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Abstract
In addition to the challenge of meeting global demand for food production, there are

increasing concerns about food safety and the need to protect consumer health from

the negative effects of foodborne allergies. Certain bio-molecules (usually proteins)
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present in food can act as allergens that trigger unusual immunological reactions,

with potentially life-threatening consequences. The relentless working lifestyles of

the modern era often incorporate poor eating habits that include readymade prepack-

aged and processed foods, which contain additives such as peanuts, tree nuts, wheat,

and soy-based products, rather than traditional home cooking. Of the predominant

allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk),

peanuts (Arachis hypogaea) are the best characterized source of allergens, followed

by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinen-
sis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum
aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The

prevalence of food allergies has risen significantly in recent years including chance of

accidental exposure to such foods. In contrast, the standards of detection, diagnosis,

and cure have not kept pace and unfortunately are often suboptimal. In this review, we

mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat,

soybean, and kidney bean, highlighting their physiological properties and functions

as well as considering research directions for tailoring allergen gene expression. In

particular, we discuss how recent advances in molecular breeding, genetic engineer-

ing, and genome editing can be used to develop potential low allergen food crops that

protect consumer health.

1 INTRODUCTION

Food allergy (FA) is a type of food sensitivity that has become

a critical public health concern globally (Loh & Tang, 2018).

FA describes the adverse immune responses to certain foods

that can occur in the human body (Burks et al., 2012). The

prevalence of FA has increased in recent decades, challenging

both allergists and food scientists to devise rapid and accurate

diagnostic tests, as well as prevention and treatment measures

for vulnerable people. FA has become a global food safety

issue because of the lack of reliable preventive measures,

except for desensitization by immunotherapy (Du Toit et al.,

2015) and the use of adrenaline injections for anaphylactic

reactions. FA negatively impacts the life of sensitive individ-

uals because of the absence of effective allergen elimination

methods.

The generally accepted definition of the term “FA” is

an “adverse health effect arising from a specific immune

response that occurs reproducibly on exposure to a given

food,” as described by the National Institute of Allergy and

Infectious Diseases (NIAID) guidelines (Panel, 2010). In

general, allergic disease manifestations are initiated through

sensitization in early life and thereafter often progress into

atopic dermatitis, asthma, allergic rhinitis, and other symp-

toms of FA. When a susceptible individual is exposed to

food allergens for the first time, the offending food pro-

tein is identified by the body as a “foreign,” antigen. This

results in the production of immunoglobulin E (IgE) anti-

bodies, resulting in a “sensitization,” a state which results in

no allergic symptoms. However, upon subsequent exposure,

the specific allergens interact with the IgE molecules on the

surface of tissue mast cells and basophils in the blood and trig-

ger the release of a range of defense compounds, including

histamine, prostaglandins, and leukotrienes, which together

produce allergy symptoms (Figure 1; Sicherer & Sampson,

2014).

Food allergens are naturally occurring protein molecules

that possess specific immunological characteristics and trig-

ger inappropriate immune responses in susceptible individ-

uals. In contrast, exposure of nonallergenic individuals to

such food proteins in the gastrointestinal tract results in “oral

tolerance” by producing protein-specific IgG/IgA antibodies

that develop immune response (Du Toit et al., 2015). Oral

tolerance is a process of active suppression of the inappro-

priate immune responses to the first encounter with food

protein antigens in the gastrointestinal tract (Tordesillas &

Berin, 2018). Oral tolerance is considered to be the general

homeostatic state, while FA is the exception. The balance

between oral tolerance and FA can be influenced by several

factors, such as genetic disposition, the dose, route and time of

antigen exposure, dietary factors, and gastrointestinal micro-

biota (Keet & Wood, 2011). However, the complex, precise

mechanism of oral tolerance and allergic sensitization to food

proteins remains to be understood.

The most common FA sources are of plant and animal ori-

gin, such as peanuts, tree nuts, fruits, wheat, soybean, kidney

beans, seafood, eggs, milk, fish, honey, and other uniden-

tified sources (Figure 2). Among different allergenic foods,
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peanuts cause the most common food allergies associated

with severe anaphylaxis in children and adults and persist life-

long, which is uncommon in the case of other food allergies

(Lieberman et al., 2020; Sicherer & Sampson, 2010). The

allergic reaction can be unpredictable, such that the sever-

ity of health conditions ranges from mild to life threatening,

the latter requiring immediate medical attention. Based on

the immunological responses involved, FAs are classified as

(i) IgE-mediated, also called immediate hypersensitivity, (ii)

non-IgE- or cell-mediated, also called delayed hypersensitiv-

ity, and (iii) a combination of IgE- and non-IgE-mediated

allergic reactions (Tordesillas et al., 2017). Of these, IgE-

mediated FA is the most common type of allergy that is

caused by the consumption of foods such as peanuts, tree

nuts, wheat, shellfish, fish, eggs, milk, and soybeans and that

can cause potentially fatal anaphylaxis (Wasserman et al.,

2018). This involves an immediate Type I hypersensitivity

reaction that develops within minutes to >2 h of ingestion of

the offending food. The clinical manifestation of anaphylaxis

involves multiple organs, such as the skin, gastrointestinal

tract, respiratory tract and cardiovascular system. The most

common symptoms associated with anaphylactic shock are

abdominal cramps, nausea, vomiting, diarrhea, hives, itch-

ing, eczema, wheezing, and coughing, which can induce death

due to respiratory and cardiovascular complications (Wasser-

man et al., 2018). In contrast, non-IgE-mediated FA does

not involve IgE antibodies. In this case, symptoms often

develop after 48–72 h of ingestion of offending foods such

as cow’s milk, soy, and wheat proteins. Non-IgE-mediated

FA is usually resolved within 1–5 years. However, the mech-

anisms underlying non-IgE-mediated food allergic reactions

are poorly understood perhaps because it is less harmful than

IgE-mediated anaphylaxis (Cianferoni, 2020).

Large numbers of allergenic food proteins have been iden-

tified and characterized, with specific details maintained

in databases that are designed to provide easy access to

comprehensive information. The “World Health Organiza-

tion and International Union of Immunological Societies

(WHO/IUIS) Allergen Nomenclature Database” was estab-

lished at the millennium. The database contains a sys-

tematic nomenclature of allergenic proteins, as reviewed

by the experts of the WHO/IUIS Allergen Nomencla-

ture Sub Committee. Each entry in this database provides

details on amino acid sequences, biochemical properties,

and allergenicity. This reference database provides a crucial

knowledge repository for the research community, clini-

cians, and regulatory authorities (Pomes et al., 2018). To

date, on August 11, 2023, a total of 1015 (http://bioinfo.

unipune.ac.in/AllerBase/PHP_codes/BrPlant.php) allergens

have been experimentally validated from different plant

sources and 1042 allergens from animal sources. This

information is curated in the allergen database “Aller-

Base” (bioinfo.unipune.ac.in/AllerBase/Home.html), which

provides data on allergens and their associated basic fea-

Core Ideas
∙ The severity and prevalence of food allergens

varies between different geographical regions.

∙ Scope for developing hypoallergenic crops with

minimal effects on plant physiology.

∙ Identification of crops with reduced allergen con-

tent through selection and breeding.

tures, such as IgE binding epitopes, IgE antibodies, and

cross-reactivity. Inaddition, each allergen is curated with a

cross-reference to sequence and structure databases along

with other allergen databases, such as the WHO/IUIS-

Allergen nomenclature database (www.allergen.org), Aller-

gome (www.allergome.org), and AllFam (www.meduniwien.

ac.at/allfam/) (Kadam et al., 2017). Understanding the corre-

lation between allergen components in the food source and

clinical symptoms has gained importance in the development

of more accurate diagnostic methods which further help in the

management of food allergies (Maruyama, 2021). Therefore,

herein we have comprehensively described the prevalence of

allergies associated with major plant food sources such as

peanut (Arachis hypogaea), tree nuts (Juglans regia, Prunus
amygdalus, Corylus avellana, Carya illinoinensis, Anac-
ardium occidentale, Pistacia vera, Bertholletia excels), wheat

(Triticum aestivum), soybean (Glycine max), and kidney bean

(Phaseolus vulgaris) and also highlighted their physicochem-

ical properties, functions as well as proposed future research

directions for developing low allergenic plant food.

2 GLOBAL DISTRIBUTION OF FOOD
ALLERGIES

The severity and prevalence of FAs vary between different

geographical regions. According to WHO, the prevalence of

FA has increased over the last two decades in industrial-

ized countries, with similar trends observed in developing

countries as their economic growth increases (Leung et al.,

2018; Prescott et al., 2013). FA currently affects millions

of people leading to restrictions in diet and daily activities,

with profound emotional impacts, as well as healthcare and

economic costs, lowering the overall quality of life as well

as physical health and well-being (Lieberman et al., 2020).

Although the exact prevalence of FA is uncertain, it is esti-

mated that over 220 million people suffered from some sort

of FA globally (Sicherer & Sampson, 2018). The general con-

sensus is that up to 10% people are affected by food allergies

and that they are more common in young children than in

adults (Loh & Tang, 2018). According to FAIR Health esti-

mates, 5.9 million American children under the age of 18
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F I G U R E 1 A pictorial representation of series of reactions involved in allergic immune response and most common allergic symptoms.

have FA, which accounts for one in every 13 children or

two in every classroom. In the case of Australia, the pedi-

atric allergy prevalence ranges from 3.8 to 11% in children

under the age of 4 years (Peters et al., 2017). Approxi-

mately 10% of Chinese children under the age of 6 years

are also prone to FA (http://www.bjreview.com.cn/nation/txt/

2015-06/01/content_690263.htm). Similarly, the European

Academy of Allergy and Clinical Immunology estimated that

the allergy prevalence in European children is between 1.7 and

5%, depending on the country. It is matter of great concern that

the majority of children in Australia, Italy, America, China,

and Europe are predisposed to FA, followed by other nations,

as illustrated in the global map (Figure 3). The incidence of

peanut allergy is more prevalent in children in the United

Kingdom, North America, and Australia. In these countries,

the reported prevalence of peanut allergy has doubled over the

last decade. The prevalence of FA is also increasing rapidly in

Asian countries, correlating with increasing economic growth

and westernization (Arakali et al., 2017). It is interesting

to note that the prevalence of peanut allergies is lower in

Asian countries; but have a prevalence of allergies to fish.

The developing nations in Asia and Africa have gradually

adopted a Western lifestyle and have observed increasing rates

of allergic disease across age groups, particularly in younger

children.

Obtaining accurate FA incidence data remains a major chal-

lenge in many parts of the world. Problems arise because of

difficulties in data curation or a lack of consistency in study

design, approach, specific population analysis, specific foods,

and even the definition of FA, factors that together lead to a

poor establishment of accurate prevalence statistics (Prescott

et al., 2013). Currently, available statistical data are highly

biased not least because they rely heavily on self-reporting

of FA incidence rather than challenge-confirmed FA analy-

sis. Such factors may result in over estimation of the allergy

prevalence, often because of patient’s misunderstanding about

wide range of symptoms that are associated with particular

food allergies (Woods et al., 2002). Researchers in western-

ized countries have tested numerous methods to determine

the precise number of people that are allergic to specific

foods (Prescott et al., 2013). Hospital intake data that include

healthcare burden, insurance claims, and telephone surveys is

the most frequently used method of evaluation of prevalence

rates (Gupta et al., 2018a). However, comprehensive studies

are needed in the future to demonstrate a precise correla-

tion between different geographic regions and specific allergy

prevalence. Moreover, the instigation of common dedicated

databases at the clinic/hospital level is vital for recording the

incidence of food allergies.

2.1 Specific regions and populations
affected

There is a paucity of reliable data concerning FA prevalence,

even in developed countries, and so it is difficult to com-

pare prevalence rates between countries (Prescott et al., 2013).

