

This is a repository copy of Unveiling the potential for artificial upwelling in algae derived carbon sink and nutrient mitigation.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/203414/</u>

Version: Accepted Version

Article:

Shen, C., Hao, X., An, D. et al. (4 more authors) (Cover date: 20 December 2023) Unveiling the potential for artificial upwelling in algae derived carbon sink and nutrient mitigation. Science of the Total Environment, 905. 167150. ISSN 0048-9697

https://doi.org/10.1016/j.scitotenv.2023.167150

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Unveiling the potential for artificial upwelling in algae derived carbon sink and
2	nutrient mitigation
3	Chunlei Shen ^a , Xinya Hao ^b , Dong An ^{a, c} , Martin R. Tillotson ^d , Lin Yang ^{a, *} , Xu Zhao ^{e, *}
4	^a School of Business, Shandong University, Weihai 264209, China
5 6	^b School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, Hong Kong Special Administrative Region of China
7	° School of Bohai, Hebei Agricultural University, Baoding 071000, China
8	^d School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
9	° Institute of Blue and Green Development, Shandong University, Weihai 264209, China
10	Abstract: Mariculture algae may present a crucial part of ocean-based solutions for climate change, with the ability to
11	sequester carbon and remove nutrients. However, the expansion of mariculture algae faces multiple challenges. Here, we
12	measure the changes in algae derived carbon sinks and nitrogen (N) and phosphorus (P) removal between 2010 and 2020
13	in Shandong Province, China. We further identify the key driving factors, namely area, algal species proportion, and yield,
14	that influence the changes. The results show that algae derived carbon sinks and nutrient removal growth rates in
15	Shandong Province have slowed significantly since 2014, mainly due to area limitations, laver-oriented species change,
16	and unstable yields. Artificial upwelling (AU) has the potential to enhance the yield and subsequently offset the loss of
17	carbon sinks and nutrient removal caused by negative driving factors. Scenario analysis indicates that a complete
18	deployment of AU by 2030 will offset up to a 44.52% decrease in the mariculture algae area, or a 72.57% increase in the
19	laver share of the algal species combination compared to 2020. Similar conclusions are reached regarding the role of AU
20	in N and P removal. This study also identifies ancillary challenges such as low energy efficiency and high costs faced by
21	applying AU.

^{*} Corresponding authors. *E-mail addresses*: yanglin2128@126.com (L. Yang), xuzhao@sdu.edu.cn (X. Zhao).
1

22 Keywords: Artificial upwelling; Carbon sink; Mariculture algae; Nutrient removal; Scenario analysis

23 Highlights

- Artificial upwelling shows potential for algae carbon sink and nutrient removal.
- Algae carbon sink and nutrient removal are limited by area and algal species.
- Artificial upwelling offsets adverse factors by boosting yield.
- Artificial upwelling has limitations in offsetting loss.

28 **1. Introduction**

Mariculture algae is an important component of marine ecosystems, and may deliver both economic and environmental benefits. As the fourth species of blue carbon (IPCC, 2019), mariculture algae has been recognized as having capacity to act as a carbon sink (Bolton and Stoll, 2013; Ahmed et al., 2017; Tsai et al., 2017; NASEM, 2021). Harvesting of algae can also remove nitrogen (N) and phosphorus (P) from coastal waters (Alvera-Azcarate et al., 2003; Fei, 2004; He et al., 2008; Xiao et al., 2017; Sinha et al., 2022), and has been proposed as an effective ecological restoration tool to control eutrophication (Yang et al., 2015; Buschmann et al., 2017; Jiang et al., 2020). Further research is required on how to fully exploit the function of mariculture algae in addressing climate change and marine pollution.

36 China leads the world in the production of mariculture algae (FAO, 2022), and has implemented a number of initiatives 37 to promote the development of algae derived carbon sinks (Jiao et al., 2018; Yang et al., 2021). Many scholars have found 38 an increase in the carbon sink of algae between 2010 and 2015 (Shao et al., 2019; Yang et al., 2022). These studies 39 recognize the major contribution of increased algae production to carbon sinks compared to the more limited effects of 40 algal species (Ren, 2021). Similar conclusions may be drawn for nitrogen and phosphorus removal by algae (Xiao et al., 41 2017). However, algae derived carbon sink development has slowed in several of China's coastal provinces, despite the 42 growth of carbon sinks between 2010 and 2015 (Gu and Yin, 2022; Wu and Li, 2022; Yang et al., 2022). This decrease 43 in production growth has led to a significant slowdown in the growth of carbon sinks, which also affects the function of 44 algae in nutrient removal (Wu et al., 2017). Indeed, recent ocean warming, coastal pollution, competition for space, and 45 ecological policies to control eutrophication have limited the expansion of mariculture algae production (Filbee-Dexter 46 and Wernberg, 2018; Jouffray et al., 2020; Hu et al., 2021; Wang et al., 2023).

Previous studies have addressed that the changes in production predominantly affect algae derived carbon sinks and nutrient removal. However, two key factors that influence changes in production, i.e. yield (production per area) and area, have been rarely studied. First, increasing the yield could offset the negative effects on algae production. One of the promising technics to enhance algae yield and subsequently increase algae derived carbon sinks is artificial upwelling (AU), which has been shown to increase mariculture algal yield in small-scale trials (Fan et al., 2019; Lin et al., 2019; Fan et al., 2020). AU is a system of mechanical equipment deployed in the mariculture area, which breaks the nutrient 53 limitations of aquaculture by continuously upwelling the lower temperature, higher nutrient loaded seawater to the surface 54 (Aure et al., 2007; Lovelock and Rapley, 2007; McClimans et al., 2010; Zollmann et al., 2019; Ortiz et al., 2022). AU in 55nutrient-rich waters can enhance the biological carbon pump in oligotrophic sea areas to sequester anthropogenic carbon 56 dioxide (CO₂) and increase carbon sequestration (Oschlies et al., 2010; Pan et al., 2015; Gómez-Letona et al., 2022), and 57 has been recognized by the United Nations Intergovernmental Panel on Climate Change (IPCC) as a global ocean carbon 58 sink solution (IPCC, 2019). However, the potential of AU to offset the limitations on algae derived carbon sinks and 59 nutrient removal remains unknown. Second, the reduction in mariculture area limits production growth, which inevitably 60 affects the amount of algae derived carbon sinks and nutrient removal. However, no studies have yet been carried out to 61 examine area as a driving factor to changes of carbon sinks and nutrient removal. Therefore, we further decompose 62 mariculture production that predominantly affects algae derived carbon sinks and nutrient removal into two components 63 i.e., yield and area. From this we hope to explore how algal yield may be enhanced through AU under limited expansion 64 of mariculture area.

In this paper, we analyse the driving forces that constrain carbon sink growth and investigate the potential of AU in offsetting these factors using Shandong Province, China (Fig. 1) as a case study. Shandong Province, which is bordered by the Bohai Sea and the Yellow Sea, has a long coastline accounting for 1/6 of the total coastline of China (Jiao et al., 2021). As China's most important mariculture location (Zhao et al., 2022), Shandong Province accounts for 27.28% (2020 base) of the country's mariculture algae production (SFSY, 2021). Moreover, multiple AU field experiments conducted in Shandong Province analysed the specific enhancement effect of AU application, which provided the necessary technical parameters for predicting the potential of AU (Fan et al., 2019; Lin et al., 2019).

72 Our study is distinct from previous studies by (a) decomposing production, a factor that leads to a decline in the annual 73 growth rates of carbon sinks and nutrient removal in recent years, into yield and area; (b) estimating the potential of AU 74to enhance the yield and subsequently offset the loss of carbon sinks and nutrient removal caused by negative drivers; 75 and (c) exploring the upper limits of AU potential. Our research thus identifies previously unaddressed limiting factors in 76 carbon sink growth and nutrient removal, which can be used to develop more targeted policies aimed at reversing the 77 resulting negative impacts. Meanwhile, this study informs a new technology pathway for increasing carbon sinks and 78 mitigating seawater eutrophication, i.e. applying AU, which can broaden the spectrum of policy and management tools 79 to address climate change and marine pollution. Our findings also suggest that enhancing mariculture algae derived carbon 80 sinks and nutrient removal is a complex and systematic work that requires consideration of multiple influencing factors 81 and their positive and negative effects.

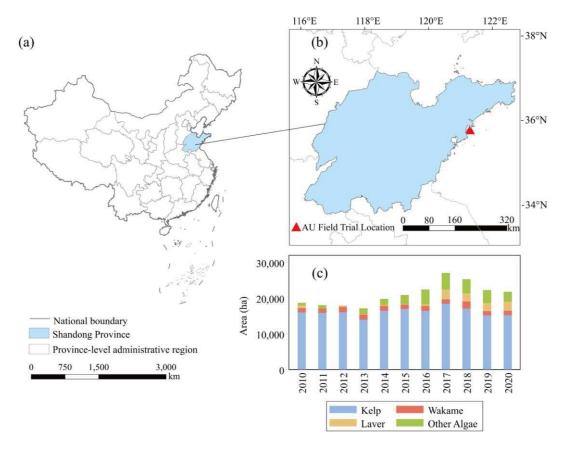


Fig. 1. General information of the study area. (a) The location of Shandong Province in China; (b) AU field trial location in Shandong
Province (36°22' N, 120°50' E); and (c) mariculture algae area and structure in Shandong Province between 2010 and 2020.

85 2. Methodology and data

86 2.1. Measurement of carbon sink and nutrient removal of mariculture algae

Algae take up CO₂ and dissolved inorganic carbon through photosynthesis as algae grow and convert it into organic carbon (Smith, 1981; Gao and McKinley, 1994). A portion of the organic carbon is removed from seawater after harvesting, forming the carbon sink of the algal body. In addition, algae also release some particulate organic carbon (POC) and dissolved organic carbon (DOC) into seawater (Tyler and McGlathery, 2006; Tang et al., 2011; Watanabe et al., 2020; Weigel and Pfister, 2021). A portion of POC and DOC will deposit in the deep ocean and seabed under microbial action to form stable sediments (Jiao et al., 2010). This fraction of sediments that can be stored for long periods is a carbon sink (Krause-Jensen and Duarte, 2016; Pan et al., 2019; Gao et al., 2021).

We calculated the carbon sink of mariculture algae (*TC*, assuming a total of *i* species) by adding three components (Yang et al., 2022) i.e., the carbon sink of the algal body (C_i), the carbon sink formed by releasing POC (C_i^{POC}), and the carbon sink formed by releasing DOC (C_i^{DOC}):

97
$$TC = \sum_{i=1}^{n} (C_i + C_i^{\text{POC}} + C_i^{\text{DOC}})$$
(1)

98 When measuring the carbon sink of mariculture algae:

$$99 C_i = DW_i \times w_i^C (2)$$

100
$$C_i^{\text{POC}} = C_i \times \frac{\alpha}{1 - \alpha - \beta} \times r^{\text{POC}}$$
 (3)

101
$$C_i^{\text{DOC}} = C_i \times \frac{\beta}{1 - \alpha - \beta} \times r^{\text{DOC}}$$
 (4)

102 The carbon sink of the mariculture algal body (C_i) can be estimated from algal production (dry weight) (DW_i) and the 103 carbon (C) content of algae (w_i^C) . α and β represent the proportion of POC and DOC released during algal growth to 104 algal photosynthetic productivity (Yan et al., 2011). r^{POC} and r^{DOC} are the proportion of POC and DOC released by 105 algae that are eventually converted into carbon sinks.

106 N and P removal by algae was determined by algal production (dry weight) and the N and P content of algae. The 107 specific calculation formula is as follows:

$$108 N_i = DW_i \times W_i^N (5)$$

$$109 P_i = DW_i \times w_i^P (6)$$

110 Here, N_i and P_i represent N and P removal, w_i^N and w_i^P are the N and P content of the algae.

111 2.2. Driving force analysis using the Logarithmic Mean Divisia Index approach

We used the Logarithmic Mean Divisia Index (LMDI) method to decompose changes in carbon sinks and nutrient removal by mariculture algae. Proposed by Ang et al. (2004), the LMDI method employs a logarithmic transformation, which is an applicable method to quantify the drivers of a given variable without any residual terms after decomposition. Compared to other decomposition methods, the results obtained from LMDI decomposition are intuitive and easy to interpret (Nzudie et al., 2021), making it a valuable tool in various fields, including carbon emissions (Ma et al., 2003), energy intensity (Wang et al., 2005), and water footprint (Zhao et al., 2017). We identified four driving factors i.e., intensity, yield, structure, and area, as shown in Eq. 7:

119
$$M = \sum_{i=1}^{n} \frac{M_i}{DW_i} \times \frac{DW_i}{A_i} \times \frac{A_i}{A} \times A = \sum_{i=1}^{n} I_i \times Y_i \times S_i \times A$$
(7)

120 Here, M represents the carbon sink or nutrient removal of mariculture algae; subscript i represents algal species i, and 121 n represents the total number of algal species (for this study n = 4); DW_i represents the production of algal species i; 122 A_i is the mariculture area used for growth of algal species i; A refers to the total mariculture area of algae. I, Y, S, 123 and A represent intensity, yield, structure, and area, respectively. Intensity is the amount of carbon sink or nutrient 124 removal per unit of algal species i's production. Yield describes the amount of production per unit of algal species i's 125area. Structure is the ratio of algal species i's area to the total area of all algae, representing the effect of algal species 126 changes. Area reflects how the total area of mariculture algae can impact the carbon sink or nutrient removal of algal 127species *i*.

128 The total changes in the carbon sink or nutrient removal of mariculture algae can thus be formulated as:

129 $\Delta M = M^t - M^0 = \Delta I + \Delta Y + \Delta S + \Delta A$

130 where ΔI (intensity effect), ΔY (yield effect), ΔS (structure effect), and ΔA (area effect) are changing driving factors 131 of ΔM .

The value of I_i depends on the C, N, and P content of algae, which varies in different mariculture areas and seasons. However, we do not consider the changes in these parameters in our measurement. Such setting is primarily because our focus was on studying the carbon sink of the algal body at the time of harvest. Changes in C, N and P content of algal body during the harvest season are relatively small (He et al. 2008; Xiao et al. 2017; Zhang et al. 2020). In the subsequent analysis, I_i remains unchanged and the contribution from the intensity effect (ΔI) to the increase in algae derived carbon sinks and nutrient removal amounts to 0.

According to the LMDI approach, the equations to decompose the changes to mariculture algae derived carbon sinks
 or nutrient removal are as follows:

140
$$\Delta M_{I} = \sum_{i=1}^{n} \left[L(M_{i}^{t}, M_{i}^{o}) \times \ln\left(\frac{l_{i}^{t}}{l_{i}^{o}}\right) \right]$$
(9)

141
$$\Delta M_Y = \sum_{i=1}^n [L(M_i^t, M_i^o) \times \ln(\frac{Y_i^t}{Y_i^o})]$$
(10)

142
$$\Delta M_{S} = \sum_{i=1}^{n} [L(M_{i}^{t}, M_{i}^{o}) \times \ln(\frac{S_{i}^{t}}{S_{i}^{o}})]$$
(11)

143
$$\Delta M_A = \sum_{i=1}^n [L(M_i^t, M_i^o) \times \ln(\frac{A_i^t}{A_i^0})]$$
(12)

Where t and 0 represent the latter and former year during the change, respectively. L is the log-average function, which satisfies:

146
$$L(M_i^t, M_i^o) = \frac{M_i^t - M_i^o}{\ln(M_i^t) - \ln(M_i^o)}, M_i^t \neq M_i^o$$
 (13)

147
$$L(M_i^t, M_i^o) = M_i^t, \ M_i^t = M_i^o$$
 (14)

148 2.3. Scenario setting

149 To estimate the potential for AU to offset the limiting effects on algae derived carbon sinks and nutrient removal by 1502030, we set a No-AU scenario based on the development characteristics of previous mariculture area growth, as well as 151four scenarios that consider the application of AU. The LMDI analysis was intended to reveal the driving factors that 152slow down the carbon sink and nutrient removal growth between 2014 and 2020. Thus, we were interested in establishing 153whether applying AU can effectively mitigate these negative factors. In the AU application scenarios, we intended to 154 calculate the minimum percentage of areas where AU application can compensate for reducing carbon sinks (nutrient 155removal). We assumed that the yield of mariculture algae can increase by a factor of μ when applying AU. Our study 156aimed to determine the minimum AU application proportions required to achieve a comparable scale of carbon sink 157 (nutrient removal) as in the No-AU scenario by 2030 in the four AU application scenarios, namely λ_1 (scenario S1), λ_2 158 (scenario S2), λ_3 (scenario S3), and λ_4 (scenario S4). Between 2021 and 2030, AU would be applied annually in $\lambda/10$ 159 of the mariculture area. The yield of mariculture algae in Shandong Province in 2030 would be $Y_{2020}(1 + \lambda \cdot \mu)$. The 160 details of the scenarios were as follows:

161 **No-AU scenario** (N1). In the No-AU scenario, the average annual change rates of the algal area between 2021 and 162 2030 remained consistent with the average change rates of the area between 2010 and 2020. The algal structure and yield 163 remain unchanged at 2020 levels.

Area constant scenario (S1). We assumed the mariculture area of algae remained at 2020 levels. The structure of algal species would be the same as for the No-AU scenario. By 2030, the algal yield would be $Y_{2020}(1 + \lambda_1 \cdot \mu)$.

Area reduction scenario (S2). There has been a noticeable decline in the mariculture area in Shandong Province since 2017. Hence, this scenario assumed that future changes in the mariculture area would maintain this trend. Specifically, the mariculture area continued to decrease between 2021 and 2030 at an average change rate to that observed between 2017 and 2020. while the algal structure would remain unchanged based on 2020 levels. By 2030, the algal yield would be $Y_{2020}(1 + \lambda_2 \cdot \mu)$.

Laver increase scenario (S3). The contribution of algae to carbon sinks and mitigation of seawater eutrophication varies with algal species (Zheng et al., 2019). The increase in the area proportion of laver will have a negative impact on the growth of carbon sinks (nutrient removal). We therefore assumed that the area proportion of laver would continue to increase by 2030, at a mean growth rate to that observed between 2010 and 2020, while the mariculture area was the same as in the No-AU scenario. By 2030, algal yield would therefore be $Y_{2020}(1 + \lambda_3 \cdot \mu)$.

Area reduction and laver increase scenario (S4). The area given over to mariculture algal growth would be consistent with scenario S2, and the algal structure would be consistent with scenario S3. We would also calculate the minimum application ratio λ_4 of AU in order to achieve a comparable scale of carbon sink (nutrient removal) as in the No-AU scenario.

180 2.4. Uncertainty and sensitivity test

In this study, we utilized a Monte Carlo simulation to estimate the uncertainties in carbon sink and nutrient removal of mariculture algae. The overall uncertainty is calculated under the 95% confidence interval around the arithmetic mean. The distribution characteristics of specific model parameters are shown in Table A1. Additionally, we performed a sensitivity test for the carbon sink and nutrient removal of mariculture algae to analyse the impact of different input parameters on the model outputs.

