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Abstract—Engineering design has traditionally involved human
engineers manually creating and iterating on designs based
on their expertise and knowledge. Bio-inspired Evolutionary
Development (EvoDevo) generative algorithms aim to explore
a much larger design space that may not have ever been
considered by human engineers. However, for complex systems,
the designer is often required to start the EvoDevo process with
an initial design solution (seed) which the development process
will optimize. The question is will a relatively good starting seed
always yield a good set of design solutions. This paper considers
this question and suggests that sub-optimal seeds can provide,
up to certain limits, better design solutions than relatively more
optimal seeds. In addition, this paper highlights the importance
of designing the appropriate seed for the appropriate problem.
In this paper, the problem analysed is the structural performance
of a Warren Truss (bridge-like structure) under a single load.
The main conclusion of this paper is that up to a limit sub-
optimal seeds provide in general better sets of solutions than more
optimal seeds. After this limit, the performance of sub-optimal
seed starts to degrade as parts of the phenotype landscape become
inaccessible.

Index Terms—evodevo, generative design, structural engineer-
ing, genetic algorithms, neural networks

I. INTRODUCTION

It is a common practice that an experienced engineer

provides the design of engineering solutions for any given

problem, often starting from a previously well-formed design

[1]. However, in recent years novel tools have been created

to enhance the design process assisted by computational

intelligence techniques. Most of the early work consisted of

one-to-one mapping, direct encoding, of the solution where

changes were made directly in the solution [2]. While proving

successful this process proved to be slow and computationally

expensive in order to find the optimal solution in the fitness

landscape, and a question of scalability is raised. Generative

design [3] has been used, mainly for theoretical studies and

seldom for real engineering structures, alongside evolutionary

techniques to reduce time and make fitness landscape explo-

ration more efficient [4], [5].

Recent work has updated evolutionary (Evo) techniques

with a developmental component (Devo) inspired by the

evolutionary development (EvoDevo) in biology [6] where the
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EvoDevo evolves the development rules, an overview can be

found in [7]. Some examples of EvoDevo used to evolve design

can be found in [8]–[10]. Price et al [11] have demonstrated

the use of Devo processes to create a bracket component.

Recent work shown in [12] demonstrated the use of EvoDevo

to optimize the structure of the Warren truss problem (bridge-

like structure). In this approach, an artificial gene regulatory

network (GRN) regulates the growth from an initial structure

(seed) to the final solution during the Devo process. The fitness

score is taken at the last Devo step by the Evo process and

the GRN is optimized with this information. One of the main

motivations of EvoDevo is that the evolved GRNs can provide

efficient solutions when subjected to different conditions.

In contrast to traditional evolutionary processes (where

random initial starting points are often chosen), in the EvoDevo

process a seed is required to start the process. The concept of

a seed, introduced in [12], is defined as an initial solution

(structure) whose main requirement is to connect the supports

and the external load. In previous work, the seed provided

to the EvoDevo process is hand-designed and its quality is

relatively good [12] where quality in this context refers to the

behaviour of a structure of having a subjective low volume and

low strain energy. This approach of hand-designing the seed

works with the assumption that the designer has the knowledge

of what a good quality initial design (seed) looks like. This

paper argues that the shape of the seed can have a significant

impact on the quality of the solutions found by an EvoDevo

process. In this paper, the quality of the set solutions found at

the end of an EvoDevo process is analysed for four different

initial seeds each with a different degree of quality (as judged

by an engineer). This is done with the objective of testing the

following two hypotheses.

1) The relative position of the seed in the fitness landscape

has no significant impact on the location of the Pareto

front and the quality of the solutions found.

2) The design of the seed has no impact on the structure

landscape limiting the space EvoDevo can explore with.

This paper shows that the designer needs to carefully select

the appropriate seed for an EvoDevo process in order to find

the best engineering designs for a given problem. This is



Fig. 1. Loading on a fifteen-segment truss. For all the experiments all the
structures are pinned in the vertex at the left-hand side, roller in the vertex at
the right-hand side and the load is located at the fixed vertex in the middle.
The position of each movable vertex is regulated by the ”output deltas” (δ).
At each Devo step a vertex can be moved up to 1 mm at any x and y direction.
In a single Devo process a vertex can move up to 10 mm in a direction as
shown in the vertex range.

achieved by demonstrating the counterintuitive effect that a

relatively sub-optimal seed can find better sets of solutions

than a more optimal initial seed. Therefore, a set of diverse

seeds might need to be algorithmically produced in order to

identify the most suitable seed. The key contribution of this

paper is the first study of the impact of the seed/initial structure

on the quality of solutions found in the EvoDevo process for

an engineering problem (in this case a Warren Truss). This

study is carried out on the structural (phenotype) and fitness

(behaviour) landscapes.