Significant variations in prevalence and causative foods have

been reported. For example, in continental Europe, adults are

predominantly allergic to peanuts, tree nuts, fruits, and veg-

etables but children are allergic to cow’s milk, peanuts, and

eggs (Baker, 2018). Moreover, kidney beans are the major

allergic triggers of asthma and rhinitis patients in India, fol-

lowed by chickpeas and peanuts (Kasera et al., 2011), whereas
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F I G U R E 2 A pictorial representation of allergy composition associated with different foods of plant and animal origin and other unidentified

sources.

Scandinavians have an allergic sensitivity to shellfish and

cod.

The overall prevalence of self-reported FA in Europe is 6%,

the most common causative foods being cow’s milk, eggs,

peanuts, tree nuts, wheat, soy, fish, and shellfish (Lyons et al.,

2019). A systematic review of studies made between 2000 and

2012 revealed that the self-reported lifetime FA prevalence of

different plant food sources, such as wheat, tree nuts, peanut,

and soy, was 3.6, 2.2, 1.3, and 0.4%, respectively. In contrast,

the prevalence of food-challenge-defined allergies to wheat,

tree nuts, peanut, and soy was 0.1, 0.5, 0.2, and 0.3%, respec-

tively (Nwaru et al., 2014). It has been estimated that >17

million people are currently affected by FA, of which 3.5 mil-

lion are under 25 years of age (Baker, 2018). The average

healthcare cost of an allergic adult is estimated to be I$2016,

compared with the cost of a healthy adult, which is I$1089 per

year (Fox et al., 2013).

Approximately 10% of the US population suffers from at

least one form of IgE-mediated FA, which affects about one

in 10 adults and one in 13 children (Gupta et al., 2018a, 2019;

Warren et al., 2020). The most common allergic foods include

peanuts and tree nuts, which are associated with severe aller-

gic reactions in all age groups. According to the FAIR health

insurance claims-based study, the incidence of severe ana-

phylactic reactions increased by 377% between 2007 and

2016 due to the consumption of peanuts, tree nuts/seeds, and

other specific foods (Motosue et al., 2018). Peanut is a major

contributor to life-threatening anaphylaxis (26%), followed

by tree nuts/seeds (18%), eggs (7%), crustaceans (6%), milk

products (5%), fruits and vegetables (2%), and other specific

foods. A population-based survey involving 40,443 US adults

(Gupta et al., 2019) suggested that 10.8% (equivalent to >26

million people) have some form of FA, while 19% of adults

believed themselves to have food allergies. Shellfish allergies
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F I G U R E 3 Global distribution of pediatric food allergy mostly children under the age of 5 years. Source: Center for Food & Asthma Research

(CFAAR), Northwestern Feinberg School of Medicine, Ann & Robert H. Lurie Children Hospital of Chicago. A global map was obtained and

modified to represent the current scenario of pediatric allergy.

are particularly predominant in US adults, accounting for 7.2

million people (2.9%), followed by milk (4.7 million = 1.9%),

peanut (4.5 million = 1.8%), tree nuts (3.0 million = 1.2%),

finfish (2.2 million = 0.9%), egg (2.0 million = 0.8%), wheat

(2.0 million = 0.8%), soy (1.5 million = 0.6%), and sesame

(0.5 million = 0.2%)-associated allergies. However, children

appear to be more sensitive to peanuts, followed by milk,

shellfish, tree nuts, eggs, finfish, wheat, soy, and sesame seeds

(Gupta et al., 2011). The big eight foods and their specific

allergy prevalence in children are as follows: peanut (25.2%),

milk (21.1%), shellfish (17.2%), tree nuts (13.1%), egg (9.8%),

finfish (6.2%), wheat (5%), and soy (4.6%) (Figure 4). The

prevalence of FA in children aged 0–17 years increased by

50% from 1997 to 2011. This trend is similar to the increas-

ing trend in increased income levels (Jackson et al., 2013). The

overall economic cost of FA was estimated with be US$24.8

billion annually, which is equivalent to $4184 per child (Gupta

et al., 2013).

The European Academy of Allergy and Clinical Immunol-

ogy estimated the allergy prevalence in children to be 5% in

France, the United Kingdom, Germany, and the Netherlands,

4% in Italy and Spain and 1.7% in Greece. In the case of the

UK, 2 million people (1–2% of adults) and 5–8% of children

exhibit food allergies. In Europe, there are 14 foods, which

include celery, cereals, crustaceans, eggs, fish, lupin, milk,

mollusks, mustard, peanuts, sesame, soybean, sulfur diox-

ide, and sulfites, which have been identified as major potent

and prevalent allergens. In Australia, approximately 2% of

adults and 4–8% of children have food allergies and there

has been a fourfold increase in anaphylaxis hospitalizations

(Tang & Mullins, 2017). The Health Nuts population-based

cohort study reported the highest prevalence of challenge-

confirmed FA in Australia. Overall 11% of Australian children

at the age of 1 year and 3.8% at the age of 4 years had FA.

Peanut was the predominant allergen at 1.9%, followed by

egg (1.2%) and sesame (0.6%) in children at 4 years of age

(Peters et al., 2017). Peanut allergy, which affects about 2%

of the population of Western nations, has become a burden of

self-management to protect against accidental exposure.

The overall prevalence of FA in Asia follows similar trends

but there are significant differences in the types of reported

FA. Shellfish allergy is more prevalent than peanut allergy in

Asia (Lee et al., 2013). There is an increasing prevalence of

FA reported in children in developing parts of Asia, includ-

ing Australia, Japan, China, and Korea. Between 1 and 2%

of adults and 5% of children report FA in China (Poulos

et al., 2007; Prescott et al., 2013). The Population Refer-

ence Bureau, China reported that 3.8–7.7% of children have

food intolerances (Hu et al., 2020). This report identified

shellfish, peanuts, soybeans, wheat, tree nuts, fish, eggs, and

milk as a major source of allergens. Many prepacked foods

contain these constituents and they are sold with proper label-

ing and instructions (Baker, 2018). Most allergic diseases in

India are caused by pollen grains, fungal spores, insects, and

foods. About 25% of the Indian population shows sensitivi-

ties to these different forms of allergens (Bhattacharya et al.,

2018). The EuroParvall-INCO survey conducted by Li et al.

(2020) revealed that IgE-mediated FA prevalence in children
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F I G U R E 4 Prevalence of specific food allergy in allergic children of United States. Among the different food sources, peanut, milk, shellfish

and tree nuts hold a major stake in contributing toward triggering life-threatening hypersensitivity reactions in children.

is highest in Hong Kong (1.5%), followed by Russia (0.87%),

Guangzhou (0.21%) and Shaoguan (0.69%) of China, and

India (0.14%). A similar study conducted on adults in Kar-

nataka, India, revealed a high rate (26.5%) of sensitization

but a low rate (1.2%) of probable FA (Mahesh et al., 2016).

These studies suggest there is little correlation between food-

specific IgE sensitization and probable food allergies. This

finding highlights the role of other important factors involved

in the clinical manifestation of allergies.

The prevalence of food allergies varies between different

ethnic groups. For example, children in Ghana (5–16 years

of age) are commonly allergic to pineapple, pawpaw, orange,

mango, and peanut (Obeng et al., 2011), while children in

North America are allergic to peanut, milk, egg, shellfish,

and soybean (Hill et al., 2016). Similarly, African-American

children have a higher prevalence than their Caucasian coun-

terparts (Gupta et al., 2018a). While Asian-American children

have the lowest reported FA, Caucasians have the highest

rates of diagnosed FA (Gupta et al., 2011). Additionally, the

prevalence of FA varies between races, as well as rural and

urbanized populations. For example, white adults in the US

report lower rates of FA than their Asian, Hispanic, Black,

and Multiracial counterparts (Gupta et al., 2019). Crucially,

however, the emergency admission rates of food-induced ana-

phylaxis were approximately three times higher in urban

settings than in rural settings in New York and Florida (Gupta

et al., 2012).

2.2 Sources of food allergens

Plants are the dominant source of cause of FA in most coun-

tries (Lyons et al., 2019). Plant allergenic proteins carry IgE

binding epitopes that are partially or fully resistant to diges-

tive proteolysis. These proteins act as antigens that trigger

an unusual immune response. Peanuts are the most common

source of life-threatening allergens. Peanuts, tree nuts, wheat,

and soybean are considered to contain a large number of

allergenic proteins (Table 1 and Figure 5). Major tree nuts,

including almond, walnut, cashew, hazelnut, pecan, pistachio,

and brazilnut, are potent sources of IgE-induced allergens

and account for a prevalence of 4.9% worldwide (McWilliam

et al., 2015). The tree nut allergens are primarily characterized

by relatively few protein families, particularly 2S albumin,

legumins, vicilins, nonspecific lipid transfer proteins (nsLTP),

and Bet v 1-homologs/profilins, which are associated with

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 32 VADTHYA ET AL.The Plant Genome

T
A

B
L

E
1

P
ro

te
in

fa
m

il
ie

s
o
f

d
if

fe
re

n
t

ty
p
es

o
f

al
le

rg
en

s
fr

o
m

p
ea

n
u
t,

so
y
b
ea

n
,

w
h
ea

t,
an

d
m

aj
o
r

si
x

tr
ee

n
u
ts

(w
al

n
u
t,

al
m

o
n
d
,

h
az

el
n
u
t,

p
ec

an
,
ca

sh
ew

,
p
is

ta
ch

io
,

B
ra

zi
l

n
u
t)

.

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

Ar
ac

hi
sh

yp
og

ae
a

(1
7
)

A
ra

h
1

A
ra

h
1
.0

1
0
1

6
4

P
4
3
2
3
8

C
u
p
in

(V
ic

il
in

-t
y

p
e,

7
S

g
lo

b
u
li

n
)

S
ee

d
st

o
ra

g
e

p
ro

te
in

an
d

tr
y
p
si

n

in
h

ib
it

o
r

ac
ti

v
it

y
m

ig
h

t
p

la
y

ro
le

in
p

la
n

t
d
ef

en
se

ag
ai

n
st

in
se

ct

B
u

rk
s

et
al

.
(1

9
9
5
)

A
ra

h
3
.0

1
0
1

6
1
.0

O
8
2
5
8
0

C
u
p
in

(L
eg

u
m

in
-t

y
p
e,

1
1
S

g
lo

b
u
li

n
)

S
ee

d
st

o
ra

g
e

p
ro

te
in

an
d

p
ro

v
id

e
a

st
o
re

o
f

am
in

o
ac

id
s

fo
r

u
se

d
u
ri

n
g

g
er

m
in

at
io

n
an

d
se

ed

g
ro

w
th

R
ab

jo
h
n

et
al

.
(1

9
9
9
)

A
ra

h
3
.0

2
0
1

5
7
.0

Q
9
S

Q
H

7
K

le
b

er
-J

an
k
e

et
al

.
(1

9
9
9
)

A
ra

h
3

6
1
.7

Q
8
L

K
N

1
V

iq
u
ez

et
al

.
(2

0
0
4
)

is
o
-A

ra
h

3
6
0
.0

Q
6
IW

G
5

B
o

ld
t

et
al

.
(2

0
0
5
)

A
ra

h
2
.0

1
0
1

1
6
.7

Q
6
P

S
U

2
C

o
n
g
lu

ti
n

(2
S

al
b

u
m

in
)

S
ee

d
st

o
ra

g
e

p
ro

te
in

an
d

p
ro

v
id

e
a

st
o
re

o
f

am
in

o
ac

id
s

fo
r

u
se

d
u
ri

n
g

g
er

m
in

at
io

n
an

d
se

ed

g
ro

w
th

S
ta

n
le

y
et

al
.
(1

9
9
7
)

an
d

V
iq

u
ez

et
al

.
(2

0
0
1
)

A
ra

h
2
.0

2
0
1

1
8
.1

Q
6
P

S
U

2
C

h
at

el
et

al
.
(2

0
0
3
)

