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Abstract

This work proposes an intra-Class-confidence and inter-Class-confusion guided

Dynamic Contrastive (CCDC) learning framework for medical image segmen-

tation. A core contribution is to dynamically select the most expressive pixels

to build positive and negative pairs for contrastive learning at different training

phases. For the positive pairs, dynamically adaptive sampling strategies are

introduced for sampling different sets of pixels based on their hardness (namely

the easiest, easy, and hard pixels). For the negative pairs, to efficiently learn

from the classes with high confusion degree w.r.t a query class (i.e., a class

containing the query pixels), a new hard class mining strategy is presented.

Furthermore, pixel-level representations are extended to the neighbourhood re-

gion to leverage the spatial consistency of adjacent pixels. Extensive exper-

iments on the three public datasets demonstrate that the proposed method

significantly surpasses the state-of-the-art. The code is publicly available at

https://github.com/jingkunchen/ccdc.
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Medical Image Segmentation

1. Introduction

Deep learning based medical image segmentation algorithms are capable

of providing clinical guidance under the right conditions, such as surgery plan-

ning and post-surgery monitoring. However, training a successful deep-learning-

based segmentator requires a large amount of pixel-level annotation data, which5

is always rare and expensive, especially for 3D images. It remains a challenge

to train a satisfactory deep learning-based segmentation algorithm with limited

annotated data.

In recent years, contrastive self-supervised representation learning is widely

adopted to reduce the use of labelled data, which turns out to be successful10

in solving image-level tasks, such as classification [1] and image translation [2],

and instance-level tasks, such as detection [3]. In contrastive learning, construc-

tions of positive (similar) pairs and negative (dissimilar) pairs [4] are essential.

This is not trivial, especially when dealing with a large number of pixels, e.g.,

segmentation task, as naive contrastive learning that exhaustedly combines all15

pixels becomes computationally prohibitive. Therefore, sampling a portion of

pixels for contrastive learning in segmentation task is usually adopted as an

alternative [5].

To build positive pairs in contrastive learning, strategies of sampling pixels

from images for segmentation task, such as random sampling [6] and active hard20

sampling [5], suffer from several limitations. More concretely, random sampling

[6] treats each pair equally without considering the effectivenesses of the selected

pixels. Often, a large pixel sampling ratio will inevitably introduce redundant

information, as not all pairs are needed at the same time. For example, easy pix-

els cannot contribute to model optimisation when the performance of the model25

is high. Alternatively, active hard sampling strategies [5] focus only on hard

pixels but exclude easily distinguished samples during all training phases. This

may lead to hindered convergence due to the sharp gradient fluctuations when
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feeding hard pixels to a model with unstable/or poor performance [7]. Com-

pared to using hard pixels, the non-hard pixels are more conducive to training30

when the performance of a model is poor.

On the other hand, for negatives sampling, pixels sampled from an easy class

tend to contribute less to the optimisation of a model, especially in the case of

class imbalance (easily distinguishable classes contain more pixels, while hard

classes contain fewer pixels) [8]. The sampled negative pixels are more useful35

for learning discriminative feature only when the pixels from hard classes are

sampled frequently.

Thus, two to-be-solved problems appear when applying pixel-level contrastive

learning in segmentation task: Firstly, as the number of pixels in a dataset is

huge, efficiently sampling representative pixels is the main problem to be solved.40

Secondly, the needs of pixels of a model will change at different phases. It is

more reasonable to use appropriate sampling strategies during different training

phases. Solving these questions can provide insights to promote the design of

an efficient pixel-level contrastive learning sampling strategy. We first investi-

gate the first question by exploring the existing pixel-level contrastive learning45

methods, which sample pixels from a class to construct positive pairs (z and

z+) and different classes to construct negative pairs (z and z−). However, most

existing efforts treat all pixels equally and do not consider the hardness of the

pixels. In an image containing regions from different classes, the center pixels in

one class-specific region tend to be easily distinguishable than the border pixels,50

as border pixels could be easily confused with neighbouring pixels belonging to

other classes. Thus, to separate different regions within a class and treat the pix-

els in these regions differently, it is necessary to divide the pixels in a class into

different groups according to their hardness and each group should be treated

differently. For the second question, most of the works in the literature use the55

same sampling strategy at the different training phases. However, if there are

significant changes in the performance of the model, a fixed sampling strategy

cannot always sample representative pixels to contribute to the model. For ex-

ample, when the performance of the model is already good enough, extracting
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Figure 1: Our intra-class confidence degree guided dynamic contrastive learning aims to select

different sampling strategies to build positive pairs at different training phases. The dashed

lines with arrows denote the data flow; the solid lines are used to indicate the construction

of the positive pairs. The height of the cylinder represents the number of easiest, easy and

hard pixels in Class A in the current training phase. The length of the rectangle indicates the

number of samples. When the intra-class confidence degree of a model is low, a small sampling

ratio to the hard pixels and a much larger sampling ratio to the easy pixels is applied for

training. When the intra-class confidence degree of a model is strong, the sampling strategy

gradually moves to the opposite ratio for them.

a large number of easy pixels does not contribute much to the optimisation. On60

the contrary, taking more hard pixels when the performance of a model is low

will produce a large gradient, which may prevent the model from converging

efficiently.

Based on the above discussion, we first propose to dynamically change the

sampling strategy at different training stages to select the most expressive pixels.65

Based on this idea, a dynamic intra-class confidence degree is introduced to

divide the pixels into three groups: query pixels (z), intra-class core (z+) and

inter-class negative pixels (z−). Query pixels (z) and the intra-class core (z+)

are used to construct positive pairs, and query pixels (z) and inter-class negative

pixels (z−) are used to construct negative pairs. In the following part of this70

paper, we use the pixels of a class A as an example to illustrate our contrastive

strategy. For sampling queries and core, as shown in Fig. 1, several adaptive

sampling strategies based on variations in model performance (low, medium, and
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high confidence degree for Class A) are introduced to select pixels. Specifically,

for all phases, the easiest distinguishable pixels of class A can be considered as75

the core (z+). The representations generated by the core (z+) can be used as

a prototype to boost other query pixels (z) in the same class for class-specific

representation learning [9]. When the overall classification accuracy of the pixels

in class A is low, the easier pixels in class A should be sampled more as queries

for optimisation to reduce learning difficulty and improve overall performance80

[10]. When the accuracy of the pixels in class A is medium, the sampling ratio of

the easier query pixels should be reduced and the harder ones should be further

considered, i.e. starting easy and gradually presenting more complex concepts

[11] can obtain better learning effects. If accuracy is high, more attention should

be paid to the hard pixels to improve the hardest problem-solving skills. It is85

worth noting that our approach is different from the easy-to-hard sampling

strategy [12], as we dynamically measure the performance of the model on each

class at different phases and adapt accordingly. The proposed method can

dynamically change the sampling strategy to sample the most representative

pixels to train a more robust model (verified in Sect. 4.3.2) and avoid the90

risk of the model crashing due to a catastrophic incident (the great variance of

gradients) by the sampled hard pixels [7].

Generally, pixels sampled from more confusing classes as negatives can im-

prove the efficiency of network optimisation, as hard classes pixels allow the

model to focus on distinguishable details [13]. Since pixels from two adjacent95

classes or two similar classes are more difficult to distinguish, and pixels from two

distant classes or dissimilar classes are often easier to distinguish, it is possible

to focus on relatively difficult classes to get better performance. For example,

as shown in Fig. 2, the right and left ventricles are two organs that are sepa-

rated by the myocardium and not adjacent to each other. For the right and left100

ventricles, because of their different structures, colour and intensity distribu-

tion, the right ventricle can be easily separated from the left ventricle. But for

the myocardium class, the neighbouring pixels in the myocardium class greatly

influence the ventricle classes in adjacent regions. Based on this observation,
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Ground Truth

Prediction

Figure 2: Cardiac images with ground truth masks, the left and right ventricles (Blue and

Red regions) are two organs that are separated by the myocardium (Green region) and not

adjacent to each other. Pixels in the ventricles class are often misclassified as myocardium

class because pixels on the boundary are easily affected by other classes.

negative pixel sampling strategies should be designed differently from query105

sampling strategies which need to choose easy pixels when the performance is

low and hard pixels when the performance is high. The proposed method helps

determine which class is more confusing. The inter-class-confusion degree is

introduced to measure the inter-class difficulty from one class to other classes

at different phases. The inter-class difficulty can be used to control the number110

of sampled pixels from different negative classes.

Finally, in the segmentation task, local relationship is crutial for determining

the boundary of two classes. A representation at the positive is definitely influ-

enced by its neighbouring pixels [14]. We enhance the pixel-level representation

by combining the CNN features of individual pixels with their neighbouring115

pixels. Experiments show that our region-based contrastive learning method is

more effective than using the single pixel-level one.

In this paper, a new loss, intra-Class-confidence and inter-Class-confusion

guided Dynamic Contrastive (CCDC) loss, is introduced to dynamically change

the pixels sampling strategies at different training phases. We use the state-of-120

the-art nnU-Net [15] framework as the backbone to evaluate our approach on

three datasets, the MS-CMRSeg Dataset [16], the ACDC Challenge Dataset [17]
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and CHAOS (combined (CT-MR) Healthy Abdominal Organ Segmentation)

Dataset [18]. The proposed CCDC learning outperforms the state-of-the-art

methods. The contributions of this paper are summarized below.125

• We design a intra-class-confidence and inter-class-confusion guided dy-

namic contrastive framework and introduce a new loss, CCDC loss, for

medical image segmentation. This is the first attempt to dynamically

change the sampling strategy to select the most expressive pixels to con-

struct positive and negative pairs based on the current circumstance of130

each class.

• A intra-class-confidence degree is introduced to measure the performance

of a model on each class. A dynamically adaptive intra-class sampling

strategy based on the intra-class-confidence-degree is used to separate the

easiest, easy, and hard pixels for intra-class similarity learning.135

• To learn the class differences, a inter-class-confusion degree is proposed to

dynamically adjust the sampling ratio of the positive and negative classes,

and prioritize sample pixels from the hard classes.

• We extend pixel-level contrastive learning to the region-level by consider-

ing the spatial dependency of neighboring pixels, which turns out to be140

more suitable for the segmentation task.

• The results of three public datasets show that the proposed method is

more effective than other pixel-level contrastive learning methods, which

is highly relevant in the field of semantic segmentation, especially in medi-

cal imaging where accurate segmentation is crucial for diagnosis and treat-145

ment.

