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A B S T R A C T 

The multidimensional phase space density (both position and velocity) of star-forming regions may encode information on the 

initial conditions of star and planet formation. Recently, a new metric based on the Mahalanobis distance has been used to 

show that hot Jupiters are more likely to be found around exoplanet host stars in high six-dimensional phase space density, 

suggesting a more dynamic formation environment for these planets. Ho we ver, later work sho wed that this initial result may be 

due to a bias in the age of hot Jupiters and the kinematics of their host stars. We test the ability of the Mahalanobis distance 

and density to differentiate more generally between star-forming regions with different morphologies by applying it to static 

regions that are either substructured or smooth and centrally concentrated. We find that the Mahalanobis distance is unable to 

distinguish between different morphologies, and that the initial conditions of the N -body simulations cannot be constrained using 

only the Mahalanobis distance or density. Furthermore, we find that the more dimensions in the phase space, the less ef fecti ve 

the Mahalanobis density is at distinguishing between different initial conditions. We show that a combination of the mean 

three-dimensional ( x , y , z ) Mahalanobis density and the Q -parameter for a region can constrain its initial virial state. Ho we ver, 

this is due to the discriminatory power of the Q -parameter and not from an y e xtra information imprinted in the Mahalanobis 

density. We therefore recommend continued use of multiple diagnostics for determining the initial conditions of star-forming 

regions, rather than relying on a single multidimensional metric. 

Key words: galaxies: star formation – methods: statistical – methods: numerical. 

1  I N T RO D U C T I O N  

Star formation is observed to take place along filaments within giant 

molecular clouds (GMCs) (Palmeirim et al. 2013 ; Schisano et al. 

2014 ; Andr ́e 2017 ). The initial formation and distribution of these 

filaments is likely due to supersonic turbulence within GMCs (Larson 

1981 ). It is along these filaments that cores can form, with further 

fragmentation of these cores leading to stars forming in groups 

containing tens to thousands of members (Lada & Lada 2003 ; Bastian 

et al. 2009 ). 

One of the foundational questions of star formation is whether 

star formation is a universal process or not. Are the initial condi- 

tions of star-forming regions dependent on the environment, where 

differences in the stellar density, initial mass function (IMF), and 

stellar multiplicity are due to the initial conditions of the star-forming 

region? Or does star formation happen in a similar way everywhere, 

and any differences we observe in these regions are stochastic in 

nature? 

There are two main proposed modes of star formation, monolithic 

and hierarchical. In monolithic formation modes, the gas is already 

contained within the final volume of the region before stars begin 

to form, whereas in hierarchical formation the gas extends beyond 

the final volume of the region (Longmore et al. 2014 ; Williams et al. 

2022 ). In the hierarchical mode, stars are forming while at the same 

time the gas is collapsing. 

⋆ E-mail: gablaylock-squibbs1@sheffield.ac.uk 

† Royal Society Dorothy Hodgkin Fellow. 

The kinds of star-forming regions these modes produce are of 

interest not only in the context of star formation but also in the way 

in which the final star-forming regions that form may influence the 

architecture of the planetary systems that are produced within them 

(Adams 2010 ; Parker 2020 ). 

Star formation is a rapid process, occurring within a few crossing 

times (Elmegreen 2000 ), which is often less than 1 Myr. During this 

process, stars are forming and moving (Alcock & Parker 2019 ), 

further muddying the formation picture. And while observations 

of the earliest stages have improved greatly with e.g. ALMA, 

observations of star-forming regions are often at older ages, where 

significant dynamical evolution may have taken place (Klessen & 

Kroupa 2001 ; Allison et al. 2010 ; Parker et al. 2014 ; Schoettler et al. 

2019 ; Daf fern-Po well & Parker 2020 ). Dynamical evolution alters 

the spatial and kinematic distributions of young stars, erasing the 

signature of the initial conditions, but can be used as a proxy for 

age and used to converge on a likely set of initial conditions for a 

given star-forming region (Parker et al. 2014 ). To enable comparisons 

of observations and simulations, we need to be able to quantify 

parameters of the star formation regions, such as the degree of 

substructure and mass se gre gation (Cartwright & Whitworth 2004 ; 

Allison et al. 2009 ; S ́anchez & Alfaro 2009 ; Gouliermis, Hony & 

Klessen 2014 ; Kuhn et al. 2014 ; Alfaro & Gonz ́alez 2016 ; Gonz ́alez 

& Alf aro 2017 ; Jaff a, Whitw orth & Lomax 2017 ; Joncour et al. 2018 ; 

Buckner et al. 2019 ; Arnold, Wright & Parker 2022 ). 

Early methods such as the autocorrelation function and two-point 

correlation function compared the number of excess star pairings to a 

random distribution of stars as a function of scale (Gomez et al. 1993 ; 

Larson 1995 ). These methods were used e xtensiv ely to determine 

© 2022 The Author(s) 
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the degree of substructure, with early work suggesting that breaks in 

the two-point correlation function corresponded to the Jeans length 

(Simon 1997 ) (though see Bate, Clarke & McCaughrean 1998 ) and 

the size of the widest stellar binaries in the regions in question (Kraus 

& Hillenbrand 2008 ; Joncour, Duch ̂ ene & Moraux 2017 ). 

Subsequent work made e xtensiv e use of minimum spanning trees 

(MSTs) to quantify structures in star-forming regions. Cartwright 

& Whitworth ( 2004 ) introduced the Q -parameter to quantify spatial 

substructure, and Allison et al. ( 2009 ) introduced the � MSR method 

to quantify mass se gre gation. 

Parker et al. ( 2014 ) showed that the initial conditions of a region 

can be inferred from the spatial information, if a suitable number of 

metrics are combined, including the relative stellar surface density 

around the most massive stars (K ̈upper et al. 2011 ; Maschberger & 

Clarke 2011 ). 

Ho we ver, the majority of the above methods are designed to 

operate on two- or three-dimensional (3D) spatial data, whereas 

recent observational data (e.g. from Gaia and associated ground- 

based surv e ys) hav e pro vided high-resolution spatial and kinematic 

data (six-dimensional, 6D). 