186 2.5. Data collection

187 We obtained data on the production and area of mariculture algae from the "Shandong Fishery Statistical Yearbook"

188 (SFSY, 2011-2021). The specific biological parameters are shown in Table 1. The main mariculture algal species in

189 Shandong Province were kelp, laver, and wakame, which together contributed approximately 90% of total production.

- 190 Therefore, in the following study, the mariculture algae in Shandong Province were divided into four categories i.e., kelp,
- 191 laver, wakame, and others.

Table 1

Biological parameters of mariculture algae (%).

Survius	Carbon content of algae	Nitrogen content of algae	Phosphorus content of algae		
Species	(w_i^c)	(w_i^N)	(w_i^P)		
Kelp	24.99	3.71	0.52		
Laver	29.09	6.30	1.00		
Wakame	30.48	5.01	0.76		
Other algae	28.19	5.01	0.76		

Notes: The C content ratio of kelp, laver, and wakame refer to Zhang et al. (2020). The C content of other algae species were taken as the mean values of kelp, laver, and wakame. The N and P content of kelp refer to Xiao et al. (2017). The N and P content of laver refer to He et al. (2008). Other algal species' N and P contents were taken as the mean values of kelp and laver.

192 Other parameters are shown in Table 2. We extract the parameters related to carbon sink formation from field studies 193and experimental data available in the literature. Consistent with the study by Yan et al. (2011), we adopt the values of 194 α and β as 0.19 and 0.05, respectively (Khailov and Burlakova, 1969; Penhale and Capone, 1981; Yoshikawa et al., 195 2001). While previous studies have considered the carbon sink formed by releasing POC and DOC (Yan et al., 2011; 196 Yang et al., 2022), field investigations have revealed that not all POC and DOC deposited on the seafloor contribute to 197 carbon sink formation (Nelson et al., 2002; Jiao et al., 2010; Baetge et al., 2020). Nilsson et al. (2018) demonstrated that 198 only 4% of the POC in the Baltic Sea was deposited on the seafloor to form carbon sinks. Chen et al. (2020) found that 199 only 1.6% of the DOC released by algae remained unaltered by microorganisms and stably persisted in seawater. Hence, we assign the values of 0.04 and 0.016 to the parameters r^{POC} and r^{DOC} , respectively. 200

201

Table 2

The mechanism parameters of carbon sink of mariculture algae.

Mechanism parameters	Values	References
α	0.19	Yoshikawa et al. (2001); Yan et al. (2011)
β	0.05	Penhale and Capone (1981); Yan et al. (2011)
$r^{ ext{POC}}$	0.04	Nilsson et al. (2018); Nelson et al. (2002)
r ^{DOC}	0.016	Jiao et al. (2010); Chen et al. (2020)

The value of the average promotion rate on yield of AU (μ) was based on previous field experiments. Fan et al. (2019) compared 60 strains of algae from the distribution area of the AU system and an area remote from the AU system. They found that AU increased the average weight per algae by approximately 109.9%. Lin et al. (2019) found that the average weight of algae in the experimental group grown around the AU area was 33.1g, while the average weight of algae in the control group grown in the natural environment was 10.1g. Based on the above findings, we took a μ of 1.1 to ensure the reliability of the prediction results.

208 **3. Results**

209 3.1. Carbon sink and nutrient removal of mariculture algae between 2010 and 2020

Between 2010 and 2020, the average annual carbon sink of mariculture algae in Shandong Province was 162.20 kt, representing 23.14% of the carbon emissions of marine fisheries in 2014 (Yue et al., 2016). The carbon sink in the algal body accounted for 98.91% of the total mariculture algae derived carbon sinks, while the carbon sink formed via releasing POC and DOC contributed only 1.09%. The proportion of carbon sinks formed by POC and DOC measured in this study was lower than in other studies due to the lower r^{POC} and r^{DOC} values utilised (Yan et al., 2011; Yang et al., 2022).

The carbon sink of mariculture algae in Shandong Province showed an increasing trend between 2010 and 2020 (Table 3), with an overall rate of 28.76%. The changes in carbon sinks may be divided into two distinct periods: from 2010 to 2014, the average annual growth rate of mariculture algae derived carbon sink was 5.98%. While the average annual growth rate between 2014 and 2020 was only 0.34%.

The N and P removal trends are similar to those observed for carbon sinks. Specifically, between 2010 and 2014, there was a significant increase in N and P removal, with a rise of 26.78% and 27.49%, respectively. In contrast, the nutrient removal by mariculture algae was relatively stable between 2014 and 2020, with a modest increase of only 4.12% and 4.85%, respectively.

223

Table 3

The carbon sink and	nutrient remova	l of mariculture	grown algae	e in Shandong	Province (kt).
The eardon binn and			B. c a.Ba		,

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Carbon sinks of algae body	134.75	129.58	145.69	151.04	169.98	170.75	173.67	170.12	172.81	172.76	173.51
Carbon sinks through POC	1.35	1.30	1.46	1.51	1.70	1.71	1.74	1.70	1.73	1.73	1.74
Carbon sinks through DOC	0.14	0.14	0.15	0.16	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Carbon sinks	136.24	131.01	147.30	152.71	171.86	172.64	175.59	172.00	174.72	174.67	175.42
Nitrogen Removal	20.50	19.76	22.28	23.09	25.99	26.12	26.79	26.31	26.94	27.18	27.06
Phosphorus Removal	2.91	2.81	3.18	3.29	3.71	3.73	3.84	3.77	3.88	3.93	3.89

224 3.2. Driving force analysis for carbon sink and nutrient removal of mariculture algae

We explored the driving factors (yield, structure, and area) leading to changes in carbon sink and nutrient removal of mariculture algae during the study period (Fig. 2). The analysis was divided into three periods: 2010-2014, 2014-2017, and 2017-2020. This division was based on the differences observed in the growth rates of carbon sinks and nutrient removal around 2014, as well as the clear downward trend in mariculture area used for algal growth since 2017.

229 Between 2010 and 2014 all three factors, i.e., yield, structure, and area, contributed to a rise in carbon sinks, resulting 230 in a 26.14% increase in the carbon sink of algae relative to 2010. The yield effect stood out as the primary cause for 231 increased carbon sinks (contributing 14.26% of the increase). Between 2014 and 2017, carbon sinks only increased by 232 0.08% based on the 2014 level, and the effect of area became the major contributor to increased carbon sinks (53.84 kt, 233 31.33%). In contrast, yield and structure showed inhibitory effects, resulting in a 21.43% and 9.82% reduction in carbon 234sinks, respectively. Between 2017 and 2020, the yield effect (40.87 kt, 23.76%) contributed positively to carbon sink 235growth, which was mostly offset by the negative effects of area (37.53 kt, 21.82%), resulting in only a slight increase in 236 algae derived carbon sinks (1.99%). Meanwhile, the structure effect had little impact on carbon sinks (0.10 kt, 0.06%). 237 The driving factors for N and P removal from mariculture algae in Shandong Province were similar to those found for 238 carbon sinks (Fig. S1).

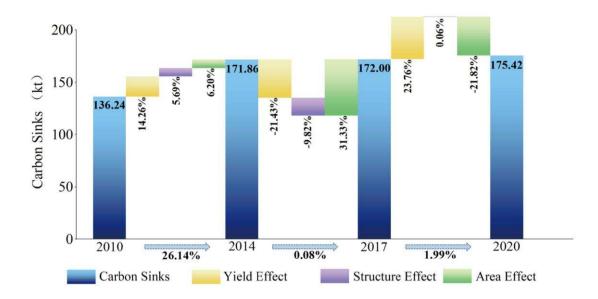


Fig. 2. Contribution of different driving factors to carbon sink changes in Shandong Province (2010-2020) (kt). The intensity effect
 (ΔI) is set to 0 and not shown in the figure.

239

242 We found driving force effects coincided with changes to the marine environment and policy adjustments. Prior to 243 2014, production, area, and yield of mariculture algae in Shandong Province grew rapidly, encouraged by policies such 244 as increased investment in marine fishery fixed assets, subsidising of fisheries diesel, and supporting fisheries resources 245 protection (Liang et al., 2018; Han and Jiang, 2019). At the end of 2016, China released the 13th Five-Year Plan of 246 National Fishery Development, which emphasized the implementation of coastal ecological protection and promoted 247 structural reform on the supply side of fisheries (Cao et al., 2017; Su et al., 2021). As a result, many policies began to 248 restrict the expansion of mariculture areas. For example, the Blue Bay Remediation Project (BBRP) was one of the major 249 marine projects in China's 13th Five-Year Plan for ecological environmental protection, with Rizhao, Yantai, Weihai, and 250 Qingdao in Shandong Province being selected as participating cities in early 2017. The project restricted or banned certain 251aquaculture activities in near-shore waters and targeted algal rafts for cleanup (Liu et al., 2019; Wang et al., 2020). In 252 addition, several ecological policies, such as the "returning ponds to natural wetlands", have been implemented in some 253 coastal aquaculture regions, leading to a significant decline in the mariculture algae area (Wang et al., 2023).

The yield effect showed a fluctuant trend between 2010 and 2020. This might be because artificial inputs and immature mariculture techniques dominated algae farming, which makes algal yield susceptible to extreme natural disasters, environmental conditions, water quality, and diseases (Zhang and Han, 2017).

The negative structural effect was primarily attributed to the increased share of laver in the mariculture area, as the carbon sink and nutrient removal per unit area of laver were less than 1/5 that of kelp and wakame. The share of laver increased from 1.34% to 11.80% during 2014-2020. The growing market demand for laver, a nutritious and healthy food (Brown et al., 2014), is causing the area of laver to expand. Meanwhile, rising seawater temperatures due to global warming have led to disease outbreaks in Jiangsu Province, China's primary laver producing area, which led to many
 mariculture companies turning to promote the cultivation and demonstration of the laver in Shandong Province (Lu et al.,
 2022).

264 3.3. Scenario analysis of the potential of AU for algae derived carbon sink and eutrophication mitigation

We conducted a scenario analysis to evaluate the extent to which AU can offset the effects of two negative factors i.e., area reduction and a more laver-oriented mariculture algal system. Fig. 3 shows the required application ratio of AU and the algal yield, structure, and area in 2030 to achieve the same carbon sink level as the No-AU scenario under different scenarios.

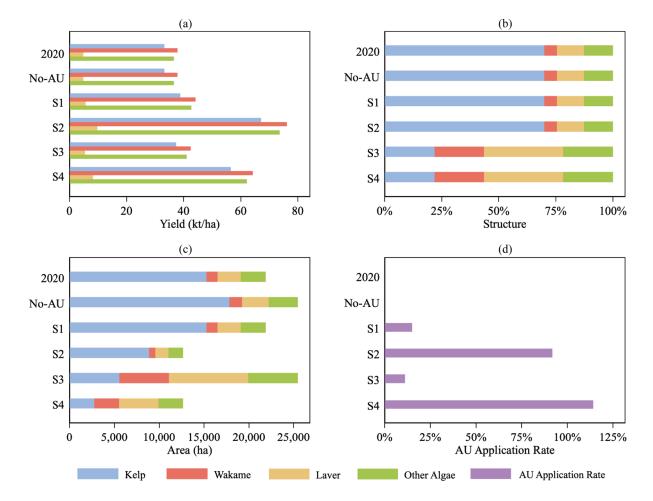


Fig. 3. Yield, structure, area, and AU application rates in 2020, and the five scenarios in 2030. The No-AU Scenario (No-AU) represents the case in which the mariculture algal area will grow at an average growth rate between 2010 and 2020, with structure and yield remaining unchanged from 2020 levels. Scenarios 1-4 (S1-S4) represent constant area scenarios, area reduction scenarios, increased laver scenario, and area reduction and laver increase scenarios, respectively.

In the No-AU scenario, the algal area will continue to increase at an average annual growth rate between 2010 and 2020, with the structure remaining consistent with the 2020 level. When no AU technology is applied, the carbon sink of 276 mariculture algae in Shandong Province will reach 204.41 kt by 2030, with corresponding N and P removal of 31.53 kt

and 4.54 kt, respectively.

Applying AU may compensate for the loss of carbon sink due to diminishing mariculture area and laver-oriented structural change. In scenario S1, where the mariculture area and structure of algae remain unchanged at 2020 levels, applying AU to 15.02% of the mariculture area was sufficient to achieve the same carbon sink level as in the No-AU scenario by 2030. However, when the mariculture area decreases at the same rate as observed between 2017 and 2020 (scenario S2), AU would need to be applied to 91.81% of the area. In scenario S3, we assumed that the mariculture algal area would maintain the same growth as for the No-AU scenario, while the proportion of laver would grow to 34.53% by 2030. In this case, applying an AU to 11.14% of the mariculture algal area would be necessary.

It is worth noting there is also a limit to the potential of AU to increase carbon sinks. AU will not fully compensate for the negative effects of continuous mariculture area decline and the increase in the proportion of laver area (scenario S4). We found that when AU was implemented across the entire mariculture area by 2030, it would compensate at most for a carbon sink reduction of 44.52% in mariculture algal area compared to 2020, assuming algal structure remained constant. Similarly, supposing the mariculture area was maintained at 2020 levels with 100% application of AU, the loss of carbon sinks would not be compensated for when the share of laver exceeded 72.57%.

Applying AU can also compensate for the reduction in N and P removal due to mitigation in algal area and an increase in the amount of laver (see Table A2). In the area reduction scenario (scenario S2), 96.23% and 95.46% of the area would require AU application to secure identical N and P removal, respectively, as for the No-AU scenario by 2030. However, the potential of AU would reach its limit when the area declined by more than 44.52% of the 2020 level. In the increased laver scenario (scenario S3), where the laver area share increased to 34.53%, AU application rates would be 3.82% and 0.08% for N and P removal, respectively. If the share of laver exceeded 78.89% and 81.58%, achieving the same N and P removal, respectively, as in the No-AU scenario then applying AU alone would no longer be feasible.

4. Discussion

299 4.1. Improving key factors that influence carbon sinks and nutrient removal

China has acknowledged the importance of ocean carbon sinks, particularly algae derived carbon sinks, in mitigating climate change (Yang et al., 2021). The country has laid out a policy system to support the development of ocean carbon sinks around the goal of carbon peak and carbon neutrality. Despite the importance of algae for increasing carbon sinks and achieving carbon neutrality, the incremental carbon sinks of algae have been limited in recent years (Gu and Yin, 2022; Wu and Li, 2022; Yang et al., 2022). In this study, we identified the main limiting factors of algae derived carbon sinks and their contributions by proposing driving factors such as yield, structure, and area. Unlike the results of previous studies (Shao et al., 2019; Ren, 2021; Yang et al., 2022), we demonstrated the importance of taking area into account as a driving force. The results showed that area was the most critical factor driving the growth of algae derived carbon sinks until 2017. However, between 2017 and 2020, decreasing area had a significant inhibitory effect on carbon sinks. Our study also revealed the negative impacts of laver expansion and unstable yields on carbon sinks. The biased mariculture algae structure of laver hindered the growth of carbon sinks, and yields that fluctuate significantly over time are less conducive to the stable enhancement of carbon sinks. We found similar conclusions regarding influencing factors for N and P removal. The findings have contributed to adjusting mariculture industry policies regarding improved area, structure, and yield to support the growth of mariculture algae derived carbon sink and nutrient removal.

314 To guarantee a steady increase in algae derived carbon sinks and nutrient removal, we propose the application of AU 315 in mariculture areas. AU provides a new impetus to the growth of algae derived carbon sinks and nutrient removal by 316 increasing yield against the negative impacts of area constraint and changes in structure changes. Our research 317 investigated the potential for AU to offset these negative effects. The results showed that enhancing carbon sink and 318 nutrient removal through AU is feasible. However, the promotion of AU also faces challenges, including its low energy 319 efficiency and high installation costs (Fan et al., 2013; Viudez et al., 2016; Qiang et al., 2018). These challenges need to 320 be considered in successful implementation of AU technology and achievement of better results in Shandong Province 321 and other coastal areas. Using clean energy to achieve self-powered AU is crucial in application of AU (Pan et al., 2018), 322 and can effectively reduce energy consumption and greenhouse gas emissions. Specifically, offshore wind, solar and tidal 323 energy can be harnessed for in-situ power generation, while wave or ocean current energy can be utilized to drive 324 upwelling and further optimize energy efficiency. Meanwhile, AU may benefit from special subsidies, tax breaks, and 325 technology research support for blue carbon. Government and market instruments can be used to provide technical and 326 financial support for AU application and promotion.

327 The yield effect was unstable between 2010 and 2020, partially due to the dominance of immature mariculture 328 techniques that make algal yield susceptible to natural disasters, environmental conditions, and disease (Zhang and Han, 329 2017). Whether AU can solve or mitigate yield fluctuation problem remains unknown. To achieve an increased and steady 330 yield, AU could combine with other farming techniques, for example: (a) use of remote sensing technology and marine 331 monitoring technology to plan cultivation sites according to required environmental conditions for the growth of different 332 algal species (Ai et al., 2023); (b) developing integrated multi-trophic aquaculture (IMTA) and using interactions between 333 aquatic plants and animals at different trophic levels to improve mariculture efficiency (Cutajar et al., 2022; Hargrave et 334 al., 2022); and (c) genetic improvements, such as developing adaptable and disease-resistant algal cultivars (Hu et al., 335 2021).

Notably, there is an upper limit to the benefits achieved through AU. Where mariculture area declines, or the proportion of laver increases, applying AU may not achieve the desired carbon sink and nutrient removal levels. Currently, mariculture grown algae in China is mainly associated with nearshore waters, and some mariculture areas have been

339 reduced or removed due to global climate change, seawater pollution, and policy requirements (Liu et al., 2019; Wang et 340 al., 2020). To solve this dilemma, focusing on pollution control and ecological restoration in the original nearshore 341 mariculture areas will help improve existing farming areas. In addition, offshore mariculture may be developed by 342 cultivating new species suitable for deep-water mariculture and developing new facilities to expand mariculture space. 343 We've also noticed farmers tend to prioritize economic value of algae over environmental function when selecting species 344 for cultivation (Zheng et al., 2019). Laver is more economically valuable and preferred by farmers, while kelp and wakame 345 have a higher carbon sink and nutrient removal rates per unit of farmed area (Ou et al., 2017). By establishing marine 346 carbon sink trading platforms, farmers can be encouraged and guided to grow more species with high carbon sinks to 347 convert algae with high carbon sink functions from resources to assets. As a result, market players who protect and restore 348 the ecological environment can receive reasonable returns.

349 4.2. Limitations

350 As with all studies of this nature there are some limitations to our work: (a) we have simplified the complexities of 351market demand on mariculture algal production. Total algae production may not increase even with productivity-352 enhancing techniques because the total demand may remain relatively constant; (b) AU works better for areas where 353 surface seawater is nutrient-poor (Fan et al., 2020). The percentage increase in acreage from AU (μ) may vary depending 354 on nutrient salt levels in different waters; (c) AU can increase carbon sink conversion efficiency by enhancing the 355 downward fluxes of POC (Baumann et al., 2021). We have not considered this effect in our projections of AU potential 356 due to a lack of robust and relevant parameters. The effect of AU may potentially increase the carbon sink formed by both 357 POC and DOC, providing an even more significant environmental benefit.