2. Related Work

Although traditional computer vision techniques have proven to be effective

in extracting representations from image data, the rise of Convolutional Neural
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Networks (CNNs) has challenged their dominance and established a new bench-150

mark for representation learning. The ability of CNNs to learn hierarchical

representations from raw data, incorporating both local and global context, has

been demonstrated through numerous studies and outperforms traditional com-

puter vision methods in many tasks. In recent years, CNN-based approaches

such as FCN [19], U-Net [20] and other related models [21] have gained signifi-155

cant popularity for medical image segmentation across various fields, including

tasks such as lung nodules segmentation [22], hippocampus segmentation [23],

ventricle and myocardium segmentation [24] and MRI-CT whole heart segmen-

tation [25]. Furthermore, the application of Transformers in medical image seg-

mentation has been on the rise as well, with notable models like EffTrans[26] and160

nnFormer [27]. For CNN- and transformer-based backbones, most segmentation

models use pixel-level cross-entropy loss and Sorensen-Dice coefficient loss to

train the networks. However, none of these loss functions takes explicitly into

account the relationship between different pixels (whether the pixels come from

the same classes), which can be fundamental for a segmentation task.165

2.1. Pixel-level Contrastive learning

Contrastive learning is a form of comparative learning that involves form-

ing positive pairs and negative pairs to learn the common representation be-

tween similar instances and discriminative representations between non-similar

instances [28]. For classification problems, contrastive learning is generally per-170

formed on image-level representations. Positive samples are sampled from ho-

mologous images to ensure similarity, while negative samples are usually derived

from non-homologous images. Generally, negative mining strategies in con-

trastive learning are widely used for image-level classification tasks to reduce

computational effort and improve efficiency [29].175

In the segmentation task, to exploit the potential of the labelled images,

contrastive learning helps capture detailed information to consider the elabo-

rate pixel-level representations rather than the whole image-level representation

[30]. Although there have been some works on pixel-level contrastive learning,
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these methods have the following limitations:180

(1) Sampling strategies such as random sampling, uniform sampling , are usu-

ally unstable and may result in missing necessary samples or taking unnecessary

samples. Hard pixel mining strategies [6] focus on the hardest pixels and ignore

the contribution of non-hard pixels. When the performance of a model is low,

non-hard pixels should be given priority over the hardest ones to avoid the risk185

of model divergence due to the great variance of gradients by a large loss [7].

Balancing weight of the easy and hard pixels, such as Focal loss [31], gives less

weight to easy pixels and gives more weight to hard misclassified pixels. How-

ever, It tends to produce vanishing gradients during backpropagation, penalizes

negative classes in reverse, or employ non-optimal loss weights between classes190

[32].

(2) In the segmentation task, recent works ignore the spatial dependency

between neighbouring pixels. A pixel-level representation has a strong spa-

tial dependency on its neighbouring pixels. The pixels’ spatial dependency in

segmentation tasks is crucial to delineating the boundary. Treating all pixels195

individually would lose the spatial information between the pixels [14].

2.2. Dynamic Learning

For dynamic learning, the traditional approach is to learn from easy to hard,

designed to mimic the meaningful learning strategies of human learning [33].

The basic idea of easy to hard learning is to initially train the model with200

simple data and then gradually feed more difficult samples to obtain a better

generalization [12]. This strategy has shown potential for image-level classifi-

cation [34] and object-level detection [35]. However, there are few studies on

easy-to-hard strategies for pixel-level contrastive learning. Meanwhile, directly

using the easy-to-hard learning strategy for pixel-level contrastive learning still205

suffers from limitations due to pixels sampling risk; a model with low perfor-

mance caused by insufficient training with easy pixels may make model more

unstable or even cause model to crash when hard pixel oversampling. Since

learning with hard samples in a weak model introduces a larger uncertainty [7],
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sampling from easy to hard can reduce the risk of model collapse and build a210

robust model. However, continuing to sample harder pixels may be counterpro-

ductive when the model’s performance decreases. Compared to the easy-to-hard

strategy, as shown in Sect. 4.3.2, our adjusting sampling strategy dynamically

samples different difficulty pixels based on the current performance of the model

and can perform well in representation learning.215

3. Methodology

The quality of the pixel-level representations is crucial to the performance of

pixel-level segmentation. In this study, to improve the quality of the pixel-level

representations, a dynamically pixel-level contrastive learning strategy, termed

intra-class-confidence and inter-class-confusion guided dynamic contrastive learn-220

ing, is designed to learn pixel-level representations with stronger intra-class sim-

ilarity and inter-class distinguishability.

As shown in Fig. 3, we employ nnU-Net [15] as the backbone, the network

is responsible for extracting feature maps from the input image, and the feature

maps are denoted by hi in the figure, followed by two heads: (1) one segmenta-225

tion head with a Softmax function, the segmentation head is used for predicting

the class label of each pixel and (2) one projection head is then applied on hi

to project them into a feature space where contrastive learning is performed,

the feature maps after the projection head are denoted by zi in the figure. The

cross-entropy loss (LCE) and DICE loss (LDICE) are applied to the segmenta-230

tion head branch. In the projection head, we introduce our proposed dynamic

learning strategy for contrastive learning.

3.1. Pixel Grouping In Contrastive Learning

To conduct pixel-level contrastive learning, we first divide all pixels of im-

ages in a batch into three groups: query pixels (z), and intra-class core (z+,235

which is used to build a class-specific prototype) and inter-class negative pixels

(z−, which are used for learning the class-distinguished details). In our con-

trastive learning framework, query pixels (z), and intra-class core (z+) are used

10
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Figure 3: Model overview. Two modules are designed to enhance the feature learning of the

backbone of the auto-encoder. One is for supervised learning against the ground truth and

the other is for intra-class confidence degree and inter-class-confusion degree guided dynamic

contrastive learning, with a projection head mapping the feature representations to the space

where contrastive loss is applied.

to construct positive pairs, and query pixels (z) and inter-class negative pixels

(z−) are used to construct negative pairs.240

3.2. Confidence Class-Specific Core

To sample pixels to build positive pairs for contrastive learning, we start

by defining the intra-class confidence degree, which will be used to measure the

performance of a model at different training phases. We first use the class-

specific ground-truth mask to split all the pixels into different classes according245

to their ground truth class. In the following part of this section, we use the

pixels of the class A as an example to illustrate our dynamic contrastive sam-

pling strategy, where A is the ground truth class. For i-th pixel in a class,

we denote the predicted probability of this class as pci = P (yi = c|xi), where

c is the predicted class, and, yi and xi are the predicted label and pixel i in250

image x respectively. When c = A, we define a intra-class confidence degree by

aggregating the probabilities pc=A
i for all pixels with respect to class A:
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D
c=A

A = avg({pc=A
i |i ∈ IA}), (1)

where IA denotes the set of indices of all pixels in class A and pc=A
i is the prob-

ability pixel i predicted to belong to class A and avg is the average operation.

As shown in Fig. 1, we select the most representative pixels in class A as the255

core by intra-class confidence degree above a high threshold, as these pixels are

the easiest to distinguish. The core is designed to be a class-specific prototype

of the class A which can not only be used to distinguish this class from other

classes but also can boost other intra-class pixels’ learning. The core for the

class A is defined as the fused representation produced by averaging these high260

confidence pixels’ representations with predicted probabilities being larger than

a threshold: pc=A
i > th. Let zi be the representation of pixel i. The core zA+

of the class A is calculated as

zA+ =

∑IA

i αizi∑IA

i αi

, where αi = 1(pc=A
i > th), (2)

where 1(·) is the indicator function.

3.3. Intra-class Query Pixels Sampling Strategy265

Instead of sampling only easy and/or hard queries [5], firstly, a dynamic

sampling strategy that uses an adaptive threshold according to the model’s per-

formance on class A is introduced to split all the pixels into an easy query set

and a hard query set. Then, dynamically changed sampling ratios of the easy

and hard queries involved in training following the principle of sampling the270

most representative pixels. As is shown in Fig. 1, we divide all pc=A
i -sorted

representations of the class A (the pixel-wise probability of class A, sorted in

descending order according to the adaptive threshold derived from the inter-

class confidence degree of class A) into easy and hard subsets via the adaptive

threshold derived from the inter-class confidence degree of the class A itself. It275

is worth noting that not only the easy-hard sampling ratio but also the threshold

for distinguishing between easy and hard pixels are both dynamically changed

at different training phases.

12



3.3.1. Adaptive Threshold for Query Pixels Sampling

We introduce an adaptive threshold for query pixels sampling. The adaptive

threshold is formulated in Eq. 3.

TA = 1−D
c=A

A . (3)

Here, D
c=A

A is the intra-class-confidence degree of class A. For example, when280

D
c=A

A is 0.3, the representations with pc=A
i < (1−0.3) are marked as hard queries

while pc=A
i > (1 − 0.3) are categorized as easy queries. When performance in

class A is poor, a high threshold is preferred so that pixels above this high

threshold can be grouped into the easy subset, thus sampling pixels from this

easy subset to train the model with low performance. When performance is285

high, a lower threshold is chosen so that the harder pixels can be placed in the

hard subset, thus the harder pixels can be used for a model to improve the

ability to solve hard problems.

3.3.2. Dynamically Adaptive Sampling Ratios of the Easy and Hard Subsets

The D
c=A

A also assumes the responsibility of adjusting the ratio of easy290

and hard sample queries. The sampling ratios of easy/hard are set as (1 −
D

c=A

A )/D
c=A

A , which aims to sample more easier pixels when the performance

of Class A is low and sampling harder pixels when the performance of class A

is high. For example, when D
c=A

A is 0.3, that means the predicted ability of

class A is weak. During this training phase, easy pixels are more acceptable for295

optimisation. Thus, the sampling ratios of the easy and hard queries should be

0.7 and 0.3. On the contrary, at a phase where the model is highly generalizable,

the well-trained network should focus on the hard samples to further improve

model performance.

3.4. Negative Pixels Sampling Strategy300

Sampling negative pixels for contrastive learning will help the model learn

the class-differentiable details. Classes that are different from the query class

are treated as negative classes. The inter-class-confusing degree D
c≠A

A in Eq. 4

can represent the misclassification probability of all the negative classes.

13
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Figure 4: Hard negative class sampling strategy. The representations of all pixels in the image

are divided into four groups by class labels, and each group contains the representations of

all pixels within a class. The query pixel (a circle) in class A (yellow) is pulled to the positive

core (prototype, represented as a square) generated by the easiest pixels in A and pushed

away from negatives (triangles), namely the pixels of the other classes (Green, Blue and Red).

The sampling rate of samples from the negative classes is determined by the class confusing

degree of the query class A. The difference in the lengths of the rectangles of (Class B, C and

D) reflects the degree of confusion between class A and other classes.

D
c ̸=A

A = avg({pc ̸=A
i |i ∈ IA}). (4)

To separate the hardest classes from class A, we identify hard negative classes305

based on inter-class-confusing degrees D
c ̸=A

A . When selecting negative samples,

the negative class with the highest confusion with respect to query class A

should be given a higher sampling ratio to further discriminate queries from

this negative class. While a class with a small negative class confusion degree is

easier to distinguish and thus does not need to sample many negative samples.310

We use the ratio [D
1

A : D
2

A :... :D
c

A] where c ̸= A, to build negative class

sampling ratios. As shown in Fig. 4, Class A is misclassified as Class B with

a higher probability of misclassification at 0.6 than Class C (0.25) and Class D

(0.15). When a pixel of Class A is used as the query class, the other classes are

regarded as negative classes, and the negative samples of the different negative315

classes should follow the confusing degrees of the class [0.6: 0.25: 0.15] to sample

different numbers of pixels in each negative class. If the inter-class-confusing

degrees of Class A with the other classes changes as the model’s performance

14
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Figure 5: Region spatial layout. The pixel and its neighbors together represent the regional

representation of the pixel, and the neighbors include horizontal, vertical and diagonal pixels.

changes, the sampling ratios of the different classes should also be dynamically

adjusted.320

3.5. Contrastive Enhancement with Spatial Prior

To incorporate spatial dependency into query optimisation by a spatial en-

hancement strategy, the pixel-level queries are enhanced with their neighbours

to build region-level queries for contrastive learning. As shown in Fig. 5, we

generalize representations of each query pixel with the features of its neighbour-325

ing pixels to build region-level representations zq in the segmentation task, as

pixels are spatially correlated.