A
ra

h
6
.0

1
0
1

1
4
.5

Q
6
4
7
G

9
K

le
b
er

-J
an

k
e

et
al

.
(1

9
9
9
)

A
ra

h
7
.0

1
0
1

1
6
.3

Q
9
S

Q
H

1
K

le
b

er
-J

an
k
e

et
al

.
(1

9
9
9
)

A
ra

h
7
.0

2
0
1

1
7
.4

B
4
X

ID
4

S
ch

m
id

t
et

al
.
(2

0
0
9
)

A
ra

h
7
.0

3
0
1

1
7
.3

Q
6
4
7
G

8
Y

an
et

al
.
(2

0
0
5
)

A
ra

h
5
.0

1
0
1

1
5
.0

Q
9
S

Q
I9

P
ro

fi
li

n
C

y
to

sk
el

et
al

an
d

m
em

b
ra

n
e

tr
af

fi
ck

in
g

K
le

b
er

-J
an

k
e

et
al

.
(1

9
9
9
)

an
d

K
le

b
er

-J
an

k
e

et
al

.
(2

0
0
1
)

A
ra

h
8
.0

1
0
1

1
6
.9

Q
6
V

T
8
3

P
at

h
o
g
en

es
is

re
la

te
d

(P
R

-1
0
)

U
n
cl

ea
r

M
it

ta
g

et
al

.
(2

0
0
4
)

A
ra

h
8
.0

2
0
1

1
6
.3

B
0
Y

IU
5

R
ie

ck
en

et
al

.
(2

0
0
8
)

A
ra

h
9
.0

1
0
1

9
.1

B
6
C

E
X

8
N

o
n

sp
ec

if
ic

li
p

id

tr
an

sf
er

p
ro

te
in

(n
sL

T
P

)

S
ta

b
il

iz
at

io
n

o
f

m
em

b
ra

n
e,

ce
ll

w
al

l
o

rg
an

iz
at

io
n

,
si

g
n

al

tr
an

sd
u
ct

io
n
,

an
d

p
la

n
t

d
ev

el
o
p
m

en
t

K
ra

u
se

et
al

.
(2

0
1
0
)

(C
o
n
ti

n
u
es

)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VADTHYA ET AL. 9 of 32The Plant Genome

T
A

B
L

E
1

(C
o
n
ti

n
u
ed

)

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

A
ra

h
9
.0

2
0
1

9
.0

B
6
C

G
4
1

K
ra

u
se

et
al

.
(2

0
1
0
)

A
ra

h
1
6

8
.5

–
–

A
ra

h
1
7

1
1
.0

–
–

A
ra

h
1
0
.0

1
0
1

1
6
.0

Q
6
4
7
G

5
O

le
o

si
n

L
ip

id
an

d
en

er
g
y

m
et

ab
o
li

sm
S

ch
w

ag
er

et
al

.
(2

0
1
5
)

A
ra

h
1
0
.0

1
0
2

1
6
.0

Q
6
4
7
G

4
S

ch
w

ag
er

et
al

.
(2

0
1
5
)

A
ra

h
1
1
.0

1
0
1

1
4
.0

Q
4
5
W

8
7

S
ch

w
ag

er
et

al
.
(2

0
1
5
)

A
ra

h
1
1
.0

1
0
2

1
4
.0

Q
4
5
W

8
6

S
ch

w
ag

er
et

al
.
(2

0
1
5
)

A
ra

h
1
4
.0

1
0
1

1
8
.4

Q
9
A

X
I1

P
o
n
s

et
al

.
(2

0
0
5
)

an
d

S
ch

w
ag

er

et
al

.
(2

0
1
5
)

A
ra

h
1
4
.0

1
0
2

1
8
.4

Q
9
A

X
I0

P
o
n
s

et
al

.
(2

0
0
5
)

an
d

S
ch

w
ag

er

et
al

.
(2

0
1
5
)

A
ra

h
1
4
.0

1
0
3

1
8
.4

Q
6
J1

J8
S

ch
w

ag
er

et
al

.
(2

0
1
5
)

A
ra

h
1
5
.0

1
0
1

1
7
.0

Q
6
4
7
G

3
S

ch
w

ag
er

et
al

.
(2

0
1
5
)

A
ra

h
1
2
.0

1
0
1

5
.2

B
3
E

W
P

3
P

la
n
t

d
ef

en
si

n
g

an
d

an
ti

fu
n
g
al

ac
ti

v
it

y
an

d
al

so
sh

o
w

ed

in
h

ib
it

o
ry

ac
ti

v
it

y
o
n

m
o

ld

st
ra

in
s

P
et

er
se

n
et

al
.
(2

0
1
5
)

A
ra

h
1
3
.0

1
0
1

5
.5

E
Y

3
9
6
0
1
9

D
ef

en
si

n
s

P
et

er
se

n
et

al
.
(2

0
1
5
)

A
ra

h
1
3
.0

1
0
2

5
.5

C
O

H
JZ

1
P

et
er

se
n

et
al

.
(2

0
1
5
)

A
ra

h
1
8
.0

1
0
1

2
1

A
0
A

4
4
4
X

S
9
6

C
y
cl

o
p
h
il

in
-

p
ep

ti
d
y
l-

p
ro

ly
l

ci
s-

tr
an

s

is
o
m

er
as

e

U
n
cl

ea
r

A
ll

er
g
en

.o
rg

(C
o
n
ti

n
u
es

)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 32 VADTHYA ET AL.The Plant Genome

T
A

B
L

E
1

(C
o
n
ti

n
u
ed

)

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

G
ly

ci
ne

m
ax

(8
)

G
ly

m
1

G
ly

m
1
.0

1
0
1

G
ly

m
1
.0

1
0
2

7
Q

9
S

8
F

3

Q
9
S

8
F

2

H
y
d
ro

p
h
o
b
ic

p
ro

te
in

G
o

n
za

le
z

et
al

.
(1

9
9
1
)

G
ly

m
2

G
ly

m
2
.0

1
0
1

8
–

D
ef

en
si

n
s

C
o
d
in

a
et

al
.
(1

9
9
7
)

G
ly

m
3

G
ly

m
3
.0

1
0
1

G
ly

m
3
.0

1
0
2

1
4

O
6
5
8
0
9

O
6
5
8
1
0

P
ro

fi
li

n
R

ih
s

et
al

.
(1

9
9
9
)

G
ly

m
4

G
ly

m
4
.0

1
0
1

1
7

P
2
6
9
8
7

P
at

h
o
g
en

es
is

-r
el

at
ed

p
ro

te
in

,

P
R

-1
0

,
B

et
v

1
fa

m
il

y
m

em
b

er

C
ro

w
el

l
et

al
.
(1

9
9
2
)

G
ly

m
5

G
ly

m
5
.0

1
0
1

G
ly

m
5
.0

2
0
1

G
ly

m
5
.0

3
0
1

G
ly

m
5
.0

3
0
2

–
0
2
2
1
2
0

Q
9
F

Z
P

9

P
2
5
9
7
4

P
2
5
9
7
4

B
et

a-
co

n
g
ly

ci
n
in

(v
ic

il
in

,
7
S

g
lo

b
u
li

n
)

A
B

_
P

_
0
0
9
0
4

(A
ll

er
B

as
e

ID
)

G
ly

m
6

G
ly

m
6
.0

1
0
1

G
ly

m
6
.0

2
0
1

G
ly

m
6
.0

3
0
1

G
ly

m
6
.0

4
0
1

G
ly

m
6
.0

5
0
1

–
P

0
4
7
7
6

P
0
4
4
0
5

P
1
1
8
2
8

Q
9
S

B
1
1

Q
7
G

C
7
7

G
ly

ci
n
in

(l
eg

u
m

in
,

1
1
S

g
lo

b
u
li

n
)

A
B

_
P

_
0
0
9
0
6

(A
ll

er
B

as
e

ID
)

G
ly

m
7

G
ly

m
7
.0

1
0
1

7
6
.2

C
6
K

8
D

1
S

ee
d

b
io

ti
n
y
la

te
d

p
ro

te
in

R
ia

sc
o

s
et

al
.
(2

0
1
0
)

G
ly

m
8

G
ly

m
8
.0

1
0
1

2
8

P
1
9
5
9
4

2
S

al
b
u
m

in
E

b
is

aw
a

et
al

.
(2

0
1
3
)

K
le

m
an

s
et

al
.
(2

0
1
3
)

Tr
iti

cu
m

ae
sti

vu
m

(2
8
)

T
ri

a
1
2

T
ri

a
1
2
.0

1
0
1

T
ri

a
1
2
.0

1
0
2

T
ri

a
1
2
.0

1
0
3

T
ri

a
1
2
.0

1
0
4

1
4

P
4
9
2
3
2

P
4
9
2
3
3

P
4
9
2
3
4

B
6
E

F
3
5

P
ro

fi
li

n
,

ac
ti

n
b
in

d
in

g
p
ro

te
in

A
B

_
P

_
0
1
8
2
8

(A
ll

er
B

as
e

ID
)

T
ri

a
1
4

T
ri

a
1
4
.

0
1
0
1

T
ri

a
1
4
.

0
2
0
1

9
D

2
T

2
K

2
N

o
n
sp

ec
if

ic
li

p
id

tr
an

sf
er

p
ro

te
in

1
S

an
d

er
et

al
.
(2

0
1
1
)

(C
o
n
ti

n
u
es

)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VADTHYA ET AL. 11 of 32The Plant Genome

T
A

B
L

E
1

(C
o
n
ti

n
u
ed

)

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

T
ri

a
1
5

T
ri

a
1
5
.0

1
0
1

D
2
T

G
C

3
M

o
n
o
m

er
ic

al
p
h
a-

am
y
la

se

in
h
ib

it
o
r

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
1
7

T
ri

a
1
7
.0

1
0
1

5
6

P
9
3
5
9
3

B
et

a-
am

y
la

se
A

B
_
P

_
0
1
8
8
1

(A
ll

er
B

as
e

ID
)

T
ri

a
1
8

T
ri

a
1
8
.0

1
0
1

–
P

1
0
9
6
8

A
g
g
lu

ti
n
in

is
o
le

ct
in

1
S

u
tt

o
n

et
al

.
(1

9
8
4
)

T
ri

a
1
9

T
ri

a
1
9
.0

1
0
1

6
5

Q
4
0
2
1
5

O
m

eg
a-

5
g
li

ad
in

,
se

ed
st

o
ra

g
e

p
ro

te
in

L
eh

to
et

al
.
(2

0
0
3
)

T
ri

a
2
0

T
ri

a
2
0
.0

1
0
1

3
5
-3

8
A

0
A

0
6
0
N

4
7
9

G
am

m
a

g
li

ad
in

Y
o
k
o
o
ji

et
al

.
(2

0
1
3
)

T
ri

a
2
1

T
ri

a
2
1
.0

1
0
1

–
D

2
T

2
K

3
A

lp
h
a-

b
et

a-
g
li

ad
in

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
2
5

T
ri

a
2
5
.0

1
0
1

–
Q

9
L

D
X

4
T

h
io

re
d
o
x
in

W
ei

ch
el

et
al

.
(2

0
0
6
)

T
ri

a
2
6

T
ri

a
2
6
.0

1
0
1

T
ri

a
2
6
.0

2
0
1

8
8

P
1
0
3
8
8

Q
4
5
R

3
8

H
ig

h
-m

o
le

cu
la

r-
w

ei
g
h
t

g
lu

te
n
in

A
B

_
P

_
0
1
8
3
7

(A
ll

er
B

as
e

ID
)