358 A point that needs to be emphasised is that as a geo-environmental project, applying AU may potentially have adverse 359 effects on the marine environment, particularly when implemented extensively in deep-sea areas (Ryan et al., 2009; Keller 360 et al., 2014; Kwiatkowski et al., 2015; Pan et al., 2016). However, in our scenario analysis, AU will be deployed in areas 361 designated for mariculture algae. Algae typically thrive in shallow coastal regions, and applying AU in these mariculture 362 algae areas away from the deep sea will not greatly impact the environment (Maruyama et al., 2004). Meanwhile, AU's 363 efficiency is also characterized by certain technical parameters, such as power demand (Pan et al., 2018). Using non-clean 364 energy-powered AU may partly offset its environmental benefits. Fortunately, recent field experiments have demonstrated 365 the feasibility of solar-powered AU (Fan et al., 2020). The energy efficiency of AU will continue to improve with the 366 development of energy management technology (Lin et al., 2019).

Our measurements of the carbon sink of mariculture algae were based on numerical models and parameters. In contrast to previous studies (Yan et al., 2011; Ren, 2021; Yang et al., 2022), our measurement of carbon sink in algae considers not only the carbon sink of the algal body but also POC and DOC, which allows us to capture the full extent of carbon

370 sequestration by the algae. In addition, the fact that only a small portion of POC and DOC contribute to the formation of 371 carbon sink is also considered (Nelson et al., 2002; Nilsson et al., 2018; Chen et al., 2020). We further analysed the 372 sensitivity of our results to the parameters r^{POC} , r^{DOC} , α , and β to test the robustness of our results. The detailed 373 results of the sensitivity test are shown in Table A3. The results showed that the carbon sink of mariculture algae will 374 increase by 0.018% to 0.129% in 2020 if the mechanism parameters were increased by 10%. We also estimated the 375 uncertainties of model parameters using Monte Carlo simulation methods. The uncertainty ranges of the carbon sink of 376 mariculture algae between 2010 and 2020 are presented in Fig. A.2. The uncertainty of carbon sinks (expressed as relative 377 standard deviation (RSD) that equals the standard deviation divided by the mean) ranged from 7.64% to 9.63%, indicating 378 that the results were reliable. However, the N and P removal uncertainties were relatively high, ranging from 21.31% to 379 26.56%, and 27.90% to 35.13%, respectively, which was due to the lack of precision and relatively large standard 380 deviation in the results of existing studies regarding the measurement of algal N and P content.

381 **5.** Conclusions

382 This study focused on exploring the potential of AU to enhance algae derived carbon sink and mitigate eutrophication 383 in the face of continued mariculture area degradation and undesired structural change. The limited growth of the 384 mariculture algae area in Shandong Province, China, and the more intensive cultivation of laver in the limited area has 385 resulted in minimal improvements in carbon sinks and nutrient removal levels since 2014. Our findings indicated that 386 applying AU could effectively compensate for the loss of carbon sink and nutrient removal caused by the decrease of 387 mariculture area or the increase of the laver share. Meanwhile, we observed that the potential for AU to achieve these 388 benefits has upper limits. It is worth mentioning that scenario analysis cannot calculate future carbon sinks and nutrient 389 removal accurately, but rather reflects a promising technical pathway for improving algae derived carbon sinks and 390 nutrient removal in the face of shrinking mariculture areas and suboptimal species selection. Further research could 391 investigate the implication of other potential variables, such as the intensity effect changes over time and AU energy 392 efficiency on the carbon sink and nutrient removal potential.

393 **CRediT authorship contribution statement**

Chunlei Shen: Conceptualization, Writing – original draft, Investigation, Formal analysis. Xinya Hao:
 Conceptualization, Methodology, Software, Writing – review & editing. Dong An: Investigation, Data curation. Martin
 R. Tillotson: Writing – original draft, Writing – review & editing. Lin Yang: Conceptualization, Supervision,
 Investigation, Funding acquisition. Xu Zhao: Conceptualization, Writing – review & editing, Methodology, Funding
 acquisition.

Declaration of competing interest

- 400 The authors declare that they have no known competing financial interests or personal relationships that could have
- 401 appeared to influence the work reported in this paper.

402 Acknowledgements

- 403 This work was supported by the Major Project of National Social Science Foundation of China (No. 20&ZD100), the
- 404 National Natural Science Foundation of China (No. 72074136).

405 **References**

- 406 Ahmed, N., Bunting, S.W., Glaser, M., Flaherty, M.S., Diana, J.S., 2017. Can greening of aquaculture sequester blue carbon? Ambio
- 407 46, 468-477. https://doi.org/10.1007/s13280-016-0849-7.
- 408 Ai, B., Wang, P.P., Yang, Z.Y., Tian, Y.X., Liu, D.D., 2023. Spatiotemporal dynamics analysis of aquaculture zones and its impact on
- 409 green tide disaster in Haizhou Bay, China. Mar. Environ. Res. 183, 105825. https://doi.org/10.1016/j.marenvres.2022.105825.
- 410 Alvera-Azcárate, A., Ferreira, J.G., Nunes, J.P., 2003. Modelling eutrophication in mesotidal and macrotidal estuaries. The role of
- 411 intertidal seaweeds. Estuar. Coast. Shelf Sci. 57, 715-724. https://doi.org/10.1016/S0272-7714(02)00413-4.
- 412 Ang, B.W., 2004. Decomposition analysis for policy making in energy: which is the preferred method? Energy Pol. 32, 1131e1139.
- 413 https://doi.org/10.1016/s0301-4215(03)00076-4.
- 414 Aure, J., Strand, O., Erga, S.R., Strohmeier, T., 2007. Primary production enhancement by artificial upwelling in a western Norwegian
- 415 fjord. Mar. Ecol. Prog. Ser. 352, 39-52. https://doi.org/10.3354/meps07139.
- 416 Baetge, N., Graff, J. R., Behrenfeld, M. J., & Carlson, C. A. (2020). Net community production, dissolved organic carbon accumulation,
- 417 and vertical export in the western North Atlantic. Front. Mar. Sci. 7, 227. https://doi.org/10.3389/fmars.2020.00227.
- 418 Baumann, M., Taucher, J., Paul, A.J., Heinemann, M., Vanharanta, M., Bach, L.T., Spilling, K., Ortiz, J., Arístegui, J., Hernández-
- 419 Hernández, N., Baños, I., Riebesell, U., 2021. Effect of intensity and mode of artificial upwelling on particle flux and carbon export.
- 420 Front. Mar. Sci. 8, https://doi.org/10.3389/fmars.2021.742142.
- 421 Bolton, C.T., Stoll, H.M., 2013. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558-562.
- 422 https://doi.org/10.1038/nature12448.

- 423 Brown, E.M., Allsopp, P.J., Magee, P.J., Gill, C.I.R., Nitecki, S., Strain, C.R., McSorley, E.M., 2014. Seaweed and human health. Nutr.
- 424 Rev. 72, 205-216. https://doi.org/10.1111/nure.12091.
- 425 Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M.C., Pereda, S.V., Luis Gomez-Pinchetti, J.,
- 426 Golberg, A., Tadmor-Shalev, N., Critchley, A.T., 2017. Seaweed production: overview of the global state of exploitation, farming
- 427 and emerging research activity. Eur. J. Phycol. 52, 391-406. https://doi.org/10.1080/09670262.2017.1365175.
- 428 Cao, L., Chen, Y., Dong, S., Hanson, A., Huang, B., Leadbitter, D., Little, D.C., Pikitch, E.K., Qiu, Y., de Mitcheson, Y.S., Sumaila,
- 429 U.R., Williams, M., Xue, G., Ye, Y., Zhang, W., Zhou, Y., Zhuang, P., Naylor, R.L., 2017. Opportunity for marine fisheries
- 430 reform in China. Proc. Natl. Acad. Sci. U. S. A. 114, 435-442. https://doi.org/10.1073/pnas.1616583114.
- 431 Chen, J., Li, H.M., Zhang, Z.H., He, C., Shi, Q., Jiao, N.Z., Zhang, Y.Y., 2020. DOC dynamics and bacterial community succession
- 432 during long-term degradation of *Ulva prolifera* and their implications for the legacy effect of green tides on refractory DOC pool in
- 433 seawater. Water Res. 185, 116268. https://doi.org/10.1016/j.watres.2020.116268.
- 434 Cutajar, K., Falconer, L., Massa-Gallucci, A., Cox, R.E., Schenke, L., Bardócz, T., Sharman, A., Deguara, S., Telfer, T.C., 2022.
- 435 Culturing the sea cucumber *Holothuria poli* in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm.
- 436 Aquaculture 550, 737881. https://doi.org/10.1016/j.aquaculture.2021.737881.
- 437 Fan, W., Chen, J.W., Pan, Y.W., Huang, H.C., Chen, C.-T.A., Chen, Y., 2013. Experimental study on the performance of an air-lift
- 438 pump for artificial upwelling. Ocean Eng. 59, 47-57. https://doi.org/10.1016/j.oceaneng.2012.11.014.
- 439 Fan, W., Zhang, Z.J., Yao, Z.Z., Xiao, C.B., Zhang, Y., Zhang, Y.Y., Liu, J.H., Di, Y.N., Chen, Y., Pan, Y.W., 2020. A sea trial of
- 440 enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean
- 441 Res. 101, 102260. https://doi.org/10.1016/j.apor.2020.102260.
- 442 Fan, W., Zhao, R.L., Z., Y.Z., B., X.C., Pan, Y.W., Chen, Y., Jiao, N.Z., Zhang, Y., 2019. Nutrient removal from Chinese coastal
- 443 waters by large-scale seaweed aquaculture using artificial upwelling. Water 11, 1754. https://doi.org/10.3390/w11091754.
- 444 FAO. 2022. The State of World fisheries and aquaculture 2022. Towards Blue Transformation. Rome.
- 445 https://doi.org/10.4060/cc0461en.

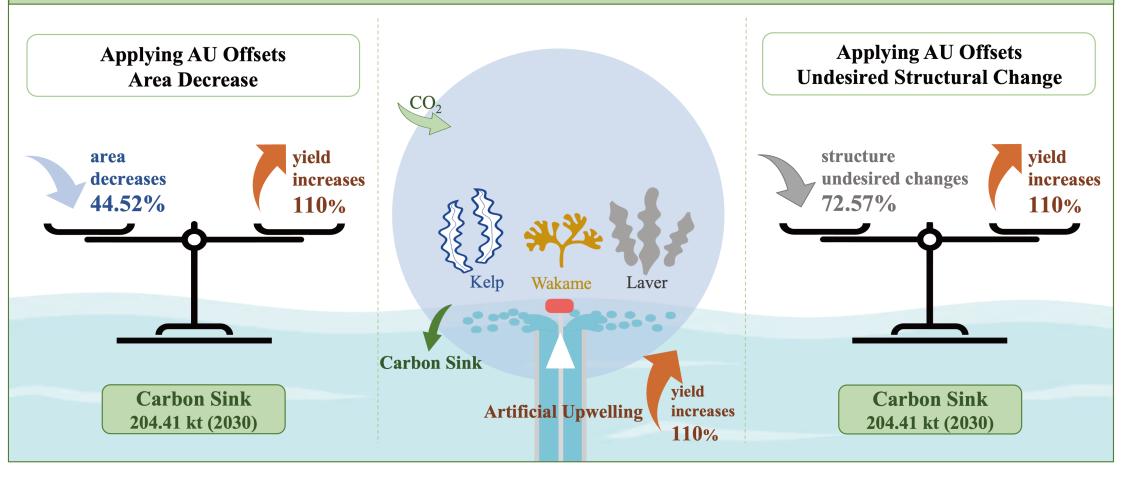
- 446 Fei, X.G., 2004. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512, 145-151.
- 447 https://doi.org/10.1023/B:HYDR.0000020320.68331.ce.
- Filbee-Dexter, K., Wernberg, T., 2018. Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68, 64-76.
 https://doi.org/10.1093/biosci/bix147.
- 450 Gao, K., McKinley, K.R., 1994. Use of macroalgae for marine biomass production and CO₂ remediation: a review. J. Appl. Phycol. 6,
- 451 45-60. https://doi.org/10.1007/BF02185904.
- 452 Gao, Y.P., Zhang, Y.T., Du, M.R., Lin, F., Jiang, W.W., Li, W.H., Li, F.X., Lv, X.N., Fang, J.H., Jiang, Z.J., 2021. Dissolved organic
- 453 carbon from cultured kelp Saccharina japonica: production, bioavailability, and bacterial degradation rates. Aquac. Environ.
- 454 Interact. 13, 101-110. https://doi.org/10.3354/aei00393.
- 455 Gómez-Letona, M., Sebastián, M., Baños, I., Fernanda Montero, M., Pérez Barrancos, C., Baumann, M., Riebesell, U., Arístegui, J.,
- 456 2022. The importance of the dissolved organic matter pool for the carbon sequestration potential of artificial upwelling. Front. Mar.
- 457 Sci. 9, 969714. https://doi.org/10.3389/fmars.2022.969714.
- 458 Gu, H.L., Yin, K.D., 2022. Forecasting algae and shellfish carbon sink capability on fractional order accumulation grey model. Math.
- 459 Biosci. Eng 19, 5409-5427. https://doi.org/10.3934/mbe.2022254.
- 460 Han, H., Jiang, Y., 2019. The evolution of mariculture structures and environmental effects in China. J. Coastal Res. 83, 155-166.
- 461 https://doi.org/10.2112/SI83-024.1.
- 462 Hargrave, M.S.S., Nylund, G.M.M., Enge, S., Pavia, H., 2022. Co-cultivation with blue mussels increases yield and biomass quality
- 463 of kelp. Aquaculture 550, 737832. https://doi.org/10.1016/j.aquaculture.2021.737832.
- 464 He, P.M., Xu, S.N., Zhang, H.Y., Wen, S.S., Dai, Y.J., Lin, S.J., Yarish, C., 2008. Bioremediation efficiency in the removal of dissolved
- inorganic nutrients by the red seaweed, *Porphyra yezoensis*, cultivated in the open sea. Water Res. 42, 1281-1289.
 https://doi.org/10.1016/j.watres.2007.09.023.
- 467 Hu, Z.M., Shan, T.F., Zhang, J., Zhang, Q.S., Critchley, A.T., Choi, H.G., Yotsukura, N., Liu, F.L., Duan, D.L., 2021. Kelp aquaculture
- 468 in China: a retrospective and future prospects. Rev. Aquacult. 13, 1324-1351. https://doi.org/10.1111/raq.12524.

- 469 IPCC (Intergovernmental Panel on Climate Change), 2019. Special report on the ocean and cryosphere in a changing climate.
- 470 Technical Report. https://www.ipcc.ch/srocc/.
- 471 Jiang, Z.B., Liu, J.J., Li, S.L., Chen, Y.Y., Du, P., Zhu, Y.L., Liao, Y.B., Chen, Q.Z., Shou, L., Yan, X.J., Zeng, J.N., Chen, J.F., 2020.
- 472 Kelp cultivation effectively improves water quality and regulates phytoplankton community in a turbid, highly eutrophic bay. Sci.
- 473 Total Environ. 707, 135561. https://doi.org/10.1016/j.scitotenv.2019.135561.
- 474 Jiao, N.Z., Herndl, G.J., Hansell, D.A., Benner, R., Kattner, G., Wilhelm, S.W., Kirchman, D.L., Weinbauer, M.G., Luo, T.W., Chen,
- 475 F., Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat.
- 476 Rev. Microbiol. 8, 593-599. https://doi.org/10.1038/nrmicro2386.
- 477 Jiao, N.Z., Wang, H., Xu, G., Aricò, S., 2018. Blue carbon on the rise: challenges and opportunities. Natl. Sci. Rev. 5, 464-468.
- 478 https://doi.org/10.1093/nsr/nwy030.
- 479 Jiao, Y.N., Yang, L.P., Kong, Z.Q., Shao, L.J., Wang, G.L., Ren, X.F., Liu, Y.J., 2021. Evaluation of trace metals and rare earth
- 480 elements in mantis shrimp *Oratosquilla oratoria* collected from Shandong Province, China, and its potential risks to human health.
- 481 Mar. Pollut. Bull. 162, 111815. https://doi.org/10.1016/j.marpolbul.2020.111815.
- 482 Jouffray, J.B., Blasiak, R., Norstrom, A.V., Österblom, H., Nyström, M., 2020. The blue acceleration: the trajectory of human
- 483 expansion into the ocean. One Earth 2, 43-54. https://doi.org/10.1016/j.oneear.2019.12.016.
- 484 Keller, D.P., Feng, E.Y., Oschlies, A., 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide-
- 485 emission scenario. Nat. Commun. 5, 3303. https://doi.org/10.1038/ncomms4304.
- 486 Khailov, K.M., Burlakova, Z.P., 1969. Release of dissolved organic matter by marine seaweeds and distribution of their total organic
- 487 production to inshore communities. Limnol. Oceanogr. 14, 521-527. https://doi.org/10.4319/lo.1969.14.4.0521.
- 488 Krause-Jensen, D., Duarte, C.M., 2016. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737-742.
- 489 https://doi.org/10.1038/ngeo2790.
- 490 Kwiatkowski, L., Ricke, K.L., Caldeira, K., 2015. Atmospheric consequences of disruption of the ocean thermocline. Environ. Res.
- 491 Lett. 10, 034016. https://doi.org/10.1088/1748-9326/10/3/034016.

