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ABSTRACT

Gravitational interactions in star-forming regions are capable of disrupting and destroying
planetary systems, as well as creating new ones. In particular, a planet can be stolen, where it
is directly exchanged between passing stars during an interaction; or captured, where a planet is
first ejected from its birth system and is free-floating for a period of time, before being captured
by a passing star. We perform sets of direct 𝑁-body simulations of young, substructured star-
forming regions, and follow their evolution for 10 Myr in order to determine how many planets
are stolen and captured, and their respective orbital properties. We show that in high density
star-forming regions, stolen and captured planets have distinct properties. The semimajor
axis distribution of captured planets is significantly skewed to wider orbits compared to the
semimajor axis distribution of stolen planets and planets that are still orbiting their parent
star (preserved planets). However, the eccentricity and inclination distributions of captured
and stolen planets are similar, but in turn very different to the inclination and eccentricity
distributions of preserved planets. In low-density star-forming regions these differences are
not as distinct but could still, in principle, be used to determine whether observed exoplanets
have likely formed in situ or have been stolen or captured. We find that the initial degree
of spatial and kinematic substructure in a star-forming region is as important a factor as the
stellar density in determining whether a planetary system will be altered, disrupted, captured
or stolen.

Key words: methods: numerical – planets and satellites: dynamical evolution and stability –
stars: kinematics and dynamics

1 INTRODUCTION

Numerous exoplanets have now been observed on orbits that can-

not be fully explained by the current theories of star and planet

formation, whether that be core accretion (Pollack et al. 1996) or

the fragmentation of stellar disks (Boss 1997; Mayer et al. 2002).

For example, dozens of possibly planetary mass companions have

been observed with unexpectedly high eccentricities and semima-

jor axes, with some orbiting as far as '2500 AU from their host

star (e.g. Luhman et al. 2011; Deacon et al. 2016). Furthermore,

although the abundance of free-floating planets is uncertain (Sumi

et al. 2011; Quanz et al. 2012; Clanton & Gaudi 2017; Mróz et al.

2017; OGLE Collaboration et al. 2019), several likely candidates

have been discovered (e.g. Zapatero Osorio et al. 2000; Dupuy &

Kraus 2013; OGLE Collaboration et al. 2019; Mróz et al. 2020).

Meanwhile, in our own Solar System, should the proposed

Planet 9 exist (Sheppard & Trujillo 2016; Batygin & Brown 2016;

★ E-mail: ecdaffern1@sheffield.ac.uk
† E-mail: R.Parker@sheffield.ac.uk
‡ Royal Society Dorothy Hodgkin Fellow

Batygin et al. 2019; Clement & Kaib 2020; Downey & Morbidelli

2020), its orbit is likely to be very wide (𝑎 ∼ 400 − 800 AU),

eccentric (𝑒 ∼ 0.2−0.5), and inclined (𝑖 ∼ 15−25◦) to the plane of

the other planets (Batygin et al. 2019; Fienga et al. 2020). (However,

see also Shankman et al. (2017) and Napier et al. (2021) for a more

pessimistic view regarding the likelihood of Planet 9’s existence.)

Planetary orbits that cannot be explained by core accretion

or gravitational fragmentation, as well as free-floating planets, can

instead be created by encounters with other bodies (e.g. Laughlin &

Adams 1998; Hurley & Shara 2002; Smith & Bonnell 2001; Adams

et al. 2006; Parker & Quanz 2012; Zheng et al. 2015; Kouwenhoven

et al. 2016; Flammini Dotti et al. 2019; Li et al. 2019, 2020a; Wang

et al. 2020a). These dynamical interactions with external bodies

have the potential to perturb, destabilise, and destroy planetary orbits

– with the main outcome being that the planet’s orbital parameters

are changed.

Dynamical interactions readily occur in high density environ-

ments, where close encounters between systems can be common.

This is particularly the case for the substructured and filamentary re-

gions in which most stars and their planets form (Lada & Lada 2003;

Cartwright & Whitworth 2004; André et al. 2014; Daffern-Powell

© 2021 The Authors
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2 E. C. Daffern-Powell, R. J. Parker & S. P. Quanz

& Parker 2020). These star-forming regions tend to be relatively

dense compared to the galactic field (which has a stellar density of

0.1 pc−3, Korchagin et al. 2003). For example, Taurus has a stellar

density of≈ 5 stars pc−3, and the most massive star-forming regions

can have ' 1000 stars pc−3, with the Orion Nebula Cluster having

a central density of ≈ 5000 stars pc−3 (King et al. 2012).

It is unclear what fraction of planet-hosting stars form in such

dense environments, and whether our Sun formed in a region of

high or low-density. However, there is evidence from isotopic ratios

that the Solar System may have formed in a relatively dense cluster

of ∼ 100 to ∼ 1000 stars (Adams 2010; Parker & Dale 2016;

Lichtenberg et al. 2016; Nicholson & Parker 2017; Portegies Zwart

2019).

The substructured nature of star-forming regions can also fur-

ther increase the frequency of dynamical interactions, as areas of

substructure have higher local densities than the global density of

the region as a whole (Cartwright & Whitworth 2004; Sánchez &

Alfaro 2009; André et al. 2010; Parker & Meyer 2012; André et al.

2014; Kuhn et al. 2014; Jaehnig et al. 2015; Arzoumanian et al.

2019; Ballone et al. 2020).

The dynamical interactions that planets are more likely to ex-

perience in star-forming regions can be grouped by mechanism.

These mechanisms include the disruption of a planet’s orbit, where

one or more of its semimajor axis, eccentricity, or inclination is al-

tered (Hurley & Shara 2002; Spurzem et al. 2009; Parker & Quanz

2012); the ejection of a planet from its system to become free-

floating, where it is no longer gravitationally bound to a star (Fujii

& Hori 2019; van Elteren et al. 2019; Cai et al. 2019); the capture of

a free-floating planet by either a new star or its original star (Perets

& Kouwenhoven 2012; Wang et al. 2015; Parker et al. 2017); and

the theft of a planet, where it is directly exchanged between stars as

they pass each other1, without being free-floating for a significant

period of time2 (Li & Adams 2016; Mustill et al. 2016; Wang et al.

2020b).

The result of planet theft and the capture of a free-floating

planet is often the same – a planet orbiting a new star. However,

the two mechanisms are themselves distinct and the evolution of the

planets that undergo them may also differ significantly. For example,

a free-floating planet may experience encounters that change its

velocity before its subsequent capture (Wang et al. 2015), something

which cannot have happened to a stolen planet. It is therefore unclear

whether stolen and captured planets should be expected to share

similar orbital properties, or whether they would be distinguishable

observationally.