T
ri

a
2
7

T
ri

a
2
7
.0

1
0
1

2
7

Q
7
Y

1
Z

2
T

h
io

l
re

d
u
ct

as
e

h
o
m

o
lo

q
u
e

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
2
8

T
ri

a
2
8
.0

1
0
1

1
3

Q
4
W

0
V

7
A

lp
h
a-

am
y
la

se
in

h
ib

it
o
r

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
2
9

T
ri

a
2
9
.0

1
0
1

T
ri

a
2
9
.0

2
0
1

1
3

C
7
C

4
×

0

D
2
T

G
C

2

A
lp

h
a-

am
y
la

se
in

h
ib

it
o
r

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
0

T
ri

a
3
0
.0

1
0
1

1
6

P
1
7
3
1
4

A
lp

h
a-

am
y
la

se
in

h
ib

it
o
r

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
1

T
ri

a
3
1
.0

1
0
1

–
Q

9
F

S
7
9

T
ri

o
se

p
h
o
sp

h
at

e-
is

o
m

er
as

e
S

an
d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
2

T
ri

a
3
2
.0

1
0
1

–
Q

6
W

8
Q

2
1
-C

y
s-

p
er

o
x
ir

ed
o
x
in

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
3

T
ri

a
3
3
.0

1
0
1

–
Q

9
S

T
5
7

S
er

p
in

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
4

T
ri

a
3
4
.0

1
0
1

–
C

7
C

4
×

1
G

ly
ce

ld
eh

y
d
e-

3
-p

h
o
sp

h
at

e

d
eh

y
d
ro

g
en

as
e

S
an

d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
5

T
ri

a
3
5
.0

1
0
1

–
D

2
T

E
7
2

D
eh

y
d
ri

n
S

an
d
er

et
al

.
(2

0
1
1
)

T
ri

a
3
6

T
ri

a
3
6
.0

1
0
1

4
0

B
2
Y

2
Q

7
L

o
w

-m
o
le

cu
la

r-
w

ei
g
h
t

g
lu

te
n
in

G
lu

B
3
-2

3

A
B

_
P

_
0
1
8
4
7

(A
ll

er
B

as
e

ID
)

T
ri

a
3
7

T
ri

a
3
7
.0

1
0
1

1
2

Q
9
T

0
P

1
A

la
p
a

p
u
ro

th
io

n
in

A
B

_
P

_
0
1
8
4
8

(A
ll

er
B

as
e

ID
)

T
ri

a
3
9

T
ri

a
3
9
.0

1
0
1

–
J7

Q
W

6
1

S
er

in
e

p
ro

te
as

e
in

h
ib

it
o
r

S
an

d
er

et
al

.
(2

0
1
5
)

(C
o
n
ti

n
u
es

)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 32 VADTHYA ET AL.The Plant Genome

T
A

B
L

E
1

(C
o
n
ti

n
u
ed

)

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

T
ri

a
4
0

T
ri

a
4
0
.0

1
0
1

1
5
.9

6
Q

4
1
5
4
0

A
lp

h
a-

am
y
la

se
in

h
ib

it
o
r

S
an

d
er

et
al

.
(2

0
1
6
)

T
ri

a
4
1

T
ri

a
4
1
.0

1
0
1

–
A

0
A

0
G

3
F

2
P

1
M

it
o

ch
o

n
d

ri
al

u
b

iq
u
it

in
li

g
as

e

ac
ti

v
at

o
r

o
f

N
F

K
B

1

A
B

_
P

_
0
1
8
5
2

(A
ll

er
B

as
e

ID
)

T
ri

a
4
2

T
ri

a
4
2
.0

1
0
1

–
A

0
A

0
G

3
F

2
F

5
H

y
p
o
th

et
ic

al
p
ro

te
in

A
B

_
P

_
0
1
8
5
3

(A
ll

er
B

as
e

ID
)

T
ri

a
4
3

T
ri

a
4
3
.0

1
0
1

–
A

0
A

0
G

3
F

5
F

7
H

y
p

o
th

et
ic

al
p

ro
te

in
A

B
_
P

_
0
1
8
5
4

(A
ll

er
B

as
e

ID
)

T
ri

a
4
4

T
ri

a
4
4
.0

1
0
1

–
A

0
A

0
G

3
F

7
2
0

E
n
d
o
sp

er
m

tr
an

sf
er

ce
ll

sp
ec

if
ic

P
R

6
0

p
re

cu
rs

o
r

A
B

_
P

_
0
1
8
5
5

(A
ll

er
B

as
e

ID
)

T
ri

a
4
5

T
ri

a
4
5
.0

1
0
1

–
A

0
A

0
G

3
F

7
1
5

E
lo

n
g
at

io
n

fa
ct

o
r

1
A

B
_
P

_
0
1
8
5
6

(A
ll

er
B

as
e

ID
)

Ju
gl

an
sr

eg
ia

(8
)

Ju
g

r
1

Ju
g

r
1
.0

1
0
1

1
5
-1

6
P

9
3
1
9
8

2
S

al
b

u
m

in
se

ed
st

o
ra

g
e

p
ro

te
in

T
eu

b
er

et
al

.
(1

9
9
8
)

Ju
g

r
2

Ju
g

r
1
.0

1
0
1

Ju
g

r
2
.0

1
0
1

4
4

Q
9
S

E
W

4

Q
9
S

E
W

4

V
ic

il
in

se
ed

st
o

ra
g
e

p
ro

te
in

T
eu

b
er

et
al

.
(1

9
9
8
)

Ju
g

r
3

Ju
g

r
3
.0

1
0
1

9
C

5
H

6
1
7

N
o
n
sp

ec
if

ic
li

p
id

tr
an

sf
er

p
ro

te
in

1

(n
sL

T
P

1
)

P
as

to
re

ll
o

et
al

.
(2

0
0
4
)

Ju
g

r
4

Ju
g

r
4
.0

1
0
1

5
8
.1

Q
2
T

P
W

5
1
1
S

g
lo

b
u
li

n
se

ed
st

o
ra

g
e

p
ro

te
in

W
al

lo
w

it
z

et
al

.
(2

0
0
6
)

Ju
g

r
5

Ju
g

r
5
.0

1
0
1

2
0

A
O

A
1
JO

R
E

T
5

P
R

-1
0

A
B

_
P

_
0
1
0
5
2

(A
ll

er
B

as
e

ID
)

Ju
g

r
6

Ju
g

r
6
.0

1
0
1

4
7

A
O

A
2
1
4
E

5
L

6
V

ic
il

in
-l

ik
e

cu
p
in

D
u
b
ie

la
et

al
.
(2

0
1
8
)

Ju
g

r
7

Ju
g

r
7
.0

1
0
1

1
3

A
O

A
2
1
4
D

N
N

6
P

ro
fi

li
n

A
B

_
P

_
0
1
0
5
4

(A
ll

er
B

as
e

ID
)

Ju
g

r
8

Ju
g

r
8
.0

1
0
1

Ju
g

r
8
.0

1
0
1

9
A

O
A

2
1
4
E

B
9
1

A
O

A
2
1
4
G

T
9
6

n
sL

T
P

-2
A

B
_
P

_
0
2
0
1
5

(A
ll

er
B

as
e

ID
)

Pr
un

us
am

yg
da

lu
s(

6
)

P
ru

d
u

3
P

ru
d
u

3
.0

1
0
1

9
C

0
L

0
I5

n
sL

T
P

1
A

B
_
P

_
0
1
5
5
7

(A
ll

er
B

as
e

ID
)

P
ru

d
u

4
P

ru
d
u

4
.0

1
0
1

P
ru

d
u

4
.0

1
0
2

1
4

Q
8
G

S
L

5

Q
8
G

S
L

5

P
ro

fi
li

n
T

aw
d
e

et
al

.
(2

0
0
6
)

(C
o
n
ti

n
u
es

)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VADTHYA ET AL. 13 of 32The Plant Genome

T
A

B
L

E
1

(C
o
n
ti

n
u
ed

)

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

P
ru

d
u

5
P

ru
d
u

5
.0

1
0
1

1
0

Q
8
H

2
B

9
6
0
s

ac
id

ic
ri

b
o
so

m
al

p
ro

te
in

2
A

B
_
P

_
0
1
5
5
9

(A
ll

er
B

as
e

ID
)

P
ru

d
u

6
P

ru
d
u

6
.0

1
0
1

P
ru

d
u

6
.0

2
0
1

3
6
0

E
3
S

H
2
8

E
3
S

H
2
9

A
m

an
d
in

,
1
1
S

g
lo

b
u
li

n

le
g

u
m

in
-l

ik
e

p
ro

te
in

K
ab

as
se

r
et

al
.
(2

0
2
1
)

P
ru

d
u

8
P

ru
d
u

8
.0

1
0
1

3
1

A
0
A

5
1
6
F

3
L

2
A

n
ti

m
ic

ro
b
ia

l
se

ed
st

o
ra

g
e

p
ro

te
in

C
h
w

et
al

.
(2

0
1
9
)

P
ru

d
u

1
0

P
ru

d
u

1
0
.0

1
0
1

6
0

Q
9
4
5
K

2
M

an
d

el
o

n
it

ri
le

ly
as

e
2

K
ab

as
se

r
et

al
.
(2

0
2
1
)

C
or

yl
us

av
el

la
na

(1
1
)

C
o
r

a
1

C
o
r

a
1
.0

1
0
1

C
o
r

a
1
.0

1
0
2

C
o
r

a
1
.0

1
0
3

C
o
r

a
1
.0

1
0
4

C
o
r

a
1
.0

2
0
1

C
o
r

a
1
.0

3
0
1

C
o
r

a
1
.0

4
0
1

C
o
r

a
1
.0

4
0
2

C
o
r

a
1
.0

4
0
3

C
o
r

a
1
.0

4
0
4

1
7

Q
0
8
4
0
7

Q
0
8
4
0
7

Q
0
8
4
0
7

Q
0
8
4
0
7

Q
3
9
4
5
3

Q
3
9
4
5
4

Q
9

S
W

R
4

Q
9
F

P
K

4

Q
9
F

P
K

3

Q
9
F

P
K

2

P
R

-1
0

,
B

et
v

1
fa

m
il

y
m

em
b

er
P

as
to

re
ll

o
et

al
.
(2

0
0
2
)

C
o
r

a
2

C
o
r

a
2
.0

1
0
1

1
4

Q
9
A

X
H

5

Q
9
A

X
H

4

P
ro

fi
li

n
L

au
er

et
al

.
(2

0
0
4
)

C
o
r

a
6

C
o
r

a
6
.0

1
0
1

3
5

A
0
A

0
U

1
V

Z
C

8
Is

o
fl

av
o
n
e

re
d
u
ct

as
e

A
B

_
P

_
0
0
5
5
8

(A
ll

er
B

as
e

ID
)

C
o
r

a
8

C
o
r

a
8
.0

1
0
1

9
Q

9
A

T
H

2
n
sL

T
P

ty
p
e

1
P

as
to

re
ll

o
et

al
.
(2

0
0
2
)

C
o
r

a
9

C
o
r

a
9
.0

1
0
1

4
0

Q
8
W

1
C

2
1
1
S

se
ed

st
o
ra

g
e

g
lo

b
u
li

n
B

ey
er

et
al

.
(2

0
0
2
)

C
o
r

a
1
0

C
o
r

a
1
0
.0

1
0
1

7
0

Q
9
F

S
Y

7
L

u
m

in
al

b
in

d
in

g
p
ro

te
in

G
ru

eh
n

et
al

.
(2

0
0
3
)

C
o
r

a
1
1

C
o
r

a
1
1
.0

1
0
1

4
8

Q
8
S

4
P

9
7
S

se
ed

st
o
ra

g
e

g
lo

b
u
li

n
L

au
er

et
al

.
(2

0
0
4
)

C
o
r

a
1
2

C
o
r

a
1
2
.0

1
0
1

1
7

Q
8
4
T

2
1

O
le

o
si

n
A

B
_
P

_
0
0
5
5
4

(A
ll

er
B

as
e

ID
)