3.6. Class Confidence and Confusion Guided Dynamic Pixels Sampling Strategy

for Contrastive Learning

We use the proposed dynamic sampling strategies in the above sections to330

sample core, query and negative pixels to construct positive and negative pairs

for contrastive learning, intending to select the pixels that are most beneficial

for improving the performance. In this section, We will describe in detail how

these sampled pixels are used in our contrastive learning framework.

At different training phases, the intra-class confidence degree D
c=A

A is used335

to reflect the performance of class A at each training phase and the inter-class

confusing degree D
c ̸=A

A is used to reflect misclassification degree of the pixels in

class A to the other classes. In the following part of this section, we use θ+ as

the intra-class-confidence degree and θ− as the inter-class-confusing degree to

dynamically change the contrastive sampling strategy. We aim to use different340

pixel sampling strategies to train a model with different performances. Firstly,
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we define a joint probability distribution of the easy pixels zqe and the hard

pixels z
q
h which belong to class A over classes C:

P (A|{zqe , λzhe }) =
exp(−sθ

+

{zq
e ,λz

q

h
},z+

A

)

exp(−sθ
+

{zq
e ,λz

q

h
},z+

A

) +
∑C

c ̸=A exp(−sθ
−

{zq
e ,λz

q

h
},βz−

c

)
, (5)

with sθ
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∈ [−1, 1] is used to

measure the similarity between the query pixels and the core (easiest pixels)345

of class A. θ+ is the intra-class confidence degree to control the easy-hard sub-

sets dividing threshold and the sampling ratio λ of intra-class easy and hard

query pixels. sθ
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h
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c
is the query-negative distance. θ− is the inter-class-

confusing degree to control the sampling ratio β of negative pixels of different

classes. The CCDC loss of class A for mixed easy and hard queries with a350

confidence core and hard priority classes negative pixels can be expressed as:
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Our designed CCDC loss for all the classes can be formulated as:

LCCDC =
1

C

∑

a∈C

−log
exp(−sθ

+

{ie,λih},a
)

exp(−sθ
+

{ie,λih},a
) +

∑C

c ̸=a exp(−sθ
−

i,βa)
. (7)

The designed CCDC loss measures similarity via the dot product of region-

level representations. It is worth mentioning that our CCDC loss is different

from the other contrastive loss [5, 6, 36] since the queries, core and negatives355

in our CCDC, are all dynamically adjusted by different sampling strategies at

different training phases. Moreover, our CCDC loss also differs from pixel-only

sampling in that we extend the representation to a regional level that contains

spatial information. The overall loss is the sum of the cross-entropy loss, the

DICE loss, and the CCDC loss in the following way:360
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L = LCE + LDICE + LCCDC . (8)

4. Experiment

4.1. Experimental Setup

Dataset. We use three publicly available datasets to evaluate our method. (1)

The MS-CMRSeg dataset [17] contains 45 3D cases. Each case is composed of

10-16 2D slices, resulting in a total of 686 slices. Following the setting of the365

challenge, the LGE modality is applied to our experiments. 10% of the data (5

3D scans) is used for training, and 90% of the data (40 3D scans) is used for

testing. (2) CHAOS (Combined (CT-MR) Healthy Abdominal Organ Segmen-

tation) Dataset [18] provides 60 3D DICOM data from 20 patients [T1-DUAL in

phase (20 cases), T1-DUAL out phase (20 cases) and T2-SPIR (20 cases)] with370

four organs ground truth masks: liver, right kidneys (RK), left kidneys (LK)

and spleen. The dataset was obtained from a 1.5T Philips MRI, which produces

12-bit DICOM images. The number of slices is between 26 and 50, resulting in

a total of 1917 slices. The resolution is approximately 224 × 320. 10% of the

data (6 3D scans from 2 patients) is used for training and the remaining 90% of375

the data (54 3D scans from 18 patients) is used for testing. There is no overlap

in patient IDs between the training and testing sets. (3) The ACDC Challenge

Dataset [16] consists of 100 patients (200 3D scans), with each case comprising

6-16 2D slices, resulting in a total of 1658 slices. The dataset was acquired

using 1.5T and 3T scanners and is accompanied by expert annotations for three380

structures: the left ventricle (LV), myocardium, and right ventricle (RV). The

MRI images from both scanners are adopted in our experiments. There is also

no patient overlap between the training and testing sets. The train-test ratio is

identical to the setting of the MS-CMRSeg Challenge. In addition to the above

experiments, four additional experiments are conducted in the ACDC Challenge385

Dataset, which use 5%, 10%, 20% and 40% of the dataset for training to further
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validate the proposed approach.

Implementation details. We use original implemented nnU-Net [15] as our back-

bone with the same augmentations, such as elastic transformation, rotation,390

scaling, random crop, scaling, adding Gaussian noise, gaussian blur transfor-

mation, brightness multiplicative transformation, contrast augmentation trans-

formation, simulate low-resolution transformation, gamma transformation and

mirror transformation. Following the suggestion of nnU-Net, the poly learn-

ing rate is also introduced in our training. The experiments on MS-CMRSeg395

Dataset are conducted with a batch size of 12 and a patch size of 512×512. We

use a batch size of 44 and patch size of 224 × 320 on the CHAOS Dataset.

For the ACDC Challenge Dataset, the batch size and patch size are 56 and

256×224, respectively. The number of both positive and negative pairs are set

to 256. We set the fixed high threshold th to 0.97, and the temperature τ in400

the CCDC loss is 0.5. The ratio of LCE , LDICE and LCCDC is 1:1:1. Instead

of building a memory bank to store the representations for constructing con-

trastive pairs, representations are sampled dynamically in a batch during each

iteration, enabling less memory consumption. This is also demonstrated in [5],

where sampling in a mini batch can achieve results similar to those obtained by405

methods that use additional memory banks.

4.2. Comparison to the State-of-the-Art

Firstly, we benchmark a state-of-the-art CNN-based model (nnU-Net) and

a transformer-based method (nnFormer) in the ACDC Challenge Dataset, the

MS-CMRSeg Dataset and the CHAOS Dataset. The results are reported in410

Tab. 1, Tab. 2 and Tab. 3. nnU-Net serves as our baseline model to validate

our CCDC loss since nnU-Net outperforms nnFormer in our experiment settings

on three datasets. Compared to the benchmark (nnU-Net), the DSC sees a rise

of 1.84%, 3.12% and 3.68% on the three datasets respectively.
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Table 1: Segmentation results (DSC and 95HD) on the ACDC Challenge Dataset.

Method Pubs.
DSC↑

RV myo LV mean

nnFormer [27] 2021 78.55 84.31 91.17 84.68

nnU-Net [15] Nat. Methods 2021 80.90 84.81 91.11 85.61

Focal [31] ICCV 2017 79.45 84.54 91.12 85.04

GDL [37] DLMIA 2017 82.10 86.13 91.70 86.64

TopK [38] NIPS 2017 81.29 85.01 91.34 85.88

MCC [39] ISBI 2021 80.55 84.54 90.87 85.32

RegionContrast [36] ICCV 2021 81.38 85.05 91.66 86.03

ContrastiveSeg [6] ICCV 2021 83.96 84.8 91.33 86.70

ReCo [5] ICLR 2022 82.26 85.87 91.62 86.58

CCDC (ours) - 83.49 86.49 92.36 87.45

Method Pubs.
95HD↓

RV myo LV mean

nnFormer [27] 2021 6.26 3.43 4.16 4.61

nnU-Net [15] Nat. Methods 2021 2.87 1.76 3.16 2.60

Focal [31] ICCV 2017 3.18 1.63 2.61 2.47

GDL [37] DLMIA 2017 2.92 1.58 2.07 2.19

TopK [38] NIPS 2017 3.16 1.69 2.55 2.47

MCC [39] ISBI 2021 2.95 2.08 2.89 2.64

RegionContrast [36] ICCV 2021 2.44 1.87 1.68 2.00

ContrastiveSeg [6] ICCV 2021 2.38 1.91 2.66 2.32

ReCo [5] ICLR 2022 3.22 1.66 2.3 2.39

CCDC (ours) - 2.35 1.67 1.70 1.91

P-values - < 5e-2 (DSC), < 5e-2 (HD95)

4.2.1. ACDC Challenge Dataset415

The results for the three classes show that CCDC consistently outperforms

other methods of contrastive learning (ReCo +0.87%, ContrastiveSeg +0.75%
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Figure 6: Plot of the mean DSC w.r.t different ratio of the training set over the ACDC Chal-

lenge Dataset (5%, 10%, 20%, 40% of the dataset for training), with the blue line representing

the result of the baseline: nnU-Net, the black line represents nnFormer, the red line repre-

senting our proposed method.

and RegionContrast +1.42%). It may be due to the increased expressiveness of

the proposed CCDC model as it relies on optimizing different pixels from easy

to hard at different training phases to improve the performance. The average420

95HD of all classes is also the smallest, which indicates that performance is

improved when CCDC loss is used.

Four additional train-test ratios, 5%, 10%, 20%, 40%, are also evaluated on

the ACDC challenge dataset. As shown in Fig. 6, obvious improvements can

be observed by comparing the results w/ and w/o CCDC (+1.79%, +1.84%,425

+0.08%, +0.32%). Notably, our method boosts the baseline model by a sig-

nificant margin when the amount of the training data is extremely limited.

Thus, CCDC demonstrates its potential in facilitating segmentation algorithms

in practical applications where labelled data for training is difficult to collect

due to concerns about privacy policy and the cost of manual annotations.430

4.2.2. MS-CMRSeg Dataset

For MS-CMRSeg dataset, larger patch sizes are adopted, since the height

and width of the images in the MS-CMRSeg dataset are much larger compared
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Table 2: Segmentation results (DSC and 95HD) on the MS-CMRSeg Dataset.

Method Pubs.
DSC↑

RV myo LV mean

nnFormer[27] 2021 51.96 63.50 70.21 61.89

nnU-Net [15] Nat. Methods 2021 73.01 74.44 88.95 78.8

Focal [31] ICCV 2017 74.64 75.26 88.34 79.41

GDL [37] DLMIA 2017 75.3 73.56 87.57 78.81

TopK [38] NIPS 2017 72.63 74.22 88.50 78.45

MCC [39] ISBI 2021 74.08 74.55 87.72 78.78

RegionContrast [36] ICCV 2021 74.84 76.25 88.51 79.86

ContrastiveSeg [6] ICCV 2021 75.48 78.44 89.65 81.19

ReCo [5] ICLR 2022 73.69 75.98 89.23 79.63

CCDC (ours) - 76.45 79.26 90.04 81.92

Method Pubs.
95HD↓

RV myo LV mean

nnFormer[27] 2021 43.89 13.46 13.45 23.60

nnU-Net [15] Nat. Methods 2021 14.89 9.96 22.79 15.88

Focal [31] ICCV 2017 15.91 12.6 18.54 15.69

GDL [37] DLMIA 2017 11.53 9.52 15.12 12.06

TopK [38] NIPS 2017 13.71 7.57 21.53 14.27

MCC [39] ISBI 2021 10.69 12.05 24.56 15.76

RegionContrast [36] ICCV 2021 6.29 5.05 6.62 5.99

ContrastiveSeg [6] ICCV 2021 9.54 12.89 24.43 15.62

ReCo [5] ICLR 2022 6.83 12.18 18.57 12.53

CCDC (ours) - 5.60 4.31 13.79 7.90

P-values - < 5e-2 (DSC), < 5e-2 (HD95)

to the ACDC Challenge Dataset (from 256×224 to 512×512). As shown in

Tab. 2, CCDC substantially exceeds the state-of-the-art methods by [36, 6, 5],435

in terms of class-specific DSC scores, our method outperforms the state-of-the-

21



art methods in all classes and the average DSC is significantly improved (2.06%

improvement with RegionContrast, 0.73% with ContrastiveSeg and 2.29% with

ReCo on DSC). This demonstrates that CCDC is consistently beneficial for the

baseline model, whether the training data are small images or large images with440

rich details. We also show class-specific results in the 95HD metrics. The 95HD

is the smallest in the class of RV and myo and the average 95HD of CCDC also

ranks second best.