- 492 Liang, Y.X., Cheng, X.W., Zhu, H., Shutes, B., Yan, B.X., Zhou, Q.W., Yu, X.F., 2018. Historical evolution of mariculture in China
- 493 during past 40 years and its impacts on eco-environment. Chin. Geogra. Sci. 28, 363-373. https://doi.org/10.1007/s11769-018-0940-494 Z.
- 495 Lin, T.C., Fan, W., Xiao, C.B., Yao, Z.Z., Zhang, Z.J., Zhao, R.L., Pan, Y.W., Chen, Y., 2019. Energy management and operational
- 496 planning of an ecological engineering for carbon sequestration in coastal mariculture environments in China. Sustainability 11, 3162.
- 497 https://doi.org/10.3390/su11113162.
- 498 Liu, F.L., Liang, Z.R., Zhang, P.Y., Wang, W.J., Sun, X.T., Wang, F.J., Yuan, Y.M., 2019. Preliminary discussion on the development 499
- of Saccharina japonica offshore aquaculture in China. Prog. Fish. Sci. 40 (in Chinese), 161-166.
- 500 Lovelock, J.E., Rapley, C.G., 2007. Ocean pipes could help the Earth to cure itself. Nature 449, 403. https://doi.org/10.1038/449403a.
- 501 Lu, F., Zhan, D.M., Ding, G., Liu, W., Tang, L.Q., Wu, H.Y., 2022. Effects of Nitrogen and Phosphorus Enrichment on Growth and
- 502 Nutritional Components of Pyropia haitanensis in Changdao, Shandong Province. Guangxi Sci. 29 (in Chinese), 168-175.
- 503 Ma, C., Stern, D. I., 2008. China's changing energy intensity trend: A decomposition analysis. Energy Econ., 30(3), 1037-1053.
- 504 https://doi.org/10.1016/j.eneco.2007.05.005.
- 505 Maruyama, S., Tsubaki, K., Taira, K., Sakai, S., 2004. Artificial upwelling of deep seawater using the perpetual salt fountain for
- 506 cultivation of ocean desert. J. Oceanogr. 60, 563-568. https://doi.org/10.1023/b:Joce.0000038349.56399.09.
- 507McClimans, T.A., Handå, A., Fredheim, A., Lien, E., Reitan, K.I., 2010. Controlled artificial upwelling in a fjord to stimulate non-
- 508 toxic algae. Aquacult. Eng. 42, 140-147. https://doi.org/10.1016/j.aquaeng.2010.02.002.
- 509 NASEM (National Academies of Sciences, Engineering, and Medicine), 2022. A research strategy for ocean-based carbon dioxide
- 510 removal and sequestration. Washington, DC: The National Academies Press. https://doi.org/10.17226/26278.
- 511 Nelson, D. M., Anderson, R. F., Barber, R. T., Brzezinski, M. A., Buesseler, K. O., Chase, Z., Collier, R. W., Dickson, M. L., Francois,
- 512 R., Hiscock, M. R., Honjo, S., Marra, J., Martin, W. R., Sambrotto, R. N., Sayles, F. L., Sigmon, D. E., 2002. Vertical budgets for
- 513 organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998. Deep-Sea Research Part II 49, 1645-
- 514 1674. https://doi.org/10.1016/s0967-0645(02)00005-x.

- 515 Nilsson, M.M., Kononets, M., Ekeroth, N., Viktorsson, L., Hylén, A., Sommer, S., Pfannkuche, O., Almroth-Rosell, E., Atamanchuk,
- 516 D., Andersson, J.H., Roos, P., Tengberg, A., Hall, P.O.J., 2018. Organic carbon recycling in Baltic Sea sediments An integrated
- estimate on the system scale based on in situ measurements. Mar. Chem. 209, 81-93. https://doi.org/10.1016/j.marchem.2018.11.004.
- 518 Nzudie, H. L. F., Zhao, X., Liu, G., Tillotson, M. R., Hou, S., Li, Y., 2021. Driving force analysis for food loss changes in Cameroon.
- 519 J. Clean Prod. 278, 123892. https://doi.org/10.1016/j.jclepro.2020.123892.
- 520 Ortiz, J., Aristegui, J., Hernandez-Hernandez, N., Fernandez-Mendez, M., Riebesell, U., 2022. Oligotrophic phytoplankton community
- 521 effectively adjusts to artificial upwelling regardless of intensity, but differently among upwelling modes. Front. Mar. Sci. 9,
- 522 https://doi.org/10.3389/fmars.2022.880550.
- 523 Oschlies, A., Pahlow, M., Yool, A., Matear, R.J., 2010. Climate engineering by artificial ocean upwelling: Channeling the sorcerer's
- 524 apprentice. Geophys. Res. Lett. 37, L04701. https://doi.org/10.1029/2009gl041961.
- 525 Ou, G., Wang, X., Yang, A., Ke, A., Guan, W., 2017. Interspecific differences in the carbon sink capacity of macroalgae. Journal of
- 526 Zhejiang Agricultural Sciences 58 (in Chinese), 1436-1439+1443. https://doi.org/10.16178/j.issn.0528-9017.20170843.
- 527 Pan, Y.W., Fan, W., Huang, T.-H., Wang, S.-L., Chen, C.-T.A., 2015. Evaluation of the sinks and sources of atmospheric CO₂ by
- 528 artificial upwelling. Sci. Total Environ. 511, 692-702. https://doi.org/10.1016/j.scitotenv.2014.11.060.
- 529 Pan, Y. W., Wei, F., Zhang, D. H., Chen, J. W., Huang, H. C., Liu, S. X., Jiang, Z. P., Di, Y. N., Tong, M. M., Chen, Y., 2016. Research
- progress in artificial upwelling and its potential environmental effects. Sci. China-Earth Sci. 59, 236-248.
 https://doi.org/10.1007/s11430-015-5195-2.
- 532 Pan, Y.W., You, L., Li, Y., Fan, W., Chen, C.-T.A., Wang, B.-J., Chen, Y., 2018. Achieving highly efficient atmospheric CO₂ uptake
- 533 by artificial upwelling. Sustainability 10, 664. https://doi.org/10.3390/su10030664.
- 534 Pan, Z., Gao, Q.F., Dong, S.L., Wang, F., Jiang, X.Y., Zhang, G., Zhao, K., 2019. Remineralization and preservation of sedimentary
- 535 organic carbon, and authigenic mineral formation in Alian Bay and its adjacent areas, China: Implication for the influence of abalone
- 536 (Haliotis discus hannai Ino) and kelp (Saccharina japonica) mariculture. Aquaculture 507, 301-312.
- 537 https://doi.org/10.1016/j.aquaculture.2019.04.051.

- 538 Penhale, P.A., Capone, D.G., 1981. Primary productivity and nitrogen fixation in two macroalgae-cyanobacteria associations. Bull.
- 539 Mar. Sci. 31, 164-169.
- 540 Qiang, Y.F., Fan, W., Xiao, C.B., Pan, Y.W., Chen, Y., 2018. Effects of operating parameters and injection method on the performance
- of an artificial upwelling by using airlift pump. Appl. Ocean Res. 78, 212-222. https://doi.org/10.1016/j.apor.2018.06.006.
- 542 Ren, W.H., 2021. Study on the removable carbon sink estimation and decomposition of influencing factors of mariculture shellfish and
- 543 algae in China a two-dimensional perspective based on scale and structure. Environ. Sci. Pollut. Res. 28, 21528-21539.
- 544 https://doi.org/10.1007/s11356-020-11997-1.
- 545 Ryan, J.P., Fischer, A.M., Kudela, R.M., Gower, J.F.R., King, S.A., Marin, R., III, Chavez, F.P., 2009. Influences of upwelling and
- 546 downwelling winds on red tide bloom dynamics in Monterey Bay, California. Cont. Shelf Res. 29, 785-795.
- 547 https://doi.org/10.1016/j.csr.2008.11.006.
- 548 SFSY (Shandong Fishery Statistical Yearbook), 2011-2021. Shandong Provincial Department of Ocean and Fisheries, Jinan 2011549 2021.
- 550 Shao, G.L., Liu, B., Li, C., 2019. Evaluation of carbon dioxide capacity and the effects of decomposition and spatio-temporal
- differentiation of seawater in China's main sea area based on panel data from 9 coastal provinces in China. Acta Ecol. Sin. 39 (in
- 552 Chinese with English abstract), 2614-2625.
- 553 Sinha, R., Thomas, J.B.E., Strand, A., Soderqvist, T., Stadmark, J., Franzen, F., Ingmansson, I., Grondahl, F., Hasselstrom, L., 2022.
- 554 Quantifying nutrient recovery by element flow analysis: Harvest and use of seven marine biomasses to close N and P loops. Resour.
- 555 Conserv. Recycl. 178, 1106031. https://doi.org/10.1016/j.resconrec.2021.106031.
- 556 Smith, S.V., 1981. Marine macrophytes as a global carbon sink. Science 211, 838-840. https://doi.org/10.1126/science.211.4484.838.
- 557 Su, M., Wang, L.L., Xiang, J.H., Ma, Y.X., 2021. Adjustment trend of China's marine fishery policy since 2011. Mar. Pol. 124, 104322.
- 558 https://doi.org/https://doi.org/10.1016/j.marpol.2020.104322.
- 559 Tang, Q.S., Zhang, J.H., Fang, J.G., 2011. Shellfish and seaweed mariculture increase atmospheric CO₂ absorption by coastal
- 560 ecosystems. Mar. Ecol. Prog. Ser. 424, 97-104. https://doi.org/10.3354/meps08979.


- 561 Tsai, D.D.-W., Chen, P.H., Ramaraj, R., 2017. The potential of carbon dioxide capture and sequestration with algae. Ecol. Eng. 98, 17-
- 562 23. https://doi.org/10.1016/j.ecoleng.2016.10.049.
- 563 Tyler, A.C., McGlathery, K.J., 2006. Uptake and release of nitrogen by the macroalgae *Gracilaria vermiculophylla* (Rhodophyta). J.
- 564 Phycol. 42, 515-525. https://doi.org/10.1111/j.1529-8817.2006.00224.x.
- 565 Viudez, A., Balsells, M.F.P., Rodriguez-Marroyo, R., 2016. Artificial upwelling using offshore wind energy for mariculture
- 566 applications. Sci. Mar. 80, 235-248. https://doi.org/10.3989/scimar.04297.06B.
- 567 Wang, C., Chen, J. N., Zou, J., 2005. Decomposition of energy-related CO₂ emission in China: 1957-2000. Energy 30, 73-83.
- 568 https://doi.org/10.1016/j.energy.2004.04.002.
- 569 Wang, M., Mao, D., Xiao, X., Song, K., Jia, M., Ren, C., Wang, Z., 2023. Interannual changes of coastal aquaculture ponds in China
- 570 at 10-m spatial resolution during 2016–2021. Remote Sens. Environ. 284, 113347.
- 571 https://doi.org/https://doi.org/10.1016/j.rse.2022.113347.
- 572 Wang, M.Q., Wang, X.H., Zhou, R., Zhang, Z.P., 2020. An indicator framework to evaluate the Blue Bay Remediation Project in
- 573 China. Reg. Stud. Mar. Sci. 38, 101349. https://doi.org/10.1016/j.rsma.2020.101349.
- 574 Watanabe, K., Yoshida, G., Hori, M., Umezawa, Y., Moki, H., Kuwae, T., 2020. Macroalgal metabolism and lateral carbon flows can
- 575 create significant carbon sinks. Biogeosciences 17, 2425-2440. https://doi.org/10.5194/bg-17-2425-2020.
- 576 Weigel, B.L., Pfister, C.A., 2021. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, e03221.
- 577 https://doi.org/https://doi.org/10.1002/ecy.3221.
- 578 Wu, H.L., Kim, J.K., Huo, Y.Z., Zhang, J.H., He, P.M., 2017. Nutrient removal ability of seaweeds on *Pyropia yezoensis* aquaculture
- rafts in China's radial sandbanks. Aquat. Bot. 137, 72-79. https://doi.org/10.1016/j.aquabot.2016.11.011.
- 580 Wu, J.H., Li, B., 2022. Spatio-temporal evolutionary characteristics of carbon emissions and carbon sinks of marine industry in China
- and their time-dependent models. Mar. Policy 135, 104879. https://doi.org/10.1016/j.marpol.2021.104879.
- 582 Xiao, X., Agusti, S., Lin, F., Li, K., Pan, Y.R., Yu, Y., Zheng, Y.H., Wu, J.P., Duarte, C.M., 2017. Nutrient removal from Chinese
- 583 coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613. https://doi.org/10.1038/srep46613.

- 584 Yan, L.W., Hang, H.J., Chen, J.T., Yan Yang, X.G., 2011. Estimation of carbon sink capacity of algal mariculture in the coastal areas
- 585 of China. Adv. Mar. Sci. 29 (in Chinese with English abstract), 537-545.
- 586 Yang, Y., Chai, Z., Wang, Q., Chen, W., He, Z., Jiang, S., 2015. Cultivation of seaweed *Gracilaria* in Chinese coastal waters and its
- 587 contribution to environmental improvements. Algal Res. 9, 236-244. https://doi.org/10.1016/j.algal.2015.03.017.
- 588 Yang, Y.F., Luo, H.T., Wang, Q., He, Z.L., Long, A.M., 2021. Large-scale cultivation of seaweed is effective approach to increase
- 589 marine carbon sequestration and solve coastal environmental problems. Bull Chin. Acad. Sci. 36 (in Chinese with English abstract),
- 590 259-269. https://doi.org/10.16418/j.issn.1000-3045.20210217103.
- 591 Yang, L., Hao, X.Y., Shen, C.L., An, D., 2022. Assessment of carbon sink capacity and potential of marine fisheries in China under
- the carbon neutrality target. Resour. Sci. 44 (in Chinese with English abstract), 716-729. https://doi.org/10.18402/resci.2022.04.06.
- 593 Yoshikawa, T., Takeuchi, I., Furuya, K., 2001. Active erosion of Undaria pinnatifida Suringar (Laminariales, Phaeophyceae) mass-
- cultured in otsuchi bay in northeastern Japan. J. Exp. Mar. Biol. Ecol. 266, 51-65. https://doi.org/10.1016/s0022-0981(01)00346-x.
- 595 Yue, D.D., Wang, L.M., Fang, H., Geng, R., Zhao, P.F., Xiong, M.S., Wang, Q., Zhou, Y.S., Xiao, L., 2016. Development Strategy of
- 596 Marine Fisheries in China Based on the Carbon Balance. J. Agric. Sci. Technol. 18 (in Chinese with English abstract), 1-8.
- 597 https://doi.org/10.13304/j.nykjdb.2015.695.
- 598 Zhang, J.F., Cai, H.J., Zhao, Y.R., Chen, W.H., Hu, S.Q., Liu, Y., Liu, C.F., 2020. Seasonal variation in the total organic carbon
- 599 contents and the δ^{13} C values of macroalgae in the rocky intertidal zone of the Zhangzi island. Mar. Sci. 44 (in Chinese), 56-65.
- 600 Zhang, L.T., Han, L.M., 2017. The problems and policy recommendations on the development of Chinese seaweed industry. Chin.
- 601 Fish. Econ. 35 (in Chinese), 89-95.
- Zhao, X., Tillotson, M.R., Liu, Y.W., Guo, W., Yang, A.H., Li, Y.F., 2017. Index decomposition analysis of urban crop water footprint.
 Ecol. Model. 348, 25e32. https://doi.org/10.1016/j.ecolmodel.2017.01.006.
- 604 Zhao, Y.Z., Li, Y.F., Wang, X.W., 2022. The land-sea system dynamics model with shared socioeconomic pathways can identify the
- 605 gaps in achieving Sustainable Development Goal 14. Resour. Conserv. Recycl. 181, 106257.
- 606 https://doi.org/10.1016/j.resconrec.2022.106257.

- 607 Zheng, Y.H., Jin, R.J., Zhang, X.J., Wang, Q.X., Wu, J.P., 2019. The considerable environmental benefits of seaweed aquaculture in
- 608 China. Stochastic Environ. Res. Risk Assess. 33, 1203-1221. https://doi.org/10.1007/s00477-019-01685-z.
- Collmann, M., Traugott, H., Chemodanov, A., Liberzon, A., Golberg, A., 2019. Deep water nutrient supply for an offshore Ulva sp.
- 610 cultivation project in the Eastern Mediterranean Sea: Experimental simulation and modeling. Bioenergy Res. 12, 1113-1126.
- 611 https://doi.org/10.1007/s12155-019-10036-3.

Graphical Abstract

Unraveling the potential of artificial upwelling (AU) for algae derived carbon sink and eutrophication mitigation

Highlights

- Artificial upwelling shows potential for algae carbon sink and nutrient removal.
- Algae carbon sink and nutrient removal are limited by area and algal species.
- Artificial upwelling offsets adverse factors by boosting yield.
- Artificial upwelling has limitations in offsetting loss.

1	Unveiling the potential for artificial upwelling in algae derived carbon sink and
2	nutrient mitigation
3	Chunlei Shen ^a , Xinya Hao ^b , Dong An ^{a, c} , Martin R. Tillotson ^d , Lin Yang ^{a, *} , Xu Zhao ^{e, *}
4	^a School of Business, Shandong University, Weihai 264209, China
5 6	^b School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, Hong Kong Special Administrative Region of China
7	^c School of Bohai, Hebei Agricultural University, Baoding 071000, China
8	^d School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
9	^e Institute of Blue and Green Development, Shandong University, Weihai 264209, China
10	Abstract: Mariculture algae may present a crucial part of ocean-based solutions for climate change, with the ability to
11	sequester carbon and remove nutrients. However, the expansion of mariculture algae faces multiple challenges. Here, we
12	measure the changes in algae derived carbon sinks and nitrogen (N) and phosphorus (P) removal between 2010 and 2020
13	in Shandong Province, China. We further identify the key driving factors, namely area, algal species proportion, and yield,
14	that influence the changes. The results show that algae derived carbon sinks and nutrient removal growth rates in
15	Shandong Province have slowed significantly since 2014, mainly due to area limitations, laver-oriented species change,
16	and unstable yields. Artificial upwelling (AU) has the potential to enhance the yield and subsequently offset the loss of
17	carbon sinks and nutrient removal caused by negative driving factors. Scenario analysis indicates that a complete
18	deployment of AU by 2030 will offset up to a 44.52% decrease in the mariculture algae area, or a 72.57% increase in the
19	laver share of the algal species combination compared to 2020. Similar conclusions are reached regarding the role of AU
20	in N and P removal. This study also identifies ancillary challenges such as low energy efficiency and high costs faced by
21	applying AU.

^{*}

Corresponding authors. *E-mail addresses*: yanglin2128@126.com (L. Yang), xuzhao@sdu.edu.cn (X. Zhao).

22 Keywords: Artificial upwelling; Carbon sink; Mariculture algae; Nutrient removal; Scenario analysis

23 Highlights

- Artificial upwelling shows potential for algae carbon sink and nutrient removal.
- Algae carbon sink and nutrient removal are limited by area and algal species.
- Artificial upwelling offsets adverse factors by boosting yield.
- Artificial upwelling has limitations in offsetting loss.

28 **1. Introduction**

Mariculture algae is an important component of marine ecosystems, and may deliver both economic and environmental benefits. As the fourth species of blue carbon (IPCC, 2019), mariculture algae has been recognized as having capacity to act as a carbon sink (Bolton and Stoll, 2013; Ahmed et al., 2017; Tsai et al., 2017; NASEM, 2021). Harvesting of algae can also remove nitrogen (N) and phosphorus (P) from coastal waters (Alvera-Azcarate et al., 2003; Fei, 2004; He et al., 2008; Xiao et al., 2017; Sinha et al., 2022), and has been proposed as an effective ecological restoration tool to control eutrophication (Yang et al., 2015; Buschmann et al., 2017; Jiang et al., 2020). Further research is required on how to fully exploit the function of mariculture algae in addressing climate change and marine pollution.

36 China leads the world in the production of mariculture algae (FAO, 2022), and has implemented a number of initiatives 37 to promote the development of algae derived carbon sinks (Jiao et al., 2018; Yang et al., 2021). Many scholars have found 38 an increase in the carbon sink of algae between 2010 and 2015 (Shao et al., 2019; Yang et al., 2022). These studies 39 recognize the major contribution of increased algae production to carbon sinks compared to the more limited effects of 40 algal species (Ren, 2021). Similar conclusions may be drawn for nitrogen and phosphorus removal by algae (Xiao et al., 41 2017). However, algae derived carbon sink development has slowed in several of China's coastal provinces, despite the 42 growth of carbon sinks between 2010 and 2015 (Gu and Yin, 2022; Wu and Li, 2022; Yang et al., 2022). This decrease 43 in production growth has led to a significant slowdown in the growth of carbon sinks, which also affects the function of 44 algae in nutrient removal (Wu et al., 2017). Indeed, recent ocean warming, coastal pollution, competition for space, and 45 ecological policies to control eutrophication have limited the expansion of mariculture algae production (Filbee-Dexter 46 and Wernberg, 2018; Jouffray et al., 2020; Hu et al., 2021; Wang et al., 2023).