Recently, in an attempt to quantify the phase space densities of 

exoplanet host stars, Winter et al. ( 2020 ) developed the Mahalanobis 

density, a new application of the Mahalanobis distance (Mahalanobis 

1936 ). 

The Mahalanobis distance has been used in astronomy for classi- 

fying objects; for example, in Siegal & Griffiths ( 1974 ), it is used to 

analyse and classify different types of asteroid impact craters, and 

in Jakimiec, Paciorek & Bartkowiak ( 1991 ), it was used to classify 

sunspots into groups. 

Due to the differing dimensions and units of very different scale 

(i.e. length in pc and velocity in km s −1 ), making multi v ariate com- 

parisons can be dif ficult. Ho we ver, the Mahalanobis distance makes 

multi v ariate comparisons possible o v er wide ranges of dynamical 

scales by rescaling the axes and removing the units. Winter et al. 

( 2020 ) used this method to develop the Mahalanobis density and 

use it to propose the hypothesis that host stars in high phase space 

densities are more likely to have hot Jupiter planets ( M > 50 M 
⊕ 

and a < 0.2 au) around them compared to the lower phase space 

densities. Ho we ver, Mustill, Lambrechts & Davies ( 2022 ) show that 

this result may be due to a bias from the peculiar velocities of the 

stars. When the peculiar velocities of the stars are accounted for, 

there is no longer an excess of hot Jupiters in high 6D ( x , y , z , Vx , 

Vy , Vz ) phase space densities. 

Irrespective of the ongoing debate surrounding the application of 

the Mahalanobis distance to exoplanet host stars, in this paper we 

aim to test this metric when applied to both synthetic static regions 

and assess its performance in quantifying phase space structures of 

N -body simulations of star-forming regions. 

The paper is structured as follows. In Section 2 , we present the 

methods used. In Section 3.1 , we present the results of testing 

the Mahalanobis distance’s ability to differentiate between different 

morphologies. In Section 3.2 , we show how the Mahalanobis distance 

and density change with time in N -body simulations. In Section 3.3 , 

we compare the Mahalanobis distance and density to other methods 

for quantifying structure in star-forming regions. In Section 4 , we 

present a discussion of our results and we conclude in Section 5 . 

2  M E T H O D S  

In this section, we describe the set-up of the N -body simulations, 

including the initial spatial and kinematic distributions of stars. We 

Figure 1. Examples of fractal regions with 1000 stars (stars are shown as 

black dots): on the left-hand side is a highly substructure region of fractal 

dimension D f = 1.6 and on the right-hand side is a region with far less 

substructure with fractal dimension D f = 3.0. 

then describe the methods used to quantify the spatial and kinematic 

distributions in our simulated star-forming regions. 

2.1 N -body simulations 

The N -body simulations are run using the KIRA integrator, part of 

the STARLAB 1 package (Portegies Zwart et al. 1999 , 2001 ). Each 

simulation has a population of 1000 stars and is run for a simulated 

time of 10 Myr. Our choice of 1000 stars comes from Lada & Lada 

( 2003 ) where they find the following relation: 

N cl ∝ M 
−2 
cl , (1) 

where N cl is the number of clusters and M cl is the mass of the cluster. 

This power law is obeyed for star clusters between masses of 10 < 

M cl /M ⊙ < 10 5 , and our choice of 1000 stars puts our simulations 

close to the middle of this distribution. 

Observations of star-forming regions show that within these 

comple x es there are filaments of denser gas, inside of which pre- 

stellar cores are observed (Myers 2009 ; Andr ́e 2017 ). These filaments 

are thought to be caused by supersonic turbulence, which is likely 

to be responsible for the substructure we observe in these regions 

(Larson 1981 ; Kraljic et al. 2014 ). To mimic this substructure, we 

make use of a box-fractal generator to initialize our simulations with 

fractal dimensions of D f = 1.6 and D f = 3.0 (Goodwin & Whitworth 

2004 ; Daf fern-Po well & Parker 2020 ). 

We run subvirial simulations to match observations that indicate 

pre-stellar cores may be subvirial with respect to one another and 

may then virialize and form bound smooth, centrally concentrated 

star clusters (Foster et al. 2015 ; Kuznetsova, Hartmann & Ballesteros- 

P aredes 2015 ; P arker et al. 2016 ). We also run a set of simulations 

that are initially supervirial. We do this to mimic the observations that 

some young star-forming regions ( ∼1 −5 Myr) are supervirial and 

therefore expanding (Bravi et al. 2018 ; Kuhn et al. 2019 ; Kounkel, 

Deng & Stassun 2022 ). 

Fig. 1 shows example clusters with the fractal dimensions D f = 

1.6 and D f = 3.0. 

We use the following to define the virial ratio: 

αvir = 
T 

| �| 
, (2) 

where T is the total kinetic energy of the region and � is the total 

potential energy of the region. By using this equation, we can scale 

1 https:// www.sns.ias.edu/ ∼starlab/index.html 
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Table 1. This table shows the different initial conditions of the simulations. 

For each of these initial conditions 10 simulations are run for 10 Myr. From 

left to right, the columns are the initial fractal dimension of the region, the 

number of stars, the initial virial ratio, and the initial radius of the simulations 

in pc. 

Fractal 

dimension N ⋆ Virial ratio Radius (pc) 

D f = 1.6 1000 0.1, 0.9 1, 5 

D f = 3.0 1000 0.1, 0.9 1, 5 

the initial velocities to our desired virial ratio either αvir = 0.1 for 

sub virial re gions or αvir = 0.9 for supervirial re gions. The initial 

conditions for the simulations are summarized in Table 1 . 

We assign masses using the Maschberger IMF with a lower mass 

limit of 0 . 01 M ⊙, upper mass limit of 50 . 0 M ⊙, and a mean mass of 

0 . 2 M ⊙ (Maschberger 2013 ). 

The probability distribution function of the Maschberger IMF is 

p( m ) ∝ 

(

m 

μ

)−α
( 

1 + 

(

m 

μ

)1 −α
) −β

, (3) 

where μ is the mean stellar mass, α = 2.3 is the high-mass exponent, 

and β = 1.4 is the low-mass exponent (Salpeter 1955 ). 