II. EXPERIMENTAL METHODOLOGY

The Evolutionary Developmental (EvoDevo) approach used

in this paper is similar to that introduced in [12]. An evo-

lutionary algorithm (EA) is used to evolve populations of

Gene Regulatory Networks (GRN). Each GRN leads the

developmental process from a starting structure (seed) by

changing the locations of the vertices in the structure at each

step during the developmental process (Devo). Lastly, the EA

takes the fitness from the last Devo step as the score to generate

the new population.

The Devo process in Hickinbotham [12] takes place in a

fixed set of steps (in this case 10), although it is recognised

that this is an arbitrary, and potentially limiting choice. At

each step, the locations of the vertices are changed by the

GRN which in this work is implemented by a feedforward

neural network. The amount of change is regulated by ”output

deltas” (δ) of the neural network. It is important to highlight

that a single vertex can move up to 1 mm at each Devo step

in each x and y direction, therefore a vertex can move up to

10 mm in any direction at each development step as illustrated

in figure 1. For all the experiments, all the structures have

a pinned support on the vertex at the left-hand side, roller

support on the vertex at the right-hand side and the load is

located at the vertex in the middle, which is constrained from

moving.

This paper studies the influence of the seed in two solution

representations (phenotype and behavioural). The first repre-

sentation, phenotype, is at the structure level, a set of vertices,

at the last developmental step. The second representation, be-

havioural, is the multi-objective fitness score of the organism

when subjected to an external load.

Four different seeds are analysed in this paper and shown

in figure 2: seed 1, seed 2, seed 3 and seed 4. Seed 1 was

manually designed. Seed 2, seed 3 and seed 4 were sub-optimal

solutions taken from evolved structures in an experiment using

seed 1. These last three seeds were chosen because of their

different phenotype features and positions in the behavioural

landscape. Vertices for seed 2 are skewed in the positive y-

direction. Vertices for seed 3 are skewed towards the negative

y-direction. Vertices for seed 4 are even more skewed in the

negative y-direction than the previous seed. Seed 4 exhibits the

worst quality in the behavioural landscape and seed 1 exhibits

the best quality.

The Non-dominated Sorting Genetic Algorithm II (NSGA-

II) [13] algorithm is used in this paper in combination with

the Neuro-Evolution of Augmenting Topologies (NEAT) [14]

algorithm to evolve the weights, biases and topologies of

initial fully connected neural networks with no hidden nodes

representing the GRNs. The optimal solutions are taken from

the set Pareto front solutions from the last generation. The

parameters used for the experiments in this paper can be found

in table I.

The two objectives to minimize for the Evo process are

volume and deflection that act as proxies for weight and

stiffness (e.g. bridge with the least material but still safe).

The volume of a single solution is defined as the sum of the

volume of each member m in the solution M and is calculated

using:

V =
∑

m∈M

AmLm (1)

where Am is the cross-sectional area of m and Lm is the

length of m. Deflection is defined as the maximum distance,

deflection, travelled of a vertex d in the solution as shown in

equation 2. The deflection is estimated using Finite Element

Analysis (FEA) software.

D = max[d0, ..., dn] (2)

The Mann-Whitney U test [15] is used here to test the

hypothesis that all the samples from two groups are not

independent of each other. For this, a three-star ranking system

is used where one star (*) represents p < 0.05, two stars (**)

represent p < 0.01, and *** represents p < 0.001 and p is the

probability.

The Pareto-agnostic hypervolume (HV) metric [16] is used

to measure the quality of the Pareto fronts. High values of HV

represent better Pareto fronts. Also, the HV requires a point

of reference and for this, the coordinate for seed 4 is used.

III. RESULTS

The results shown present the quality of solutions at the

end of the EvoDevo process. The analysis is carried out

by assessing the multi-objective fitness scores produced by



Fig. 2. Seeds used for the experiments shown in this paper. Seed 1 was manually constructed, seed 2, 3 and 4 were taken from an EvoDevo experiment. The
heat maps represent the lowest deflection across all generations and all replicates found when a vertex was placed in that coordinate. The landscape is not
entirely covered for seed 2, 3 and 4 as indicated with the white cells.

TABLE I
THESE PARAMETERS ARE USED FOR EACH SEED IN THIS PAPER.