Previous studies have addressed that the changes in production predominantly affect algae derived carbon sinks and nutrient removal. However, two key factors that influence changes in production, i.e. yield (production per area) and area, have been rarely studied. First, increasing the yield could offset the negative effects on algae production. One of the promising technics to enhance algae yield and subsequently increase algae derived carbon sinks is artificial upwelling (AU), which has been shown to increase mariculture algal yield in small-scale trials (Fan et al., 2019; Lin et al., 2019; Fan et al., 2020). AU is a system of mechanical equipment deployed in the mariculture area, which breaks the nutrient 53 limitations of aquaculture by continuously upwelling the lower temperature, higher nutrient loaded seawater to the surface 54 (Aure et al., 2007; Lovelock and Rapley, 2007; McClimans et al., 2010; Zollmann et al., 2019; Ortiz et al., 2022). AU in 55nutrient-rich waters can enhance the biological carbon pump in oligotrophic sea areas to sequester anthropogenic carbon 56 dioxide (CO₂) and increase carbon sequestration (Oschlies et al., 2010; Pan et al., 2015; Gómez-Letona et al., 2022), and 57 has been recognized by the United Nations Intergovernmental Panel on Climate Change (IPCC) as a global ocean carbon 58 sink solution (IPCC, 2019). However, the potential of AU to offset the limitations on algae derived carbon sinks and 59 nutrient removal remains unknown. Second, the reduction in mariculture area limits production growth, which inevitably 60 affects the amount of algae derived carbon sinks and nutrient removal. However, no studies have yet been carried out to 61 examine area as a driving factor to changes of carbon sinks and nutrient removal. Therefore, we further decompose 62 mariculture production that predominantly affects algae derived carbon sinks and nutrient removal into two components 63 i.e., yield and area. From this we hope to explore how algal yield may be enhanced through AU under limited expansion 64 of mariculture area.

In this paper, we analyse the driving forces that constrain carbon sink growth and investigate the potential of AU in offsetting these factors using Shandong Province, China (Fig. 1) as a case study. Shandong Province, which is bordered by the Bohai Sea and the Yellow Sea, has a long coastline accounting for 1/6 of the total coastline of China (Jiao et al., 2021). As China's most important mariculture location (Zhao et al., 2022), Shandong Province accounts for 27.28% (2020 base) of the country's mariculture algae production (SFSY, 2021). Moreover, multiple AU field experiments conducted in Shandong Province analysed the specific enhancement effect of AU application, which provided the necessary technical parameters for predicting the potential of AU (Fan et al., 2019; Lin et al., 2019).

72 Our study is distinct from previous studies by (a) decomposing production, a factor that leads to a decline in the annual 73 growth rates of carbon sinks and nutrient removal in recent years, into yield and area; (b) estimating the potential of AU 74to enhance the yield and subsequently offset the loss of carbon sinks and nutrient removal caused by negative drivers; 75 and (c) exploring the upper limits of AU potential. Our research thus identifies previously unaddressed limiting factors in 76 carbon sink growth and nutrient removal, which can be used to develop more targeted policies aimed at reversing the 77 resulting negative impacts. Meanwhile, this study informs a new technology pathway for increasing carbon sinks and 78 mitigating seawater eutrophication, i.e. applying AU, which can broaden the spectrum of policy and management tools 79 to address climate change and marine pollution. Our findings also suggest that enhancing mariculture algae derived carbon 80 sinks and nutrient removal is a complex and systematic work that requires consideration of multiple influencing factors 81 and their positive and negative effects.

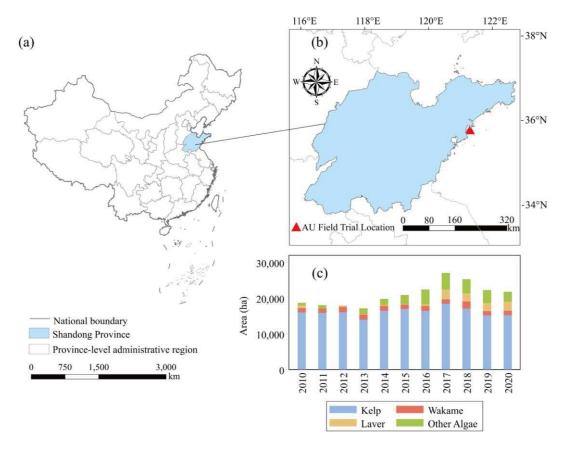


Fig. 1. General information of the study area. (a) The location of Shandong Province in China; (b) AU field trial location in Shandong
Province (36°22' N, 120°50' E); and (c) mariculture algae area and structure in Shandong Province between 2010 and 2020.

85 2. Methodology and data

86 2.1. Measurement of carbon sink and nutrient removal of mariculture algae

Algae take up CO₂ and dissolved inorganic carbon through photosynthesis as algae grow and convert it into organic carbon (Smith, 1981; Gao and McKinley, 1994). A portion of the organic carbon is removed from seawater after harvesting, forming the carbon sink of the algal body. In addition, algae also release some particulate organic carbon (POC) and dissolved organic carbon (DOC) into seawater (Tyler and McGlathery, 2006; Tang et al., 2011; Watanabe et al., 2020; Weigel and Pfister, 2021). A portion of POC and DOC will deposit in the deep ocean and seabed under microbial action to form stable sediments (Jiao et al., 2010). This fraction of sediments that can be stored for long periods is a carbon sink (Krause-Jensen and Duarte, 2016; Pan et al., 2019; Gao et al., 2021).

We calculated the carbon sink of mariculture algae (*TC*, assuming a total of *i* species) by adding three components (Yang et al., 2022) i.e., the carbon sink of the algal body (C_i), the carbon sink formed by releasing POC (C_i^{POC}), and the carbon sink formed by releasing DOC (C_i^{DOC}):

97
$$TC = \sum_{i=1}^{n} (C_i + C_i^{\text{POC}} + C_i^{\text{DOC}})$$
(1)

98 When measuring the carbon sink of mariculture algae:

$$99 C_i = DW_i \times w_i^C (2)$$

100
$$C_i^{\text{POC}} = C_i \times \frac{\alpha}{1 - \alpha - \beta} \times r^{\text{POC}}$$
 (3)

101
$$C_i^{\text{DOC}} = C_i \times \frac{\beta}{1 - \alpha - \beta} \times r^{\text{DOC}}$$
 (4)

102 The carbon sink of the mariculture algal body (C_i) can be estimated from algal production (dry weight) (DW_i) and the 103 carbon (C) content of algae (w_i^C) . α and β represent the proportion of POC and DOC released during algal growth to 104 algal photosynthetic productivity (Yan et al., 2011). r^{POC} and r^{DOC} are the proportion of POC and DOC released by 105 algae that are eventually converted into carbon sinks.

106 N and P removal by algae was determined by algal production (dry weight) and the N and P content of algae. The 107 specific calculation formula is as follows:

$$108 N_i = DW_i \times W_i^N (5)$$

$$109 P_i = DW_i \times w_i^P (6)$$

110 Here, N_i and P_i represent N and P removal, w_i^N and w_i^P are the N and P content of the algae.

111 2.2. Driving force analysis using the Logarithmic Mean Divisia Index approach

We used the Logarithmic Mean Divisia Index (LMDI) method to decompose changes in carbon sinks and nutrient removal by mariculture algae. Proposed by Ang et al. (2004), the LMDI method employs a logarithmic transformation, which is an applicable method to quantify the drivers of a given variable without any residual terms after decomposition. Compared to other decomposition methods, the results obtained from LMDI decomposition are intuitive and easy to interpret (Nzudie et al., 2021), making it a valuable tool in various fields, including carbon emissions (Ma et al., 2003), energy intensity (Wang et al., 2005), and water footprint (Zhao et al., 2017). We identified four driving factors i.e., intensity, yield, structure, and area, as shown in Eq. 7:

119
$$M = \sum_{i=1}^{n} \frac{M_i}{DW_i} \times \frac{DW_i}{A_i} \times \frac{A_i}{A} \times A = \sum_{i=1}^{n} I_i \times Y_i \times S_i \times A$$
(7)

120 Here, M represents the carbon sink or nutrient removal of mariculture algae; subscript i represents algal species i, and 121 n represents the total number of algal species (for this study n = 4); DW_i represents the production of algal species i; 122 A_i is the mariculture area used for growth of algal species i; A refers to the total mariculture area of algae. I, Y, S, 123 and A represent intensity, yield, structure, and area, respectively. Intensity is the amount of carbon sink or nutrient 124 removal per unit of algal species i's production. Yield describes the amount of production per unit of algal species i's 125area. Structure is the ratio of algal species i's area to the total area of all algae, representing the effect of algal species 126 changes. Area reflects how the total area of mariculture algae can impact the carbon sink or nutrient removal of algal 127species *i*.

128 The total changes in the carbon sink or nutrient removal of mariculture algae can thus be formulated as:

129 $\Delta M = M^t - M^0 = \Delta I + \Delta Y + \Delta S + \Delta A$

130 where ΔI (intensity effect), ΔY (yield effect), ΔS (structure effect), and ΔA (area effect) are changing driving factors 131 of ΔM .

The value of I_i depends on the C, N, and P content of algae, which varies in different mariculture areas and seasons. However, we do not consider the changes in these parameters in our measurement. Such setting is primarily because our focus was on studying the carbon sink of the algal body at the time of harvest. Changes in C, N and P content of algal body during the harvest season are relatively small (He et al. 2008; Xiao et al. 2017; Zhang et al. 2020). In the subsequent analysis, I_i remains unchanged and the contribution from the intensity effect (ΔI) to the increase in algae derived carbon sinks and nutrient removal amounts to 0.

According to the LMDI approach, the equations to decompose the changes to mariculture algae derived carbon sinks
 or nutrient removal are as follows:

140
$$\Delta M_{I} = \sum_{i=1}^{n} \left[L(M_{i}^{t}, M_{i}^{o}) \times \ln\left(\frac{l_{i}^{t}}{l_{i}^{o}}\right) \right]$$
(9)

141
$$\Delta M_Y = \sum_{i=1}^n [L(M_i^t, M_i^o) \times \ln(\frac{Y_i^t}{Y_i^o})]$$
(10)

142
$$\Delta M_{S} = \sum_{i=1}^{n} [L(M_{i}^{t}, M_{i}^{o}) \times \ln(\frac{S_{i}^{t}}{S_{i}^{o}})]$$
(11)

143
$$\Delta M_A = \sum_{i=1}^n [L(M_i^t, M_i^o) \times \ln(\frac{A_i^t}{A_i^0})]$$
(12)

Where t and 0 represent the latter and former year during the change, respectively. L is the log-average function, which satisfies:

146
$$L(M_i^t, M_i^o) = \frac{M_i^t - M_i^o}{\ln(M_i^t) - \ln(M_i^o)}, M_i^t \neq M_i^o$$
 (13)

147
$$L(M_i^t, M_i^o) = M_i^t, \ M_i^t = M_i^o$$
 (14)

148 2.3. Scenario setting

149 To estimate the potential for AU to offset the limiting effects on algae derived carbon sinks and nutrient removal by 1502030, we set a No-AU scenario based on the development characteristics of previous mariculture area growth, as well as 151four scenarios that consider the application of AU. The LMDI analysis was intended to reveal the driving factors that 152slow down the carbon sink and nutrient removal growth between 2014 and 2020. Thus, we were interested in establishing 153whether applying AU can effectively mitigate these negative factors. In the AU application scenarios, we intended to 154 calculate the minimum percentage of areas where AU application can compensate for reducing carbon sinks (nutrient 155removal). We assumed that the yield of mariculture algae can increase by a factor of μ when applying AU. Our study 156aimed to determine the minimum AU application proportions required to achieve a comparable scale of carbon sink 157 (nutrient removal) as in the No-AU scenario by 2030 in the four AU application scenarios, namely λ_1 (scenario S1), λ_2 158 (scenario S2), λ_3 (scenario S3), and λ_4 (scenario S4). Between 2021 and 2030, AU would be applied annually in $\lambda/10$ 159 of the mariculture area. The yield of mariculture algae in Shandong Province in 2030 would be $Y_{2020}(1 + \lambda \cdot \mu)$. The 160 details of the scenarios were as follows:

161 **No-AU scenario** (N1). In the No-AU scenario, the average annual change rates of the algal area between 2021 and 162 2030 remained consistent with the average change rates of the area between 2010 and 2020. The algal structure and yield 163 remain unchanged at 2020 levels.

Area constant scenario (S1). We assumed the mariculture area of algae remained at 2020 levels. The structure of algal species would be the same as for the No-AU scenario. By 2030, the algal yield would be $Y_{2020}(1 + \lambda_1 \cdot \mu)$.

Area reduction scenario (S2). There has been a noticeable decline in the mariculture area in Shandong Province since 2017. Hence, this scenario assumed that future changes in the mariculture area would maintain this trend. Specifically, the mariculture area continued to decrease between 2021 and 2030 at an average change rate to that observed between 2017 and 2020. while the algal structure would remain unchanged based on 2020 levels. By 2030, the algal yield would be $Y_{2020}(1 + \lambda_2 \cdot \mu)$.

Laver increase scenario (S3). The contribution of algae to carbon sinks and mitigation of seawater eutrophication varies with algal species (Zheng et al., 2019). The increase in the area proportion of laver will have a negative impact on the growth of carbon sinks (nutrient removal). We therefore assumed that the area proportion of laver would continue to increase by 2030, at a mean growth rate to that observed between 2010 and 2020, while the mariculture area was the same as in the No-AU scenario. By 2030, algal yield would therefore be $Y_{2020}(1 + \lambda_3 \cdot \mu)$.

Area reduction and laver increase scenario (S4). The area given over to mariculture algal growth would be consistent with scenario S2, and the algal structure would be consistent with scenario S3. We would also calculate the minimum application ratio λ_4 of AU in order to achieve a comparable scale of carbon sink (nutrient removal) as in the No-AU scenario.

180 2.4. Uncertainty and sensitivity test

In this study, we utilized a Monte Carlo simulation to estimate the uncertainties in carbon sink and nutrient removal of mariculture algae. The overall uncertainty is calculated under the 95% confidence interval around the arithmetic mean. The distribution characteristics of specific model parameters are shown in Table A1. Additionally, we performed a sensitivity test for the carbon sink and nutrient removal of mariculture algae to analyse the impact of different input parameters on the model outputs.

186 2.5. Data collection

187 We obtained data on the production and area of mariculture algae from the "Shandong Fishery Statistical Yearbook"

188 (SFSY, 2011-2021). The specific biological parameters are shown in Table 1. The main mariculture algal species in

189 Shandong Province were kelp, laver, and wakame, which together contributed approximately 90% of total production.

- 190 Therefore, in the following study, the mariculture algae in Shandong Province were divided into four categories i.e., kelp,
- 191 laver, wakame, and others.

Table 1

Biological parameters of mariculture algae (%).

Species	Carbon content of algae	Nitrogen content of algae	Phosphorus content of algae			
	(w_i^c)	(w_i^N)	(w_i^P)			
Kelp	24.99	3.71	0.52			
Laver	29.09	6.30	1.00			
Wakame	30.48	5.01	0.76			
Other algae	28.19	5.01	0.76			

Notes: The C content ratio of kelp, laver, and wakame refer to Zhang et al. (2020). The C content of other algae species were taken as the mean values of kelp, laver, and wakame. The N and P content of kelp refer to Xiao et al. (2017). The N and P content of laver refer to He et al. (2008). Other algal species' N and P contents were taken as the mean values of kelp and laver.

192 Other parameters are shown in Table 2. We extract the parameters related to carbon sink formation from field studies 193and experimental data available in the literature. Consistent with the study by Yan et al. (2011), we adopt the values of 194 α and β as 0.19 and 0.05, respectively (Khailov and Burlakova, 1969; Penhale and Capone, 1981; Yoshikawa et al., 195 2001). While previous studies have considered the carbon sink formed by releasing POC and DOC (Yan et al., 2011; 196 Yang et al., 2022), field investigations have revealed that not all POC and DOC deposited on the seafloor contribute to 197 carbon sink formation (Nelson et al., 2002; Jiao et al., 2010; Baetge et al., 2020). Nilsson et al. (2018) demonstrated that 198 only 4% of the POC in the Baltic Sea was deposited on the seafloor to form carbon sinks. Chen et al. (2020) found that 199 only 1.6% of the DOC released by algae remained unaltered by microorganisms and stably persisted in seawater. Hence, we assign the values of 0.04 and 0.016 to the parameters r^{POC} and r^{DOC} , respectively. 200

201

Table 2

The mechanism parameters of carbon sink of mariculture algae.

Mechanism parameters	Values	References
α	0.19	Yoshikawa et al. (2001); Yan et al. (2011)
β	0.05	Penhale and Capone (1981); Yan et al. (2011)
$r^{ ext{POC}}$	0.04	Nilsson et al. (2018); Nelson et al. (2002)
r ^{DOC}	0.016	Jiao et al. (2010); Chen et al. (2020)

The value of the average promotion rate on yield of AU (μ) was based on previous field experiments. Fan et al. (2019) compared 60 strains of algae from the distribution area of the AU system and an area remote from the AU system. They found that AU increased the average weight per algae by approximately 109.9%. Lin et al. (2019) found that the average weight of algae in the experimental group grown around the AU area was 33.1g, while the average weight of algae in the control group grown in the natural environment was 10.1g. Based on the above findings, we took a μ of 1.1 to ensure the reliability of the prediction results.

208 **3. Results**

209 3.1. Carbon sink and nutrient removal of mariculture algae between 2010 and 2020

Between 2010 and 2020, the average annual carbon sink of mariculture algae in Shandong Province was 162.20 kt, representing 23.14% of the carbon emissions of marine fisheries in 2014 (Yue et al., 2016). The carbon sink in the algal body accounted for 98.91% of the total mariculture algae derived carbon sinks, while the carbon sink formed via releasing POC and DOC contributed only 1.09%. The proportion of carbon sinks formed by POC and DOC measured in this study was lower than in other studies due to the lower r^{POC} and r^{DOC} values utilised (Yan et al., 2011; Yang et al., 2022).

The carbon sink of mariculture algae in Shandong Province showed an increasing trend between 2010 and 2020 (Table 3), with an overall rate of 28.76%. The changes in carbon sinks may be divided into two distinct periods: from 2010 to 2014, the average annual growth rate of mariculture algae derived carbon sink was 5.98%. While the average annual growth rate between 2014 and 2020 was only 0.34%.