4.2.3. CHAOS Dataset445

We evaluated our method using the CHAOS dataset (four classes segmen-

tation tasks). Tab. 3 shows the results of the segmentation for the liver, RK,

LK and spleen. We can see that all contrastive learning methods [36, 6, 5] show

improvements over baseline on DSC, demonstrating the benefits of contrastive

learning. Our CCDC learning with a dynamic learning strategy consistently450

keeps improving on the average DSC score. These results demonstrate the ef-

fectiveness of our dynamic learning strategy with extremely limited data (6

images from 2 patients only) and validate that our dynamic sampling strategy

can be applied to a wider range of multi-class segmentation tasks. The 95HD

of the CCDC(ours) algorithm is not optimal, and the DSC of the liver and455

spleen are not optimal. We have conducted further analysis and found that it

may be due to the dataset we used in the experiment contains more classes and

many images that contain a high degree of variability in terms of size, shape,

and texture of the structures of interest. They together make it challenging

to achieve optimal results for all classes in multi-class tasks, where the 95HD460

metric might not be as relevant as the DSC. This may be a result of the class

imbalance or overlapping features among classes. Despite these challenges, our

overall performance on the DSC metric has still improved.
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Table 3: Segmentation results (DSC and 95HD) on the CHAOS Dataset.

Method Pubs.
DSC↑

liver RK LK spleen mean

nnFormer[27] 2021 70.88 58.41 56.36 62.66 62.08

nnU-Net [15] Nat. Methods 2021 73.79 57.09 63.27 60.27 63.61

Focal [31] ICCV 2017 76.31 59.28 67.43 61.95 66.24

GDL [37] DLMIA 2017 74.8 54.65 65.17 61.26 63.97

TopK [38] NIPS 2017 75.85 55.14 68.63 62.68 65.57

MCC [39] ISBI 2021 75.63 56.08 63.88 61.09 64.17

RegionContrast [36] ICCV 2021 74.45 57.15 68.58 57.40 64.39

ContrastiveSeg [6] ICCV 2021 77.52 56.59 66.11 57.36 64.40

ReCo [5] ICLR 2022 75.44 61.85 67.66 61.05 66.50

CCDC (ours) - 75.03 62.43 70.81 60.89 67.29

Method Pubs.
95HD↓

liver RK LK spleen mean

nnFormer[27] 2021 27.58 29.24 30.35 28.99 29.04

nnU-Net [15] Nat. Methods 2021 17.80 37.93 30.16 21.19 26.77

Focal [31] ICCV 2017 13.86 23.05 19.6 16.85 18.34

GDL [37] DLMIA 2017 14.16 20.30 30.68 25.86 22.75

TopK [38] NIPS 2017 14.49 14.62 9.90 36.77 18.95

MCC [39] ISBI 2021 13.27 20.31 25.28 16.04 18.72

RegionContrast [36] ICCV 2021 14.75 12.74 7.34 25.01 14.96

ContrastiveSeg [6] ICCV 2021 12.45 19.21 22.03 33.80 21.87

ReCo [5] ICLR 2022 16.31 20.90 24.94 23.17 21.33

CCDC (ours) - 14.51 20.23 23.97 19.64 19.59

P-values - < 5e-2 (DSC), < 5e-2 (HD95)
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Table 4: Dynamic query pixels sampling strategy on ACDC Challenge Dataset.

Method
Dynamic Query Sampling DSC↑

Adaptive T Adjusted Ratio RV myo LV mean

W/O Contrastive Learning 80.90 84.81 91.11 85.61

Pixel-level

- - 82.13 86.15 91.81 86.70
√

- 82.39 85.92 91.78 86.70

-
√

82.60 85.80 92.15 86.85
√ √

83.84 85.82 91.64 87.10

Region-level

- - 80.85 85.76 91.72 86.11
√

- 82.21 86.86 92.38 87.15

-
√

82.68 85.59 91.84 86.71
√ √

83.49 86.49 92.36 87.45

4.3. Ablation Studies

4.3.1. The Impact of Dynamic Query Sampling Strategy with Pixel-Level and465

Region-Level Representations

Tab. 4 shows the ablation study with and without the dynamic contrastive

learning in easy and hard subsets which are separated by an adaptive threshold

(adaptive T) with the adjusted ratio for sampling easy to hard queries on the

ACDC challenge dataset.470

We examined our proposed dynamic contrastive learning on pixel-level rep-

resentations and region-level representations separately. It is worth noting that

despite not using dynamic sampling strategies, contrastive learning improves

performance with and without the representation enhancement strategy. More

notably, when using a fixed threshold to build easy and hard sets, the intro-475

duction of dynamic contrastive learning to adjust easy-hard ratios improves the

results by using the pixel-level or region-level representations (Pixel-level: 86.7%

to 86.85%, Region-level: 86.11% to 86.71%). Fixing the ratios of sampling easy

and hard queries and using the changed threshold to select easy and hard sets

to obtain a similar average score (86.7%) in pixel-level contrastive learning, but480
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1.04% (86.11% to 87.15%) improvement at the region level. This shows that

our the dynamic sampling strategy can achieve some performance improvement

regardless of adjusting the threshold of the easy and hard sets or their sam-

pling ratio. When using the adaptive threshold and the adjusted sampling ratio

together to separate easy and hard sets, the performance is further improved,485

suggesting that the dynamic approach can capture the pixels that are most

in need of optimisation at different training phases to improve segmentation

performance.

Table 5: Query sampling from different intra-class subsets on ACDC Challenge Dataset.

Method
Sampling DSC↑
Strategy RV myo LV mean

W/O Contrastive Learning 80.90 84.81 91.11 85.61

Pixel-level

Hard 80.29 85.77 90.86 85.64

Easy 81.87 85.66 92.17 86.57

Easy to Hard 81.67 85.27 91.47 86.14

Dynamic Sampling 83.84 85.82 91.64 87.10

Region-level

Hard 82.34 86.14 92.01 86.83

Easy 82.22 86.95 92.38 87.18

Easy to Hard 83.87 86.12 91.86 87.28

Dynamic Sampling 83.49 86.49 92.36 87.45

4.3.2. The Impact of Query Sampling from Different Subsets

Here, we focus on different strategies for sampling query pixels: 1) sampling490

queries in the easy set; 2) sampling queries in the hard set; 3) sampling queries

from easy to hard; 4) dynamically changing strategies for queries sampling. As

described in the methodology section, we do not use fixed thresholds to identify

easy and hard sets, but instead use an adaptive threshold to separate the easy

and hard queries to be sampled based on how well the network is trained during495

different phases. The pixel-level representations and the region-level represen-

tations are both used for the sampling strategy comparison. Tab. 5 shows the
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results of the four sampling strategies on the ACDC challenge dataset. The

four aforementioned sampling strategies yield better results than the bench-

mark. The results of the easy sampling strategy consistently outperform those500

of the hard-only sampling (Pixel-level: 85.64% to 86.57%, Region-level: 86.83%

to 87.18%). The proposed dynamic sampling strategy further improves the per-

formance (Pixel-level: +0.53%, Region-level: +0.27%). It verified that using

only hard pixels for training may result in the network not converging consis-

tently. Training with only easy pixels can achieve better performance than only505

hard pixels, but the performance is also lower than dynamic sampling strategy.

This is because using only easy pixels does not provide enough gradient descent

for optimization, which may influence performance improvement. It can be seen

that the performance of the easy-to-hard sampling strategy with pixel-level rep-

resentations decreased when compared with only using easy pixels, this may510

be because easy-to-hard sampling does not measure the current performance of

the model and may not necessarily provide the pixels needed by the current

model. However, the performance of the easy-to-hard strategy with region-level

representations is better than using only easy or hard pixels, but not as good as

our dynamic sampling strategy. As our dynamic sampling strategy can dynam-515

ically change the sampling strategy based on the performance of the model and

can select the most representative pixels at different training stages. The result

reveals that our method can, not only improve the basic generalization ability

when the performance is low, but also enhance the hard problem-solving ability

when the performance is strong, suggesting that the approach is beneficial for520

seeking better pixel-level segmentation applications.

4.3.3. The Impact of Hard Negative Class Mining Strategy

Tab. 6 shows the performance improvement of the ACDC Challenge Dataset

for different negative class sampling strategies. Despite using different sampling

strategies, we find that CCDC loss has a consistent improvement of 1%-2%.525

Uniform sampling results in 0.29% improvement compared to random sampling.

This may be due to the class imbalance problem, if a class in a mini-batch has
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Table 6: Hard negative class mining strategy on ACDC Challenge Dataset

Method
DSC↑

RV myo LV mean

Baseline 80.9 84.81 91.11 85.61

Random Sampling 81.91 86.29 92.15 86.78

Uniform Sampling 84.12 84.78 92.30 87.07

Dynamic Sampling 83.49 86.49 92.36 87.45

a small number of pixels, and this class is also hard to distinguish, random

sampling is not sufficient when sampling from this hard class for training, re-

sulting in missing samples and low performance on this hard class. This can530

also be demonstrated by the results of the hard but fewer pixels RV class (DSC

of Random: 81.91% and DSC of UniForm 84.12%). Following our class confus-

ing degree-guided hard-negative class mining strategy, negative samples can be

sampled from each class with different ratios, which is more beneficial in sam-

pling negative samples thus obtaining significant performance improvement.535

4.3.4. The Impact of Region Enhancement Strategy

Table 7: Region enhancement strategy on the ACDC Challenge Dataset.

Number of Pixels
DSC↑

RV myo LV mean

1 83.84 85.82 91.64 87.10

2 83.73 86.30 91.36 87.13

4 (Stride=2) 83.05 86.36 92.60 87.34

4 (Stride=1) 83.49 86.49 92.36 87.45

We evaluated the effectiveness of the region enhancement strategy. Differ-

ent region enhancement schemes are adopted and shown in Fig. 5. Specifically,

using different numbers of pixels and strides in diagonal, horizontal and vertical

directions to build regions can achieve different improvements. As shown in540

Tab. 7, the region enhancement strategy can achieve a consistent improvement
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over the benchmark, and it is observed that the performance is improved with

the increase of the number of neighbouring pixels. The closer the neighboring

pixels are to the center pixel, the further the performance can be improved.

This is because pixels in boundary regions are often more difficult to distin-545

guish and require stronger local location information for fine differentiation. In

contrast, our representation enhancement strategy introduces local location in-

formation from the neighbouring pixels for contrastive learning, thus providing

a supplement to determine the cross-class boundaries.

4.3.5. The Impact of the Fixed High Threshold to Choose Confidence Core550

Table 8: Different fixed high threshold on ACDC Challenge Dataset.