C
o
r

a
1
3

C
o
r

a
1
3
.0

1
0
1

1
4
-1

6
Q

8
4
T

9
1

O
le

o
si

n
A

B
_
P

_
0
0
5
5
5

(A
ll

er
B

as
e

ID
)

(C
o
n
ti

n
u
es

)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 32 VADTHYA ET AL.The Plant Genome

T
A

B
L

E
1

(C
o
n
ti

n
u
ed

)

A
lle

rg
en

pr
ot

ei
n

Is
oa

lle
rg

en
/v

ar
ia

nt
s

M
W

(k
D

a)
U

ni
pr

ot
Id

A
lle

rg
en

fa
m

ily
Bi

ol
og

ic
al

fu
nc

tio
n

R
ef

er
en

ce
s

C
o
r

a
1
4

C
o
r

a
1
4
.0

1
0
1

1
0

D
0
P

W
G

2
2
S

al
b
u
m

in
G

ar
in

o
et

al
.
(2

0
1
0
)

C
o
r

a
1
5

C
o
r

a
1
5
.0

1
0
1

1
7

–
O

le
o

si
n

A
B

_
P

_
0
2
0
7
9

(A
ll

er
B

as
e

ID
)

C
ar

ya
ill

in
oi

ne
ns

is
(3

)

C
ar

i
1

C
ar

i
i

1
.0

1
0
1

1
6

Q
8
4
X

A
9

2
S

al
b

u
m

in
se

ed
st

o
ra

g
e

p
ro

te
in

S
h

ar
m

a
et

al
.
(2

0
1
1
)

C
ar

i
2

C
ar

i
i

2
.0

1
0

1
5

5
B

3
S

T
U

4
V

ic
il

in
-l

ik
e

p
ro

te
in

Z
h

an
g

et
al

.
(2

0
1
6
)

C
ar

i
4

C
ar

i
i

4
.0

1
0
1

5
5
.4

B
5
K

V
H

4
L

eg
u

m
in

se
ed

st
o

ra
g
e

p
ro

te
in

S
h

ar
m

a
et

al
.
(2

0
1
1
)

An
ac

ar
di

um
oc

ci
de

nt
al

e
(3

)

A
n
a

o
1

A
n
a

o
1
.0

1
0
1

A
n
a

o
1
.0

1
0
2

5
0

Q
8
L

5
L

5

Q
8
L

5
L

6

V
ic

il
in

-l
ik

e
p
ro

te
in

W
an

g
et

al
.
(2

0
0
2
)

A
n
a

o
2

A
n
a

o
2
.0

1
0
1

5
5

Q
8
G

Z
P

6
L

eg
u
m

in
-l

ik
e

p
ro

te
in

W
an

g
et

al
.
(2

0
0
3
)

A
n
a

o
3

A
n
a

o
3
.0

1
0
1

1
4

Q
8
H

2
B

8
2
S

al
b
u
m

in
R

o
b
o
th

am
et

al
.
(2

0
0
5
)

Pi
sta

ci
a

ve
ra

(5
)

P
is

v
1

P
is

v
1
.0

1
0
1

7
B

7
P

0
7
2

2
S

al
b

u
m

in
A

h
n

et
al

.
(2

0
0
9
)

P
is

v
2

P
is

v
2
.0

1
0
1

P
is

v
2
.0

2
0
1

3
2

B
7
P

0
7
3

B
7
P

0
7
4

1
1
S

g
lo

b
u
li

n
A

h
n

et
al

.
(2

0
0
9
)

P
is

v
3

P
is

v
3
.0

1
0
1

5
5

B
4
×

6
4
0

V
ic

il
in

W
il

li
so

n
et

al
.
(2

0
0
8
)

P
is

v
4

P
is

v
4
.0

1
0
1

2
5
.7

B
2
B

D
Z

8
M

an
g
an

es
e

su
p
er

o
x
id

e
d
is

m
u
ta

se
N

o
o
rb

ak
h
sh

et
al

.
(2

0
1
0
)

P
is

v
5

P
is

v
5
.0

1
0
1

3
6

B
7

S
L

J1
1
1
S

g
lo

b
u
li

n
A

B
_
P

_
0
1
4
6
4

(A
ll

er
B

as
e

ID
)

Be
rt

ho
lle

tia
ex

ce
ls

(2
)

B
er

e
1

B
er

e
1
.0

1
0
1

9
P

0
4
4
0
3

2
S

su
lf

u
r

ri
ch

se
ed

st
o
ra

g
e

al
b
u
m

in
A

lc
o

ce
r

et
al

.
(2

0
1
2
)

B
er

e
2

B
er

e
2
.0

1
0
1

2
9

Q
8
4
N

D
2

1
1
S

g
lo

b
u
li

n
se

ed
st

o
ra

g
e

p
ro

te
in

A
B

_
P

_
0
0
2
8
4

(A
ll

er
B

as
e

ID
)

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20375 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VADTHYA ET AL. 15 of 32The Plant Genome

F I G U R E 5 Different allergen protein structure of peanut, wheat, soybean, and treenuts. (Source:

https://fermi.utmb.edu/cgi-bin/SDAP/sdap_01).

pollen tree nut allergies (Geiselhart et al., 2018). To date,

963 allergens have been isolated and characterized from dif-

ferent plant sources. Details concerning these allergens are

maintained in the dedicated allergen database “AllerBase”

(http://bioinfo.unipune.ac.in/AllerBase/Home.html).

Many food plants contain proteins that are referred to as

lectins based on their specific carbohydrate-binding proper-

ties. Lectins are major antinutritional factors in seeds. For

example, the most abundant lectin family proteins are arcelin,

phytohemagglutinin, and a-amylase inhibitor–APA proteins)

in common bean (P. vulgaris). The major antinutritional

effects of these proteins are caused by their low digestibil-

ity and high toxicity in the intestinal tract (Bardocz et al.,

1995). Four allergen proteins in kidney beans (alpha-amylase

inhibitor precursor, phaseolin, and group 3 late embryogen-

esis protein) showed significant matches with the common

bean lectins (PHAs) (Kasera et al., 2011).

2.3 Labeling regulations

People who have food allergies should read labels and avoid

foods to which they are allergic. Legislation regulating the

packaging and labeling of prepackaged foods containing

allergens at the level of food service establishments is

essential to ensure food safety. The US government’s Food

Allergen Labeling and Consumer Protection Act mandates the

proper labeling of prepacked foods containing the big eight

derived ingredients and these labeling requirements extend

to retail and food service establishments that offer products

for human consumption (Messina & Venter, 2020). The

allergen’s food source must be mentioned on the food label

at least once in one of two ways, either “flour (wheat),” and

“whey (milk)” or “Contains wheat, milk, and soy”. Further,

the Food Allergy Safety, Treatment, Education, and Research

Act was signed into law on April 23, 2021, including sesame

as the 9th significant food allergen recognized by the United

States. The new policy has become effective from January

1, 2023 and all United States Food and Drug Administration

requirements of labeling and manufacturing a new major food

allergen sesame (https://www.fda.gov/food/food-labeling-

nutrition/food-allergies). In Europe, 14 major food products

are identified as a major source of food allergies. The EU

Food Information Regulation and Food Information for Con-

sumers Regulation have several amendments to ensure that

allergen labeling laws apply to prepacked and nonprepacked

foods (Baker, 2018). Globally, the Codex Alimentarius

Commission developed the Codex General Standards for the

Labeling of Prepacked foods, listing peanuts, tree nuts, soy,

milk, eggs, fish, crustaceans, as well as cereals containing

gluten and sulfites. This sets the limit of >10 mg/kg above

which products should contain a precautionary labeling state-

ment. The Codex standards guide helps legislative bodies

in developing the regulatory frameworks of Codex member
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countries (FAO, WHO, n.d.). Several national and interna-

tional organizations, such as Food Allergy Research and

Education, aim to enhance food allergen labeling regulations

around the world (https://www.foodallergy.org/). The food

safety regulatory body of India, the Food Safety and Standard

Authority of India, published regulations that comply with

Codex Standards specifying packaging and labeling princi-

ples for packaged foods containing allergenic constituents

(“Food Safety & Standards [Labelling & Display]”, 2020).

The food service establishments should provide a declaration

on the package regarding food allergens specifying the name

of allergy causing ingredients. In the case of packaged foods

with cross contaminated ingredients that are known to cause

allergies declared “may contain particular allergy causing

ingredients.” Whereas, allergen labeling requirements, that is,

the declaration is not required in the case of oils and alcoholic

beverages derived from these ingredients and raw agricultural

commodities (https://www.fssai.gov.in/upload/uploadfiles/

files/Compendium_Labelling_Display_23_09_2021.pdf).

Further, evaluation of global food allergen labeling laws

pertaining to foods and allergens labeling were comprehen-

sively reviewed at the level of county and region, and also

emphasize implementation of other protective measures by

Chang et al. (2023).

2.4 Impact of global trade

Due to the globalization of the market, peanut-based food

product industries have huge export potential. There are no

general estimates of direct economic losses in the global

food market due to the allergenicity of food commodities.

However, the indirect economic costs of FA concerns in

global trade can be calculated from the rise in the FA and

food intolerance product market. Increasing healthcare

awareness has led to a growing preference for allergen-free,

gluten-free, and lactose-free diets, which have accelerated

the growth of the global FA product market. According

to Strategy R (https://www.strategyr.com/market-report-

food-allergy-and-intolerance-products-forecasts-global-

industry-analysts-inc.asp), which is a trademark for global

industry analysis, the global market of FA and intolerant

products will reach US$32 billion by 2027. It was esti-

mated to be US$22.4 billion in 2020, with a projected

compound annual growth rate (CAGR) of 5.2% between

2020 and 2027. The lactose-free food product segment

alone is projected to have a CAGR of 4.6%, reaching

US$15.1 billion by the end of 2027. The FA and intoler-

ance products market of the United States was estimated

to be US$6.6 billion in 2020, followed. The forecast for

China was US$5.7 billion in 2027 at a CAGR of 4.9%.

The North American market is growing fast due to a

rapid increase in the rate of food allergies and sensitiv-

ity. Subsequently, the European and Asia Pacific markets

have followed a similar trend due to innovations in food

processing industries and a rise in consumer awareness

about food safety (https://www.coherentmarketinsights.com/

ongoing-insight/food-allergy-and-intolerance-products-

market-788).

3 THE FUNCTIONAL BIOLOGY OF
ALLERGENS

Humans are constantly exposed to thousands of plant food

proteins through ingestion. However, only a limited group

of proteins can trigger an allergic response in certain indi-

viduals. This intrinsic property of allergenicity is attributed

to the biochemical and structural makeup complementary to

IgE antibodies. Other factors such as biochemical and molec-

ular properties, such as size, solubility, stability to acidic

pH and enzymatic hydrolysis, disulfide bond-stabilized con-

formational IgE epitopes, oligomerization, post-translational

modifications, interactions of the protein food matrix and

ligand binding, also influence allergenicity (Pekar et al.,

2018).

3.1 The nature and functions of allergens

Most plant food allergens are seed storage and defense-related

proteins (Breiteneder & Radauer, 2004). Seed storage pro-

teins, which account for approximately 50% of the total

protein content, act as the seed nutrient store and are required

for germination and seedling growth. Of these, legumins, 2S

albumin and vicilins contribute 50–70, 20–60, and 20% of

the total protein fraction, respectively (Monsalve et al., 2007).

However, there is no relationship between the abundance of

seed storage proteins and allergic sensitization. Factors such

as the chemical composition of allergens, processing meth-

ods, routes of exposure, structural stability, interactions with

lipid molecules, aggregation, cross-reactivity, and patient fac-

tors determine the potency of allergenicity (Breiteneder &

Mills, 2005; Smits et al., 2018). Plant defense proteins such

as pathogenesis-related (PR) proteins, nsLTPs and profil-

ins protect against invasion by pathogenic microorganisms

and herbivory by insect pests, as well as preventing the

adverse effects of abiotic stresses (Sinha et al., 2014). PR

proteins, such as PR-10, are induced in response to exposure

to biotic and abiotic stresses (Sinha et al., 2014). In addi-

tion to their defensive role, nonspecific nsLTPs are required

for plant growth and development, cuticle formation, suberin

biosynthesis, pollen development, seed maturation and ger-

mination, fruit ripening, and defense signaling (D’Agostino

et al., 2019; Liu et al., 2015). The profilin superfamily proteins

are known to be involved in the reorganization of the actin
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cytoskeleton and signal transduction by regulating intracellu-

lar calcium levels (Asturias et al., 2002).