The current state-of-the-art in modelling planetary systems in

𝑁-body simulations of star-forming regions is to effectively run

simulations of planetary systems within the global star-forming re-

gion simulations; interaction histories between stars are tracked and

then used to determine the amount of disruption experienced by

multi-planet systems using separate software (e.g. Cai et al. 2019;

Flammini Dotti et al. 2019; Stock et al. 2020). The advantage of

this approach is a full planetary system can be modelled (instead of

just one or two planets) and that the long-term dynamical evolution

of the planets can be accurately determined. The disadvantage is

that any planet(s) that are ejected from their system cannot re-enter

1 As an aside, a vast amount of literature exists on the exchange of disc

material between stars (e.g. Clarke & Pringle 1993; Kenyon & Bromley

2004; Jílková et al. 2015; Li et al. 2020b; Pfalzner et al. 2021), which is the

same physical mechanism that accounts for the theft of a fully-formed planet

from a passing star.
2 We take a significant period of time to be 104 years, as described in §2.2.2.

the global simulation of the star-forming region as a free-floating

planet.

Furthermore, to date, the simulations of the star-forming re-

gions with multi-planet systems assume smooth, relaxed initial con-

ditions. However, planets form almost immediately after the onset

of star formation (ALMA Partnership et al. 2015; Andrews et al.

2018; Alves et al. 2020; Segura-Cox et al. 2020), when star-forming

regions exhibit a large degree of spatial and kinematic substructure.

If the star-forming regions have low densities initially, this sub-

structure can last for many crossing times (i.e., several Myr) and so

there is merit in examining the effects of substructured star-forming

regions on young planetary systems (Parker & Quanz 2012; Craig

& Krumholz 2013). Indeed, Parker et al. (2021) demonstrated that

external photoevaporation of protoplanetary discs is slightly hin-

dered in more substructured regions, as the massive stars are on

average further away from the majority of disc-bearing stars, even

though the median stellar density is the same as in regions with less

substructure.

In this paper, we perform direct 𝑁-body simulations of dense,

substructured star-forming regions, where half of the stars have

Jupiter-mass planets placed at 30 or 50 AU. We adopt these orbital

distances to facilitate a direct comparison with our previous work

(Parker & Quanz 2012) and because a significant number of exo-

planets are observed at these separations. The evolution of all of the

planets in each simulation are followed for 10 Myr. We test whether

the orbital properties and abundances of captured and stolen planets

differ significantly from that of each other, as well as that of planets

that are still orbiting their parent star. We then compare these results

to directly imaged exoplanets and the hypothetical Planet 9.

In Section 2 we outline our methods of simulation and analysis

as well as our adopted initial conditions, in Section 3 we presents our

results and discuss their implications, and we conclude in Section 4.

2 METHODS

In this section we describe the set-up of our simulated star-forming

regions and how the results were then analysed.

2.1 Simulation Set-Up

Direct 𝑁-body simulations were run using the kira 𝑁-body inte-

grator (Portegies Zwart et al. 1999, 2001). These were evolved for

10 Myr, with snapshots of data taken every 0.01 Myr for analysis.

We use several sets of initial conditions, all of which contain 1000

stars, 𝑁★, and 500 planets, 𝑁p, which are randomly assigned to

the stars. The planets are all Jupter-mass. The planet mass would

not be expected to significantly affect our results, especially with

respect to the ejection of a planet from its system, as the interaction

cross-section is primarily dependant on the stellar mass (Fregeau

et al. 2004, 2006; Parker & Reggiani 2013).

For our main collection of simulations, the stars are placed

within a 1 pc region and distributed according to the box-fractal

method. The box-fractal method was introduced by Goodwin &

Whitworth (2004), and is a commonly used method to set up spa-

tial and velocity structure in 𝑁-body simulations (e.g. Goodwin &

Whitworth 2004; Allison et al. 2010; Parker & Quanz 2012; Parker

et al. 2014; Daffern-Powell & Parker 2020).

The spatial substructure is set up as follows:

(i) A cube with sides of length 𝑁div = 2 is defined. It is within

this cube that the star-forming region is generated. The first ‘parent’

particle is placed at the centre of the cube.

MNRAS 000, 1–14 (2021)



Planet theft and capture in star-forming regions 3

(ii) The cube is divided into sub-cubes, each with length 1. So, in

this case, there are 𝑁3
div

= 8 sub-cubes. A ‘child’ particle is placed

at the centre of each sub-cube.

(iii) The probability that a child particle now becomes a parent

itself is 𝑁𝐷−3
div

, where 𝐷 is the fractal dimension. We adopt 𝐷 = 1.6.

(iv) Child particles that do not become parents themselves are

removed as well as all of their previous generations of parent parti-

cles. Children that do become parents have a small amount of noise

added to their distribution to prevent a gridded appearance.

(v) Each new generation of parent particles is treated in the same

way as the initial parent particle, and their sub-cubes are treated as

the initial cube. In this way, each new parents’ sub-cube is divided

into 𝑁3
div

= 8 as the process is repeated until there is a generation

created that has significantly more particles than is needed.

(vi) Any remaining parent particles are removed so that only the

last generation of particles is left.

(vii) The region is pruned so that the particles sit within a spher-

ical boundary, with the chosen diameter of 1 or 5 pc, rather than a

cube.

(viii) If there are more particles than the chosen number of stars,

in this case 𝑁★ = 1000, particles are removed at random until 𝑁★

is reached. Removing stars at random maintains the chosen fractal

dimension as closely as possible.

The mean number of children that become parents is 𝑁𝐷
div

.

This means that, when 𝑁div = 2, fractal dimensions of 𝐷 = 1.6,

2.0, 2.6, and 3.0 correspond to the mean number of new parents

at each stage being close to an integer. This is preferred because

it produces the chosen fractal dimension more accurately. Lower

fractal dimensions lead to fewer children becoming parents, and

therefore more substructure. We adopt a fractal dimension 𝐷 = 1.6

in most of the simulations which corresponds to the maximum

amount of substructure possible. In two simulations, we keep the

stellar density constant, but change the initial degree of substructure

so that 𝐷 = 2.0 (a moderate amount of substructure) or 𝐷 = 3.0 (no

substructure). To ensure the densities are commensurate with the

𝐷 = 1.6 simulations, the radii for the moderately substructured, and

zero substructured simulations are 0.5 pc and 0.25 pc, respectively

(the 𝐷 = 1.6 simulations have radii of 1 pc).

To set up the velocity substructure:

(i) The first parent particle has its velocity drawn from a Gaussian

with mean of zero.

(ii) Every particle after that has the velocity of its parent plus an

additional random velocity component. This additional component

is drawn from the same Gaussian and multiplied by ( 1
𝑁div

)𝑔, where

𝑔 is the number of the generation that the particle was produced in.

This results in the additional components being smaller on average

with each successive generation of particles.

(iii) The velocities are then scaled so that the region has the

required virial ratio.

Setting up the velocity substructure in this way ensures that

stars that are closer together have more similar velocities than those

that are further apart, as is expected from observations, e.g. the

Larson relation (Larson 1981).