2.2 Smooth centrally concentrated regions 

We generate smooth, centrally concentrated regions with radial 

density profiles in which the stars are randomly distributed using 

the following relation, 

n ∝ r −α, (4) 

where r is the distance from the centre of the region and α is the 

radial density index and has values α = 0.0, 1.0, 2.0, and 2.5. We also 

generate Plummer spheres, regions with a 3D density distribution of 

the form 

ρp ( r ) = 
3 M 0 

4 πa 3 

(

1 + 
r 2 

a 2 

)− 5 
2 

, (5) 

where M 0 is the total mass of the region, r is the distance from the 

centre of the region, and a is the Plummer radius (Plummer 1911 ; 

Kroupa 2008 ). 

2.3 Generating fractal regions 

We follow Goodwin & Whitworth ( 2004 ) and Cartwright & Whit- 

worth ( 2004 ) to generate substructured regions using the box-fractal 

method. Other examples of this method can be found in Allison et al. 

( 2009 ), Parker & Goodwin ( 2015 ), and Daf fern-Po well & Parker 

( 2020 ). 

The method proceeds as follows. A single star is placed at the 

centre of a cube whose side length is chosen to be N Div . This cube 

is then subdivided down into N 
3 
Div subcubes. A star is then placed 

at the centre of each of the subcubes. Each of these subcubes then 

has a probability of being subdivided again given by N 
(3 −D f ) 
Div , where 

D f is the fractal dimension. Cubes that are not subdivided have their 

stars remo v ed along with an y previous generations of stars that came 

before them. A small amount of noise is added to each of the stars to 

prevent them having a regular looking appearance. 

These steps are repeated until the desired number of stars is reached 

or exceeded in the latest generation. Once this condition is met all 

previous generations of stars are remo v ed, then the remaining stars 

are randomly remo v ed until the desired number of stars is reached. 

By removing the stars in this manner, we end up with stars distributed 

inside of a spherical volume. 

The velocities of the first generation of stars are picked from a 

Gaussian with mean zero, with each subsequent generation of stars 

inheriting the velocity of the previous generation plus a random 

component. This results in stars that are close to each other having 

similar velocities and stars far apart from one another having very 

different velocities. The velocities are related to the length-scale of 

the region with the following relation V ( L ) ∝ L 
3 −D f where L is the 

length-scale of interest and D f is the desired fractal dimension (Parker 

& Wright 2018 ). 

2.4 The Mahalanobis distance 

The Mahalanobis distance is a metric that measures distances 

between points to the average in the distribution in N -dimensional 

phase spaces (Mahalanobis 1936 ). 

The Mahalanobis distance does this by removing any correlations 

in the data by multiplying the distances between points and the 

average of the region by the inverse of the covariance matrix; this 

also has the effect of re-scaling the data. 

Once this re-scaling has been done the Euclidean distances are 

found in the phase space; this is the Mahalanobis distance, M d . 

Each point in a data set is described using a vector where each 

element is a measured parameter of that point, 

� x = ( x 1 , x 2 , x 3 , ... , x N ) 
T , (6) 

where x 1 , x 2 , x 3 ,..., x n are the parameters. F or e xample, if each point 

has the three parameters ( x , y , z ) then this is simply its physical 

position in 3D space. 

The Mahalanobis distance between a point in a distribution and the 

mean of that distribution in an N- dimensional phase space is defined 

as 

M d ( � x , � μ) = 

√ 

( � x − � μ) 
T 

S 
−1 ( � x − � μ) , (7) 

where the � x is the point vector, � μ is a vector of the averages of the 

parameters of interest, and S 
−1 is the inverse of the covariance matrix 

for all the parameters in the region. 

The Mahalanobis distance, M d , has been also used to define a 

parameter space density called the Mahalanobis density, ρm, N (Winter 

et al. 2020 ). 2 

To calculate the Mahalanobis density, we first must define the 

Mahalanobis distance between points in the phase space (i.e. distance 

between � x and � y ). We follow Winter et al. ( 2020 ) and use 

m d ( � x , � y ) = 

√ 

( � x − � y ) 
T 

S −1 ( � x − � y ) , (8) 

where � x is the vector describing the measurements of one point, � y 

is the vector describing the measurements of another, and S 
−1 is the 

inverse of the covariance matrix of all the parameters of interest. 

The calculation of the Mahalanobis density proceeds as follows. 

First, we find the Mahalanobis distance to the N th nearest neighbour, 

then we divide the nearest neighbour number by the volume whose 

2 We have used different notation for the Mahalanobis distance to a v oid 

confusion with the fractal dimension and also the number of dimensions. We 

instead use M d instead of D as used in Winter et al. ( 2020 ) to a v oid confusion 

with the fractal dimension. We also change the number of dimensions in the 

phase space from D to D p again to a v oid confusion with the fractal dimension, 

which we represent as D f . 
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side length is defined as the Mahalanobis distance to the N th nearest 

neighbour. The Mahalanobis density is then defined as 

ρm , N = Nm 
−D p 
d , N , (9) 

where ρm, N is the Mahalanobis density, N is the nearest neighbour 

number, m d, N is the Mahalanobis distance to the N th nearest neigh- 

bour, and D p is the number of dimensions in the phase space (Winter 

et al. 2020 ). The Mahalanobis densities are then normalized so that 

the median Mahalanobis density is unity. 

In this work, we apply the Mahalanobis density to two different 

phase spaces, the positional phase space (3D) and the position–

velocity phase space (6D). For this work, we find the Mahalanobis 

distance to the 20th nearest neighbour in the phase space (i.e. N = 

20), the same as in Winter et al. ( 2020 ). 

2.5 Local surface density ratio 

The local surface density ratio 	 LDR was introduced in Maschberger 

& Clarke ( 2011 ) to quantify the differences between the surface 

densities of subsets of stars within their host regions and for this 

work we choose the 10 most massive stars as the subset of interest. 

The algorithm proceeds as follows. For each star we find the distance 

to its N th nearest neighbour, then we calculate the circular area whose 

radius is the distance to the N th nearest neighbour. To find the surface 

density of the stars, we divide the nearest neighbour number by this 

area. We use a nearest neighbour number of 5 for this work. 