3.2 Classification of plant food allergens

In the AllFam database (http://www.meduniwien.ac.at/

allfam/), allergens are classified into protein families based

on the data available from the WHO/IUIS Allergen Nomen-

clature Database and Allergen Online and Pfam databases

(Radauer et al., 2008). An AllFam search for plant food

allergens with ingestion as a route of exposure revealed 233

allergens that are primarily distributed in allergen super

families, such as Prolamin (75), Cupin (36), Profilin (26),

PR-10 protein (21), Thaumatin-like protein (10), Oleosin (8),

Defensins (2) and others (Costa et al., 2020).

3.2.1 The prolamin superfamily

A prolamin superfamily is a major group of allergens, such

as 2S albumin, nsLTPs, and cereal alpha-amylase/protease

inhibitors. These allergens are primarily found in rice,

wheat, peanuts, brazilnut, and fruits with peaches. They

are low-molecular-weight proteins that are rich in proline

and glutamine. They contain α-helical globular domains

with conserved intramolecular disulfide bonds that are resis-

tant to thermal processing and proteolytic digestion (Breit-

eneder & Radauer, 2004; Mills et al., 2004). The prolamin

superfamily includes cereal prolamin (soluble gliadins and

insoluble glutenins), 2S albumin, nsLTPs, bifunctional alpha-

amylase/proteinase inhibitors, soybean hydrophobic proteins

related to nsLTP, and indolines, which are cereal antimicro-

bial proteins that contribute to grain softness. 2S albumin is

a predominant seed storage protein. It is widely distributed in

the seeds and nuts of dicotyledonous plants. Examples of 2S

albumins include Ara h 2, Ara h 6, Ara h 7 from peanut, Gly

m 8 from soybean, and the Jug r 1, Cor a 14, Car i 1, Ana o 3,

Pis v 1, and Ber e 1 proteins from different tree nuts (Table 1

and Figure 5). In the case of peanut allergens, Ara h 1, 2, 3,

and 6 show predominant expression in seeds.

nsLTPs are small (6.5–10.5 kDa), basic proteins that are

widely distributed in higher plants and serve many important

physiological processes, including defense against bacteria

and fungi (D’Agostino et al., 2019). While nsLTPs contain an

eight-cysteine motif backbone, the type 1 and type 2 nsLTPs

differ in size and disulfide bonding patterns (Liu et al., 2015;

Salminen et al., 2016). nsLTPs bind phospholipids, fatty acids

and a variety of hydrophobic molecules. They are commonly

found in nuts, celery tubers, seeds, fruits, vegetables, pollen,

and latex.

Bifunctional α-amylase/protease inhibitors are proteina-

ceous enzyme inhibitors that are primarily found in storage

organs such as seeds and tubers. They function in protec-

tion against phytophagous insect pests by inhibiting insect gut

enzyme activity, thereby hindering the digestion of plant food

starch and protein. These proteins possess a small, compact

structure rich in disulfide bonds and act as a storage reserve

during seed germination. They include Ara h 1, Ara h 2 from

peanut, Tri a 28, Tri a 29, Tri a 30, Tri a 33, Tri a 39, and Tri

a 40 from wheat (Table 1; Maleki et al., 2003; Figure 5).

3.2.2 The cupin superfamily

The allergenic cupins superfamily are globulin-type seed stor-

age proteins (Radauer & Breiteneder, 2007). They have a

β-barrel core domain structure and exist as single domain-

cupins and bicupins. They elicit life-threatening allergic

reactions in individuals sensitive to peanuts, soybean, almond,

hazelnut, and walnut and are grouped into the legumin and

vicilin families (Costa et al., 2020).

Legumins (11S globulin) are abundant (50–70%) seed

storage proteins (Mills et al., 2002). They have hexameric

structures (360 kDa each) linked by noncovalent interactions.

They are composed of six monomeric units derived from the

respective gene products. Members of 11S globulin allergens

include peanut Ara h 3, soybean Gly m 6, walnut Jug r 4,

almond Pru du 6, hazelnut Cor a 9, pecan Car i 4, cashew Ana

o 2, pistachio Pis v 2, Pis v 5, and brazil nut Ber e 2 (Table 1

and Figure 5).

Vicilins (7S globulin) are abundant seed storage proteins

(up to 20%) that are often found in legumes and tree nuts.

They exist as trimeric proteins (150–190 kDa) that can aggre-

gate into hexamers. They differ from legumins because they

lack disulfide bonds. Examples include the peanut Ara h 1,

soybean Gly m 5, walnut Jug r 2, Jug r 6, hazelnut Cor an 11,

pecan Car i 2, cashew Ana o 1, and pistachio Pis v 3 (Table 1;

Geiselhart et al., 2018).

3.2.3 Profilin superfamily

Profilins are highly conserved, cross-reactive cytosolic panal-

lergens (12–15 kDa) that are primarily found in pollen and

latex. Sensitization occurs because of cross-reaction with IgE

antibodies (Asero et al., 2003). Major allergens of the profil-

ing family were reported in the peanut Ara h 5, soybean Gly

m 3, wheat Tri a 12, walnut Jug r 7, almond Pru du 4, and

hazelnut Cor a 2 (Table 1 and Figure 5).

3.2.4 Pathogenesis-related (PR-10) proteins

PR-10 proteins (15–17 kDa) are mostly found in fruits

and vegetables but they are also the cause of birch
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pollen-associated allergies (Sinha et al., 2014). They are struc-

turally distinct from other PR proteins because they contain

highly conserved seven-stranded antiparallel β-sheets sur-

rounding α-helix at the C-terminus (Fernandes et al., 2013).

Many birch pollen allergic individuals are also sensitive to

multiple fruits and vegetable allergens because of Bet v 1

cross-reactive IgE antibodies. Symptoms ranging from mild

to potentially life-threatening conditions have been reported

following the consumption of raw foods (Costa et al., 2020).

4 APPROACHES TO REDUCE
ALLERGEN CONTENT

Most plant food allergens are water-soluble glycoproteins that

are relatively stable with regard to enzymatic hydrolysis, heat,

and chemical treatments (Sicherer & Sampson, 2010). How-

ever, different food processing methods can modify, at least

in part, immunogenic reactivity (Bhalla & Singh, 2008). Such

methods have both limitations and advantages in reducing the

allergenic effect but may decrease the nutritional value of food

(Fu et al., 2019). Most studies used to evaluate processing

methods depend on in vitro IgE binding assays rather than

more relevant ex vivo basophile activation tests (BAT) and

mast cell activation tests (Shah et al., 2019).

4.1 The genomics of allergens

In the last decade, more than 35 different species of legumes

have been sequenced for developing reference genome and

transcriptome assemblies. This genomic resource informa-

tion accelerates the development of cultivars of superior

grain legume crops by genomic-assisted breeding and preci-

sion breeding (Bauchet et al., 2019; Varshney et al., 2019).

Similarly, genetic approaches are being used increasingly to

develop low allergen food crops (Zhou et al., 2013). For

example, a lower Gly m Bd 30K (P34) allergen was identi-

fied in soybean (Jeong et al., 2013). The high-quality RefSeq

(reference sequence) v1.0 reference genome from the Inter-

national Wheat Genome Sequencing Consortium was used

to detect and properly discriminate allergens and antigens in

wheat proteins linked to or involved in human disease (Juhász

et al., 2018). While relatively few quantitative trait locus

or association studies have been conducted in other species,

the expression levels of allergens can be altered through

molecular breeding and/or genetic engineering using RNA

interference (RNAi) or clustered regularly interspaced short

palindromic repeats (CRISPR)/Cas9 mediated gene editing

(Jouanin et al., 2018; Saurabh et al., 2014). A hypoallergenic

peanut variety that was produced by gene silencing showed

a 25% reduction in the expression of the most potent aller-

gen Ara h 2, thereby significantly decreasing allergenicity

(Dodo et al., 2008). Studies involving the silencing of the

Ara h 1, Ara h 2, Ara h 3, and Ara h 6 genes resulted in a

significant reduction in IgE binding. Crucially, no changes

in seed weight or germination were observed between the

transgenic and wildtype plants (Chu et al., 2008). Several

peanut lines with lower levels of the major allergens (Ara h

1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8) were identified at

ICRISAT using a large-scale phenotyping approach (Pandey

et al., 2019). Such studies can lead to the identification of

functional variations that may be useful in molecular breeding

approaches involving marker-assisted selection and marker-

assisted backcrossing (Janila et al., 2016; Varshney et al.,

2014). Similarly, RNAi approaches have been successfully

used to mitigate the expression of the allergen Gly m Bd 30k
protein in soybean (Herman, 2003) and rice (Ogo et al., 2014)

and apple (Dubois et al., 2015). In addition, CRISPR/Cas9-

mediated site-directed mutagenesis was successfully used to

eliminate two major allergen genes, Gly m Bd 28k and Gly

m Bd 30k and thus generate hypoallergenic soybeans (Sug-

ano et al., 2020). The gene silencing studies of Barro et al.

(2016) selectively targeted the gliadin and glutenin genes

using RNAi technology. An absence of epitopes related to

coeliac disease related to immunogenic gliadins was reported

in the wheat lines. Similarly, a low-gluten wheat variety

that showed an 85% decrease in immunoreactivity was pro-

duced (Sánchez-León et al., 2018). Such lines could be used

as source material for further introgression studies. Efforts

have been made in durum wheat to edit the genes encod-

ing α-amylase/trypsin inhibitors (ATIs) that are involved in

wheat allergy and nonceliac wheat sensitivity (Camerlengo

et al., 2020). Such studies illustrate the enormous potential of

molecular genetic approaches to produce hypoallergenic food

crops. However, the removal of allergenic seed storage pro-

teins on a large scale may result in large decreases in nutritive

value and taste.

4.2 Food processing methods

4.2.1 Physical processing methods

Thermal processing, such as frying, roasting, curing, and

various types of cooking, can result in a variety of nonen-

zymatic, biochemical events in meals. Many foods brown

due to a phenomenon known as the Maillard reaction, which

is one of the key processes that occur during food cooking

or browning (e.g., roasting, frying, and curing). The Mail-

lard reaction is an important in the development of flavour

and colour in foods such as peanuts and tree nuts during

roasting, enhances flavours in beverages such as beer and

coffee, and involves a process similar to caramelization in

which amino groups of proteins are modified via nonenzy-

matic condensation with reducing sugars. Each method has

a varied effect on the allergenic potency of different foods.
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Processing approaches involve include the use of physical

methods (heat, mechanical, electric, and magnetic energy)

that disrupt protein structure and induce aggregation but

without disrupting the primary structure. The most common

physical methods are thermal processing, irradiation, ultra-

sound, ultrahigh pressure, and microwaves (Cabanillas et al.,

2018; Vanga et al., 2017; Verhoeckx et al., 2015). Such meth-

ods have been widely applied to reduce allergenicity. They

have advantages over chemical and enzymatic methods in

terms of cost, time, side effects, and nutritional quality. Boil-

ing, roasting, frying, and autoclaving are the most common

methods of household food preparation. While boiling can

decrease the immunoreactivity of allergenic protein, roast-

ing increases allergenicity (Kopper et al., 2005; Turner et al.,

2014). In the case of peanuts, for example, roasting enhances

IgE binding activity by 90-fold and makes the allergens Ara

h 1 and Ara h 2 resistant to digestive enzyme proteolysis

because of Maillard reactions (Maleki et al., 2000). Thermal

processing can therefore reduce immunogenicity to a cer-

tain degree but it may also destroy nutrients and bioactive

ingredients (Gupta et al., 2018b).