Our default fractal dimension of 1.6 corresponds to a high

amount of substructure, and with an initial radius of 1 pc this leads

to an initial median density of order 104 M⊙pc−3. We also run an

additional set of simulations with an initial radius of 5 pc, which

corresponds to an initial median density of order 100 M⊙pc−3.

Our combinations of initial conditions are summarised in Ta-

ble 1, which shows the initial planetary semimajor axes, 𝑎𝑝 , and

Table 1. Summary of the initial conditions. Column 1 indicates whether

the planets are initially bound to a host star or free-floating. Column 2

gives the initial radius of the star-forming region. Column 3 gives the fractal

dimension, 𝐷 of the region. Column 4 gives the median initial stellar density,

𝜌̃, column 5 gives the initial virial ratio, 𝛼, of the star-forming region, and

finally, column 6 gives the semimajor axis, 𝑎𝑝 , of each planetary system.

Planetary Orbit Type 𝑟 𝐷 𝜌̃ 𝛼 𝑎𝑝

Bound 1 pc 1.6 104 M⊙ pc−3 0.3 30 au

0.5 pc 2.0 104 M⊙ pc−3 0.3 30 au

0.25 pc 3.0 104 M⊙ pc−3 0.3 30 au

1 pc 1.6 104M ⊙ pc−3 0.3 50 au

1 pc 1.6 104 M⊙ pc−3 1.5 30 au

1 pc 1.6 104 M⊙ pc−3 1.5 50 au

5 pc 1.6 102 M⊙ pc−3 0.3 30 au

Free-Floating 1 pc 1.6 104 M⊙ pc−3 0.3 -

virial ratio, 𝛼 = 𝑇/|Ω|, where 𝑇 is the total kinetic energy and Ω is

the total potential energy of the region. In this way we investigate the

effects of different global motions of the star-forming region with

the virial ratio, and different planetary orbits with the semimajor

axis.

We use two initial virial ratios of 𝛼 = 0.3 and 𝛼 = 1.5. A

virial ratio of 𝛼 = 0.3 is used to model the subvirial collapse of

a region to form a bound cluster (Parker et al. 2014; Foster et al.

2015). A virial ratio of 𝛼 = 1.5 models the supervirial expansion of

a region – corresponding to a region that either formed unbound, or

has become unbound e.g. by tidal forces or gas expulsion (Tutukov

1978; Goodwin 1997; Baumgardt & Kroupa 2007).

These two virial ratios are combined with three types of initial

planetary orbits: orbiting a star with a semimajor axis of 𝑎𝑝 =

30 AU, orbiting a star with 𝑎𝑝 = 50 AU, or free-floating. In the

context of the Solar System these two semi-major axes correspond

to the semimajor axis of Neptune and the outer edge of the Kuiper

belt. The star-forming regions that contain free-floating planets are

only simulated with a virial ratio of 𝛼 = 0.3 (for simulations with

free-floating planets and supervirial initial conditions see Perets &

Kouwenhoven 2012; Parker et al. 2017).

All planets that are bound to a star initially have zero eccentric-

ity, 𝑒 = 0, and are orientated randomly with respect to the coordinate

system of the simulation i.e. they have random inclinations and ran-

dom argument of latitude.

We do not include stellar evolution or primordial stellar bi-

naries in the simulations. The stellar masses are sampled from a

Maschberger IMF (Maschberger 2013):

𝑚(𝑢) = 𝜇

[

(𝑢 (𝐺 (𝑚𝑢) − 𝐺 (𝑚𝑙)) + 𝐺 (𝑚𝑙))
1

1−𝛽 − 1
]

1
1−𝛼

, (1)

where 𝜇 = 0.2 M⊙ , 𝑢 is a random number between 0 and 1, 𝛽 = 1.4,

and 𝛼 = 2.3. 𝐺 (𝑚𝑢) and 𝐺 (𝑚𝑙) are calculated using Equation 2,

where 𝑚𝑢 and 𝑚𝑙 correspond to the upper and lower stellar mass

limits, respectively:

𝐺 (𝑚) =

[

1 +

(

𝑚

𝜇

)1−𝛼
]1−𝛽

. (2)

Here, we adopt stellar mass limits of 𝑚𝑢 = 50 M⊙ and 𝑚𝑙 = 0.1

M⊙ .

Twenty realisations of each set of simulation were run and

analysed. Each of these simulations are statistically identical, with

the same virial ratio and initial semimajor axis, but with different

MNRAS 000, 1–14 (2021)
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random number seeds used to initialise the positions, velocities, and

masses of the stars.

2.2 Analysis

In each simulation the data is output every 0.01 Myr, which is used

to determine the orbital properties of the planetary systems.

2.2.1 Identification of planetary systems

Planetary systems are found by identifying planets and stars that are

mutual nearest neighbours and have a negative binding energy i.e.

are gravitationally bound.

Triple systems that include a planet are found in a similar way.

In this case, all three bodies must be each other’s first and second

nearest neighbours, the two closest bodies must be gravitationally

bound, and the centre of mass of the two closest bodies must be

bound to the third body. If a planet is found to be in a triple system,

it is logged as such, treated as a binary for the rest of the analysis,

then followed up manually if the system is of particular interest.

Planet-planet binaries are found in the same way as star-planet

binaries, logged, and followed up manually.

2.2.2 Classification of orbital type

In any given snapshot a planet is classified as either preserved,

captured, stolen, or free-floating.

A planet is classified as free-floating if it is not found to be

bound to another star or planet in that snapshot. A planet that is

bound to a star is classified as preserved, captured, or stolen based on

its binary history. A planet is preserved if it is still, and was always,

bound to its original star in every prior snapshot. A planet is captured

if it was free-floating in the previous snapshot, but is now bound to

a star, whether that be its original star or a different one. Finally,

a planet is classified as stolen if it is bound to a star in the current

snapshot, but was bound to a different star in the previous snapshot.

In this way, captured and stolen planets are distinguished based on

whether they have been free-floating for a significant period of time.

Since we use 0.01 Myr snapshot intervals, the maximum amount of

time that one of our stolen planets could have been free-floating is

< 0.01 Myr. We believe that this is a reasonable assumption given

that this is much shorter than the ∼ 0.1 Myr crossing time of our

star-forming regions, and therefore the characteristic timescale over

which stellar interactions tend to occur.

The number of each type of planetary orbit is calculated in

each snapshot.

2.2.3 Orbital parameters

The semimajor axis and eccentricity are calculated as normal for

all planetary systems. The absolute inclination, relative to the co-

ordinate system, is calculated for stolen and captured planets. For

preserved planets, the change from its original inclination is used.

3 RESULTS AND DISCUSSION

We first present results for planets in high density (𝑟 = 1 pc, 104

M⊙pc−3) simulations in Sections 3.1 to 3.4, before discussing plan-

ets in low density (𝑟 = 5 pc, 100 M⊙pc−3) simulations in Section

3.5.