The ratio is defined as 

	 LDR = 

˜ 	 subset 

˜ 	 all 
, (10) 

where ˜ 	 subset is the median surface density found for the 10 most 

massive stars and ˜ 	 all is the median surface density found for the 

entire region. Therefore, if 	 LDR > 1 the 10 most massive stars are 

found in areas of higher than average stellar surface density, and 

conversely, if 	 LDR < 1 then they are located in areas of lower 

than average surface density. The significance of any difference is 

quantified using a two-sample Kolmogoro v–Smirno v test. Where if p 

< < 0.01, we reject the null hypothesis that the 10 most massive stars 

share the same underlying distribution of surface densities compared 

to the entire region. 

2.6 Mass segregation ratio 

The mass se gre gation ratio � MSR was first introduced in Allison et al. 

( 2009 ) to quantify the degree of mass segregation in a star-forming 

region. The definition of mass segregation in this case is that the most 

massive stars are closer to each other than expected from the average 

separation of all of the stars in the region. The method makes use of 

MSTs which are graphs of points connected to each other in such a 

way that the total length of the tree is minimized and that all points 

are connected to at least one other point with no closed loops. 

This method generates an MST for the chosen subset of stars; for 

this work, we use the 10 most massive stars. It will then pick 10 

random stars from the region and make an MST for these random 

stars. We do this 200 times to calculate the mean edge length of the 

randomly chosen trees. The ratio is calculated using the following 

equation, 

� MSR = 

〈

l average 

〉

l 10 

+ σ5 / 6 /l 10 

−σ1 / 6 /l 10 

, (11) 

where < l average > is the average edge length found for all the randomly 

constructed MSTs and l 10 is the edge length of the subset’s MST. It 

is important to note that the random MSTs we construct can also 

contain members of the chosen subset. 

If the ratio is > 1 then the region’s 10 most massive stars are 

mass se gre gated, if the ratio is ∼1 then the most massive stars 

are not mass se gre gated, and if the ratio is less than 1 they are 

inversely mass segregated (the most massive stars are further apart 

than the average stars in the region). In this work, we mark the value 

1 to show the boundary between mass se gre gation and inverse mass 

se gre gation. Ho we ver, we follo w Parker & Goodwin ( 2015 ) and only 

take ratio values abo v e 2 to be signs of mass se gre gation, to a v oid 

false positives. 

We follow Parker ( 2018 ) and calculate the uncertainty using the 

randomly constructed MSTs. First, we order the lengths of the 

random MSTs and find the values that lie 1/6 and 5/6 of the way 

through this list. This gi ves us v alues which correspond to a 66 per 

cent deviation from the median MST length found. 

2.7 Q -Parameter 

The Q -Parameter was introduced in Cartwright & Whitworth ( 2004 ) 

to quantify and distinguish between different cluster morphologies. 

The Q -parameter also makes use of MSTs and proceeds as follows. 

First, the normalized correlation length is found. This is the mean 

separation between all stars in a region which is then divided by the 

region’s radius to normalize it. 

The mean edge length of the region is found by constructing an 

MST for the region and then finding the mean edge length. The mean 

edge length is normalized by diving it by N total A 
N total −1 , where N total is the 

number of stars in the region and A is the area of the region. We use 

the circular area [see Schmeja & Klessen ( 2006 ); Parker ( 2018 ) for 

a discussion on normalization techniques], with the radius defined 

as the distance from the centre of mass to the most distant star. The 

Q -parameter is then defined as 

Q = 
m̄ 

s̄ 
, (12) 

where m̄ is the normalized mean edge length of the MST and s̄ 

is the normalized correlation length between stars. Regions with 

substructured morphologies have Q < 0.8, whereas regions with 

smooth, centrally concentrated morphologies have Q > 0.8. 

3  RESULTS  

We show the results of the Mahalanobis distance applied to both 

static and N -body simulations of star-forming regions with various 

initial conditions. We present the 3D and 6D Mahalanobis densities 

calculated in the N -body simulations and compare the evolution of the 

Mahalanobis density o v er time to the other methods for quantifying 

spatial and kinematic distributions in star-forming regions. 

3.1 Static regions 

We first find the Mahalanobis distances between stars and the average 

point in the region, � μ, and calculate the average Mahalanobis distance 

in their respective regions ( M̄ d ) for sets of synthetic and static 

star clusters, with each set having a different structural parameter. 

Each region in the set consists of 1000 stars. We calculate M̄ d for 

substructured regions with fractal dimensions D f = 1.6, 2.0, 2.6, 3.0 

and clusters with radial density profile inde x es, α = 0.0, 1.0, 2.0, 

2.5. We also show the results of a set of 100 Plummer spheres which 

have a radial density profile described by equation ( 5 ) with a radial 

density index of 2.5 (see Section 2.2 ). 
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Figure 2. Mean of the mean Mahalanobis distances calculated in the 3D 

phase space for sets of 100 different star-forming regions plotted against 

the structural parameter used to make the sets. The red triangles are the 

smooth, centrally concentrated radial regions, the purple star (on top of the 

red triangle with the structural parameter equal to 2.5) is the Plummer sphere 

and the black crosses are the fractal regions. The error bars show a single 

standard deviation. 

Fig. 2 shows the mean of the means for the M d (the Mahalanobis 

distance of each star to its region’s averages in the 3D phase space) 

for the 100 clusters in each set of initial conditions. We first calculate 

the mean Mahalanobis distance in each of the 100 regions in the 

set and then we calculate the mean of those means. The error bars 

show the standard deviation of the mean of the mean Mahalanobis 

distances found in each of the regions in a particular set. Fig. 2 clearly 

shows that M̄ d is degenerate across a wide range of morphologies 

and we are therefore unable to use M̄ d calculated in the 3D phase 

space to differentiate between the different morphologies. There is 

much more spread in the values for the Plummer sphere compared 

to the radial and fractal models, with the fractals having the smallest 

spread of M̄ d and the radial regions sitting between the two. This 

is due to Plummer spheres being formally infinite in extent, so the 

calculation occasionally has to normalize o v er v ery distant stars. 