High Threshold
DSC↑

RV myo LV mean

W/O Dynamic 80.90 84.81 91.11 85.61

0.50 83.27 86.00 92.39 87.22

0.75 82.78 85.50 92.46 86.91

0.90 82.97 86.50 92.53 87.33

0.97 83.49 86.49 92.36 87.45

We evaluated the impact of a fixed high threshold used to select the confi-

dence core. In Tab. 8, it can be observed that slightly better performance can

be obtained with a relatively large threshold (0.97 and 0.9). When the confi-

dence threshold drops to 0.75 and 0.5, compared with using the thresholds over

0.9, performance declined to a 87.22% and 86.91%. However, compared to the555

baseline, the performance is still greatly improved. We can also observe that

our method is not highly dependent on fixed high-threshold hyperparameters for

confidence pixel selection. This is because a fixed threshold is needed to ensure

that the selected pixel can be predicted as the correct class. Thus, the pixels

above this threshold can form a class-specific prototype to guide the learning of560

other low-confidence pixels within the class.
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Ground Truth CRC (ours)RACL CIPCnnU-Nnet ReCo

Figure 7: Typical segmentation result comparing different approaches on the ACDC Challenge

Dataset. Blue, green and red denote the classes of RV, myocardium, and LV, respectively.

5. Visualization

Fig. 7 shows the segmentation results using a model trained with 10% data

on the ACDA dataset when compared with the state-of-the-art contrastive learn-

ing methods [36, 6, 5]. The prediction results of the RV class in the first row565

and the myocardium class in the second and third rows show that our method

achieves significant improvements in the identification of boundaries and the seg-

mentation of hard classes. This is attributed to the dynamic learning strategy

which identifies the core representations of a class and pulls different hardness

pixels to the core along with the training, Furthermore, negative class mining570

also identifies the hard negative classes, avoiding a large number of pixels be-

ing misclassified to the hard negative classes. The representation enhancement

strategy introduces local spatial information, further refining the determining

of boundaries and reducing the confusion between different adjacent classes.

6. Conclusion and Discussion575

In this paper, we present a dynamic contrastive learning framework for med-

ical image segmentation that leverages class-confidence and confusion. The
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framework features a novel loss function, the CCDC loss, which dynamically

samples contrastive pixels based on the model’s performance. Our approach

selects the most expressive pixels as positive and negative pairs during different580

training phases and employs a hard negative class mining strategy to enhance

effectiveness. The results show that our method outperforms the state-of-the-

art on three challenging datasets and has potential for other multi-class tasks

such as classification and detection. While our approach has achieved signifi-

cant progress, we acknowledge the need to address the dynamic adjustment of585

easy/hard boundaries in situations where the dataset is challenging. To enhance

robustness, we suggest potential future research directions, including imple-

menting a stopping criterion. Future work also includes exploring the method’s

applicability to other domains or tasks, scalability, efficiency, robustness, and

generalization. Another avenue for future research is to investigate combining590

our method with other techniques to further improve performance.
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1. Introduction

Deep learning based medical image segmentation algorithms are capable

of providing clinical guidance under the right conditions, such as surgery plan-

ning and post-surgery monitoring. However, training a successful deep-learning-

based segmentator requires a large amount of pixel-level annotation data, which5

is always rare and expensive, especially for 3D images. It remains a challenge

to train a satisfactory deep learning-based segmentation algorithm with limited

annotated data.

In recent years, contrastive self-supervised representation learning is widely

adopted to reduce the use of labelled data, which turns out to be successful10

in solving image-level tasks, such as classification [1] and image translation [2],

and instance-level tasks, such as detection [3]. In contrastive learning, construc-

tions of positive (similar) pairs and negative (dissimilar) pairs [4] are essential.

This is not trivial, especially when dealing with a large number of pixels, e.g.,

segmentation task, as naive contrastive learning that exhaustedly combines all15

pixels becomes computationally prohibitive. Therefore, sampling a portion of

pixels for contrastive learning in segmentation task is usually adopted as an

alternative [5].

To build positive pairs in contrastive learning, strategies of sampling pixels

from images for segmentation task, such as random sampling [6] and active hard20

sampling [5], suffer from several limitations. More concretely, random sampling

[6] treats each pair equally without considering the effectivenesses of the selected

pixels. Often, a large pixel sampling ratio will inevitably introduce redundant

information, as not all pairs are needed at the same time. For example, easy pix-

els cannot contribute to model optimisation when the performance of the model25

is high. Alternatively, active hard sampling strategies [5] focus only on hard

pixels but exclude easily distinguished samples during all training phases. This

may lead to hindered convergence due to the sharp gradient fluctuations when

feeding hard pixels to a model with unstable/or poor performance [7]. Com-
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pared to using hard pixels, the non-hard pixels are more conducive to training30

when the performance of a model is poor.

On the other hand, for negatives sampling, pixels sampled from an easy class

tend to contribute less to the optimisation of a model, especially in the case of

class imbalance (easily distinguishable classes contain more pixels, while hard

classes contain fewer pixels) [8]. The sampled negative pixels are more useful35

for learning discriminative feature only when the pixels from hard classes are

sampled frequently.

Thus, two to-be-solved problems appear when applying pixel-level contrastive

learning in segmentation task: Firstly, as the number of pixels in a dataset is

huge, efficiently sampling representative pixels is the main problem to be solved.40

Secondly, the needs of pixels of a model will change at different phases. It is

more reasonable to use appropriate sampling strategies during different training

phases. Solving these questions can provide insights to promote the design of

an efficient pixel-level contrastive learning sampling strategy. We first investi-

gate the first question by exploring the existing pixel-level contrastive learning45

methods, which sample pixels from a class to construct positive pairs (z and

z+) and different classes to construct negative pairs (z and z−). However, most

existing efforts treat all pixels equally and do not consider the hardness of the

pixels. In an image containing regions from different classes, the center pixels in

one class-specific region tend to be easily distinguishable than the border pixels,50

as border pixels could be easily confused with neighbouring pixels belonging to

other classes. Thus, to separate different regions within a class and treat the pix-

els in these regions differently, it is necessary to divide the pixels in a class into

different groups according to their hardness and each group should be treated

differently. For the second question, most of the works in the literature use the55

same sampling strategy at the different training phases. However, if there are

significant changes in the performance of the model, a fixed sampling strategy

cannot always sample representative pixels to contribute to the model. For ex-

ample, when the performance of the model is already good enough, extracting

a large number of easy pixels does not contribute much to the optimisation. On60
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Figure 1: Our intra-class confidence degree guided dynamic contrastive learning aims to select

different sampling strategies to build positive pairs at different training phases. The dashed

lines with arrows denote the data flow; the solid lines are used to indicate the construction

of the positive pairs. The height of the cylinder represents the number of easiest, easy and

hard pixels in Class A in the current training phase. The length of the rectangle indicates the

number of samples. When the intra-class confidence degree of a model is low, a small sampling

ratio to the hard pixels and a much larger sampling ratio to the easy pixels is applied for

training. When the intra-class confidence degree of a model is strong, the sampling strategy

gradually moves to the opposite ratio for them.

the contrary, taking more hard pixels when the performance of a model is low

will produce a large gradient, which may prevent the model from converging

efficiently.

Based on the above discussion, we first propose to dynamically change the

sampling strategy at different training stages to select the most expressive pixels.65

Based on this idea, a dynamic intra-class confidence degree is introduced to

divide the pixels into three groups: query pixels (z), intra-class core (z+) and

inter-class negative pixels (z−). Query pixels (z) and the intra-class core (z+)

are used to construct positive pairs, and query pixels (z) and inter-class negative

pixels (z−) are used to construct negative pairs. In the following part of this70

paper, we use the pixels of a class A as an example to illustrate our contrastive

strategy. For sampling queries and core, as shown in Fig. 1, several adaptive

sampling strategies based on variations in model performance (low, medium, and

high confidence degree for Class A) are introduced to select pixels. Specifically,
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Ground Truth

Prediction

Figure 2: Cardiac images with ground truth masks, the left and right ventricles (Blue and

Red regions) are two organs that are separated by the myocardium (Green region) and not

adjacent to each other. Pixels in the ventricles class are often misclassified as myocardium

class because pixels on the boundary are easily affected by other classes.

for all phases, the easiest distinguishable pixels of class A can be considered as75

the core (z+). The representations generated by the core (z+) can be used as

a prototype to boost other query pixels (z) in the same class for class-specific

representation learning [9]. When the overall classification accuracy of the pixels

in class A is low, the easier pixels in class A should be sampled more as queries

for optimisation to reduce learning difficulty and improve overall performance80

[10]. When the accuracy of the pixels in class A is medium, the sampling ratio of

the easier query pixels should be reduced and the harder ones should be further

considered, i.e. starting easy and gradually presenting more complex concepts

[11] can obtain better learning effects. If accuracy is high, more attention should

be paid to the hard pixels to improve the hardest problem-solving skills. It is85

worth noting that our approach is different from the easy-to-hard sampling

strategy [12], as we dynamically measure the performance of the model on each

class at different phases and adapt accordingly. The proposed method can

dynamically change the sampling strategy to sample the most representative

pixels to train a more robust model (verified in Sect. 4.3.2) and avoid the90

risk of the model crashing due to a catastrophic incident (the great variance of

gradients) by the sampled hard pixels [7].
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Generally, pixels sampled from more confusing classes as negatives can im-

prove the efficiency of network optimisation, as hard classes pixels allow the

model to focus on distinguishable details [13]. Since pixels from two adjacent95

classes or two similar classes are more difficult to distinguish, and pixels from two

distant classes or dissimilar classes are often easier to distinguish, it is possible

to focus on relatively difficult classes to get better performance. For example,

as shown in Fig. 2, the right and left ventricles are two organs that are sepa-

rated by the myocardium and not adjacent to each other. For the right and left100

ventricles, because of their different structures, colour and intensity distribu-

tion, the right ventricle can be easily separated from the left ventricle. But for

the myocardium class, the neighbouring pixels in the myocardium class greatly

influence the ventricle classes in adjacent regions. Based on this observation,

negative pixel sampling strategies should be designed differently from query105

sampling strategies which need to choose easy pixels when the performance is

low and hard pixels when the performance is high. The proposed method helps

determine which class is more confusing. The inter-class-confusion degree is

introduced to measure the inter-class difficulty from one class to other classes

at different phases. The inter-class difficulty can be used to control the number110

of sampled pixels from different negative classes.

Finally, in the segmentation task, local relationship is crutial for determining

the boundary of two classes. A representation at the positive is definitely influ-

enced by its neighbouring pixels [14]. We enhance the pixel-level representation

by combining the CNN features of individual pixels with their neighbouring115

pixels. Experiments show that our region-based contrastive learning method is

more effective than using the single pixel-level one.

In this paper, a new loss, intra-Class-confidence and inter-Class-confusion

guided Dynamic Contrastive (CCDC) loss, is introduced to dynamically change

the pixels sampling strategies at different training phases. We use the state-of-120

the-art nnU-Net [15] framework as the backbone to evaluate our approach on

three datasets, the MS-CMRSeg Dataset [16], the ACDC Challenge Dataset [17]

and CHAOS (combined (CT-MR) Healthy Abdominal Organ Segmentation)
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Dataset [18]. The proposed CCDC learning outperforms the state-of-the-art

methods. The contributions of this paper are summarized below.125

• We design a intra-class-confidence and inter-class-confusion guided dy-

namic contrastive framework and introduce a new loss, CCDC loss, for

medical image segmentation. This is the first attempt to dynamically

change the sampling strategy to select the most expressive pixels to con-

struct positive and negative pairs based on the current circumstance of130

each class.

