse increasing exponentially as scaled distance decreases (Pannell et al., 2021), 
meaning small increases of input scaled distance results in increasingly larger magnitude 
loadings and therefore greater changes in maximum displacement.  

Comparing Figures 4vii and 3iii demonstrates how the skew of the output distribution has been 
reversed completely when considering a large input variation at Z=0.415m/kg1/3.This again 
suggests that either variation of input scaled distance is more dominant in its influence on 
displacement than offset of the localisation centre, or that the combined effects of both completely 
alters the output distribution of zmax. 

Probabilistic Approach to Fast-Running Models 

To demonstrate how a probabilistic approach can be used to quickly establish structural 
response, the distributions shown in histograms i-viii were individually fit to either a Normal or 
Weibull distribution depending on the skew of the data. The cumulative probability density function 
was then plotted for each and are shown in Figures 5 and 6. Using these plots, a blast engineer 
can determine the likelihood any zmax value is not exceeded for a specified variability of loading. 

To more accurately model the distributions generated by each Monte Carlo Analysis, the number 
of sample models should be increased. However, the use of thirty models was significant enough 
to estimate mean, skew and variance of each output distribution and therefore serves to 
demonstrate how probabilistic methods can be utilized to define structural response to near-field 
blast loading. 

The most significant limitation of Figures 5 and 6 is that they can only estimate displacement 
probability for the input variations and scaled distances specified within this study. Furthermore, 
the variability of the input loading distributions is not physically or experimentally informed. 
However, it’s been shown that formation and development of instability structures and protrusions 
within the DPC is affected by scaled distance (Tyas, 2019; S E Rigby et al., 2020). This means 
that if the relationship between the inherent loading variability caused by instabilities in the DPC 
and scaled distance can be defined then probability plots such as Figures 5 and 6 can be defined 
for a range of scaled distances. In this way a means of rapidly assessing the likelihood of a given 
structural response can be achieved. 
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Figure 5: Plots of Cumulative probability distribution for continuous distributions fitted to the 
results Monte Carlo analyses performed at a scaled distance of 0.172 m/kg1/3 in Set A and B. 

 

Figure 6: Plots of Cumulative probability distribution for continuous distributions fitted to the 
results Monte Carlo analyses performed at a scaled distance of 0.415 m/kg1/3 in Set A and B. 
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Summary and Conclusions 

This study aimed to demonstrate how probabilistic methods can be used to tackle inherent 
variability in near-field blast loading and help determine structural response. This was achieved 
using a family of Monte Carlo analyses consisting of 240 models. The key findings and points of 
this study can be summarized as follows: 

• Variation in blast loading specific impulse distributions results in a variable plate response. 

• Variance in scaled distance parameters combined with changes in loading localization 
offset causes a far greater degree of maximum plate displacement variability than if scaled 
distance variability is ignored. 

• If variance of loading parameters is considered constant at all scaled distances, then 
maximum displacement becomes more changeable at smaller scaled distances if 
variability of loading is not modelled against scaled distance in a physically informed 
manner. 

• Probabilistic methods can be used to rapidly identify the probability of a given displacement 
of a structure being achieved if the loading variability is known. 

• Interaction between scaled distance and inherent loading variability needs to be defined if 
near-field blast loading and plate response are to be modelled using fast-running methods. 
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