3.2 N -body results 

Fig. 3 shows the mean of the mean Mahalanobis distances (calculated 

in both 3D and 6D) found for 10 different N -body simulations with 

initial fractal dimension D f = 1.6 and 1 pc radii. The left-hand 

panel shows the results for subvirial (collapsing) regions, and the 

right-hand panel shows the results for the supervirial (expanding) 

regions. In both the sub- and supervirial cases there is a decrease in 

the Mahalanobis distance o v er time for both the 3D and 6D phase 

spaces. For the initially subvirial simulations the 3D Mahalanobis 

distance swiftly decreases at the start and then continues to decrease 

for the rest of the simulation but at a slower rate. For the supervirial 

regions we see a less pronounced decrease in M̄ d compared to the 

initially sub virial re gions. The M̄ d calculated in the 6D phase space 

shows more modest decrease o v er time for both initially sub- and 

supervirial simulations. 

Fig. 4 shows the mean Mahalanobis density ( ̄ρm , 20 ) calculated in 

both the 3D and 6D phase spaces for two sets of 10 (one subvirial and 

the other supervirial) simulations with an initial fractal dimension 

of D f = 1.6 and initial radii of 1 pc. The highest Mahalanobis 

densities are calculated in the 3D phase space ( x , y , z ) for the 

supervirial simulations; ho we ver, these large final v alues are only 

present for a few of the simulations. In the 3D phase space, the 

Mahalanobis density increases in the first 2–4 Myr, after which the 

density stays the same for the rest of the run time. This is most 

likely due to the early dynamical interactions of stars, as they move 

closer to each other the stars’ Mahalanobis densities will increase. 

In the Appendix, we show the relationship between the Mahalanobis 

distance and density for the high density simulations with and 

without substructure. We show this for both the 3D and 6D phase 

spaces. 

Initially, in the subvirial simulations, the 6D Mahalanobis density 

decreases for the first 1 Myr and then stays the same until around 

5 Myr where it then starts to increase again. For the supervirial 

simulations, this initial decrease in the 6D phase space happens more 

Figure 3. Plots of the mean Mahalanobis distance calculated in both the 3D and 6D phase spaces against time for regions with both high initial volume 

densities and high degrees of substructure (i.e. fractal dimension D f = 1.6 with radii of 1 pc) consisting of 1000 stars. The shaded areas show the range of mean 

Mahalanobis distances found across all 10 of the simulations at the current time. The solid lines show the mean of the mean Mahalanobis distances across all 10 

simulations. The blue area and solid blue line shows the 3D phase space and the black dashed line and the grey area show the same but for the 6D phase space. 
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Figure 4. The mean Mahalanobis density against time for each of the 10 subvirial (left-hand panel) and supervirial simulations (right-hand panel) with fractal 

dimension D = 1.6 and radii of 1 pc. The simulations consist of 1000 stars. The blue shaded area shows the minimum and maximum mean Mahalanobis density 

(in the 3D phase space) found across all 10 of the simulations at the current time. The solid blue line shows the mean of the means for the Mahalanobis density 

in the 3D phase space. The grey-shaded area and the dashed black line show the same but for the Mahalanobis density calculated in the 6D phase space. The 

mean number densities of the 10 simulations is around 314 stars pc −1 with a mean stellar mass density of around 201 M ⊙ pc −3 . 

rapidly than in the subvirial simulations. It also does not reach the low 

densities that the subvirial regions attain. In the supervirial regions, 

the stars will expand together in co-moving groups; therefore, they 

will have similar positions but can still have velocities that exhibit 

kinematic substructure. In contrast, in the subvirial simulations the 

stars interact more and erase this substructure. The difference in the 

v elocities e xplains why the 6D Mahalanobis density is much lower 

than the 3D density. Some of the supervirial regions attain higher 6D 

Mahalanobis densities compared to the subvirial regions at the end 

of the 10 Myr. 

We also calculate the Mahalanobis density and distance for low- 

density simulations for simulations with D f = 1.6 and D f = 3.0, 

where the initial radii regions are 5 pc (with a mean number density 

of around 3 stars pc −3 and a mean stellar-mass density of around 

1 . 6 M ⊙ pc −3 ). We find that the evolution of M̄ d is almost identical 

to the its evolution in the high-density simulations, both in 3D and 

6D phase spaces. 

We show the evolution of the 3D and 6D Mahalanobis densities 

for these more diffuse simulations in Fig. 5 , which shows ρ̄m , 20 

plotted against time for the same substructured regions with fractal 

dimension D f = 1.6 with initial radii of 5 pc. For the 3D phase space, 

we see the same trends as in Fig. 4 but a slight difference for the 

6D phase space. Now ρ̄m , 20 decreases in the subvirial simulations 

as the regions evolve, and the supervirial simulations show a steady 

Mahalanobis density after 1 Myr. 

We show the evolution of the Mahalanobis distance (measured 

between the points and the mean values of the phase in each 

snapshot), and Mahalanobis density in the simulations that have no 

primordial substructure (i.e. they are uniform spheres at t = 0 Myr). 

Fig. 6 shows the Mahalanobis distance o v er time for regions with a 

fractal dimension D f = 3.0 with radii of 1 pc. For the 3D phase space, 

there is a decrease o v er time for the sub- and supervirial simulations. 

Comparing these results to Fig. 3 , we see that the D f = 3.0 regions’ 

Mahalanobis distances decrease at a slower rate compared to regions 

with initially more substructure. This behaviour also results in a 

slightly greater 3D Mahalanobis distance being measured for regions 

with fractal dimension D f = 3.0 at 10 Myr. Ho we ver, this is not seen 

in the 6D phase space Mahalanobis distances that show little change 

o v er the 10 Myr in the simulations. Also, very little difference is seen 

when comparing the 6D Mahalanobis distances between the sub- and 

supervirial simulations. 

Fig. 7 shows the 3D and 6D ρ̄m , 20 against time for the simulations 

with no primordial substructure (with an initial fractal dimension D f 

= 3.0 and radii 1 pc). The left-hand panel shows ρ̄m , 20 against time for 

the subvirial simulations. It shows the same increase in Mahalanobis 

density as the D f = 1.6 simulations, but we do not see the same initial 

decrease in the 6D ρ̄m , 20 that we see in the D f = 1.6 simulations. 