Parameter Value

Number of replicates 20
Population 50
Generations 200
Developmental steps 10
Max δ 1 mm

each seed and by showing some examples of the generated

structures.

The structure of the seed can influence the lowest deflec-

tion found at each coordinate by the EvoDevo process. The

heatmaps in figure 2 represent the lowest deflection achieved

at each coordinate in the phenotype landscape across all the

replicates (repetitions) and generations. Overall, seed 2 and

seed 3 are able to find lower values of deflection than seed 1

and seed 4 as shown in the scales in the colour bars. Also,

vertices located in the negative y direction experience the

highest values of deflection as highlighted in the darker regions

of the heatmaps.

The locations of the vertices in the seed can set hard

boundaries in the phenotype landscape limiting the optimal

solution reachability. White cells represent solutions that were

not found in any replicate in any generation at that coordinate

as shown in figure 2. In contrast to seed 1 where the entire

landscape is covered by EvoDevo, the landscape for seed 2, 3

and 4 is not entirely covered as shown with the white cells.

This occurs for two reasons. First, the number of Devo steps is

not enough to move a vertex to that location of the phenotype

space. Second, the value for δ is too small (1 mm). The white

cells are more than 10 mm apart from the closest vertex. For

example, the vertices for seed 2 are skewed towards the top-

right corner and EvoDevo is unable to reach the region in

the bottom-left corner. A similar case for seed 3 and 4 is that

vertices are skewed towards the bottom and EvoDevo is unable

to reach the top part of the landscape.

The issue of hard boundaries in the phenotype landscape can

be addressed in two ways each with a trade-off. In the first

approach, the number of Devo steps can be increased, however,

this increases the number of evaluations hence the computation

time of the EvoDevo process. In the second approach, the

δ value can be increased, however, the exploration of the

landscape will increase and with this the time that it takes

to find the global optimum.

The HV scores of the Pareto fronts produced by seed 3 are

significantly higher than the other three seeds. Figure 3a shows

the convergence of the HV values at each generation at each

replicate. Even though seed 2 is initially faster at finding higher

HV values, seed 3 finds the best Pareto fronts across the three

seeds after 50 generations. Figure 3b shows the boxplots of

the last generation where seed 3 is *** different than the other

three seeds. In other words, seed 3 experiences higher values

of HV and with this better quality of Pareto. This result rejects

hypothesis 1 and validates the statement that the position of

the seed in the fitness landscape has a significant impact on

the resulting Pareto fronts. More details about the Pareto fronts

are described next.

For the experiments shown in this paper, the farther the

seed is from the origin, the closer the Pareto front is to the

origin as shown in the behavioural landscape in figure 4 with

the exception of seed 4 which will be addressed later. Even

though seed 1 is closer to the origin than the other two starting

seeds, this seed finds the least optimal set of solutions. There

are three possible reasons for this behaviour in the EvoDevo

process: 1) It can be possible that the structure for seed 1

is located at a local optimum and the EvoDevo algorithm is

unable to escape this region. 2) seed 2 and seed 3 are located in

a richer space in terms of the diversity of structure solutions.

3) The ranking nature of NSGA-II incorporates a crowding



(a) (b)

Fig. 3. Convergence of the hypervolume at each generation for all the replicates (a) and box plots at the last generation (b). Seed 3 is *** different than the
other three seeds.

distance measure, that pushes the solutions to extend the arms

of the Pareto front instead of pushing the solutions towards

[0,0] in the fitness landscape. Point 3) can also be visualized

in Figure 4a where the Pareto front arms are shorter for seed

3 than the other two seeds where the volume is lower than

425 and the deflection is lower than 700.

The main reason why seed 4 has worse performance than

seed 3 is that its vertices are located in a region which makes

it very difficult for the EvoDevo process to move them to the

optimal region. Many of the vertices for seed 4 are close to

the boundary at the negative y-direction, therefore the upper

region of the phenotype landscape becomes unreachable as

the distance is more than 10 mm away from the closest vertex

as shown in figure 2. This could probably be improved by

increasing the delta step as mentioned before. This result might

reject hypothesis 2 suggesting that the design of the seed has an

impact on the final structure and its position in the landscape.

This impact is shown as an unreachable region during the

Devo process that changes from seed to seed. The region with

optimal solutions is described next.

The colour of the cells in figure 5 represents the number of

solutions found at that coordinate at the last generation across

all the replicates for seed 3. From the heat map and figure 5d,

it can be visualized that many of the vertices of structures

at the last generation are concentrated at the row of positive

10 mm and at the row of 0 mm in the y-direction. The row

at positive 10 mm in the y-direction is unreachable for a few

vertices for seed 4 and this demonstrates its poor performance

relative to the other three seeds.