• A intra-class-confidence degree is introduced to measure the performance

of a model on each class. A dynamically adaptive intra-class sampling

strategy based on the intra-class-confidence-degree is used to separate the

easiest, easy, and hard pixels for intra-class similarity learning.135

• To learn the class differences, a inter-class-confusion degree is proposed to

dynamically adjust the sampling ratio of the positive and negative classes,

and prioritize sample pixels from the hard classes.

• We extend pixel-level contrastive learning to the region-level by consider-

ing the spatial dependency of neighboring pixels, which turns out to be140

more suitable for the segmentation task.

• The results of three public datasets show that the proposed method is

more effective than other pixel-level contrastive learning methods, which

is highly relevant in the field of semantic segmentation, especially in medi-

cal imaging where accurate segmentation is crucial for diagnosis and treat-145

ment.

2. Related Work

Although traditional computer vision techniques have proven to be effective

in extracting representations from image data, the rise of Convolutional Neural
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Networks (CNNs) has challenged their dominance and established a new bench-150

mark for representation learning. The ability of CNNs to learn hierarchical

representations from raw data, incorporating both local and global context, has

been demonstrated through numerous studies and outperforms traditional com-

puter vision methods in many tasks. In recent years, CNN-based approaches

such as FCN [19], U-Net [20] and other related models [21] have gained signifi-155

cant popularity for medical image segmentation across various fields, including

tasks such as lung nodules segmentation [22], hippocampus segmentation [23],

ventricle and myocardium segmentation [24] and MRI-CT whole heart segmen-

tation [25]. Furthermore, the application of Transformers in medical image

segmentation has been on the rise as well, with notable models like EffTrans[26]160

and nnFormer [27]. For CNN- and transformer-based backbones, most segmen-

tation models use pixel-level cross-entropy loss and Sorensen-Dice coefficient

loss to train the networks. However, none of these loss functions takes explicitly

into account the relationship between different pixels (whether the pixels come

from the same classes), which can be fundamental for a segmentation task.165

2.1. Pixel-level Contrastive learning

Contrastive learning is a form of comparative learning that involves form-

ing positive pairs and negative pairs to learn the common representation be-

tween similar instances and discriminative representations between non-similar

instances [28]. For classification problems, contrastive learning is generally per-170

formed on image-level representations. Positive samples are sampled from ho-

mologous images to ensure similarity, while negative samples are usually derived

from non-homologous images. Generally, negative mining strategies in con-

trastive learning are widely used for image-level classification tasks to reduce

computational effort and improve efficiency [29].175

In the segmentation task, to exploit the potential of the labelled images,

contrastive learning helps capture detailed information to consider the elabo-

rate pixel-level representations rather than the whole image-level representation

[30]. Although there have been some works on pixel-level contrastive learning,
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these methods have the following limitations:180

(1) Sampling strategies such as random sampling, uniform sampling , are usu-

ally unstable and may result in missing necessary samples or taking unnecessary

samples. Hard pixel mining strategies [6] focus on the hardest pixels and ignore

the contribution of non-hard pixels. When the performance of a model is low,

non-hard pixels should be given priority over the hardest ones to avoid the risk185

of model divergence due to the great variance of gradients by a large loss [7].

Balancing weight of the easy and hard pixels, such as Focal loss [31], gives less

weight to easy pixels and gives more weight to hard misclassified pixels. How-

ever, It tends to produce vanishing gradients during backpropagation, penalizes

negative classes in reverse, or employ non-optimal loss weights between classes190

[32].

(2) In the segmentation task, recent works ignore the spatial dependency

between neighbouring pixels. A pixel-level representation has a strong spa-

tial dependency on its neighbouring pixels. The pixels’ spatial dependency in

segmentation tasks is crucial to delineating the boundary. Treating all pixels195

individually would lose the spatial information between the pixels [14].

2.2. Dynamic Learning

For dynamic learning, the traditional approach is to learn from easy to hard,

designed to mimic the meaningful learning strategies of human learning [33].

The basic idea of easy to hard learning is to initially train the model with200

simple data and then gradually feed more difficult samples to obtain a better

generalization [12]. This strategy has shown potential for image-level classifi-

cation [34] and object-level detection [35]. However, there are few studies on

easy-to-hard strategies for pixel-level contrastive learning. Meanwhile, directly

using the easy-to-hard learning strategy for pixel-level contrastive learning still205

suffers from limitations due to pixels sampling risk; a model with low perfor-

mance caused by insufficient training with easy pixels may make model more

unstable or even cause model to crash when hard pixel oversampling. Since

learning with hard samples in a weak model introduces a larger uncertainty [7],
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sampling from easy to hard can reduce the risk of model collapse and build a210

robust model. However, continuing to sample harder pixels may be counterpro-

ductive when the model’s performance decreases. Compared to the easy-to-hard

strategy, as shown in Sect. 4.3.2, our adjusting sampling strategy dynamically

samples different difficulty pixels based on the current performance of the model

and can perform well in representation learning.215

3. Methodology

The quality of the pixel-level representations is crucial to the performance of

pixel-level segmentation. In this study, to improve the quality of the pixel-level

representations, a dynamically pixel-level contrastive learning strategy, termed

intra-class-confidence and inter-class-confusion guided dynamic contrastive learn-220

ing, is designed to learn pixel-level representations with stronger intra-class sim-

ilarity and inter-class distinguishability.

As shown in Fig. 3, we employ nnU-Net [15] as the backbone, the network

is responsible for extracting feature maps from the input image, and the feature

maps are denoted by hi in the figure, followed by two heads: (1) one segmenta-225

tion head with a Softmax function, the segmentation head is used for predicting

the class label of each pixel and (2) one projection head is then applied on hi

to project them into a feature space where contrastive learning is performed,

the feature maps after the projection head are denoted by zi in the figure. The

cross-entropy loss (LCE) and DICE loss (LDICE) are applied to the segmenta-230

tion head branch. In the projection head, we introduce our proposed dynamic

learning strategy for contrastive learning.

3.1. Pixel Grouping In Contrastive Learning

To conduct pixel-level contrastive learning, we first divide all pixels of im-

ages in a batch into three groups: query pixels (z), and intra-class core (z+,235

which is used to build a class-specific prototype) and inter-class negative pixels

(z−, which are used for learning the class-distinguished details). In our con-

trastive learning framework, query pixels (z), and intra-class core (z+) are used

10
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Figure 3: Model overview. Two modules are designed to enhance the feature learning of the

backbone of the auto-encoder. One is for supervised learning against the ground truth and

the other is for intra-class confidence degree and inter-class-confusion degree guided dynamic

contrastive learning, with a projection head mapping the feature representations to the space

where contrastive loss is applied.

to construct positive pairs, and query pixels (z) and inter-class negative pixels

(z−) are used to construct negative pairs.240

3.2. Confidence Class-Specific Core

To sample pixels to build positive pairs for contrastive learning, we start

by defining the intra-class confidence degree, which will be used to measure the

performance of a model at different training phases. We first use the class-

specific ground-truth mask to split all the pixels into different classes according245

to their ground truth class. In the following part of this section, we use the

pixels of the class A as an example to illustrate our dynamic contrastive sam-

pling strategy, where A is the ground truth class. For i-th pixel in a class,

we denote the predicted probability of this class as pci = P (yi = c|xi), where

c is the predicted class, and, yi and xi are the predicted label and pixel i in250

image x respectively. When c = A, we define a intra-class confidence degree by

aggregating the probabilities pc=A
i for all pixels with respect to class A:
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D
c=A

A = avg({pc=A
i |i ∈ IA}), (1)

where IA denotes the set of indices of all pixels in class A and pc=A
i is the prob-

ability pixel i predicted to belong to class A and avg is the average operation.

As shown in Fig. 1, we select the most representative pixels in class A as the255

core by intra-class confidence degree above a high threshold, as these pixels are

the easiest to distinguish. The core is designed to be a class-specific prototype

of the class A which can not only be used to distinguish this class from other

classes but also can boost other intra-class pixels’ learning. The core for the

class A is defined as the fused representation produced by averaging these high260

confidence pixels’ representations with predicted probabilities being larger than

a threshold: pc=A
i > th. Let zi be the representation of pixel i. The core zA+

of the class A is calculated as

zA+ =

∑IA

i αizi∑IA

i αi

, where αi = 1(pc=A
i > th), (2)

where 1(·) is the indicator function.

3.3. Intra-class Query Pixels Sampling Strategy265

Instead of sampling only easy and/or hard queries [5], firstly, a dynamic

sampling strategy that uses an adaptive threshold according to the model’s per-

formance on class A is introduced to split all the pixels into an easy query set

and a hard query set. Then, dynamically changed sampling ratios of the easy

and hard queries involved in training following the principle of sampling the270

most representative pixels. As is shown in Fig. 1, we divide all pc=A
i -sorted

representations of the class A (the pixel-wise probability of class A, sorted in

descending order according to the adaptive threshold derived from the inter-

class confidence degree of class A) into easy and hard subsets via the adaptive

threshold derived from the inter-class confidence degree of the class A itself. It275

is worth noting that not only the easy-hard sampling ratio but also the threshold

for distinguishing between easy and hard pixels are both dynamically changed

at different training phases.
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3.3.1. Adaptive Threshold for Query Pixels Sampling

We introduce an adaptive threshold for query pixels sampling. The adaptive

threshold is formulated in Eq. 3.

TA = 1−D
c=A

A . (3)

Here, D
c=A

A is the intra-class-confidence degree of class A. For example, when280

D
c=A

A is 0.3, the representations with pc=A
i < (1−0.3) are marked as hard queries

while pc=A
i > (1 − 0.3) are categorized as easy queries. When performance in

class A is poor, a high threshold is preferred so that pixels above this high

threshold can be grouped into the easy subset, thus sampling pixels from this

easy subset to train the model with low performance. When performance is285

high, a lower threshold is chosen so that the harder pixels can be placed in the

hard subset, thus the harder pixels can be used for a model to improve the

ability to solve hard problems.

3.3.2. Dynamically Adaptive Sampling Ratios of the Easy and Hard Subsets

The D
c=A

A also assumes the responsibility of adjusting the ratio of easy290

and hard sample queries. The sampling ratios of easy/hard are set as (1 −
D

c=A

A )/D
c=A

A , which aims to sample more easier pixels when the performance

of Class A is low and sampling harder pixels when the performance of class A

is high. For example, when D
c=A

A is 0.3, that means the predicted ability of

class A is weak. During this training phase, easy pixels are more acceptable for295

optimisation. Thus, the sampling ratios of the easy and hard queries should be

0.7 and 0.3. On the contrary, at a phase where the model is highly generalizable,

the well-trained network should focus on the hard samples to further improve

model performance.

3.4. Negative Pixels Sampling Strategy300

Sampling negative pixels for contrastive learning will help the model learn

the class-differentiable details. Classes that are different from the query class

are treated as negative classes. The inter-class-confusing degree D
c≠A

A in Eq. 4

can represent the misclassification probability of all the negative classes.
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Figure 4: Hard negative class sampling strategy. The representations of all pixels in the image

are divided into four groups by class labels, and each group contains the representations of

all pixels within a class. The query pixel (a circle) in class A (yellow) is pulled to the positive

core (prototype, represented as a square) generated by the easiest pixels in A and pushed

away from negatives (triangles), namely the pixels of the other classes (Green, Blue and Red).

The sampling rate of samples from the negative classes is determined by the class confusing

degree of the query class A. The difference in the lengths of the rectangles of (Class B, C and

D) reflects the degree of confusion between class A and other classes.