3.1 Number of Stolen and Captured Planets

3.1.1 Over time

Most theft and capture happens at early times, when the region is

most dense and the stars and planets are more likely to experience

encounters.

For most new planetary systems, the planet is stolen or captured

onto an orbit that is either inherently unstable, or is easily destroyed

by subsequent interactions. In particular, the same high densities

that tend to create more stolen and captured systems at early times

also increase the likelihood that they will be destroyed. This leads

to the initial peak, which is visible in the stolen and captured planet

panels of Figure 1, as the the number of stolen and captured planets

increase sharply before decreasing and levelling off at around ≈ 1

Myr. This is the case for every simulation.

After this levelling off at ≈ 1 Myr, an average of ≈ 4% of

planets are either captured or stolen for the remainder of the simu-

lations. This change over time can be seen in the first four columns

of Figure 1.

3.1.2 Effect of initial conditions

The average number of stolen and captured planets at 10 Myr, for

simulations where the planets are initially bound, is shown in the

boxplots of Figure 2. As might be expected, there are on average

more captured planets at 10 Myr when the planets are initially placed

on the wider 50 au orbits, as shown in Figure 2. This is regardless

of the initial virial ratio, and is because planets that are initially

on wider orbits have a lower binding energy and are more easily

ejected from their system during encounters, therefore increasing

the number of free-floating planets that are available to be captured.

Figure 2 also compares the final numbers of stolen planets

across the four sets of bound-planet initial conditions. Unlike with

captured planets, the average number of stolen planets is higher

when they are initially placed at 30 au, rather than 50 au, for a given

initial virial ratio. In fact, for the 30 au initial conditions there are

also on average more stolen planets than captured ones.

The notches on each box plot in Figure 2, which are the sloped

outer edges that angle outwards from each median line, represent the

95% confidence limits of their corresponding median value. It can

be seen from the second panel of Figure 2 that the 95% confidence

limits for the median number of stolen planets fully overlaps for

the 30 AU and 50 AU initial semimajor axes. It should therefore

not be concluded that a change in initial semimajor axis affects the

final number of stolen planets for the supervirial 𝛼 = 1.5 initial

conditions. However, it can be concluded that, for the subvirial

𝛼 = 0.3 initial conditions, increasing the initial semimajor axis to

50 AU decreases the final number of stolen planets. This is the

opposite trend than is seen for captured planets, of which there is a

higher number for larger initial semimajor axes.

This difference in the final number of stolen planets for the

subvirial (𝛼 = 0.3) initial conditions is likely caused by the increased

number of free-floating planets for the 50 AU initial conditions.

Although the number of stolen planets is consistent at early times

for both the 𝑎𝑝 = 50 au and 𝑎𝑝 = 30 au initial conditions, the

medians begin to differ with 95% confidence after 0.12 Myr - the

same time at which the number of stolen planets begins to decrease

in all simulations. It is at this time that the higher number of free-

floating planets mean that there are fewer bound planets available

to be stolen, and also more free-floating planets which are capable

of disrupting a stolen planet’s orbit.

This is a clear example of captured and stolen planets being

MNRAS 000, 1–14 (2021)



Planet theft and capture in star-forming regions 5

Figure 1. The number of each type of planetary orbit, plotted from the first snapshot at 0.01 Myr to 10 Myr for the higher initial density, 𝑟 = 1 pc simulations.

Each of the first four columns shows results for one of the four bound-planet initial conditions, with lines plotted separately in different shades of the same

colour for each of the 20 realisations. The final column shows the same for initial conditions where all planets are free-floating with 𝛼 = 0.3. The number of

free-floating, preserved, stolen, and captured planets are shown in shades of red, grey, blue, and yellow, respectively.

affected in not only different, but in this case opposite ways, by

certain initial conditions - underscoring that captured and stolen

planets are distinct phenomena that are formed through independent

mechanisms.

These results also highlight the significant effect that a planet’s

initial semimajor axis can have on its fate, in agreement with pre-

vious studies (Parker & Quanz 2012; Hao et al. 2013; Zheng et al.

2015; Cai et al. 2019).

3.1.3 Free-floating initial conditions

The initial peak in the number of captured planets is larger for the

initial conditions where the planets are initially free-floating, rather

than bound to a star, as shown in the bottom right panel of Figure 1.

This is simply because there are more free-floating planets available

to be captured at early times with these initial conditions.

Conversely, however, there are significantly fewer stolen plan-

ets in these simulations. The highest number of stolen planets for

the free-floating, 𝛼 = 0.3 initial conditions is 2. Several of the 20

simulations reach 2 stolen planets within the first several snapshots,

but then subsequently drop to 1 or 0. This is because, in order to

be stolen, the planet must first be captured onto an orbit. In this

way, the earliest time at which a planet can be stolen is later for

simulations with free-floating initial conditions, thereby reducing

the initial peak to only < 2 stars. This is an effect that the number

of stolen planets does not recover from, as it is at these earlier times

when planetary interactions, including theft, are more likely.

This has implications for studies that use free-floating ini-

tial conditions to investigate planet capture and theft. For example,

Parker et al. (2017) used 𝑁-body simulations with free-floating ini-

tial conditions to investigate the origin of Planet 9 in the context

of it having formed around a star other than the Sun. The choice

of free-floating initial conditions will have reduced the frequency

of planet theft, thereby also reducing the total number of planets

which are orbiting a new star at the end of the simulations. It may

therefore have affected how their conclusion, that the likelihood of

Planet 9 having originated from another planetary system is almost

zero, compares to that of other similar similar studies such as Mustill

et al. (2016) and Li & Adams (2016), who find the chance of Planet

9 having formed via theft to be non-zero. Although, as discussed

in §3.2 and shown in Figures 3 and 4, we find that planets with

semimajor axes in Planet 9’s predicted orbital range are most likely

to have been captured.

Nevertheless, it is important to be aware that free-floating ini-

tial conditions suppress the formation of stolen planetary systems,

compared to corresponding simulations in which the planets are

initially bound.

We do not discuss free-floating initial conditions further, due

to the low number of stolen planets. All further discussion relates

to the sets of simulations where the planets are initially bound to

host stars.
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Figure 2. The number of stolen and captured planets at 10 Myr, for each

of the 4 initial conditions where the planets are initially bound to stars

in 𝑟 = 1 pc star-forming regions. These results are shown as a separate

notched boxplot for each of the initial conditions. Each median value is

shown as a thick black horizontal line, and the notches are the sloped outer

edges which angle outwards from each median line. These notches show

the 95% confidence limits for their corresponding median, where any part

of the box plot that does not have a sloped outer edge is not within the 95%

confidence interval. The second rightmost captured planet box plot has a

95% confidence limit that is lower than the lower interquartile range. This

means that the lower notches on this boxplot extend further than the box

itself, thereby producing the inverted shape. The whiskers show the full

range of values. There is no upper whisker for the rightmost stolen planet

boxplot because the highest value is equal to the upper quartile. This is

possible for sets of discrete data, and happens here because several of the

simulations finish with 13 stolen planets, which is the highest value in that

dataset.