At around 0.5 Myr, a decrease in the 3D Mahalanobis density is 

seen, then a second period of increasing Mahalanobis density is seen 

around 0.9 Myr before attaining a steady Mahalanobis density for 

the rest of the simulations’ run time. This initial increase is due to 

the region collapsing and stars moving closer to each other which 

raises the 3D Mahalanobis density. What stops it increasing further is 

likely the dynamical interactions causing stars to mo v e further away 

from each other. Once this initial dynamical stage settles down the 

density can increase again due to stars being close to each other near 

the centre of the region. 

The right-hand panel of Fig. 7 shows the 3D and 6D Maha- 

lanobis density calculated for regions that are initially supervirial. 

The ‘bump’ like feature is much smaller for the 3D phase space 

calculations than in the initially subvirial simulations. The decrease 

in the bump compared to the subvirial simulations is due to the fact 

that the stars are constantly and continuously moving away from 

each other, meaning that the slight increase that is still present is 

due to small groupings of stars clumping together. We see similar 

behaviour for the 6D phase space in both the subvirial and supervirial 

simulations. 

We show the 3D and 6D Mahalanobis densities for simulations 

with D f = 3.0 and initial radii of 5 pc in Fig. 8 . These low-density 

simulations have mean number density of around 1 star pc −3 , or mean 

stellar mass density of around 0 . 7 M ⊙ pc −3 . We find similar results 

to the more dense subvirial simulations simulations, where the 3D 

Mahalanobis density clearly traces the ‘pump’ of the collapse, which 

then decreases as stars mo v e apart. The time the ‘bump’ occurs is 
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Figure 5. Plots showing the mean Mahalanobis density against time for each of the 10 subvirial (left-hand panels) and supervirial (right-hand panels) simulations 

with fractal dimension D f = 1.6 and radii of 5 pc. These simulations have a low initial stellar number density with a mean around 3 stars pc −3 and a mean stellar 

mass density of around 1 . 6 M ⊙ pc −3 . The shaded blue area shows the minimum and maximum mean Mahalanobis density found across all 10 simulations in 

the 3D phase space. The solid blue line shows the mean of the means Mahalanobis density against time. The shaded grey area and the dashed black line show 

the same but for the 6D phase space. 

Figure 6. Plots of the mean Mahalanobis distance from each star to the average in simulations without primordial substructure, i.e. a fractal dimension of D f = 

3.0, o v er time. The shaded blue area and solid blue line show the minimum and maximum mean Mahalanobis distance found across the 10 simulations and the 

solid blue line shows the mean of the means across all 10 simulations, respectively. The Mahalanobis distance is calculated in the 3D phase space for the blue 

area and line and calculated in the 6D phase space, shown by the grey-shaded area and the black-dashed line. 

delayed by several Myr compared to the higher density regions, due 

to the longer dynamical time-scales. 

3.3 Comparison to other methods of quantifying structure 

We now plot the 3D and 6D Mahalanobis densities against other 

measures of quantifying structure in star-forming regions. Fig. 9 

shows ρ̄m , 20 plotted against the established methods of � MSR , Q , 

and 	 LDR for the simulations with initial fractal dimension D f = 

1.6 and radius 1 pc. For the initially subvirial simulations the ρ̄m , 20 

v alues stay belo w 12 for the first 5 Myr whereas the supervirial 

simulations can achieve much higher values. This is due to the stars 

in supervirial regions forming small groupings as the region expands 

which causes an increase in the Mahalanobis density. In contrast, 

for the subvirial regions more stars are interacting with each other, 

which erases spatial and kinematic substructure and also ejects stars 

(Schoettler et al. 2020 ). As we are measuring the mean Mahalanobis 

density, we are sensitive to a small number of stars being ejected 

which we see as a decrease in the mean Mahalanobis density for the 

subvirial simulations. 

We first show the Mahalanobis density versus the amount of mass 

se gre gation as defined by � MSR Allison et al. ( 2009 ) in Fig. 9 (a) and 

(b). For the subvirial simulations, mass segregation is detected for 

6 of the 10 simulations at 1 Myr and only one simulation has mass 

se gre gation present at 5 Myr, with � MSR > 2. The reason for the 

dissipation in the amount of mass se gre gation is due to the ejection 
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Figure 7. The mean Mahalanobis density against time for each of the 10 subvirial (left-hand panel) and supervirial (right-hand panel) simulations without 

primordial substructure (fractal dimension D f = 3.0) and radii of 1 pc. The shaded blue area and solid blue line show the range of mean Mahalanobis densities 

calculated in the 3D phase space and the mean of the means found across all 10 simulations, respectively. The grey-shaded area and the dashed black line show 

the same but for the 6D phase space. 

Figure 8. The mean Mahalanobis density against time for each of the 10 subvirial (left-hand panel) and supervirial (right-hand panel) simulations without 

primordial substructure (fractal dimension D f = 3.0) with radii of 5 pc. The shaded blue area and solid blue line show the range of mean Mahalanobis densities 

calculated in the 3D phase space and the mean of the means found across all 10 simulations, respectively. The grey shaded area and the dashed black line show 

the same but for the 6D phase space. 

of massive stars from unstable Trapezium-like systems (Allison et al. 

2010 ; Allison & Goodwin 2011 ; Parker & Goodwin 2015 ). In the 

supervirial simulations [see panel (b)], one region becomes mass 

se gre gated at 1 Myr and another at 5 Myr. If the cluster splits in 

two, with the most massive stars located in one of the halves then 

� MSR can increase to the value we see in Fig. 9 (b) of around 5.5. 

As discussed in Parker et al. ( 2014 ), this is because the massive stars 

generally do not interact with each other as they do in the subvirial 

simulations where there is more mixing resulting in any structure in 

the phase spaces being erased. 