D
c ̸=A

A = avg({pc ̸=A
i |i ∈ IA}). (4)

To separate the hardest classes from class A, we identify hard negative classes305

based on inter-class-confusing degrees D
c ̸=A

A . When selecting negative samples,

the negative class with the highest confusion with respect to query class A

should be given a higher sampling ratio to further discriminate queries from

this negative class. While a class with a small negative class confusion degree is

easier to distinguish and thus does not need to sample many negative samples.310

We use the ratio [D
1

A : D
2

A :... :D
c

A] where c ̸= A, to build negative class

sampling ratios. As shown in Fig. 4, Class A is misclassified as Class B with

a higher probability of misclassification at 0.6 than Class C (0.25) and Class D

(0.15). When a pixel of Class A is used as the query class, the other classes are

regarded as negative classes, and the negative samples of the different negative315

classes should follow the confusing degrees of the class [0.6: 0.25: 0.15] to sample

different numbers of pixels in each negative class. If the inter-class-confusing

degrees of Class A with the other classes changes as the model’s performance
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Figure 5: Region spatial layout. The pixel and its neighbors together represent the regional

representation of the pixel, and the neighbors include horizontal, vertical and diagonal pixels.

changes, the sampling ratios of the different classes should also be dynamically

adjusted.320

3.5. Contrastive Enhancement with Spatial Prior

To incorporate spatial dependency into query optimisation by a spatial en-

hancement strategy, the pixel-level queries are enhanced with their neighbours

to build region-level queries for contrastive learning. As shown in Fig. 5, we

generalize representations of each query pixel with the features of its neighbour-325

ing pixels to build region-level representations zq in the segmentation task, as

pixels are spatially correlated.

3.6. Class Confidence and Confusion Guided Dynamic Pixels Sampling Strategy

for Contrastive Learning

We use the proposed dynamic sampling strategies in the above sections to330

sample core, query and negative pixels to construct positive and negative pairs

for contrastive learning, intending to select the pixels that are most beneficial

for improving the performance. In this section, We will describe in detail how

these sampled pixels are used in our contrastive learning framework.

At different training phases, the intra-class confidence degree D
c=A

A is used335

to reflect the performance of class A at each training phase and the inter-class

confusing degree D
c ̸=A

A is used to reflect misclassification degree of the pixels in

class A to the other classes. In the following part of this section, we use θ+ as

the intra-class-confidence degree and θ− as the inter-class-confusing degree to

dynamically change the contrastive sampling strategy. We aim to use different340

pixel sampling strategies to train a model with different performances. Firstly,
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we define a joint probability distribution of the easy pixels zqe and the hard

pixels z
q
h which belong to class A over classes C:

P (A|{zqe , λzhe }) =
exp(−sθ

+

{zq
e ,λz

q

h
},z+

A

)

exp(−sθ
+

{zq
e ,λz

q

h
},z+

A

) +
∑C

c ̸=A exp(−sθ
−

{zq
e ,λz

q

h
},βz−

c

)
, (5)

with sθ
+

{zq
e ,λz

q

h
},z+

A

= min{< {zqe , λzqh}, z+A >}. sθ
+

{zq
e ,λz

q

h
},z+

A

∈ [−1, 1] is used to

measure the similarity between the query pixels and the core (easiest pixels)345

of class A. θ+ is the intra-class confidence degree to control the easy-hard sub-

sets dividing threshold and the sampling ratio λ of intra-class easy and hard

query pixels. sθ
−

{zq
e ,λz

q

h
},βz−

c
is the query-negative distance. θ− is the inter-class-

confusing degree to control the sampling ratio β of negative pixels of different

classes. The CCDC loss of class A for mixed easy and hard queries with a350

confidence core and hard priority classes negative pixels can be expressed as:

LA
CCDC = −logP (A|{zqe , λzhe })

= −log
exp(−sθ

+

{zq
e ,λz

q

h
},z+

A

)

exp(−sθ
+

{zq
e ,λz

q

h
},z+

A

) +
∑C

c ̸=A exp(−sθ
−

{zq
e ,λz

q

h
},βz−

c

)
.

(6)

Our designed CCDC loss for all the classes can be formulated as:

LCCDC =
1

C

∑

a∈C

−log
exp(−sθ

+

{ie,λih},a
)

exp(−sθ
+

{ie,λih},a
) +

∑C

c ̸=a exp(−sθ
−

i,βa)
. (7)

The designed CCDC loss measures similarity via the dot product of region-

level representations. It is worth mentioning that our CCDC loss is different

from the other contrastive loss [5, 6, 36] since the queries, core and negatives355

in our CCDC, are all dynamically adjusted by different sampling strategies at

different training phases. Moreover, our CCDC loss also differs from pixel-only

sampling in that we extend the representation to a regional level that contains

spatial information. The overall loss is the sum of the cross-entropy loss, the

DICE loss, and the CCDC loss in the following way:360
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L = LCE + LDICE + LCCDC . (8)

4. Experiment

4.1. Experimental Setup

Dataset. We use three publicly available datasets to evaluate our method. (1)

The MS-CMRSeg dataset [17] contains 45 3D cases. Each case is composed of

10-16 2D slices, resulting in a total of 686 slices. Following the setting of the365

challenge, the LGE modality is applied to our experiments. 10% of the data (5

3D scans) is used for training, and 90% of the data (40 3D scans) is used for

testing. (2) CHAOS (Combined (CT-MR) Healthy Abdominal Organ Segmen-

tation) Dataset [18] provides 60 3D DICOM data from 20 patients [T1-DUAL in

phase (20 cases), T1-DUAL out phase (20 cases) and T2-SPIR (20 cases)] with370

four organs ground truth masks: liver, right kidneys (RK), left kidneys (LK)

and spleen. The dataset was obtained from a 1.5T Philips MRI, which produces

12-bit DICOM images. The number of slices is between 26 and 50, resulting in

a total of 1917 slices. The resolution is approximately 224 × 320. 10% of the

data (6 3D scans from 2 patients) is used for training and the remaining 90% of375

the data (54 3D scans from 18 patients) is used for testing. There is no overlap

in patient IDs between the training and testing sets. (3) The ACDC Challenge

Dataset [16] consists of 100 patients (200 3D scans), with each case comprising

6-16 2D slices, resulting in a total of 1658 slices. The dataset was acquired

using 1.5T and 3T scanners and is accompanied by expert annotations for three380

structures: the left ventricle (LV), myocardium, and right ventricle (RV). The

MRI images from both scanners are adopted in our experiments. There is also

no patient overlap between the training and testing sets. The train-test ratio is

identical to the setting of the MS-CMRSeg Challenge. In addition to the above

experiments, four additional experiments are conducted in the ACDC Challenge385

Dataset, which use 5%, 10%, 20% and 40% of the dataset for training to further
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validate the proposed approach.

Implementation details. We use original implemented nnU-Net [15] as our back-

bone with the same augmentations, such as elastic transformation, rotation,390

scaling, random crop, scaling, adding Gaussian noise, gaussian blur transfor-

mation, brightness multiplicative transformation, contrast augmentation trans-

formation, simulate low-resolution transformation, gamma transformation and

mirror transformation. Following the suggestion of nnU-Net, the poly learn-

ing rate is also introduced in our training. The experiments on MS-CMRSeg395

Dataset are conducted with a batch size of 12 and a patch size of 512×512. We

use a batch size of 44 and patch size of 224 × 320 on the CHAOS Dataset.

For the ACDC Challenge Dataset, the batch size and patch size are 56 and

256×224, respectively. The number of both positive and negative pairs are set

to 256. We set the fixed high threshold th to 0.97, and the temperature τ in400

the CCDC loss is 0.5. The ratio of LCE , LDICE and LCCDC is 1:1:1. Instead

of building a memory bank to store the representations for constructing con-

trastive pairs, representations are sampled dynamically in a batch during each

iteration, enabling less memory consumption. This is also demonstrated in [5],

where sampling in a mini batch can achieve results similar to those obtained by405

methods that use additional memory banks.

4.2. Comparison to the State-of-the-Art

Firstly, we benchmark a state-of-the-art CNN-based model (nnU-Net) and

a transformer-based method (nnFormer) in the ACDC Challenge Dataset, the

MS-CMRSeg Dataset and the CHAOS Dataset. The results are reported in410

Tab. 1, Tab. 2 and Tab. 3. nnU-Net serves as our baseline model to validate

our CCDC loss since nnU-Net outperforms nnFormer in our experiment settings

on three datasets. Compared to the benchmark (nnU-Net), the DSC sees a rise

of 1.84%, 3.12% and 3.68% on the three datasets respectively.
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Table 1: Segmentation results (DSC and 95HD) on the ACDC Challenge Dataset.

Method Pubs.
DSC↑

RV myo LV mean

nnFormer [27] 2021 78.55 84.31 91.17 84.68

nnU-Net [15] Nat. Methods 2021 80.90 84.81 91.11 85.61

Focal [31] ICCV 2017 79.45 84.54 91.12 85.04

GDL [37] DLMIA 2017 82.10 86.13 91.70 86.64

TopK [38] NIPS 2017 81.29 85.01 91.34 85.88

MCC [39] ISBI 2021 80.55 84.54 90.87 85.32

RegionContrast [36] ICCV 2021 81.38 85.05 91.66 86.03

ContrastiveSeg [6] ICCV 2021 83.96 84.8 91.33 86.70

ReCo [5] ICLR 2022 82.26 85.87 91.62 86.58

CCDC (ours) - 83.49 86.49 92.36 87.45

Method Pubs.
95HD↓

RV myo LV mean

nnFormer [27] 2021 6.26 3.43 4.16 4.61

nnU-Net [15] Nat. Methods 2021 2.87 1.76 3.16 2.60

Focal [31] ICCV 2017 3.18 1.63 2.61 2.47

GDL [37] DLMIA 2017 2.92 1.58 2.07 2.19

TopK [38] NIPS 2017 3.16 1.69 2.55 2.47

MCC [39] ISBI 2021 2.95 2.08 2.89 2.64

RegionContrast [36] ICCV 2021 2.44 1.87 1.68 2.00

ContrastiveSeg [6] ICCV 2021 2.38 1.91 2.66 2.32

ReCo [5] ICLR 2022 3.22 1.66 2.3 2.39

CCDC (ours) - 2.35 1.67 1.70 1.91

P-values - < 5e-2 (DSC), < 5e-2 (HD95)

4.2.1. ACDC Challenge Dataset415

The results for the three classes show that CCDC consistently outperforms

other methods of contrastive learning (ReCo +0.87%, ContrastiveSeg +0.75%
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Figure 6: Plot of the mean DSC w.r.t different ratio of the training set over the ACDC Chal-

lenge Dataset (5%, 10%, 20%, 40% of the dataset for training), with the blue line representing

the result of the baseline: nnU-Net, the black line represents nnFormer, the red line repre-

senting our proposed method.

and RegionContrast +1.42%). It may be due to the increased expressiveness of

the proposed CCDC model as it relies on optimizing different pixels from easy

to hard at different training phases to improve the performance. The average420

95HD of all classes is also the smallest, which indicates that performance is

improved when CCDC loss is used.

Four additional train-test ratios, 5%, 10%, 20%, 40%, are also evaluated on

the ACDC challenge dataset. As shown in Fig. 6, obvious improvements can

be observed by comparing the results w/ and w/o CCDC (+1.79%, +1.84%,425

+0.08%, +0.32%). Notably, our method boosts the baseline model by a sig-

nificant margin when the amount of the training data is extremely limited.