3.1.4 A note on planet-planet systems

We identify 5 planet-planet systems across all of our simulations.

These planets tend to have very rich dynamical histories. For exam-

ple, one planet in the 𝛼 = 0.3, 𝑎𝑝 = 30 au simulations has repeated

interactions with another star and planet. This leads to it being in a

temporary planet-planet system. It is removed and then recaptured

by its original star throughout the simulation, and ends the 10 Myr

as free-floating, after becoming unbound from its original star a

final time.

All of these planet-planet systems are short-lived, and are each

only identified in one 0.01 Myr snapshot. Such systems would there-

Figure 3. Semimajor axis distribution for planets that are bound to a star after

10 Myr, categorised according to the three types of planetary orbit: preserved

(grey), captured (yellow), and stolen (blue). We also show the distributions

for preserved planets with altered orbits (the black lines), defined as a change

in eccentricity of more than Δ𝑒 = 0.1 and/or a change in semimajor axis of

±10 per cent. Results are summed and shown for all 20 realisations of all 4

sets of bound-planet, 𝑟 = 1 pc initial conditions, which are shown in separate

panels. The semimajor axis distribution for directly detected exoplanets is

also shown for comparison as a dotted green line in each panel. For the

observed exoplanets, the semimajor axis is used where the data is available,

otherwise the projected separation is plotted.

fore be very unlikely to be observed, and we do not include them in

any formal analysis.

3.2 Semimajor Axis

The semimajor axis distributions for preserved, captured, and stolen

planets differ significantly, as shown in Figures 3 and 4. Of the

planetary systems that are bound at 10 Myr, Figure 3 shows that

∼ 20% of preserved planets have their semimajor axes disrupted

such that it is greater than the initial 30-50 au value. In contrast,

between between ∼ 60 − 80% of captured and stolen planets have

semimajor axes greater than this.

One of the most noticeable trends in Figures 3 and 4 is that

captured planets tend to be on wider orbits than stolen and pre-

served planets. This is the case for all initial conditions and for both
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Figure 4. Characteristic ‘firework’ plots of the semimajor axis vs eccentricity distribution. Results are shown for planets that are bound to a star after 10 Myr,

divided into the three types of planetary orbit: preserved (grey), captured (yellow), and stolen (blue). Each planet is shown as a semi-transparent point. Results

are summed and shown for all 20 realisations of all 4 sets of bound-planet, 𝑟 = 1 pc initial conditions, which are shown in separate panels.

the average and upper limit values of 𝑎. This is a difference that

could be seen observationally and used to distinguish a population

of captured planets, as these results suggest that an exoplanet with

an observed semimajor axis of & 500 AU has been captured. Com-

paring this to Planets 9’s predicted orbital range of 𝑎 ∼ 400 − 800

AU), eccentricity (𝑒 ∼ 0.2 − 0.5), and inclination (𝑖 ∼ 15 − 25◦)

(Batygin et al. 2019; Fienga et al. 2020), these results suggest that,

should Planet 9 exist, it is most likely to have been captured.

Captured planets can have these wider orbits because capture

tends to happen when the planet and star exit the cluster at the same

time and in the same direction (Perets & Kouwenhoven 2012; Parker

& Meyer 2014). In these cases, the star and planet will tend to be

relatively isolated, without other gravitational interactions that may

interfere with the new orbit. This means that a more loosely bound

orbit will tend to remain bound for longer.

The semimajor axis distribution of stolen planets is similar to

the semimajor axis distribution of preserved planets. It is possi-

ble that using a realistic range of initial semimajor axes would add

spread to the distributions, thereby causing them to be more sim-

ilar, and harder to separate. However, comparing previous studies

shows that results are consistent between simulations that use single

semimajor axis values, and those that either select the semimajor

axes from a distribution or use a wide range. For example, results

are consistent when a single semimajor axis of 30 AU is used, and

when a range of semimajor axes that have been sampled from a

distribution that has a median of 30 AU (e.g. Parker & Quanz 2012;

Forgan et al. 2015; Zheng et al. 2015).

Many of the preserved planets have relatively unaltered orbital

properties, and as we used a delta function as our initial semimajor

axis (all have 𝑎 = 30 au or 𝑎 = 50 𝑎𝑢, and 𝑒 = 0), the cumulative

distribution of the preserved planets (shown in grey) may be dom-

inated by planets that have not experienced an interaction with a

passing star(s).

To check this, we plot a second (black) line for preserved

planets, but limit this to systems whose orbits are altered (defined

as the semimajor axis changing by ±10%, and/or the eccentricity

changing by Δ𝑒 ≥ 0.1, following Parker & Quanz (2012))3. Whilst

the altered preserved planets (the black line) display a distribution

3 In Appendix A we show the results when assuming more drastic properties
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that is closer to the stolen planets (the blue line), it is still much

closer to the distribution for all preserved systems (the grey line),

suggesting that the distributions of preserved and stolen planets are

indeed distinct and different.

Figure 3 also shows the semimajor axis distribution for directly

imaged exoplanets4 (in most cases the projected separation data is

used in place of the semimajor axis). We emphasise that the sample

of directly imaged exoplanets is likely to be incomplete and affected

by statistical biases, and we have no information on whether each

planet in the sample formed at its observed separation, or whether

some process(es) moved the planets.

Despite these caveats we note that there is general agreement

between our captured planet semimajor axis distribution and that

of directly imaged exoplanets. This is the case for all of the high

density initial conditions shown in Figure 3 suggesting that, if

directly imaged planets on wide orbits are a result of dynamics,

they are likely to be captured rather than stolen or preserved. If this

is the case, then we might expect to discover more such planets

on extremely wide (>1000 au) orbits, which are present in our

simulation data but not yet in the observational data (though see

Durkan et al. 2016, for efforts towards this parameter space).

3.3 Eccentricity

Figure 5 shows that the eccentricity distribution for captured and

stolen planets is thermal. This is expected for captured planets as

a thermal distribution is seen for binary systems that have formed

dynamically (Heggie 1975).

The eccentricity distribution for the preserved planets (the grey

line) is very different to those for the captured and stolen planets

(the yellow and blue lines, respectively). The distribution of eccen-

tricities for the preserved planets could be dominated by the systems

that have not experienced an encounter, which still have eccentricity

values around zero. However, if we again use the definition from

Parker & Quanz (2012), that a planet is disrupted if its semimajor

axis is changed by 10% or its eccentricity is increased above 0.1,

we find that where ∼ 20% of preserved planets have their orbits

disrupted in terms of semimajor axis, ∼ 40 − 50% are disrupted in

terms of eccentricity.