The supervirial simulations display a wider spread in the Maha- 

lanobis densities meaning that the plot of ρ̄m , 20 versus � MSR can be 

used to distinguish between different initial virial states after at least 

5 Myr of dynamical evolution. 

The clearest distinction between different times in the simulations 

comes when ρ̄m , 20 is combined with the Q -parameter. Fig. 9 (c) 

and (d) shows this clearly for both the subvirial simulations and 

the supervirial simulations. The plots also show that, as expected, 

the supervirial simulations maintain substructure for longer. With 

some of the regions maintaining traces of substructure for 5 Myr as 

measured using Q (i.e. Q < 0.8). 

Fig. 9 (e) and (f) shows ρ̄m , 20 plotted against the relative local 

surface density ratio, 	 LDR . We find that for both subvirial and 

supervirial simulations there is an increase in the local surface density 

of the 10 most massive stars compared to all stars in the region. 

Interestingly, the simulations with the highest local surface density 

around the 10 most massive stars do not necessarily have the highest 

Mahalanobis densities. This is likely due to the local surface density 
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Figure 9. The mean Mahalanobis density calculated for 3D and 6D phase spaces plotted against other methods of quantifying structure for 10 subvirial and 

supervirial simulations that are initially substructured with fractal dimension D f = 1.6 and 1 pc radii. The left-hand panels show the results for the subvirial 

regions and the right-hand panels show the results for the supervirial regions. The initial values at 0 Myr are represented by the black circles, the blue crosses 

show 1 Myr and the red triangles show 5 Myr. The grey open circles show the comparison of the 6D Mahalanobis density at 0 Myr, the open grey crosses show 

it for 1 Myr and the open grey triangles for 5 Myr. From top to bottom, the rows show the different methods which ρ̄m , 20 is plotted against, with the top row 

showing � MSR , second row showing Q , and the bottom row showing 	 LDR . 
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being calculated on the plane of the sky whereas the Mahalanobis 

density is being calculated for the full 3D phase space. 

The supervirial regions display high Mahalanobis densities at later 

times, and we can use this, and the different evolution of the Q - 

parameter and � MSR to distinguish between initial conditions after 

several Myr of dynamical evolution. 

Using the 6D Mahalanobis density does not impro v e the diagnostic 

ability of the metric. We find that the range of ρ̄m , 20 decreases when 

calculated in 6D. Meaning, we see that the ρ̄m , 20 values o v erlap 

making differentiating between different snapshots and virial states 

impractical. 

We no w sho w the same plots but for simulations with little to no 

primordial spatial or kinematic substructure. Fig. 10 shows the mean 

3D and 6D Mahalanobis densities plotted against the established 

methods for simulations that have an initial fractal dimension 

D f = 3.0 and radius 1 pc. The Mahalanobis densities for these 

simulations increase o v er time, with supervirial simulations having 

higher Mahalanobis densities compared to the subvirial simulations 

after 10 Myr of evolution. 

Panels (a) and (b) show ρ̄m , 20 plotted against � MSR for the 10 

simulations. F or the sub virial simulations, we see mass se gre gation 

detected in 3 of the 10 simulations; for the supervirial simulations, 

we detect mass se gre gation in 2 of the 10 simulations (recall that our 

threshold for declaring mass se gre gation is � MSR > 2.) 

As for the highly substructured simulations ( D f = 1.6), the plot of 

the mean Mahalanobis density when combined with the Q -parameter 

gives the clearest distinction between the different snapshots. For 

panels (e) and (f), we show ρ̄m , 20 against 	 LDR . We can see that the 

10 most massive stars can end up in a wide range of local surface 

density ratios The subvirial simulations have a wider range of values, 

with 	 LDR between 0.1 and 10, whereas the supervirial simulations 

all finish with 	 LDR > 1. 

The grey markers in Fig. 10 show the 6D Mahalanobis densities 

against the established methods. We find once again that the spread 

in the Mahalanobis densities has decreased, making differentiating 

between different times or virial states impractical. 

4  DISCUSSION  

We have been moti v ated to test the Mahalanobis density due to 

its recent applications in quantifying the phase space of exoplanet 

host stars. In Winter et al. ( 2020 ), they propose that hot Jupiters 

are more likely to be found around host stars that are in high 6D 

phase space density, as measured using the 6D Mahalanobis density. 

Ho we ver, this was questioned by Mustill et al. ( 2022 ) who show the 

peculiar velocities introduce a bias that once accounted for results 

in no significant excess of hot Jupiters around host stars in high 

6D phase space density. The aim of this work is not to make a 

scientific assessment of the Mahalanobis density in its use in planet 

formation specifically but simply to see how it changes o v er time 

when looking at simple N -body simulations of star-forming regions 

to see what information, if any, it may be able to give us about the 

initial conditions (i.e. virial state, density, and initial morphology). 

Due to the simplicity of our simulations, there are a number of 

important caveats that must be taken into account. First, there is 

no Galactic potential or tidal force acting on our simulated star- 

forming regions. The presence of an external Galactic tidal field 

w ould lik ely increase the dissolution of the star-forming region by 

causing outlying stars to become unbound, which would in turn 

increase the potency of the Galactic tidal field at later ages. 

Two more important caveats are that we do not simulate any gas, 

and therefore, there is no gas potential and also that our systems 

are fully isolated. The most important caveat that disallows direct 

comparison to the works of Winter et al. ( 2020 ) and Mustill et al. 

( 2022 ) is that we do not simulate planets in our simulations and so 

ho w representati v e our simulations are of real re gions with e xoplanet 

host stars is uncertain. 

In Section 3.3 , we show that the 6D Mahalanobis density in 

isolation cannot be used to reliably infer the initial conditions of 

star-forming regions due to overlap in the sub- and supervirial values. 

Ho we ver, when the Mahalanobis density in the 3D phase space is 

combined with � MSR , 	 LDR , or Q , then the initial virial conditions 

can be inferred. This is most clear to see in Fig. 10 . 

The regions that are initially supervirial attain higher final phase 

space densities than subvirial regions. 

This is somewhat counter -intuitive, b ut is due to the fact that as 

the re gion e xpands small groupings of stars can form that will have 

similar positions and therefore higher phase space densities. The 

Mahalanobis distances between these groupings is reduced when we 

multiply by the inverse of the covariance matrix. In the subvirial 

cases, we see lower 3D phase space densities due to stars being 

ejected and ending up in relative isolation compared to the rest of 

the region. As we are using the mean Mahalanobis density, we are 

sensitive to only a few stars being ejected. 