The N and P removal trends are similar to those observed for carbon sinks. Specifically, between 2010 and 2014, there was a significant increase in N and P removal, with a rise of 26.78% and 27.49%, respectively. In contrast, the nutrient removal by mariculture algae was relatively stable between 2014 and 2020, with a modest increase of only 4.12% and 4.85%, respectively.

223

Table 3

The carbon sink and	nutrient remova	l of mariculture	grown algae	e in Shandong	Province (kt).
The eardon binn and			B. c a.Ba		,

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Carbon sinks of algae body	134.75	129.58	145.69	151.04	169.98	170.75	173.67	170.12	172.81	172.76	173.51
Carbon sinks through POC	1.35	1.30	1.46	1.51	1.70	1.71	1.74	1.70	1.73	1.73	1.74
Carbon sinks through DOC	0.14	0.14	0.15	0.16	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Carbon sinks	136.24	131.01	147.30	152.71	171.86	172.64	175.59	172.00	174.72	174.67	175.42
Nitrogen Removal	20.50	19.76	22.28	23.09	25.99	26.12	26.79	26.31	26.94	27.18	27.06
Phosphorus Removal	2.91	2.81	3.18	3.29	3.71	3.73	3.84	3.77	3.88	3.93	3.89

224 3.2. Driving force analysis for carbon sink and nutrient removal of mariculture algae

We explored the driving factors (yield, structure, and area) leading to changes in carbon sink and nutrient removal of mariculture algae during the study period (Fig. 2). The analysis was divided into three periods: 2010-2014, 2014-2017, and 2017-2020. This division was based on the differences observed in the growth rates of carbon sinks and nutrient removal around 2014, as well as the clear downward trend in mariculture area used for algal growth since 2017.

229 Between 2010 and 2014 all three factors, i.e., yield, structure, and area, contributed to a rise in carbon sinks, resulting 230 in a 26.14% increase in the carbon sink of algae relative to 2010. The yield effect stood out as the primary cause for 231 increased carbon sinks (contributing 14.26% of the increase). Between 2014 and 2017, carbon sinks only increased by 232 0.08% based on the 2014 level, and the effect of area became the major contributor to increased carbon sinks (53.84 kt, 233 31.33%). In contrast, yield and structure showed inhibitory effects, resulting in a 21.43% and 9.82% reduction in carbon 234sinks, respectively. Between 2017 and 2020, the yield effect (40.87 kt, 23.76%) contributed positively to carbon sink 235growth, which was mostly offset by the negative effects of area (37.53 kt, 21.82%), resulting in only a slight increase in 236 algae derived carbon sinks (1.99%). Meanwhile, the structure effect had little impact on carbon sinks (0.10 kt, 0.06%). 237 The driving factors for N and P removal from mariculture algae in Shandong Province were similar to those found for 238 carbon sinks (Fig. S1).

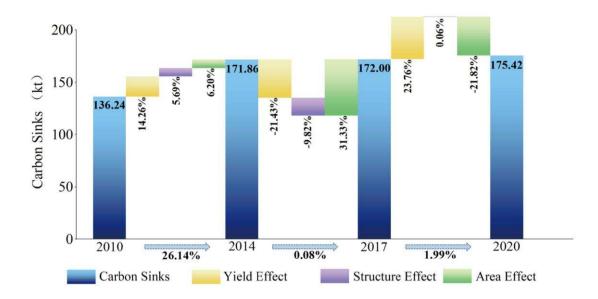


Fig. 2. Contribution of different driving factors to carbon sink changes in Shandong Province (2010-2020) (kt). The intensity effect
 (ΔI) is set to 0 and not shown in the figure.

239

242 We found driving force effects coincided with changes to the marine environment and policy adjustments. Prior to 243 2014, production, area, and yield of mariculture algae in Shandong Province grew rapidly, encouraged by policies such 244 as increased investment in marine fishery fixed assets, subsidising of fisheries diesel, and supporting fisheries resources 245 protection (Liang et al., 2018; Han and Jiang, 2019). At the end of 2016, China released the 13th Five-Year Plan of 246 National Fishery Development, which emphasized the implementation of coastal ecological protection and promoted 247 structural reform on the supply side of fisheries (Cao et al., 2017; Su et al., 2021). As a result, many policies began to 248 restrict the expansion of mariculture areas. For example, the Blue Bay Remediation Project (BBRP) was one of the major 249 marine projects in China's 13th Five-Year Plan for ecological environmental protection, with Rizhao, Yantai, Weihai, and 250 Qingdao in Shandong Province being selected as participating cities in early 2017. The project restricted or banned certain 251aquaculture activities in near-shore waters and targeted algal rafts for cleanup (Liu et al., 2019; Wang et al., 2020). In 252 addition, several ecological policies, such as the "returning ponds to natural wetlands", have been implemented in some 253 coastal aquaculture regions, leading to a significant decline in the mariculture algae area (Wang et al., 2023).

The yield effect showed a fluctuant trend between 2010 and 2020. This might be because artificial inputs and immature mariculture techniques dominated algae farming, which makes algal yield susceptible to extreme natural disasters, environmental conditions, water quality, and diseases (Zhang and Han, 2017).

The negative structural effect was primarily attributed to the increased share of laver in the mariculture area, as the carbon sink and nutrient removal per unit area of laver were less than 1/5 that of kelp and wakame. The share of laver increased from 1.34% to 11.80% during 2014-2020. The growing market demand for laver, a nutritious and healthy food (Brown et al., 2014), is causing the area of laver to expand. Meanwhile, rising seawater temperatures due to global warming have led to disease outbreaks in Jiangsu Province, China's primary laver producing area, which led to many
 mariculture companies turning to promote the cultivation and demonstration of the laver in Shandong Province (Lu et al.,
 2022).

264 3.3. Scenario analysis of the potential of AU for algae derived carbon sink and eutrophication mitigation

We conducted a scenario analysis to evaluate the extent to which AU can offset the effects of two negative factors i.e., area reduction and a more laver-oriented mariculture algal system. Fig. 3 shows the required application ratio of AU and the algal yield, structure, and area in 2030 to achieve the same carbon sink level as the No-AU scenario under different scenarios.

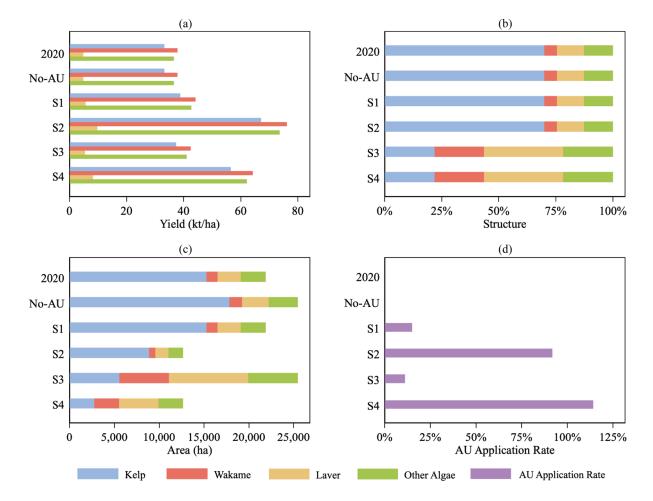


Fig. 3. Yield, structure, area, and AU application rates in 2020, and the five scenarios in 2030. The No-AU Scenario (No-AU) represents the case in which the mariculture algal area will grow at an average growth rate between 2010 and 2020, with structure and yield remaining unchanged from 2020 levels. Scenarios 1-4 (S1-S4) represent constant area scenarios, area reduction scenarios, increased laver scenario, and area reduction and laver increase scenarios, respectively.

In the No-AU scenario, the algal area will continue to increase at an average annual growth rate between 2010 and 2020, with the structure remaining consistent with the 2020 level. When no AU technology is applied, the carbon sink of 276 mariculture algae in Shandong Province will reach 204.41 kt by 2030, with corresponding N and P removal of 31.53 kt

and 4.54 kt, respectively.

Applying AU may compensate for the loss of carbon sink due to diminishing mariculture area and laver-oriented structural change. In scenario S1, where the mariculture area and structure of algae remain unchanged at 2020 levels, applying AU to 15.02% of the mariculture area was sufficient to achieve the same carbon sink level as in the No-AU scenario by 2030. However, when the mariculture area decreases at the same rate as observed between 2017 and 2020 (scenario S2), AU would need to be applied to 91.81% of the area. In scenario S3, we assumed that the mariculture algal area would maintain the same growth as for the No-AU scenario, while the proportion of laver would grow to 34.53% by 2030. In this case, applying an AU to 11.14% of the mariculture algal area would be necessary.

It is worth noting there is also a limit to the potential of AU to increase carbon sinks. AU will not fully compensate for the negative effects of continuous mariculture area decline and the increase in the proportion of laver area (scenario S4). We found that when AU was implemented across the entire mariculture area by 2030, it would compensate at most for a carbon sink reduction of 44.52% in mariculture algal area compared to 2020, assuming algal structure remained constant. Similarly, supposing the mariculture area was maintained at 2020 levels with 100% application of AU, the loss of carbon sinks would not be compensated for when the share of laver exceeded 72.57%.

Applying AU can also compensate for the reduction in N and P removal due to mitigation in algal area and an increase in the amount of laver (see Table A2). In the area reduction scenario (scenario S2), 96.23% and 95.46% of the area would require AU application to secure identical N and P removal, respectively, as for the No-AU scenario by 2030. However, the potential of AU would reach its limit when the area declined by more than 44.52% of the 2020 level. In the increased laver scenario (scenario S3), where the laver area share increased to 34.53%, AU application rates would be 3.82% and 0.08% for N and P removal, respectively. If the share of laver exceeded 78.89% and 81.58%, achieving the same N and P removal, respectively, as in the No-AU scenario then applying AU alone would no longer be feasible.

298 **4.** Discussion

299 4.1. Improving key factors that influence carbon sinks and nutrient removal

China has acknowledged the importance of ocean carbon sinks, particularly algae derived carbon sinks, in mitigating climate change (Yang et al., 2021). The country has laid out a policy system to support the development of ocean carbon sinks around the goal of carbon peak and carbon neutrality. Despite the importance of algae for increasing carbon sinks and achieving carbon neutrality, the incremental carbon sinks of algae have been limited in recent years (Gu and Yin, 2022; Wu and Li, 2022; Yang et al., 2022). In this study, we identified the main limiting factors of algae derived carbon sinks and their contributions by proposing driving factors such as yield, structure, and area. Unlike the results of previous studies (Shao et al., 2019; Ren, 2021; Yang et al., 2022), we demonstrated the importance of taking area into account as a driving force. The results showed that area was the most critical factor driving the growth of algae derived carbon sinks until 2017. However, between 2017 and 2020, decreasing area had a significant inhibitory effect on carbon sinks. Our study also revealed the negative impacts of laver expansion and unstable yields on carbon sinks. The biased mariculture algae structure of laver hindered the growth of carbon sinks, and yields that fluctuate significantly over time are less conducive to the stable enhancement of carbon sinks. We found similar conclusions regarding influencing factors for N and P removal. The findings have contributed to adjusting mariculture industry policies regarding improved area, structure, and yield to support the growth of mariculture algae derived carbon sink and nutrient removal.

314 To guarantee a steady increase in algae derived carbon sinks and nutrient removal, we propose the application of AU 315 in mariculture areas. AU provides a new impetus to the growth of algae derived carbon sinks and nutrient removal by 316 increasing yield against the negative impacts of area constraint and changes in structure changes. Our research 317 investigated the potential for AU to offset these negative effects. The results showed that enhancing carbon sink and 318 nutrient removal through AU is feasible. However, the promotion of AU also faces challenges, including its low energy 319 efficiency and high installation costs (Fan et al., 2013; Viudez et al., 2016; Qiang et al., 2018). These challenges need to 320 be considered in successful implementation of AU technology and achievement of better results in Shandong Province 321 and other coastal areas. Using clean energy to achieve self-powered AU is crucial in application of AU (Pan et al., 2018), 322 and can effectively reduce energy consumption and greenhouse gas emissions. Specifically, offshore wind, solar and tidal 323 energy can be harnessed for in-situ power generation, while wave or ocean current energy can be utilized to drive 324 upwelling and further optimize energy efficiency. Meanwhile, AU may benefit from special subsidies, tax breaks, and 325 technology research support for blue carbon. Government and market instruments can be used to provide technical and 326 financial support for AU application and promotion.

327 The yield effect was unstable between 2010 and 2020, partially due to the dominance of immature mariculture 328 techniques that make algal yield susceptible to natural disasters, environmental conditions, and disease (Zhang and Han, 329 2017). Whether AU can solve or mitigate yield fluctuation problem remains unknown. To achieve an increased and steady 330 yield, AU could combine with other farming techniques, for example: (a) use of remote sensing technology and marine 331 monitoring technology to plan cultivation sites according to required environmental conditions for the growth of different 332 algal species (Ai et al., 2023); (b) developing integrated multi-trophic aquaculture (IMTA) and using interactions between 333 aquatic plants and animals at different trophic levels to improve mariculture efficiency (Cutajar et al., 2022; Hargrave et 334 al., 2022); and (c) genetic improvements, such as developing adaptable and disease-resistant algal cultivars (Hu et al., 335 2021).

Notably, there is an upper limit to the benefits achieved through AU. Where mariculture area declines, or the proportion of laver increases, applying AU may not achieve the desired carbon sink and nutrient removal levels. Currently, mariculture grown algae in China is mainly associated with nearshore waters, and some mariculture areas have been

339 reduced or removed due to global climate change, seawater pollution, and policy requirements (Liu et al., 2019; Wang et 340 al., 2020). To solve this dilemma, focusing on pollution control and ecological restoration in the original nearshore 341 mariculture areas will help improve existing farming areas. In addition, offshore mariculture may be developed by 342 cultivating new species suitable for deep-water mariculture and developing new facilities to expand mariculture space. 343 We've also noticed farmers tend to prioritize economic value of algae over environmental function when selecting species 344 for cultivation (Zheng et al., 2019). Laver is more economically valuable and preferred by farmers, while kelp and wakame 345 have a higher carbon sink and nutrient removal rates per unit of farmed area (Ou et al., 2017). By establishing marine 346 carbon sink trading platforms, farmers can be encouraged and guided to grow more species with high carbon sinks to 347 convert algae with high carbon sink functions from resources to assets. As a result, market players who protect and restore 348 the ecological environment can receive reasonable returns.

349 4.2. Limitations

350 As with all studies of this nature there are some limitations to our work: (a) we have simplified the complexities of 351market demand on mariculture algal production. Total algae production may not increase even with productivity-352 enhancing techniques because the total demand may remain relatively constant; (b) AU works better for areas where 353 surface seawater is nutrient-poor (Fan et al., 2020). The percentage increase in acreage from AU (μ) may vary depending 354 on nutrient salt levels in different waters; (c) AU can increase carbon sink conversion efficiency by enhancing the 355 downward fluxes of POC (Baumann et al., 2021). We have not considered this effect in our projections of AU potential 356 due to a lack of robust and relevant parameters. The effect of AU may potentially increase the carbon sink formed by both 357 POC and DOC, providing an even more significant environmental benefit.

358 A point that needs to be emphasised is that as a geo-environmental project, applying AU may potentially have adverse 359 effects on the marine environment, particularly when implemented extensively in deep-sea areas (Ryan et al., 2009; Keller 360 et al., 2014; Kwiatkowski et al., 2015; Pan et al., 2016). However, in our scenario analysis, AU will be deployed in areas 361 designated for mariculture algae. Algae typically thrive in shallow coastal regions, and applying AU in these mariculture 362 algae areas away from the deep sea will not greatly impact the environment (Maruyama et al., 2004). Meanwhile, AU's 363 efficiency is also characterized by certain technical parameters, such as power demand (Pan et al., 2018). Using non-clean 364 energy-powered AU may partly offset its environmental benefits. Fortunately, recent field experiments have demonstrated 365 the feasibility of solar-powered AU (Fan et al., 2020). The energy efficiency of AU will continue to improve with the 366 development of energy management technology (Lin et al., 2019).

Our measurements of the carbon sink of mariculture algae were based on numerical models and parameters. In contrast to previous studies (Yan et al., 2011; Ren, 2021; Yang et al., 2022), our measurement of carbon sink in algae considers not only the carbon sink of the algal body but also POC and DOC, which allows us to capture the full extent of carbon

370 sequestration by the algae. In addition, the fact that only a small portion of POC and DOC contribute to the formation of 371 carbon sink is also considered (Nelson et al., 2002; Nilsson et al., 2018; Chen et al., 2020). We further analysed the 372 sensitivity of our results to the parameters r^{POC} , r^{DOC} , α , and β to test the robustness of our results. The detailed 373 results of the sensitivity test are shown in Table A3. The results showed that the carbon sink of mariculture algae will 374 increase by 0.018% to 0.129% in 2020 if the mechanism parameters were increased by 10%. We also estimated the 375 uncertainties of model parameters using Monte Carlo simulation methods. The uncertainty ranges of the carbon sink of 376 mariculture algae between 2010 and 2020 are presented in Fig. A.2. The uncertainty of carbon sinks (expressed as relative 377 standard deviation (RSD) that equals the standard deviation divided by the mean) ranged from 7.64% to 9.63%, indicating 378 that the results were reliable. However, the N and P removal uncertainties were relatively high, ranging from 21.31% to 379 26.56%, and 27.90% to 35.13%, respectively, which was due to the lack of precision and relatively large standard 380 deviation in the results of existing studies regarding the measurement of algal N and P content.

381 **5.** Conclusions

382 This study focused on exploring the potential of AU to enhance algae derived carbon sink and mitigate eutrophication 383 in the face of continued mariculture area degradation and undesired structural change. The limited growth of the 384 mariculture algae area in Shandong Province, China, and the more intensive cultivation of laver in the limited area has 385 resulted in minimal improvements in carbon sinks and nutrient removal levels since 2014. Our findings indicated that 386 applying AU could effectively compensate for the loss of carbon sink and nutrient removal caused by the decrease of 387 mariculture area or the increase of the laver share. Meanwhile, we observed that the potential for AU to achieve these 388 benefits has upper limits. It is worth mentioning that scenario analysis cannot calculate future carbon sinks and nutrient 389 removal accurately, but rather reflects a promising technical pathway for improving algae derived carbon sinks and 390 nutrient removal in the face of shrinking mariculture areas and suboptimal species selection. Further research could 391 investigate the implication of other potential variables, such as the intensity effect changes over time and AU energy 392 efficiency on the carbon sink and nutrient removal potential.

393 **CRediT authorship contribution statement**

Chunlei Shen: Conceptualization, Writing – original draft, Investigation, Formal analysis. Xinya Hao:
Conceptualization, Methodology, Software, Writing – review & editing. Dong An: Investigation, Data curation. Martin
R. Tillotson: Writing – original draft, Writing – review & editing. Lin Yang: Conceptualization, Supervision,
Investigation, Funding acquisition. Xu Zhao: Conceptualization, Writing – review & editing, Methodology, Funding
acquisition.

Declaration of competing interest

- 400 The authors declare that they have no known competing financial interests or personal relationships that could have
- 401 appeared to influence the work reported in this paper.