If we plot the eccentricity distributions of preserved planets

with altered orbits (the black line in Fig. 5), we can see that they

straddle the parameter space between the entire preserved planet

population, and the captured and stolen planets. However, this is

mainly due to our definition for when an orbit is altered, i.e. 𝑒 > 0.1.

The shape of the distribution is still markedly different to the dis-

tributions of the captured and stolen planets. (Inspection of Figure

4 shows that it is also possible for some stolen and captured planets

to have semimajor axes that are indistinguishable from preserved

planets that have not had their orbit disrupted.)

The results of K-S tests confirm that the eccentricity distri-

butions for captured and stolen planets are all very similar (K-S

statistics < 0.1), to a relatively high confidence (p-values ranging

from 0.33 to 0.80). This is the case for all sets of bound-planet,

𝑟 = 1 pc initial conditions. The null hypothesis, that the eccentricity

distributions for captured and stolen planets are sampled from the

for the altered orbits, i.e. the semimajor axis changing by ±50%, and/or the

eccentricity changing by Δ𝑒 ≥ 0.5.
4 This data was taken from the NASA Exoplanet Archive on 18/02/2021.

Figure 5. Eccentricity distribution for planets that are bound to a star after 10

Myr, categorised according to the three types of planetary orbit: preserved

(grey), captured (yellow), and stolen (blue). We also show the distributions

for preserved planets with altered orbits (the black lines), defined as a change

in eccentricity of more than Δ𝑒 = 0.1 and/or a change in semimajor axis of

±10 per cent. The results are summed and shown for all 20 realisations of

all 4 sets of bound-planet, 𝑟 = 1 pc initial conditions, which are shown in

separate panels.

same underlying distribution, therefore cannot be rejected for these

simulations. Eccentricity can therefore not be used to distinguish

captured from stolen planets in observations of exoplanets that have

likely formed in dense regions.

The eccentricity distribution could, however, be useful for dis-

tinguishing the planets in a population that are preserved from those

that are new systems, which have formed dynamically through either

capture or theft.

3.4 Inclination

In Fig. 6 we plot the distribution of planets’ inclinations for pre-

served (grey lines), captured (yellow lines) and stolen (blue lines)

planets. We also plot the preserved planets whose orbits have been

significantly altered (defined as a change in eccentricity of more

than Δ𝑒 = 0.1 and/or a change in semimajor axis of ±10 per cent,

the grey lines). For the captured and stolen planets, we assume the

inclination with respect to the plane, and for the preserved planets

we plot the relative change in inclination (as the initial inclination
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Figure 6. Inclination distribution for planets that are bound to a star after 10

Myr, categorised according to the three types of planetary orbit: preserved

(grey), captured (yellow), and stolen (blue). We also show the distributions

for preserved planets with altered orbits (the black lines), defined as a change

in eccentricity of more than Δ𝑒 = 0.1 and/or a change in semimajor axis of

±10 per cent. The results are summed and shown for all 20 realisations of

all 4 sets of bound-planet, 𝑟 = 1 pc initial conditions, which are shown in

separate panels.

angles were randomly chosen). Figure 6 shows that, as expected,

planets are stolen and captured onto orbits with random inclina-

tions.

In our simulations, we find ∼ 20 % of preserved planets have

their inclinations disrupted by more than 10%. This is comparable

to the percentage that are disrupted in terms of their semimajor axis.

As would be expected, this shows that, should a planet be observed

in a system with a disk or other planets, the relative inclination could

be used to determine whether the exoplanet has likely been captured

or stolen from another star (as an interaction that would disrupt one

planet would likely induce instabilities in the orbits of the other

planets, e.g. Malmberg et al. 2007) – a small relative inclination

might imply the planets had formed in the same system.

3.5 Effects of Lower Density

For comparison, we have also run a set of simulations using lower

density (100 M⊙pc−3) initial conditions, with an initial radius of 5

Figure 7. The number of each type of planetary orbit over 10 Myr, plotted

from the first snapshot at 0.01 Myr to 10 Myr. The first column shows this

for the lower density, 𝑟 = 5 pc, 𝛼 = 0.3, 𝑎𝑝 = 30 au initial conditions.

The second columns shows this for the higher density 𝑟 = 1 pc, 𝛼 = 0.3,

𝑎𝑝 = 30 au initial conditions. The number of free-floating, preserved, stolen,

and captured planets are shown in shades of red, grey, blue, and yellow,

respectively. Each individual simulation is shown in a different hue of the

same colour.

pc. We compare these lower density 𝛼 = 0.3, 30 au simulations to

the higher density 𝛼 = 0.3, 30 au simulations in Figures 7 and 8.

Figure 7 compares the number of each type of planetary orbit

over time, in the same way as Figure 1. The first difference that

can be seen is that the low density initial conditions produce fewer

free-floating planets than preserved planets after 10 Myr. This is in

contrast to the high density initial conditions which produce more

free-floating planets than preserved planets, as more are ejected

from their birth system.

It can be seen from the bottom panels of Figure 7 that the lower

density initial conditions lead to more captured planets after 10 Myr.

This is because, in this less extreme environment, although there

are fewer free-floating planets available to be captured, captured

systems that do form are more likely to survive. There no significant

change to the average number of stolen planets when the density is

lowered. However, there is a smaller spread in the number of stolen

planets for the low density initial conditions.

Both the semimajor axis and eccentricity distributions are af-

fected by the initial density being lowered. This is shown in Figure 8,

where the higher density results are shown as slightly faded dashed

lines, and the low density results are shown as solid lines. More

stolen planets are able to stay stable on wider orbits for the lower

density initial conditions, therefore broadening the stolen planet

semimajor axis distribution. For captured planets, the top ∼ 5%
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Figure 8. Semimajor axis and eccentricity distribution for planets that are bound to a star after 10 Myr, categorised according to the three types of planetary

orbit: preserved (grey), captured (yellow), and stolen (blue). Results are summed and shown for all of the lower density 𝑟 = 5 pc, 𝛼 = 0.3, 𝑎𝑝 = 30 au initial

conditions and the higher density 𝑟 = 1 pc, 𝛼 = 0.3, 𝑎𝑝 = 30 au initial conditions. The lower density results are shown as solid lines, and the higher density

results are shown as slightly transparent dashed lines. The semimajor axis distribution for directly detected exoplanets is also shown for comparison as a dotted

green line in the lefthand panel.

of the semimajor axis distribution is similar, regardless of density.

However, the additional numbers of planets that are captured in the

lower density simulations tend to preferentially fill the center of

the distribution. This has the effect of making the captured planet

semimajor axis distribution more similar to that of the stolen and

preserved planets. Nevertheless it is still the case that a planet on an

orbit wider than ∼ 500 au is most likely to be captured, regardless

of the initial density of the star-forming region.