Even though the optimality of seed 3 [391.32, 572.45] was

inferior to seed 1 [387.5, 451.39], the EvoDevo algorithm was

able to find better solutions using seed 3. Three examples of

solutions found at the knee region in the Pareto front (volume

less than 380 and deflection less than 400) for seed 3 are shown

in Figures 5a, b and c. Of the three solutions (a) has the lowest

volume with the highest deflection [371.20, 400.54], (c) has

the highest volume with the lowest deflection [384.62, 351.94]

and (b) is somewhere in the middle [375.54, 379.94]. The

white lines represent the final solution and the black lines

represent the seed 3. It is important to highlight that even

though solutions in the knee region produced by seed 3

resemble more seed 1, these solutions were not found by

seed 1, suggesting that seed 1 fails to escape the initial local

optima solution.

In summary, the position of the seed in the fitness, be-

havioural, space can lead to better Pareto fronts, in this case,

a lower quality of initial seed. However, it is important to note

that careful choice is required as the location of the vertices at

the seed can restrict the available search space at the structural,

phenotype, representation as shown with seed 4. Therefore,

careful design decision needs to be taken when creating the

seed for an EvoDevo process.

IV. CONCLUSION

The Evolutionary Development (EvoDevo) algorithms used

in generative design for engineering structures need a starting

solution (seed) to develop. In previous work, a deliberately de-

signed “good” quality seed was produced with the expectation

that this seed would develop into the best solution the EvoDevo

process could deliver. However, as shown in this paper, this is

not guaranteed.

Four different seeds with different degrees of quality were

used as starting conditions for the EvoDevo process. The

results showed that a relatively low-quality seed can find better

solutions than high-quality seeds. This concept applies as long

as the EvoDevo process is able to move the vertices to the

location with the highest quality of solutions.

The main two conclusions from this paper are the following:

1) Seed location in the fitness space has a correlation with the

quality of the solutions found and the location of the Pareto

front. 2) The seed can define hard boundaries in the structural

landscape.



(a) (b)

Fig. 4. All Pareto fronts aggregated from all the replicates for each seed as shown in (a) and (b) shows a close-up at the knee point. The Pareto front for
seed 3 is closest to the origin and the Pareto front for seed 1 is the farthest. Even though the quality of seed 4 is relatively the worst of all the seeds, the
Pareto front is closer to the origin than seed 1. The Pareto arms for seed 3 are shorter than the other three seeds.

(a) (b)

(c) (d)

Fig. 5. Figures (a), (b) and (c) represent three examples of solutions (in white) found in the knee region at the Pareto front for seed 3 (in black) each with a
coordinate of [371.20, 400.54], [375.54, 379.94] and [384.62, 351.94] respectively where (a) has the lowest volume with the highest deflection and (c) has the
highest volume with the lowest deflection. Figure (d) illustrates all the structures at the last generation for all the replicates. The colour of the cell represents
the number of solutions found with a vertex at that coordinate at the generation.

In other words, this paper hypothesises that there is a trade-

off in the location of a seed relative to the fitness landscape.

A seed placed close to the origin can experience optimization

problems due to the seed being located at local optima.

Whereas, a seed located too far from the origin is unable

to reach the global optimum due to the limitations in the

exploration of the structure representation.

This result raises the question: how to design/create the best

seed that produces the most optimal solutions for an EvoDevo

process? Some possibilities are described next and future work

will investigate and analyze each option in order to identify

the best approach. In addition, further work will explore other

design problems besides the Warren truss example.

1) An experienced qualified designer could deliberately

design a lower-quality seed, with the assumption that

this seed will yield better results. It is important that

the designer is aware of the limitations of the algorithm

including, and not only, the total distance a single vertex

can be moved in the structure landscape.

2) A set of diverse seeds could be produced with quality

diversity (QD) algorithms [17]. Each seed would be eval-

uated by the EvoDevo process and the seed providing



the best results will be chosen. This has the additional

benefit that no prior knowledge is required to create the

design of the seed with the trade-off that this might be

computationally expensive.

3) A new multi-objective algorithm could be developed that

influenced the fitness ranking to prioritise solutions in

the ‘knee’ of the Pareto front.

Regardless of how the seed is designed, one of the require-

ments is that the GRN evolved should be flexible enough that

when used with different seeds and different conditions the

Devo process will provide feasible solutions.
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