402 Acknowledgements

- 403 This work was supported by the Major Project of National Social Science Foundation of China (No. 20&ZD100), the
- 404 National Natural Science Foundation of China (No. 72074136).

405 **References**

- 406 Ahmed, N., Bunting, S.W., Glaser, M., Flaherty, M.S., Diana, J.S., 2017. Can greening of aquaculture sequester blue carbon? Ambio
- 407 46, 468-477. https://doi.org/10.1007/s13280-016-0849-7.
- 408 Ai, B., Wang, P.P., Yang, Z.Y., Tian, Y.X., Liu, D.D., 2023. Spatiotemporal dynamics analysis of aquaculture zones and its impact on
- 409 green tide disaster in Haizhou Bay, China. Mar. Environ. Res. 183, 105825. https://doi.org/10.1016/j.marenvres.2022.105825.
- 410 Alvera-Azcárate, A., Ferreira, J.G., Nunes, J.P., 2003. Modelling eutrophication in mesotidal and macrotidal estuaries. The role of
- 411 intertidal seaweeds. Estuar. Coast. Shelf Sci. 57, 715-724. https://doi.org/10.1016/S0272-7714(02)00413-4.
- 412 Ang, B.W., 2004. Decomposition analysis for policy making in energy: which is the preferred method? Energy Pol. 32, 1131e1139.
- 413 https://doi.org/10.1016/s0301-4215(03)00076-4.
- 414 Aure, J., Strand, O., Erga, S.R., Strohmeier, T., 2007. Primary production enhancement by artificial upwelling in a western Norwegian
- 415 fjord. Mar. Ecol. Prog. Ser. 352, 39-52. https://doi.org/10.3354/meps07139.
- 416 Baetge, N., Graff, J. R., Behrenfeld, M. J., & Carlson, C. A. (2020). Net community production, dissolved organic carbon accumulation,
- 417 and vertical export in the western North Atlantic. Front. Mar. Sci. 7, 227. https://doi.org/10.3389/fmars.2020.00227.
- 418 Baumann, M., Taucher, J., Paul, A.J., Heinemann, M., Vanharanta, M., Bach, L.T., Spilling, K., Ortiz, J., Arístegui, J., Hernández-
- 419 Hernández, N., Baños, I., Riebesell, U., 2021. Effect of intensity and mode of artificial upwelling on particle flux and carbon export.
- 420 Front. Mar. Sci. 8, https://doi.org/10.3389/fmars.2021.742142.
- 421 Bolton, C.T., Stoll, H.M., 2013. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558-562.
- 422 https://doi.org/10.1038/nature12448.

- 423 Brown, E.M., Allsopp, P.J., Magee, P.J., Gill, C.I.R., Nitecki, S., Strain, C.R., McSorley, E.M., 2014. Seaweed and human health. Nutr.
- 424 Rev. 72, 205-216. https://doi.org/10.1111/nure.12091.
- 425 Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M.C., Pereda, S.V., Luis Gomez-Pinchetti, J.,
- 426 Golberg, A., Tadmor-Shalev, N., Critchley, A.T., 2017. Seaweed production: overview of the global state of exploitation, farming
- 427 and emerging research activity. Eur. J. Phycol. 52, 391-406. https://doi.org/10.1080/09670262.2017.1365175.
- 428 Cao, L., Chen, Y., Dong, S., Hanson, A., Huang, B., Leadbitter, D., Little, D.C., Pikitch, E.K., Qiu, Y., de Mitcheson, Y.S., Sumaila,
- 429 U.R., Williams, M., Xue, G., Ye, Y., Zhang, W., Zhou, Y., Zhuang, P., Naylor, R.L., 2017. Opportunity for marine fisheries
- 430 reform in China. Proc. Natl. Acad. Sci. U. S. A. 114, 435-442. https://doi.org/10.1073/pnas.1616583114.
- 431 Chen, J., Li, H.M., Zhang, Z.H., He, C., Shi, Q., Jiao, N.Z., Zhang, Y.Y., 2020. DOC dynamics and bacterial community succession
- 432 during long-term degradation of *Ulva prolifera* and their implications for the legacy effect of green tides on refractory DOC pool in
- 433 seawater. Water Res. 185, 116268. https://doi.org/10.1016/j.watres.2020.116268.
- 434 Cutajar, K., Falconer, L., Massa-Gallucci, A., Cox, R.E., Schenke, L., Bardócz, T., Sharman, A., Deguara, S., Telfer, T.C., 2022.
- 435 Culturing the sea cucumber *Holothuria poli* in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm.
- 436 Aquaculture 550, 737881. https://doi.org/10.1016/j.aquaculture.2021.737881.
- 437 Fan, W., Chen, J.W., Pan, Y.W., Huang, H.C., Chen, C.-T.A., Chen, Y., 2013. Experimental study on the performance of an air-lift
- 438 pump for artificial upwelling. Ocean Eng. 59, 47-57. https://doi.org/10.1016/j.oceaneng.2012.11.014.
- 439 Fan, W., Zhang, Z.J., Yao, Z.Z., Xiao, C.B., Zhang, Y., Zhang, Y.Y., Liu, J.H., Di, Y.N., Chen, Y., Pan, Y.W., 2020. A sea trial of
- 440 enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean
- 441 Res. 101, 102260. https://doi.org/10.1016/j.apor.2020.102260.
- 442 Fan, W., Zhao, R.L., Z., Y.Z., B., X.C., Pan, Y.W., Chen, Y., Jiao, N.Z., Zhang, Y., 2019. Nutrient removal from Chinese coastal
- 443 waters by large-scale seaweed aquaculture using artificial upwelling. Water 11, 1754. https://doi.org/10.3390/w11091754.
- 444 FAO. 2022. The State of World fisheries and aquaculture 2022. Towards Blue Transformation. Rome.
- 445 https://doi.org/10.4060/cc0461en.

- 446 Fei, X.G., 2004. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512, 145-151.
- 447 https://doi.org/10.1023/B:HYDR.0000020320.68331.ce.
- Filbee-Dexter, K., Wernberg, T., 2018. Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68, 64-76.
 https://doi.org/10.1093/biosci/bix147.
- 450 Gao, K., McKinley, K.R., 1994. Use of macroalgae for marine biomass production and CO₂ remediation: a review. J. Appl. Phycol. 6,
- 451 45-60. https://doi.org/10.1007/BF02185904.
- 452 Gao, Y.P., Zhang, Y.T., Du, M.R., Lin, F., Jiang, W.W., Li, W.H., Li, F.X., Lv, X.N., Fang, J.H., Jiang, Z.J., 2021. Dissolved organic
- 453 carbon from cultured kelp Saccharina japonica: production, bioavailability, and bacterial degradation rates. Aquac. Environ.
- 454 Interact. 13, 101-110. https://doi.org/10.3354/aei00393.
- 455 Gómez-Letona, M., Sebastián, M., Baños, I., Fernanda Montero, M., Pérez Barrancos, C., Baumann, M., Riebesell, U., Arístegui, J.,
- 456 2022. The importance of the dissolved organic matter pool for the carbon sequestration potential of artificial upwelling. Front. Mar.
- 457 Sci. 9, 969714. https://doi.org/10.3389/fmars.2022.969714.
- 458 Gu, H.L., Yin, K.D., 2022. Forecasting algae and shellfish carbon sink capability on fractional order accumulation grey model. Math.
- 459 Biosci. Eng 19, 5409-5427. https://doi.org/10.3934/mbe.2022254.
- 460 Han, H., Jiang, Y., 2019. The evolution of mariculture structures and environmental effects in China. J. Coastal Res. 83, 155-166.
- 461 https://doi.org/10.2112/SI83-024.1.
- 462 Hargrave, M.S.S., Nylund, G.M.M., Enge, S., Pavia, H., 2022. Co-cultivation with blue mussels increases yield and biomass quality
- 463 of kelp. Aquaculture 550, 737832. https://doi.org/10.1016/j.aquaculture.2021.737832.
- 464 He, P.M., Xu, S.N., Zhang, H.Y., Wen, S.S., Dai, Y.J., Lin, S.J., Yarish, C., 2008. Bioremediation efficiency in the removal of dissolved
- inorganic nutrients by the red seaweed, *Porphyra yezoensis*, cultivated in the open sea. Water Res. 42, 1281-1289.
 https://doi.org/10.1016/j.watres.2007.09.023.
- 467 Hu, Z.M., Shan, T.F., Zhang, J., Zhang, Q.S., Critchley, A.T., Choi, H.G., Yotsukura, N., Liu, F.L., Duan, D.L., 2021. Kelp aquaculture
- 468 in China: a retrospective and future prospects. Rev. Aquacult. 13, 1324-1351. https://doi.org/10.1111/raq.12524.

- 469 IPCC (Intergovernmental Panel on Climate Change), 2019. Special report on the ocean and cryosphere in a changing climate.
- 470 Technical Report. https://www.ipcc.ch/srocc/.
- 471 Jiang, Z.B., Liu, J.J., Li, S.L., Chen, Y.Y., Du, P., Zhu, Y.L., Liao, Y.B., Chen, Q.Z., Shou, L., Yan, X.J., Zeng, J.N., Chen, J.F., 2020.
- 472 Kelp cultivation effectively improves water quality and regulates phytoplankton community in a turbid, highly eutrophic bay. Sci.
- 473 Total Environ. 707, 135561. https://doi.org/10.1016/j.scitotenv.2019.135561.
- 474 Jiao, N.Z., Herndl, G.J., Hansell, D.A., Benner, R., Kattner, G., Wilhelm, S.W., Kirchman, D.L., Weinbauer, M.G., Luo, T.W., Chen,
- 475 F., Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat.
- 476 Rev. Microbiol. 8, 593-599. https://doi.org/10.1038/nrmicro2386.
- 477 Jiao, N.Z., Wang, H., Xu, G., Aricò, S., 2018. Blue carbon on the rise: challenges and opportunities. Natl. Sci. Rev. 5, 464-468.
- 478 https://doi.org/10.1093/nsr/nwy030.
- 479 Jiao, Y.N., Yang, L.P., Kong, Z.Q., Shao, L.J., Wang, G.L., Ren, X.F., Liu, Y.J., 2021. Evaluation of trace metals and rare earth
- 480 elements in mantis shrimp *Oratosquilla oratoria* collected from Shandong Province, China, and its potential risks to human health.
- 481 Mar. Pollut. Bull. 162, 111815. https://doi.org/10.1016/j.marpolbul.2020.111815.
- 482 Jouffray, J.B., Blasiak, R., Norstrom, A.V., Österblom, H., Nyström, M., 2020. The blue acceleration: the trajectory of human
- 483 expansion into the ocean. One Earth 2, 43-54. https://doi.org/10.1016/j.oneear.2019.12.016.
- 484 Keller, D.P., Feng, E.Y., Oschlies, A., 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide-
- 485 emission scenario. Nat. Commun. 5, 3303. https://doi.org/10.1038/ncomms4304.
- 486 Khailov, K.M., Burlakova, Z.P., 1969. Release of dissolved organic matter by marine seaweeds and distribution of their total organic
- 487 production to inshore communities. Limnol. Oceanogr. 14, 521-527. https://doi.org/10.4319/lo.1969.14.4.0521.
- 488 Krause-Jensen, D., Duarte, C.M., 2016. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737-742.
- 489 https://doi.org/10.1038/ngeo2790.
- 490 Kwiatkowski, L., Ricke, K.L., Caldeira, K., 2015. Atmospheric consequences of disruption of the ocean thermocline. Environ. Res.
- 491 Lett. 10, 034016. https://doi.org/10.1088/1748-9326/10/3/034016.

- 492 Liang, Y.X., Cheng, X.W., Zhu, H., Shutes, B., Yan, B.X., Zhou, Q.W., Yu, X.F., 2018. Historical evolution of mariculture in China
- during past 40 years and its impacts on eco-environment. Chin. Geogra. Sci. 28, 363-373. https://doi.org/10.1007/s11769-018-0940z.
- 495 Lin, T.C., Fan, W., Xiao, C.B., Yao, Z.Z., Zhang, Z.J., Zhao, R.L., Pan, Y.W., Chen, Y., 2019. Energy management and operational
- 496 planning of an ecological engineering for carbon sequestration in coastal mariculture environments in China. Sustainability 11, 3162.
- 497 https://doi.org/10.3390/su11113162.
- 498 Liu, F.L., Liang, Z.R., Zhang, P.Y., Wang, W.J., Sun, X.T., Wang, F.J., Yuan, Y.M., 2019. Preliminary discussion on the development
- 499 of *Saccharina japonica* offshore aquaculture in China. Prog. Fish. Sci. 40 (in Chinese), 161–166.
- 500 Lovelock, J.E., Rapley, C.G., 2007. Ocean pipes could help the Earth to cure itself. Nature 449, 403. https://doi.org/10.1038/449403a.
- 501 Lu, F., Zhan, D.M., Ding, G., Liu, W., Tang, L.Q., Wu, H.Y., 2022. Effects of Nitrogen and Phosphorus Enrichment on Growth and
- 502 Nutritional Components of *Pyropia haitanensis* in Changdao, Shandong Province. Guangxi Sci. 29 (in Chinese), 168-175.
- 503 Ma, C., Stern, D. I., 2008. China's changing energy intensity trend: A decomposition analysis. Energy Econ., 30(3), 1037-1053.
- 504 https://doi.org/10.1016/j.eneco.2007.05.005.
- 505 Maruyama, S., Tsubaki, K., Taira, K., Sakai, S., 2004. Artificial upwelling of deep seawater using the perpetual salt fountain for
- 506 cultivation of ocean desert. J. Oceanogr. 60, 563-568. https://doi.org/10.1023/b:Joce.0000038349.56399.09.
- 507 McClimans, T.A., Handå, A., Fredheim, A., Lien, E., Reitan, K.I., 2010. Controlled artificial upwelling in a fjord to stimulate non-
- 508 toxic algae. Aquacult. Eng. 42, 140-147. https://doi.org/10.1016/j.aquaeng.2010.02.002.
- 509 NASEM (National Academies of Sciences, Engineering, and Medicine), 2022. A research strategy for ocean-based carbon dioxide
- 510 removal and sequestration. Washington, DC: The National Academies Press. https://doi.org/10.17226/26278.
- 511 Nelson, D. M., Anderson, R. F., Barber, R. T., Brzezinski, M. A., Buesseler, K. O., Chase, Z., Collier, R. W., Dickson, M. L., Francois,
- 512 R., Hiscock, M. R., Honjo, S., Marra, J., Martin, W. R., Sambrotto, R. N., Sayles, F. L., Sigmon, D. E., 2002. Vertical budgets for
- 513 organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998. Deep-Sea Research Part II 49, 1645-
- 514 1674. https://doi.org/10.1016/s0967-0645(02)00005-x.

- 515 Nilsson, M.M., Kononets, M., Ekeroth, N., Viktorsson, L., Hylén, A., Sommer, S., Pfannkuche, O., Almroth-Rosell, E., Atamanchuk,
- 516 D., Andersson, J.H., Roos, P., Tengberg, A., Hall, P.O.J., 2018. Organic carbon recycling in Baltic Sea sediments An integrated
- estimate on the system scale based on in situ measurements. Mar. Chem. 209, 81-93. https://doi.org/10.1016/j.marchem.2018.11.004.
- 518 Nzudie, H. L. F., Zhao, X., Liu, G., Tillotson, M. R., Hou, S., Li, Y., 2021. Driving force analysis for food loss changes in Cameroon.
- 519 J. Clean Prod. 278, 123892. https://doi.org/10.1016/j.jclepro.2020.123892.
- 520 Ortiz, J., Aristegui, J., Hernandez-Hernandez, N., Fernandez-Mendez, M., Riebesell, U., 2022. Oligotrophic phytoplankton community
- 521 effectively adjusts to artificial upwelling regardless of intensity, but differently among upwelling modes. Front. Mar. Sci. 9,
- 522 https://doi.org/10.3389/fmars.2022.880550.
- 523 Oschlies, A., Pahlow, M., Yool, A., Matear, R.J., 2010. Climate engineering by artificial ocean upwelling: Channeling the sorcerer's
- 524 apprentice. Geophys. Res. Lett. 37, L04701. https://doi.org/10.1029/2009gl041961.
- 525 Ou, G., Wang, X., Yang, A., Ke, A., Guan, W., 2017. Interspecific differences in the carbon sink capacity of macroalgae. Journal of
- 526 Zhejiang Agricultural Sciences 58 (in Chinese), 1436-1439+1443. https://doi.org/10.16178/j.issn.0528-9017.20170843.
- 527 Pan, Y.W., Fan, W., Huang, T.-H., Wang, S.-L., Chen, C.-T.A., 2015. Evaluation of the sinks and sources of atmospheric CO₂ by
- 528 artificial upwelling. Sci. Total Environ. 511, 692-702. https://doi.org/10.1016/j.scitotenv.2014.11.060.
- 529 Pan, Y. W., Wei, F., Zhang, D. H., Chen, J. W., Huang, H. C., Liu, S. X., Jiang, Z. P., Di, Y. N., Tong, M. M., Chen, Y., 2016. Research
- progress in artificial upwelling and its potential environmental effects. Sci. China-Earth Sci. 59, 236-248.
 https://doi.org/10.1007/s11430-015-5195-2.
- 532 Pan, Y.W., You, L., Li, Y., Fan, W., Chen, C.-T.A., Wang, B.-J., Chen, Y., 2018. Achieving highly efficient atmospheric CO₂ uptake
- 533 by artificial upwelling. Sustainability 10, 664. https://doi.org/10.3390/su10030664.
- 534 Pan, Z., Gao, Q.F., Dong, S.L., Wang, F., Jiang, X.Y., Zhang, G., Zhao, K., 2019. Remineralization and preservation of sedimentary
- 535 organic carbon, and authigenic mineral formation in Alian Bay and its adjacent areas, China: Implication for the influence of abalone
- 536 (Haliotis discus hannai Ino) and kelp (Saccharina japonica) mariculture. Aquaculture 507, 301-312.
- 537 https://doi.org/10.1016/j.aquaculture.2019.04.051.