The eccentricity distribution of the stolen planets remains ther-

mal, as shown in the right panel of Figure 8. However, the eccentric-

ity distribution of the captured planets flattens for the low density

simulations. This means that, at these low densities, the eccentricity

distribution of the stolen, captured, and preserved planets are all

distinct from each other. Eccentricity data could therefore be used

to separate populations of stolen, captured, and preserved planets

from each other in the exoplanet data, should an estimate of their

formation density be available (see Winter et al. 2020; Adibekyan

et al. 2021).

3.6 Effects of Substructure

We now examine the effects of the initial degree of substructure

in the simulations. We do this by keeping the initial stellar density

constant, and then compare the frequencies of different types of

planetary systems with differing amounts of substructure.

In Fig. 9 we show the numbers of preserved, stolen and captured

planets, as well as the numbers of free-floating planets. Changing

the fractal dimension has a significant effect of the results. The main

result is that the number of stolen and captured planets is higher in

the more substructured simulations, and the number of free-floating

planets is also much higher (conversely, in the more substructured

simulations, the number of preserved planets is lower).

All this is despite the stellar densities in these simulations being

identical (𝜌̃ = 104 M⊙ pc−3). In the non-substructured simulations

𝐷 = 3.0), the stellar density actually remains higher throughout the

duration of the simulation, so the differences must be due to the

evolution of the clumps of substructure.

The more substructured simulations have more velocity corre-

lation in the clumps of substructure (Goodwin & Whitworth 2004;

Daffern-Powell & Parker 2020), which facilitates a higher degree

of violent relaxation (Lynden-Bell 1967), leading to the collapse of

the clumps of substructure. This process enhances the number of

exchange interactions, as well as increasing the number of systems

that break apart. The more correlated velocities in the substructured

simulations also facilitate a higher rate of capture (Kouwenhoven

et al. 2010; Perets & Kouwenhoven 2012).

Despite the significant differences in the numbers of preserved,

free-floating, captured and stolen planets as a function of the amount

of substructure, the distributions of the orbital parameters (semima-

jor axis, eccentricity and inclination) are relatively constant for the

different substructure regimes, as shown in Fig. 10.

3.7 Comparison to Previous Work

As has already been highlighted by other studies (e.g. that of Craig

& Krumholz 2013, when comparing their results to Parker & Quanz

2012), differences in the initial conditions and method of simulation

can result in large differences in the number of free-floating planets,

as well as the numbers of stolen, captured, and preserved planets.

In terms of the number of free-floating planets, we find that

&50% of planets are free-floating at the end of these simulations,

depending on the initial conditions. This means that they are of

order 10 times more common than stolen and captured planets, and

∼ 1.5 − 2 times more common than planets that remain bound to

their original star. This is higher than the 10% obtained by Parker

& Quanz (2012) for simulations where planets are placed at 30 au,

and is likely caused by our use of a fractal dimension of 1.6, rather

than 2. This leads to initial densities that are ∼ 10 times higher

in our high density, 𝑟 = 1 pc simulations (of order 104 M⊙ pc−3,

compared to 103 M⊙ pc−3, in Parker & Quanz 2012). Although it is

unclear whether many star-forming regions have initial densities of
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Figure 9. The effect of varying the initial degree of substructure on the number of each type of planetary orbit over 10 Myr, plotted from the first snapshot

at 0.01 Myr to 10 Myr. The first column shows this for simulations with a high amount of initial substructure, 𝐷 = 1.6, with 𝛼 = 0.3, 𝑎𝑝 = 30 au as the

initial conditions (our ‘default’ simulations). The second column shows this for the simulations that have a moderate degree of substructure (𝐷 = 2.0), with

𝑟 = 0.5 pc, 𝛼 = 0.3, 𝑎𝑝 = 30 au as the initial conditions. The third column shows the results for simulations where their is no initial substructure (𝐷 = 3.0),

with with 𝑟 = 0.25 pc, 𝛼 = 0.3, 𝑎𝑝 = 30 au as the initial conditions. The radii are set such that the initial stellar densities are all 104 M⊙ pc−3 in the three

sets of simulations. The number of free-floating, preserved, stolen, and captured planets are shown in shades of red, grey, blue, and yellow, respectively. Each

individual simulation is shown in a different hue of the same colour.

this magnitude (Parker 2014), the purpose of this paper is primarily

to investigate the orbital properties of stolen and captured planets

in the most extreme star-forming environments.

In terms of the frequencies of stolen and captured planets, our

≈ 4% is an order of magnitude higher than the 0.4% obtained by

Parker & Quanz (2012), due to their 𝑁-body simulations having

initial densities that are an order of magnitude lower than those

used in this paper.

Although the frequencies of each type of planet can vary sig-

nificantly in this way, the orbital ranges and distributions in 𝑎 − 𝑒

space are broadly consistent with previous studies.

As noted in Section 1, the alternative approach in which plan-

etary simulations are evolved separately but within global simu-

lations of star-forming regions is limited by the fact that planets

cannot be come free-floating in the star-forming region (and pos-

sibly then (re)captured), nor can these simulations model exchange

interactions where planets can be stolen from other stars. As such,

a detailed comparison with these studies is not possible, and would

also be hamstrung by the lack of long-term evolution of the planets

in our simulations. This is a major shortcoming of our approach of

modelling the planets within the star-forming regions via a ‘brute

force’ method.

4 CONCLUSIONS

We use 𝑁-body simulations of planets in star-forming regions to

investigate the dynamical evolution of the planets within them.

Our star-forming regions are highly substructured initially, with

a fractal dimension of 𝐷 = 1.6, and we model star-forming regions

with both sub and supervirial initial conditions (virial ratios of 0.3

and 1.5 respectively). There are 1000 stars in each star-forming

region, half of which have planets initially placed at either 30 AU

or 50 AU.

The dynamical evolution of the star-forming regions is fol-

lowed for 10 Myr, and we focus on the orbital properties of stolen

planets (that have been directly exchanged between stars during an

encounter), and how these compare to that of captured free-floating

planets and planets that remain bound to their original star.

Our main results are summarised as follows:
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Figure 10. Semimajor axis, eccentricity and inclination distributions for planets that are bound to a star after 10 Myr, categorised according to the three

types of planetary orbit: preserved (grey), captured (yellow), and stolen (blue). Results are summed and shown for all simulations with differing amounts of

substructure; those with a high degree of spatial and kinematic structure (𝐷 = 1.6) are shown by the dashed lines, those with a moderate degree of substructure

(𝐷 = 2.0) are shown by the solid lines, and those with no substructure (𝐷 = 3.0) are shown by the dotted lines. The semimajor axis distribution for directly

detected exoplanets is also shown for comparison as a dot-dashed green line in the lefthand panel.