Structural denaturation, unfolding, glycation, and aggrega-

tion occur during the physical processing of food proteins.

This affects solubility and digestibility, which might lead to

the elimination of conformational IgE epitopes or the forma-

tion of new allergenic linear epitopes that can increase the

risk of allergy (Shah et al., 2019; Verhoeckx et al., 2015).

The application of ultrasound to reduce the allergenicity of

certain food products has proved to be a useful pretreatment

before food processing (Corzo-Martínez et al., 2017). In addi-

tion, the application of a pulsed ultraviolet light was able to

decrease the levels of glycinin and β-conglycinin allergens

in soybean (Yang et al., 2010). Unfortunately, there are no

inconsistent food processing methods that reduce allergenic-

ity in different food materials. Moreover, the conventional

thermal processing methods applied in the reduction of food

immunoreactivity significantly destroy nutritional compo-

nents present in food sources. Therefore, the use of novel

nonthermal processing techniques including high-pressure

processing, ultrasound, pulsed light, cold plasma, fermenta-

tion, pulsed electric field, and enzymatic hydrolysis generally

have better performance in retaining the original character-

istics of food and improving the efficiency of eliminating

allergens (Dong et al., 2021).

4.2.2 Chemical and enzymatic methods

The physical methods discussed for food processing affect the

physicochemical properties of food proteins in diverse ways

and influences their gastrointestinal digestion, bioavailabil-

ity, and allergenicity. However, the application of nonthermal

including chemical and enzymatic methods can induce min-

imal changes to food quality attributes and can extend the

shelf-life of food (Dong et al., 2021; Ekezie et al., 2018).

Chemical and enzyme treatments can reduce or destroy

immunogenic determinants in food by disrupting the allergen

structure that is stabilized by covalent and noncovalent bonds

(Ekezie et al., 2018; Wang et al., 2022). Acid hydrolysis is

widely used to treat wheat flour and destroy gluten allergen

proteins to produce low allergenic products (Fu et al., 2019).

Major covalent modifications, such as acylation, reduction,

and alkylation, show remarkably reduced immunogenicity by

altering the solubility and digestibility of allergens in the

gastrointestinal tract (Apostolovic et al., 2013). In addition,

non-covalent modifications that involve binding with com-

pounds such as phytic acid, phenolic compounds, and tannic

acid to form insoluble complexes have been shown to decrease

allergic potency in peanuts by hindering proteolytic digestion

(Chung & Champagne, 2008; Chung & Reed, 2012). Fur-

thermore, polyphenol-enriched peanut matrices were shown

to significantly minimize allergen interactions with IgE and

decrease ex vivo basophil degranulation and mast cell degran-

ulation in a mouse model (Plundrich et al., 2017). This

phenomenon involved excessive proteolytic digestion of the

polyphenol–allergen complex, which facilitated alterations in

conformational epitopes and the simultaneous masking of lin-

ear epitopes. However, the addition of phenolic compounds

and polyphenols can cause stomach discomfort and it also

obstructs nutrient absorption in the intestine.

Enzymatic hydrolysis has shown promising results with

regard to reducing allergenicity. Cross-linking of enzymatic

proteins with allergens masks antibody-specific epitopes.

In contrast, proteolysis with food-grade enzymes, such as

trypsin, chymotrypsin, papain, ficin, bromelain, and so on,

disrupts the native structure and physiochemical charac-

teristics, as well as IgE-specific conformational and linear

epitopes, which ultimately reduces allergenicity (Meng et al.,

2020; Zhou et al., 2013). The roasted peanut allergens Ara h

1 and Ara h 2 are completely hydrolyzed by treatment with

trypsin (0.15%) and chymotrypsin (0.1%) for 3 h (Yu et al.,

2011). Similarly, Ara h 1, Ara h 2, and Ara h 3 are effec-

tively eliminated by hydrolysis using alcalase and flavorzyme

(Cabanillas et al., 2012).

Enzymatic hydrolysis followed by physical processing

methods, such as irradiation, pulsed ultraviolet light, pulsed

electric field, high-pressure processing, and high-intensity

ultrasound have been proven to be effective in reducing aller-

genicity (Shah et al., 2019). However, the combination of

autoclaving and fermentation of raw peanut pulp with Bacil-
lus natto effectively diminishes the allergens in raw peanuts

(Pi et al., 2021). Such effects have also been demonstrated in

wheat for gluten-free bread (Diowksz & Leszczyńska, 2014).

The combination of physical methods and enzymatic

hydrolysis (hurdle technologies) has the advantage of facili-

tating efficient enzyme penetration and proteolysis. Similarly,
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the chemical reduction of disulfide bonds in allergenic

proteins destabilizes the three-dimensional structure and

increases the efficiency of enzymatic proteolysis (Mikiashvili

& Yu, 2018). Unfortunately, however, the majority of food

processing methods also alter the texture and flavor of food

and this can significantly affect consumer acceptance.

4.3 Common methods for allergy diagnosis

There are various diagnostic methods available for test-

ing allergies which involve skin or blood. Allergy testing

assesses the body’s reaction to specific allergens and the

test must be chosen by a trained health professional called

an allergist based on symptoms, age, hobbies, exposures

and patient medical history. Such testing reveals allergens

that might cause allergies, such as plant pollens, molds,

dust mites, animal dander, insect stings, and various foods

such as peanuts, eggs, wheat, shellfish, and milk and also

includes some medicines like penicillin. Once the allergens

have been identified through proper diagnostic methods, the

specific treatments can be possible through medications, aller-

gen immunotherapy, and/or environmental control measures

to achieve long-term sustainable outcomes (Ansotegui et al.,

2020; Dreborg, 2001; Heinzerling et al., 2013; Maruyama,

2021).

4.3.1 Skin prick/scratch test (SPT)

It uses a thin needle to prick the skin on your forearm or back

with a possible number of different potential allergens or the

allergist may place droplets of potential allergens onto your

skin and use a device to scratch and lightly puncture the area.

It helps the liquid to enter into the skin and is observed for

the body’s reactions might be a rash or round spots which

are generally used for the detection of airborne allergies, food

allergies and penicillin allergies. The skin prick test represents

the most reliable and cost-effective tool for the diagnosis and

management of IgE-mediated allergy.

4.3.2 Intradermal skin test

If skin prick test results turn inconclusive, a small amount

of the allergen is injected into the epidermis and records the

observations. This test is used for the diagnosis of allergies to

airborne irritants, insect stings and medications.

4.3.3 Patch test

The purpose of this test is to determine the cause of contact

dermatitis in which a patch of allergen-containing bandage is

applied on to the skin. After 2–3 days the allergist records the

observation of allergic reactions.

4.3.4 Blood (IgE) test

When skin tests are inconvenient for a particular patient, an

allergist can proceed with the blood test. This test measures

levels of allergen-responsive antibody IgE in the serum by the

addition of different potential allergens to the blood.

4.3.5 Basophile activation tests

This laboratory test measures the activation of basophils, a

type of red blood cells in response to a specific allergen. Fur-

ther, the BAT is specific which allows better defining the IgE

profile of the patient but it is complex to perform.

4.3.6 Challenge tests

This test is particularly used to identify the source of food

allergies. Under the supervision of a health professional,

the person with suspected FA ingests a small amount of an

allergen and the allergist observes the symptoms of allergic

reaction. This test is highly risky for the individual sensitive to

anaphylaxis which required immediate epinephrine injection

to stop the reaction.

Among all the allergy testing methods, the skin test is the

gold standard and is used along with a person’s medical his-

tory to identify the source of FA. While blood tests generally

have a higher rate of false-positive results, in addition to the

pain and chances of bleeding.

5 SCOPE FOR DEVELOPING
HYPOALLERGENIC CROPS WITH
MINIMAL EFFECTS ON PLANT
PHYSIOLOGY

Most allergens are seed storage proteins that play a key role

in plant biology, with functions ranging from seed germina-

tion to defense against biotic and abiotic stresses (Zhou et al.,

2013). Therefore, the selection of target genes of allergens in

particular crop plants requires a comprehensive understanding

of gene function in plant growth and development.

Of the 18 recognized allergens in peanuts, Ara h 1,

Ara h 2, Ara h 3, and Ara h 6 (Shah et al., 2019; Wu

et al., 2016), Ara h 2 is recognized in most peanut-allergic

individuals. Therefore, a reduction in peanut allergy by elim-

inating the Ara h 2 genes might be a preferable choice that

might not result in major alterations to plant growth and
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development. Efforts have been made to silence Ara h 2 and

Ara h 6 in peanuts using RNAi technology. Such approaches

have resulted in a significant decrease in IgE binding with

no significant effects on seed germination or defenses against

fungal infection (Chu et al., 2008). Other studies have also

sought to decrease peanut allergy by silencing Ara h 2 using

a specific RNAi gene silencing (Dodo et al., 2008). Trans-

genic peanut lines with suppressed Ara h 2 and Ara h 6 protein

expression remained stable for several generations (Chandran

et al., 2015). In the case of wheat, silencing of gluten synthesis

led to the production of a low gluten wheat variety, which is

safe for many gluten allergy-sensitive individuals (Wen et al.,

2012). Similarly, the ω−5 gliadin-free wheat line 1BS-18 had

low efficiency in inducing allergy symptoms in guinea pigs

(Kohno et al., 2016).

Soybeans contain two major allergens in the form of 7S

globulin (β-conglycinin) and 11S globulin (glycinin). These

together make up >50% of the total seed protein. Suppression

of globulin and conglycinin expression using RNAi did not

affect seed size, weight or developmental ontogeny. However,

these soybean lines undergo were found to express other seed

proteins (Schmidt et al., 2015). Another study using microR-

NAs specific to 7S globulin had no adverse effects on seed

lipid, carbon and nitrogen contents (Yamada et al., 2014).

CRISPR/Cas9 gene editing was used to create a double mutant

(Gly m Bd 28 K and Gly m Bd 30 K) which resulted in the

loss of both proteins from Japanese soybean seeds (Sugano

et al., 2020). Taken together, such studies provide substan-

tial evidence that plants show a compensatory response to the

suppression or elimination of allergenic seed proteins. The

success of such studies demonstrates the potential of such cur-

rent gene technologies for the creation of hypoallergenic plant

foods.

6 PHENOMICS AND OMICS
APPROACHES TO REDUCING
ALLERGENS

6.1 Identification of crops with reduced
allergen content through selection and breeding

Conventional plant breeding plays a significant role in devel-

oping new plant varieties with desired plant traits/features.

Unfortunately, due to lack of information on low allergen

content lines, there is not much effort on breeding varieties

with reduced allergen content using conventional breeding

approaches (Pandey et al., 2019; Riascos et al., 2010). Lim-

ited conventional breeding efforts are reported to improve the

nutritional content of crops, which indirectly contributes to

reducing allergenicity (Lemke et al., 2022). By increasing

the nutritional value of crops, individuals with food allergies

may have access to a wider range of nutrients and alterna-

tive food sources (Kaiser et al., 2020). Plant food allergens

are not always a strict selection criterion comparable to other

plant toxins, especially considering that food allergens are

always unique proteins of large protein families with complex

inheritance in plant breeding. Although screening germplasm

to identify individuals with decreased allergen content is

time-consuming, traditional breeding attempts toward hypoal-

lergenic variants in peanut (Pandey et al., 2019; Perkins

et al., 2006), wheat (Yamada et al., 2022), and soybean (Gao

et al., 2012) have been attempted. Gluten in hexaploid bread

wheat is made up of numerous distinct proteins, the most

prominent of which are glutenin and gliadin. Glutenins are

essential for baking quality, but gliadins include the majority

of celiac disease-associated pieces (epitopes). Although old

hexaploid bread and tetraploid durum wheat varieties have

been identified with few epitopes connected to gluten intol-

erance, generating favourable combinations of gluten genes

to satisfy baking quality standards in a polyploid is difficult

(Gilissen et al., 2014; Lemke et al., 2022).