We cannot determine the initial conditions using the 6D Maha- 

lanobis density. One would assume that the more data we have 

(and therefore dimensions in the phase space), the more clearly we 

would see the distinction between sub- and supervirial simulations. 

Ho we ver, some what counter-intuiti vely, adding more dimensions to 

the phase space ef fecti vely ‘washes’ out any information that would 

allow us to determine the initial conditions of our star-forming 

re gions. F or e xample, in our D f = 1.6 supervirial simulations, as 

the stars dynamically evolve they may get further apart spatially but 

kinematically they may be quite similar. If two stars that are very far 

apart end up moving in the same general direction, the velocity and 

positional phases spaces will ef fecti vely cancel each other out and 

therefore remo ving an y information about the initial conditions of 

the region (i.e. different positions but similar velocities). 

We find that the 6D Mahalanobis density for all simulations is 

similar at 10 Myr for both sub- and supervirial regions independent 

of the fractal dimension D f and the initial radii of the region. We 

therefore suggest that the Mahalanobis distance and its associated 

density are not suitable for quantifying the initial conditions of star 

formation nor any subsequent dynamical evolution. 

5  C O N C L U S I O N  

We present N -body simulations with different initial fractal dimen- 

sions, virial states, and initial radii, and quantify the 3D and 6D 

phase space densities using the Mahalanobis distance. We compare 

the performance of the Mahalanobis density to more established 

methods for quantifying structure in star-forming regions, namely 

� MSR , 	 LDR , and Q . We also applied the Mahalanobis distance 

in 3D phase space to sets of static synthetic regions of different 

morphologies to test its ability to discriminate between different 

morphologies. Our conclusions are as follows: 

(i) The Mahalanobis distance in the 3D phase space is degenerate 

across a wide range of morphologies commonly observed in star- 

forming regions, associations and clusters, and so it cannot be used 

to differentiate between different morphologies. 

(ii) The 3D Mahalanobis densities, ρm,20 , can be used to distin- 

guish between the high and low stellar density regions with large 

amounts of substructure ( D f = 1.6). The low stellar density regions 
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Figure 10. The mean Mahalanobis density calculated for the 3D and 6D phase spaces plotted against other methods of quantifying substructure for 10 subvirial 

and supervirial simulations which have little to no initial substructured with fractal dimension D f = 3.0 and 1 pc radii. The left-hand panels show the subvirial 

results and the right-hand panels show the supervirial regions. The initial values at 0 Myr are represented by the black circles, the blue pluses show 1 Myr, and 

the red triangles show 5 Myr. We show the mean 6D Mahalanobis densities at 0, 1, and 5 Myr with grey open circles, grey open crosses, and grey open triangles, 

respectively. From top to bottom, the rows show the different methods which ρ̄m , 20 is plotted against, with the top row showing � MSR , second row showing Q , 

and the bottom row showing 	 LDR . 
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show similar beha viour b ut delayed by around 0.6 Myr compared 

to the high volume density regions due to the dynamical time-scales 

being longer. This effect is even more pronounced in the simulations 

with little to no initial substructure ( D f = 3.0), where we see the 

‘bump’ occurring several Myr later than in the higher stellar density 

simulations corresponding to the subvirial collapse. 

(iii) We show that the Mahalanobis density calculated in the 3D 

phase space can be used with the Q -parameter, � MSR , or 	 LDR to 

infer information about a region’s initial virial state. 

(iv) When using the 6D Mahalanobis densities, we see no sig- 

nificant differences between any of the simulations. Adding more 

parameters (adding more dimensions) to the phase space suppresses 

any changes in the Mahalanobis density over time. 

We therefore advise against using the Mahalanobis distance as a 

method to quantify the morphology of star-forming regions due to 

its de generac y across both substructured re gions and also smooth, 

centrally concentrated regions. 

When applied to spatial and kinematic phase space (6D), all of its 

discriminatory power is washed out (similar to the issues encountered 

when applying the Q -parameter to kinematic data; Cartwright 2009 ), 

and we advocate using combinations of spatial and kinematic metrics 

instead. 
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APPENDI X:  M A H A L A N O B I S  DI STANCE  

VERSUS  M A H A L A N O B I S  DENSITY  

In Fig. A1 , we show the relation between the Mahalanobis distance 

and density across the two different phase spaces investigated and 

the two different initial virial states. 

We see that in the positional phase space (3D, the coloured 

markers) there is significant o v erlap in both the Mahalanobis distance 

and density, making differentiating between different snapshots 
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Figure A1. The mean Mahalanobis density ( ̄ρm , 20 ) plotted against the mean Mahalanobis distance ( M̄ d ) for highly substructured regions with fractal dimensions 

D f = 1.6 and initial radii of 1 pc. Each region contains 1000 stars. The black circles the values at 0 Myr, the blue plus signs are the values at 1 Myr and the 

red triangles are the values at 5 Myr. The grey open circles, crosses, and triangles show the same information but for the Mahalanobis distance and density 

calculated in the 6D phase space. 

Figure A2. The mean Mahalanobis density ( ̄ρm , 20 ) plotted against the mean Mahalanobis distance ( M̄ d ) for substructured regions with fractal dimensions D f 

= 3.0 and scales 1 pc for different snapshots. Each region contains 1000 stars. The black circles the values at 0 Myr, the blue crosses are the values at 1 Myr 

and the red triangles the values at 5 Myr. The grey open circles, crosses, and triangles show the same information but for the Mahalanobis distance and density 

calculated in the 6D phase space. 

impractical. For the supervirial regions, we see less overlap in 

the Mahalanobis density between the snapshots. Ho we ver, there is 

significant o v erlap between the sub- and supervirial simulations, 

meaning that neither the Mahalanobis distance nor density can 

reliably distinguish between different virial states. 

In Figs A1 and A2 , we show the position–velocity phase space 

(6D) with the grey open markers. 

Fig. A2 shows the mean Mahalanobis distance plotted against the 

mean Mahalanobis density for high density (radii of 1 pc) region 

with little or no substructure ( D f = 3.0). 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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