- 538 Penhale, P.A., Capone, D.G., 1981. Primary productivity and nitrogen fixation in two macroalgae-cyanobacteria associations. Bull.
- 539 Mar. Sci. 31, 164-169.
- 540 Qiang, Y.F., Fan, W., Xiao, C.B., Pan, Y.W., Chen, Y., 2018. Effects of operating parameters and injection method on the performance
- of an artificial upwelling by using airlift pump. Appl. Ocean Res. 78, 212-222. https://doi.org/10.1016/j.apor.2018.06.006.
- 542 Ren, W.H., 2021. Study on the removable carbon sink estimation and decomposition of influencing factors of mariculture shellfish and
- 543 algae in China a two-dimensional perspective based on scale and structure. Environ. Sci. Pollut. Res. 28, 21528-21539.
- 544 https://doi.org/10.1007/s11356-020-11997-1.
- 545 Ryan, J.P., Fischer, A.M., Kudela, R.M., Gower, J.F.R., King, S.A., Marin, R., III, Chavez, F.P., 2009. Influences of upwelling and
- 546 downwelling winds on red tide bloom dynamics in Monterey Bay, California. Cont. Shelf Res. 29, 785-795.
- 547 https://doi.org/10.1016/j.csr.2008.11.006.
- 548 SFSY (Shandong Fishery Statistical Yearbook), 2011-2021. Shandong Provincial Department of Ocean and Fisheries, Jinan 2011 549 2021.
- 550 Shao, G.L., Liu, B., Li, C., 2019. Evaluation of carbon dioxide capacity and the effects of decomposition and spatio-temporal
- differentiation of seawater in China's main sea area based on panel data from 9 coastal provinces in China. Acta Ecol. Sin. 39 (in
- 552 Chinese with English abstract), 2614-2625.
- 553 Sinha, R., Thomas, J.B.E., Strand, A., Soderqvist, T., Stadmark, J., Franzen, F., Ingmansson, I., Grondahl, F., Hasselstrom, L., 2022.
- 554 Quantifying nutrient recovery by element flow analysis: Harvest and use of seven marine biomasses to close N and P loops. Resour.
- 555 Conserv. Recycl. 178, 1106031. https://doi.org/10.1016/j.resconrec.2021.106031.
- 556 Smith, S.V., 1981. Marine macrophytes as a global carbon sink. Science 211, 838-840. https://doi.org/10.1126/science.211.4484.838.
- 557 Su, M., Wang, L.L., Xiang, J.H., Ma, Y.X., 2021. Adjustment trend of China's marine fishery policy since 2011. Mar. Pol. 124, 104322.
- 558 https://doi.org/https://doi.org/10.1016/j.marpol.2020.104322.
- 559 Tang, Q.S., Zhang, J.H., Fang, J.G., 2011. Shellfish and seaweed mariculture increase atmospheric CO₂ absorption by coastal
- 560 ecosystems. Mar. Ecol. Prog. Ser. 424, 97-104. https://doi.org/10.3354/meps08979.

- 561 Tsai, D.D.-W., Chen, P.H., Ramaraj, R., 2017. The potential of carbon dioxide capture and sequestration with algae. Ecol. Eng. 98, 17-
- 562 23. https://doi.org/10.1016/j.ecoleng.2016.10.049.
- 563 Tyler, A.C., McGlathery, K.J., 2006. Uptake and release of nitrogen by the macroalgae *Gracilaria vermiculophylla* (Rhodophyta). J.
- 564 Phycol. 42, 515-525. https://doi.org/10.1111/j.1529-8817.2006.00224.x.
- 565 Viudez, A., Balsells, M.F.P., Rodriguez-Marroyo, R., 2016. Artificial upwelling using offshore wind energy for mariculture
- 566 applications. Sci. Mar. 80, 235-248. https://doi.org/10.3989/scimar.04297.06B.
- 567 Wang, C., Chen, J. N., Zou, J., 2005. Decomposition of energy-related CO₂ emission in China: 1957-2000. Energy 30, 73-83.
- 568 https://doi.org/10.1016/j.energy.2004.04.002.
- 569 Wang, M., Mao, D., Xiao, X., Song, K., Jia, M., Ren, C., Wang, Z., 2023. Interannual changes of coastal aquaculture ponds in China
- 570 at 10-m spatial resolution during 2016–2021. Remote Sens. Environ. 284, 113347.
- $571 \qquad https://doi.org/https://doi.org/10.1016/j.rse.2022.113347.$
- 572 Wang, M.Q., Wang, X.H., Zhou, R., Zhang, Z.P., 2020. An indicator framework to evaluate the Blue Bay Remediation Project in
- 573 China. Reg. Stud. Mar. Sci. 38, 101349. https://doi.org/10.1016/j.rsma.2020.101349.
- 574 Watanabe, K., Yoshida, G., Hori, M., Umezawa, Y., Moki, H., Kuwae, T., 2020. Macroalgal metabolism and lateral carbon flows can
- 575 create significant carbon sinks. Biogeosciences 17, 2425-2440. https://doi.org/10.5194/bg-17-2425-2020.
- 576 Weigel, B.L., Pfister, C.A., 2021. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, e03221.
- 577 https://doi.org/https://doi.org/10.1002/ecy.3221.
- 578 Wu, H.L., Kim, J.K., Huo, Y.Z., Zhang, J.H., He, P.M., 2017. Nutrient removal ability of seaweeds on *Pyropia yezoensis* aquaculture
- rafts in China's radial sandbanks. Aquat. Bot. 137, 72-79. https://doi.org/10.1016/j.aquabot.2016.11.011.
- 580 Wu, J.H., Li, B., 2022. Spatio-temporal evolutionary characteristics of carbon emissions and carbon sinks of marine industry in China
- and their time-dependent models. Mar. Policy 135, 104879. https://doi.org/10.1016/j.marpol.2021.104879.
- 582 Xiao, X., Agusti, S., Lin, F., Li, K., Pan, Y.R., Yu, Y., Zheng, Y.H., Wu, J.P., Duarte, C.M., 2017. Nutrient removal from Chinese
- 583 coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613. https://doi.org/10.1038/srep46613.

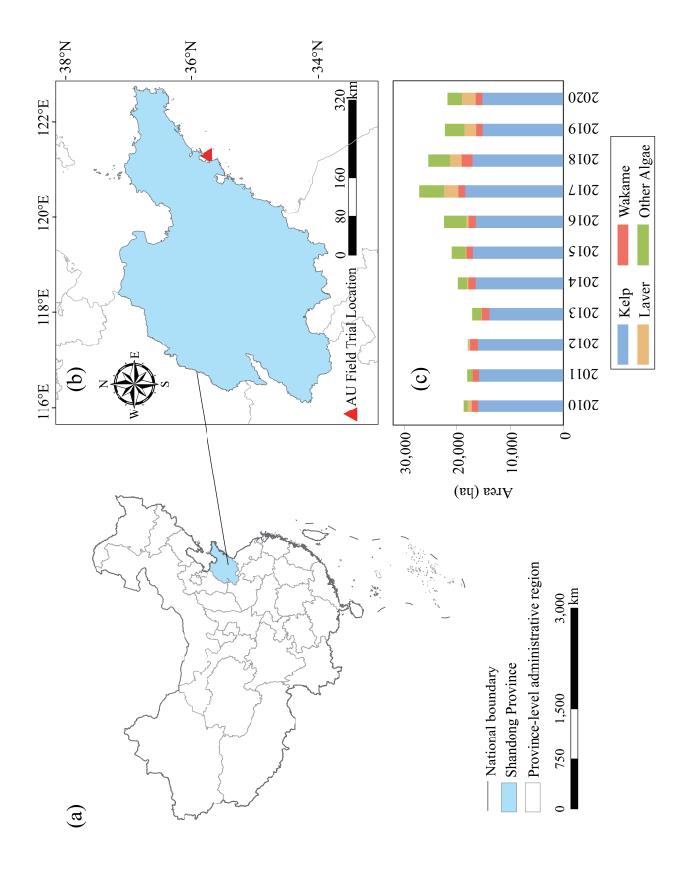
- 584 Yan, L.W., Hang, H.J., Chen, J.T., Yan Yang, X.G., 2011. Estimation of carbon sink capacity of algal mariculture in the coastal areas
- 585 of China. Adv. Mar. Sci. 29 (in Chinese with English abstract), 537-545.
- 586 Yang, Y., Chai, Z., Wang, Q., Chen, W., He, Z., Jiang, S., 2015. Cultivation of seaweed Gracilaria in Chinese coastal waters and its 587
- contribution to environmental improvements. Algal Res. 9, 236-244. https://doi.org/10.1016/j.algal.2015.03.017.
- 588 Yang, Y.F., Luo, H.T., Wang, Q., He, Z.L., Long, A.M., 2021. Large-scale cultivation of seaweed is effective approach to increase
- 589 marine carbon sequestration and solve coastal environmental problems. Bull Chin. Acad. Sci. 36 (in Chinese with English abstract),
- 590 259-269. https://doi.org/10.16418/j.issn.1000-3045.20210217103.
- 591 Yang, L., Hao, X.Y., Shen, C.L., An, D., 2022. Assessment of carbon sink capacity and potential of marine fisheries in China under
- 592 the carbon neutrality target. Resour. Sci. 44 (in Chinese with English abstract), 716-729. https://doi.org/10.18402/resci.2022.04.06.
- 593 Yoshikawa, T., Takeuchi, I., Furuya, K., 2001. Active erosion of Undaria pinnatifida Suringar (Laminariales, Phaeophyceae) mass-
- 594 cultured in otsuchi bay in northeastern Japan. J. Exp. Mar. Biol. Ecol. 266, 51-65. https://doi.org/10.1016/s0022-0981(01)00346-x.
- 595 Yue, D.D., Wang, L.M., Fang, H., Geng, R., Zhao, P.F., Xiong, M.S., Wang, Q., Zhou, Y.S., Xiao, L., 2016. Development Strategy of
- 596 Marine Fisheries in China Based on the Carbon Balance. J. Agric. Sci. Technol. 18 (in Chinese with English abstract), 1-8.
- 597 https://doi.org/10.13304/j.nykjdb.2015.695.
- 598 Zhang, J.F., Cai, H.J., Zhao, Y.R., Chen, W.H., Hu, S.Q., Liu, Y., Liu, C.F., 2020. Seasonal variation in the total organic carbon
- 599 contents and the δ^{13} C values of macroalgae in the rocky intertidal zone of the Zhangzi island. Mar. Sci. 44 (in Chinese), 56-65.
- 600 Zhang, L.T., Han, L.M., 2017. The problems and policy recommendations on the development of Chinese seaweed industry. Chin.
- 601 Fish. Econ. 35 (in Chinese), 89-95.
- 602 Zhao, X., Tillotson, M.R., Liu, Y.W., Guo, W., Yang, A.H., Li, Y.F., 2017. Index decomposition analysis of urban crop water footprint. 603 Ecol. Model. 348, 25e32. https://doi.org/10.1016/j.ecolmodel.2017.01.006.
- 604 Zhao, Y.Z., Li, Y.F., Wang, X.W., 2022. The land-sea system dynamics model with shared socioeconomic pathways can identify the
- 605 Sustainable Development 106257. gaps in achieving Goal 14. Resour. Conserv. Recycl. 181.
- 606 https://doi.org/10.1016/j.resconrec.2022.106257.

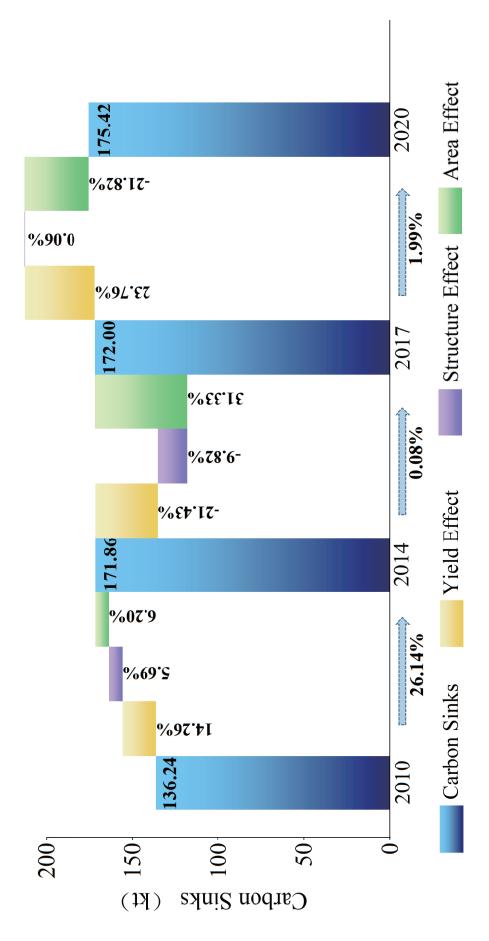
- 607 Zheng, Y.H., Jin, R.J., Zhang, X.J., Wang, Q.X., Wu, J.P., 2019. The considerable environmental benefits of seaweed aquaculture in
- 608 China. Stochastic Environ. Res. Risk Assess. 33, 1203-1221. https://doi.org/10.1007/s00477-019-01685-z.
- Collmann, M., Traugott, H., Chemodanov, A., Liberzon, A., Golberg, A., 2019. Deep water nutrient supply for an offshore Ulva sp.
- 610 cultivation project in the Eastern Mediterranean Sea: Experimental simulation and modeling. Bioenergy Res. 12, 1113-1126.
- 611 https://doi.org/10.1007/s12155-019-10036-3.

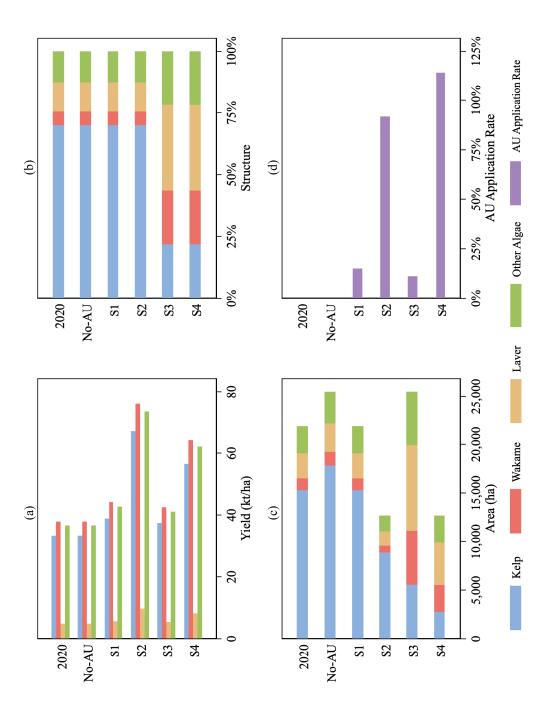
Table 1										
Biological parameters of mariculture algae (%).										
Saraia	Carbon content of algae	Nitrogen content of algae	Phosphorus content of algae							
Species	(w_i^c)	(w_i^N)	(w_i^p)							
Kelp	24.99	3.71	0.52							
Laver	29.09	6.30	1.00							
Wakame	30.48	5.01	0.76							
Other algae	28.19	5.01	0.76							

Notes: The C content ratio of kelp, laver, and wakame refer to Zhang et al. (2020). The C content of other algae species were taken as the mean values of kelp, laver, and wakame. The N and P content of kelp refer to Xiao et al. (2017). The N and P content of laver refer to He et al. (2008). Other algal species' N and P contents were taken as the mean values of kelp and laver.

Table 2


The mechanism parameters of carbon sink of mariculture algae.


Mechanism parameters	Values	References
α	0.19	Yoshikawa et al. (2001); Yan et al. (2011)
β	0.05	Penhale and Capone (1981); Yan et al. (2011)
r ^{POC}	0.04	Nilsson et al. (2018); Nelson et al. (2002)
r ^{DOC}	0.016	Jiao et al. (2010); Chen et al. (2020)


Table 3

The carbon sink and nutrient removal of mariculture grown algae in Shandong Province (kt).

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Carbon sinks of algae body	134.75	129.58	145.69	151.04	169.98	170.75	173.67	170.12	172.81	172.76	173.51
Carbon sinks through POC	1.35	1.30	1.46	1.51	1.70	1.71	1.74	1.70	1.73	1.73	1.74
Carbon sinks through DOC	0.14	0.14	0.15	0.16	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Carbon sinks	136.24	131.01	147.30	152.71	171.86	172.64	175.59	172.00	174.72	174.67	175.42
Nitrogen Removal	20.50	19.76	22.28	23.09	25.99	26.12	26.79	26.31	26.94	27.18	27.06
Phosphorus Removal	2.91	2.81	3.18	3.29	3.71	3.73	3.84	3.77	3.88	3.93	3.89

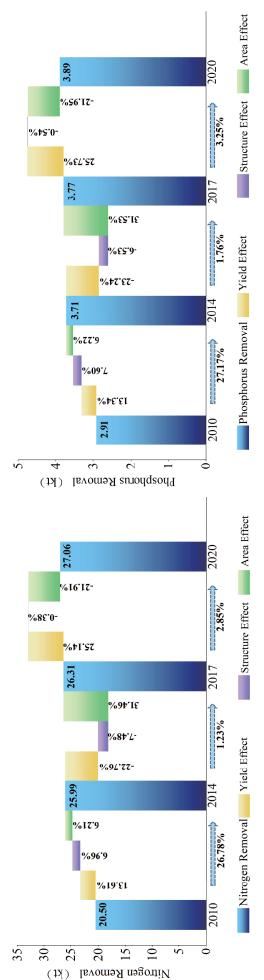
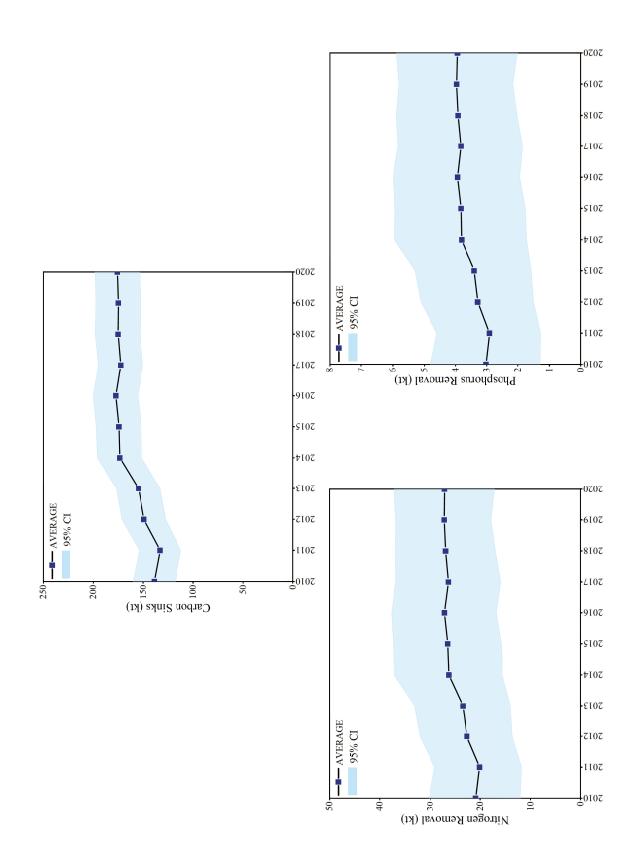



Fig. A1. Contribution of different driving factors to N and P removal changes in Shandong Province, China (2010-2020) (kt).

Fig. A2. Uncertainties in carbon sink and nutrient removal of mariculture algae between 2010 and 2020.

Click here to access/download Supplementary Material Supplementary Material.docx

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Author Contributions Statement

Chunlei Shen: Conceptualization, Writing – original draft, Investigation, Formal analysis. Xinya Hao: Conceptualization, Methodology, Software, Writing – review & editing. Dong An: Investigation, Data curation. Martin R. Tillotson: Writing – original draft, Writing – review & editing. Lin Yang: Conceptualization, Supervision, Investigation, Funding acquisition. Xu Zhao: Conceptualization, Writing – review & editing, Methodology, Funding acquisition.