Little information is available concerning the major aller-

gen contents of peanut germplasm lines that are commercially

grown around the world. Recently, Pandey et al. (2019) iden-

tified hypo-allergenic lines for Ara h 1, Ara h 2, Ara h 3,

Ara h 6, and Ara h 8. These and other studies have used

monoclonal antibodies to screen peanut-based products (Filep

et al., 2018). Earlier, 34 peanut genotypes were screened

using patient sera but no substantial differences in allergen

content were identified (Dodo et al., 2002). The analysis

of a “Reference set” consisting of 300 genotypes represent-

ing 48 countries has also been reported (Upadhyaya et al.,

2003, 2010). Little variation was observed in 53 Chinese

peanut cultivars (Wu et al., 2016) using human sera to assess

the allergen content in their cultivars. However, the Spanish

bunch varieties had lower peanut allergen contents than the

other agronomic types. These authors also reported that Xinx-

iandahuasheng of the Virginia type, Bangjihonghuasheng

of the Valencia type, Mangdou of the Spanish type, and

Yaoshangxiao make of the Peruvian type had lower peanut

allergen contents. A study of 35 US peanut cultivars using

antisera from allergic patients also found no significant vari-

ation (Dodo et al., 2002; Isleib & Wynne., 1992). However,

rapid and easy phenotyping methods for different allergens

are required to increase the efficiency of breeding reduced

allergen crops (Liu et al., 2023).

The pattern of sensitization to peanut allergens varies in

different geographical regions (Vereda et al., 2011). For

example, Ara h 1, Ara h 2, and Ara h 3 were identified in

allergic reactions in the United States. Similarly, Ara h 1, Ara

h 2, and Ara h 3 11 were found in European nations (Ballmer-

Weber & Beyer, 2018). Nine soybean allergens were identified

in three soybean varieties developed at nine locations in three

states in the same climate zone in North America: Illinois,

Iowa and the United States (Mcclain et al., 2018).
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Mutation breeding has also been shown to be effective in a

wide range of crop species, such as tomato, rapeseed, cotton,

barley, sunflower, peanut, cassava, and can be successfully

used to improve plant varieties (Xia et al., 2022). Mutation

breeding has been used to increase the yield and oil and pro-

tein contents of peanuts (Hamid et al., 2006). A Targeting

Induced Local Lesions IN Genomes approach was used to cre-

ate gene-specific primers for each of the two Ara h 1 and two

Ara h 2 genes to find mutations in peanuts (Knoll et al., 2011).

Similarly, gamma irradiation mutagenesis was used to iden-

tify the mutant alleles of the Gly m Bd 28 K and Gly m Bd 30

K genes in soybean.

6.2 Role of artificial intelligence and
bioinformatics in reducing allergencity

Traditional methods for identifying food allergens mostly rely

on in vivo and in vitro experiments, which can be time con-

suming and uneconomical. However, artificial intelligence

(AI) and bioinformatics have the potential to significantly

reduce plant food allergens by aiding in the identification of

specific allergenic proteins in plants as well as the develop-

ment of novel methods to modify or remove allergens from

food products (Liu et al., 2023). AI in allergy and immunol-

ogy has various potential therapeutic applications ranging

from disease diagnosis to multidimensional data reduction in

electronic health records or immunologic datasets (Khoury

et al., 2022). The applications of AI and bioinformatics can be

deployed in the prediction of allergenicity by analysing avail-

able genomic and proteomic data. By analyzing the genetic

information of various plant species, AI algorithms can iden-

tify potential allergenic proteins and predict their structure

and function. One of the study proves quick food allergen

identification approach powered by AI is now a useful aux-

iliary tool for the prediction of allergenicity of food proteins

using deep learning models by overcoming the limitations

of low accuracy traditional machine learning models (Wang

et al., 2021). A novel chemometric method for analysing

and investigating the allergenic properties of dietary pro-

teins has been developed by using machine learning. The

approach is based on rating descriptors and evaluating their

classification performance. It is necessary to create a reli-

able and effective protein categorization system in order

to overcome the issue of food allergies (Nedyalkova et al.,

2023). This information can then be used to guide the selec-

tion of plant varieties and to design breeding strategies that

reduce the expression of allergenic proteins or to develop

targeted approaches for modifying allergenic proteins. Fur-

ther, bioinformatics can potentially analyze large datasets

of allergen information and identify common allergenic epi-

topes across different plant species. This can help researchers

identify potential targets for developing plant varieties with

reduced allergen content. This information can be used to

design novel food processing techniques that can reduce the

allergenicity of plant foods. For instance, AI algorithms can

be used to model the effects of different processing con-

ditions on the structure and function of allergenic proteins,

allowing researchers to identify conditions that reduce aller-

genicity without compromising the nutritional quality or taste

of the food. Further, AI can help researchers optimize the

production process of hypoallergenic plant products by ana-

lyzing factors such as temperature, humidity, and nutrient

levels. By analyzing the structure and function of allergenic

proteins, AI algorithms can identify potential targets for

genetic engineering or protein modification that can reduce

allergenicity while maintaining the nutritional value of the

food. The scope of AI and bioinformatics for reducing plant

food allergens is vast and includes applications in genetic

analysis, allergen identification, and production optimization

(MacMath et al., 2023; Solanki et al., 2020). These tech-

nologies have the potential to revolutionize the field of plant

food allergen reduction, leading to safer and more accessi-

ble food for individuals with allergies for their health and

well-being.

6.3 Developing varieties with reduced
allergen content using genetic engineering and
gene editing technologies

The genetic engineering approach RNAi is a powerful tool

that can be used to improve various traits in crops, includ-

ing nutrient value, disease or pathogen resistance, and crop

allergenicity reduction. RNAi is a natural biological process

that regulates gene expression by suppressing the activity of

specific genes. Further, integrating RNAi technology with

conventional breeding approaches contributes to the devel-

opment of improved crop varieties that address nutritional,

health, and environmental challenges (Rajam, 2020). By using

RNAi, the expression of allergen proteins can be reduced or

eliminated, resulting in crops with reduced allergenic poten-

tial and this approach holds promise for improving the safety

of food products for individuals with food allergies. A signif-

icant progress has been made in gene silencing approaches

to suppress the immunodominant allergen Ara h 2 in peanuts

(Dodo et al., 2008). Decreased allergenicity to the immune

dominant Ara h 2 protein was achieved in peanuts using RNAi

technology (Dodo et al., 2008). In addition, RNAi approaches

have been successfully used to suppress the expression of

Ara h 2 and Ara h 6 allergens without adverse effects on

seed germination and plant growth and development (Chan-

dran et al., 2015; Chu et al., 2008). Similarly, the silencing

of gluten synthesis in wheat led to the production of a

low-gluten wheat variety (Wen et al., 2012). Moreover, the

ω−5 gliadin-free 1BS-18 wheat line had low efficiency in
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inducing allergy symptoms in guinea pigs (Kohno et al.,

2016).

In addition to RNAi, the use of technological advance-

ment, the discovery and characterization of plant food allergen

genes offers a significant opportunity for successful genetic

modifications (Brackett et al., 2022). Biotechnological tech-

niques, such as gene editing or genome editing, are widely

employed to produce designer crops with desired traits (Wang

et al., 2016; Fernie and Yan, 2019; Awasthi et al., 2022).

Site-directed nuclease (SDN) methods have also recently

been employed to achieve genetic alterations by a precise

cleavage in the intended target region of the genome. A

few SDN tools, such as zinc-finger nucleases (ZFN) (Urnov

et al., 2010), transcription activator-like effector nucleases

(TALEN) (Joung & Sander, 2013), and CRISPR (Wang et al.,

2016) are currently used for gene editing (Camerlengo et al.,

2020; Kaur et al., 2020; Lakhani et al., 2022; Singh et al.,

2023).

CRISPR/Cas9 is a well-proven technology useful for

creating desirable mutations at specific genetic locations

that can also be applied for key polyploid crops, such as

peanut and wheat, and diploid crops, such as soybean,

kidney beans, and mustard (Assou et al., 2022; Bortesi

& Fischer, 2015; Gao, 2021; Steinwand & Ronald, 2020;

Weeks, 2017). CRISPR/Cas9 has been used successfully

to edit the Ara h 2 genes in peanuts (Biswas et al.,

2022). This technology has also been successfully used to

edit fatty acid desaturase (AhFAD2) in peanuts to increase

the oleic content (Yuan et al., 2019). Similarly, the roles

of nod factor receptors (AhNFRs) were verified by using

CRISPR/Cas9 (Shu et al., 2020). The research group of

Rustgi et al. (2022) has developed low-gluten producing

wheat by expressing glutenases through genetic engineering.

They have also screened selected genotypes of the USDA

and ICRISAT mini-core of peanuts for low allergenic con-

tent and targeted the major allergen genes by CRISPR/Cas

approaches.

The successful genome editing of GmDcl4a and GmDcl4b
genes was reported in hairy roots (Curtin et al., 2011).

Recently, two major soybean allergens, Gly m Bd 28 k and Gly

m Bd 30 k, were removed from seeds using CRISPR/Cas9-

mediated site-directed mutagenesis (Sugano et al., 2020). The

CRISPR/Cas9 system was also used to knock out the TaMLO
locus in wheat (Shan et al., 2013), including TaPDS and

TaINOX (Upadhyay et al., 2013). The three TaMLO alleles

were silenced together for resistance to powdery mildew in

bread wheat (Wang et al., 2014). The wheat TaLOX2 gene

was silenced by expressing sgRNA under the transcriptional

control of the TaU6 promoter (Shan et al., 2013). The major

allergenic proteins ATIs were recently silenced using the

CRISPR/Cas9 approach, in order to decrease wheat allergies

such as Baker’s asthma and nonceliac sensitivity (Camerlengo

et al., 2020).

7 SUMMARY AND FUTURE
PROSPECTS

Legume food crops are the major source of essential amino

acids and plant-based proteins besides their natural antinu-

trients and allergenic substances that hampers digestibility

and trigger an abnormal immune response which makes them

undesirable for human consumption. The implementation of

novel approaches like high throughput phenotyping, target

gene identification assisted by AI, genomics-assisted selec-

tion, and precision breeding by gene editing can help to

address the challenges of food safety and security. In the

post-genomic era, researchers have made enormous progress

in genome sequencing and structural analysis of legume

genomes by the intervention of NGS and bioinformatics.

These genome information resources are facilitating gene dis-

covery and development of molecular markers of complex

traits toward the generation of superior legume crops. Par-

ticularly, in the matter of food safety, allergies have become

a serious health concern in both developed and developing

countries in the era of modernization. The increasing preva-

lence of FA presents a formidable challenge to researchers

seeking to find accurate, rapid diagnostic methods, as well as

prevention and treatment measures for vulnerable people.

Although, a variety of thermal and nonthermal food pro-

cessing methods have been applied by the food service

establishments, however, removal of allergenic substances

from the food source material is still a challenge for packaged

foods. Therefore, the combined use of technological advance-

ment in AI, bioinformatics, molecular breeding, RNAi, and

CRISPR/Cas-based gene editing can help to develop varieties

of legume crops with reduced allergen. Realizing the strength

of currently available tools and technologies, developing

allergen-free crop varieties seems very difficult; nevertheless,

the available genetic variation among diverse germplasm can

be exploited to accumulate superior alleles promoting pro-

duction of low allergen content in seeds for ensuring food

safety. On the other hand, the best possible cure needs to be

explored to treat affected patients in addition to developing

tolerance from childhood through mini-exposure to diverse

food including causing allergenicity.
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