(i) We find that planet theft and capture should be seen as two

distinct mechanisms, and should therefore be treated and analysed

as such wherever feasible. Our evidence for this is twofold. First,

we find that the number of stolen and captured planets is a strong

function of the initial conditions. Second, we find that the orbital

distributions of stolen and captured planets are distinct. The evi-

dence of these differences is lost when stolen planets are categorised

together with captured ones.

(ii) The orbital properties of stolen, captured, and preserved plan-

ets are distinct enough that these characteristics could be used to

distinguish their formation channel if an estimate of the initial con-

ditions of their star-forming region are known. Although there is

overlap between orbital property distributions, combining semima-

jor axis and eccentricity data could observationally distinguish pop-

ulations of stolen, captured, and preserved planets that were born in

high density star-forming regions. For planets that have formed in

such regions, the semimajor axis distribution can separate captured

planets from those that are stolen and preserved, and eccentricity

can then separate stolen planets from those that are preserved. If

available, inclination data would also be useful in distinguishing

planets that have been captured or stolen from another system. This

analysis could be performed on populations of planets as a whole

to estimate the frequency of each type of planet, or on individual

systems to estimate the probability that a planet is stolen, captured,

or has remained orbiting in its original system.

(iii) Regardless of the initial conditions, we find that a planet with

a semimajor axis of & 500 au is mostly likely a captured planet. And

comparing our orbital property results to Planet 9’s predicted orbital

range of 𝑎 ∼ 400 − 800 AU and 𝑒 ∼ 0.2 − 0.5 suggests that, should

it exist, Planet 9 is most likely to have been captured, rather than

stolen.

(iv) The semimajor axis distribution of our captured planets is

in some instances similar to the semimajor axis distribution of exo-

planets found by direct imaging (although these data are likely to be

biased and incomplete). There is debate about the formation mech-

anism of exoplanets, especially those on wide orbits, and our results

suggest that they may be captured, formerly free-floating planets,

as has been suggested by previous studies (Perets & Kouwenhoven

2012).

(v) We find that theft and capture are relatively common, with ∼

2% of planets being in stolen systems, and∼ 2% in captured systems

at 10 Myr. The likelihood of planet theft and capture should therefore

not be seen as negligible, especially for star-forming regions which

may have had relatively dense initial conditions, as simulated here.

(vi) Smaller (30 au) initial semimajor axes lead to more stolen

planets than captured ones after 10 Myr, whilst larger (50 au) initial

semimajor axes lead to more captured planets than stolen ones. This

suggests that the outcome of dynamical interactions has a strong

dependance on the planet’s semimajor axis.

(vii) In simulations where all of the planets are initially free-

floating, rather than bound to a star, the incidence of planet theft

is negligible. This can give the false impression that planet theft is

very rare, and negligible compared to capture, when this is not the

case in simulations where the planets are all initially bound to stars.

(viii) The initial degree of spatial and kinematic substructure in a

star-forming region is as important as the stellar density parameter in

determining how many, and the extent to which, planetary systems

are disrupted. Lower densities result in fewer free-floating planets,

and fewer stolen planets, but increase the likelihood of planetary

capture. Simulations with more substructure lead to more stolen

planets, more captured planets, and more free-floating planets (fewer

preserved planets), even when the stellar densities are identical. This

is caused by the violent relaxation within the clumps of substructure.

Varying other parameters, such as the initial virial ratio, have much

more modest effects.

In general, comparing our results to that of other papers illus-

trates the significant effects that initial conditions can have on young
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planetary systems. These interactions can be not only destructive,

but also lead to the creation of new and unique planetary systems.
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APPENDIX A: PRESERVED PLANETS WITH ALTERED

ORBITS

In our analysis we have differentiated between all planets that are

still orbiting their parent star (‘preserved’) and planets orbiting their

parent stars whose orbits have been significantly altered. In the

main part of the paper, we deem a planet’s orbit to be altered if the

eccentricity changes by more than 0.1, and/or the semimajor axis

changes by ±10 per cent.

In this Appendix, we repeat Figures 3, 5 and 6 but instead plot

the preserved planets if their orbits have been altered by Δ𝑒 ≥ 0.5

and/or the semimajor axis changes by more than 50 percent.

In Fig. A1 the preserved planets with altered orbits (black

lines) have a semimajor axis distribution which is much closer to

the distribution for the stolen planets (the blue lines) than to the

distributions of all preserved planets (the black lines). However,

both the stolen and preserved planets can still be distinguished from

the captured planets (yellow lines).

The new constraint that a disrupted planet must have Δ𝑒 > 0.5

means that the cumulative distribution of preserved planets with

altered orbits is much closer to the eccentricity distributions of the

captured and stolen planets (compare the black lines with the blue

and yellow lines in Fig. A2). However, this is somewhat artifical as

the captured and stolen planets can have much lower eccentricities

than those in the preserved and disrupted distribution.

The (relative) inclination distributions for all of the the

preserved planets, and the preserved disrupted planets are most

similar, and still easily distinguishable from the inclination

distributions of the captured and stolen planets (see Fig. A3).

In summary, the choice of threshold for whether a preserved

planet’s orbit is disrupted has some bearing on the comparison

between preserved planets and captured/stolen planets, although

the main results are still discernable.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A1. Semimajor axis distributions for planets bound to a star after

10 Myr, categorised according to the three types of planetary orbit: preserved

(grey), captured (yellow), and stolen (blue). We also show the distributions

for preserved planets with altered orbits (black), where the orbit is classed as

altered if the change in eccentricity is more than Δ𝑒 = 0.5 and/or the change

in semimajor axis is ±50 per cent. Results are summed and shown for all 20

realisations of all 4 sets of bound-planet, 𝑟 = 1 pc initial conditions, which

are shown in separate panels. The semimajor axis distribution for directly

detected exoplanets is also shown for comparison as a dotted green line in

each panel.
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Figure A2. Eccentricity distributions for planets bound to a star after 10 Myr,

categorised according to the three types of planetary orbit: preserved (grey),

captured (yellow), and stolen (blue). We also show the distributions for

preserved planets with altered orbits (black), where the orbit is classed as

altered if the change in eccentricity is more than Δ𝑒 = 0.5 and/or the change

in semimajor axis is ±50 per cent. Results are summed and shown for all 20

realisations of all 4 sets of bound-planet, 𝑟 = 1 pc initial conditions, which

are shown in separate panels.

Figure A3. Inclination distributions for planets bound to a star after 10 Myr,

categorised according to the three types of planetary orbit: preserved (grey),

captured (yellow), and stolen (blue). We also show the distributions for

preserved planets with altered orbits (black), where the orbit is classed as

altered if the change in eccentricity is more than Δ𝑒 = 0.5 and/or the change

in semimajor axis is ±50 per cent. Results are summed and shown for all 20

realisations of all 4 sets of bound-planet, 𝑟 = 1 pc initial conditions, which

are shown in separate panels.
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