Thus, CCDC demonstrates its potential in facilitating segmentation algorithms

in practical applications where labelled data for training is difficult to collect

due to concerns about privacy policy and the cost of manual annotations.430

4.2.2. MS-CMRSeg Dataset

For MS-CMRSeg dataset, larger patch sizes are adopted, since the height

and width of the images in the MS-CMRSeg dataset are much larger compared
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Table 2: Segmentation results (DSC and 95HD) on the MS-CMRSeg Dataset.

Method Pubs.
DSC↑

RV myo LV mean

nnFormer[27] 2021 51.96 63.50 70.21 61.89

nnU-Net [15] Nat. Methods 2021 73.01 74.44 88.95 78.8

Focal [31] ICCV 2017 74.64 75.26 88.34 79.41

GDL [37] DLMIA 2017 75.3 73.56 87.57 78.81

TopK [38] NIPS 2017 72.63 74.22 88.50 78.45

MCC [39] ISBI 2021 74.08 74.55 87.72 78.78

RegionContrast [36] ICCV 2021 74.84 76.25 88.51 79.86

ContrastiveSeg [6] ICCV 2021 75.48 78.44 89.65 81.19

ReCo [5] ICLR 2022 73.69 75.98 89.23 79.63

CCDC (ours) - 76.45 79.26 90.04 81.92

Method Pubs.
95HD↓

RV myo LV mean

nnFormer[27] 2021 43.89 13.46 13.45 23.60

nnU-Net [15] Nat. Methods 2021 14.89 9.96 22.79 15.88

Focal [31] ICCV 2017 15.91 12.6 18.54 15.69

GDL [37] DLMIA 2017 11.53 9.52 15.12 12.06

TopK [38] NIPS 2017 13.71 7.57 21.53 14.27

MCC [39] ISBI 2021 10.69 12.05 24.56 15.76

RegionContrast [36] ICCV 2021 6.29 5.05 6.62 5.99

ContrastiveSeg [6] ICCV 2021 9.54 12.89 24.43 15.62

ReCo [5] ICLR 2022 6.83 12.18 18.57 12.53

CCDC (ours) - 5.60 4.31 13.79 7.90

P-values - < 5e-2 (DSC), < 5e-2 (HD95)

to the ACDC Challenge Dataset (from 256×224 to 512×512). As shown in

Tab. 2, CCDC substantially exceeds the state-of-the-art methods by [36, 6, 5],435

in terms of class-specific DSC scores, our method outperforms the state-of-the-
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art methods in all classes and the average DSC is significantly improved (2.06%

improvement with RegionContrast, 0.73% with ContrastiveSeg and 2.29% with

ReCo on DSC). This demonstrates that CCDC is consistently beneficial for the

baseline model, whether the training data are small images or large images with440

rich details. We also show class-specific results in the 95HD metrics. The 95HD

is the smallest in the class of RV and myo and the average 95HD of CCDC also

ranks second best.

4.2.3. CHAOS Dataset445

We evaluated our method using the CHAOS dataset (four classes segmen-

tation tasks). Tab. 3 shows the results of the segmentation for the liver, RK,

LK and spleen. We can see that all contrastive learning methods [36, 6, 5] show

improvements over baseline on DSC, demonstrating the benefits of contrastive

learning. Our CCDC learning with a dynamic learning strategy consistently450

keeps improving on the average DSC score. These results demonstrate the ef-

fectiveness of our dynamic learning strategy with extremely limited data (6

images from 2 patients only) and validate that our dynamic sampling strategy

can be applied to a wider range of multi-class segmentation tasks. The 95HD

of the CCDC(ours) algorithm is not optimal, and the DSC of the liver and455

spleen are not optimal. We have conducted further analysis and found that it

may be due to the dataset we used in the experiment contains more classes and

many images that contain a high degree of variability in terms of size, shape,

and texture of the structures of interest. They together make it challenging

to achieve optimal results for all classes in multi-class tasks, where the 95HD460

metric might not be as relevant as the DSC. This may be a result of the class

imbalance or overlapping features among classes. Despite these challenges, our

overall performance on the DSC metric has still improved.
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Table 3: Segmentation results (DSC and 95HD) on the CHAOS Dataset.

Method Pubs.
DSC↑

liver RK LK spleen mean

nnFormer[27] 2021 70.88 58.41 56.36 62.66 62.08

nnU-Net [15] Nat. Methods 2021 73.79 57.09 63.27 60.27 63.61

Focal [31] ICCV 2017 76.31 59.28 67.43 61.95 66.24

GDL [37] DLMIA 2017 74.8 54.65 65.17 61.26 63.97

TopK [38] NIPS 2017 75.85 55.14 68.63 62.68 65.57

MCC [39] ISBI 2021 75.63 56.08 63.88 61.09 64.17

RegionContrast [36] ICCV 2021 74.45 57.15 68.58 57.40 64.39

ContrastiveSeg [6] ICCV 2021 77.52 56.59 66.11 57.36 64.40

ReCo [5] ICLR 2022 75.44 61.85 67.66 61.05 66.50

CCDC (ours) - 75.03 62.43 70.81 60.89 67.29

Method Pubs.
95HD↓

liver RK LK spleen mean

nnFormer[27] 2021 27.58 29.24 30.35 28.99 29.04

nnU-Net [15] Nat. Methods 2021 17.80 37.93 30.16 21.19 26.77

Focal [31] ICCV 2017 13.86 23.05 19.6 16.85 18.34

GDL [37] DLMIA 2017 14.16 20.30 30.68 25.86 22.75

TopK [38] NIPS 2017 14.49 14.62 9.90 36.77 18.95

MCC [39] ISBI 2021 13.27 20.31 25.28 16.04 18.72

RegionContrast [36] ICCV 2021 14.75 12.74 7.34 25.01 14.96

ContrastiveSeg [6] ICCV 2021 12.45 19.21 22.03 33.80 21.87

ReCo [5] ICLR 2022 16.31 20.90 24.94 23.17 21.33

CCDC (ours) - 14.51 20.23 23.97 19.64 19.59

P-values - < 5e-2 (DSC), < 5e-2 (HD95)
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Table 4: Dynamic query pixels sampling strategy on ACDC Challenge Dataset.

Method
Dynamic Query Sampling DSC↑

Adaptive T Adjusted Ratio RV myo LV mean

W/O Contrastive Learning 80.90 84.81 91.11 85.61

Pixel-level

- - 82.13 86.15 91.81 86.70
√

- 82.39 85.92 91.78 86.70

-
√

82.60 85.80 92.15 86.85
√ √

83.84 85.82 91.64 87.10

Region-level

- - 80.85 85.76 91.72 86.11
√

- 82.21 86.86 92.38 87.15

-
√

82.68 85.59 91.84 86.71
√ √

83.49 86.49 92.36 87.45

4.3. Ablation Studies

4.3.1. The Impact of Dynamic Query Sampling Strategy with Pixel-Level and465

Region-Level Representations

Tab. 4 shows the ablation study with and without the dynamic contrastive

learning in easy and hard subsets which are separated by an adaptive threshold

(adaptive T) with the adjusted ratio for sampling easy to hard queries on the

ACDC challenge dataset.470

We examined our proposed dynamic contrastive learning on pixel-level rep-

resentations and region-level representations separately. It is worth noting that

despite not using dynamic sampling strategies, contrastive learning improves

performance with and without the representation enhancement strategy. More

notably, when using a fixed threshold to build easy and hard sets, the intro-475

duction of dynamic contrastive learning to adjust easy-hard ratios improves the

results by using the pixel-level or region-level representations (Pixel-level: 86.7%

to 86.85%, Region-level: 86.11% to 86.71%). Fixing the ratios of sampling easy

and hard queries and using the changed threshold to select easy and hard sets

to obtain a similar average score (86.7%) in pixel-level contrastive learning, but480
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1.04% (86.11% to 87.15%) improvement at the region level. This shows that

our the dynamic sampling strategy can achieve some performance improvement

regardless of adjusting the threshold of the easy and hard sets or their sam-

pling ratio. When using the adaptive threshold and the adjusted sampling ratio

together to separate easy and hard sets, the performance is further improved,485

suggesting that the dynamic approach can capture the pixels that are most

in need of optimisation at different training phases to improve segmentation

performance.

Table 5: Query sampling from different intra-class subsets on ACDC Challenge Dataset.

Method
Sampling DSC↑
Strategy RV myo LV mean

W/O Contrastive Learning 80.90 84.81 91.11 85.61

Pixel-level

Hard 80.29 85.77 90.86 85.64

Easy 81.87 85.66 92.17 86.57

Easy to Hard 81.67 85.27 91.47 86.14

Dynamic Sampling 83.84 85.82 91.64 87.10

Region-level

Hard 82.34 86.14 92.01 86.83

Easy 82.22 86.95 92.38 87.18

Easy to Hard 83.87 86.12 91.86 87.28

Dynamic Sampling 83.49 86.49 92.36 87.45

4.3.2. The Impact of Query Sampling from Different Subsets

Here, we focus on different strategies for sampling query pixels: 1) sampling490

queries in the easy set; 2) sampling queries in the hard set; 3) sampling queries

from easy to hard; 4) dynamically changing strategies for queries sampling. As

described in the methodology section, we do not use fixed thresholds to identify

easy and hard sets, but instead use an adaptive threshold to separate the easy

and hard queries to be sampled based on how well the network is trained during495

different phases. The pixel-level representations and the region-level represen-

tations are both used for the sampling strategy comparison. Tab. 5 shows the

25



results of the four sampling strategies on the ACDC challenge dataset. The

four aforementioned sampling strategies yield better results than the bench-

mark. The results of the easy sampling strategy consistently outperform those500

of the hard-only sampling (Pixel-level: 85.64% to 86.57%, Region-level: 86.83%

to 87.18%). The proposed dynamic sampling strategy further improves the per-

formance (Pixel-level: +0.53%, Region-level: +0.27%). It verified that using

only hard pixels for training may result in the network not converging consis-

tently. Training with only easy pixels can achieve better performance than only505

hard pixels, but the performance is also lower than dynamic sampling strategy.

This is because using only easy pixels does not provide enough gradient descent

for optimization, which may influence performance improvement. It can be seen

that the performance of the easy-to-hard sampling strategy with pixel-level rep-

resentations decreased when compared with only using easy pixels, this may510

be because easy-to-hard sampling does not measure the current performance of

the model and may not necessarily provide the pixels needed by the current

model. However, the performance of the easy-to-hard strategy with region-level

representations is better than using only easy or hard pixels, but not as good as

our dynamic sampling strategy. As our dynamic sampling strategy can dynam-515

ically change the sampling strategy based on the performance of the model and

can select the most representative pixels at different training stages. The result

reveals that our method can, not only improve the basic generalization ability

when the performance is low, but also enhance the hard problem-solving ability

when the performance is strong, suggesting that the approach is beneficial for520

seeking better pixel-level segmentation applications.

4.3.3. The Impact of Hard Negative Class Mining Strategy

Tab. 6 shows the performance improvement of the ACDC Challenge Dataset

for different negative class sampling strategies. Despite using different sampling

strategies, we find that CCDC loss has a consistent improvement of 1%-2%.525

Uniform sampling results in 0.29% improvement compared to random sampling.

This may be due to the class imbalance problem, if a class in a mini-batch has
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Table 6: Hard negative class mining strategy on ACDC Challenge Dataset

Method
DSC↑

RV myo LV mean

Baseline 80.9 84.81 91.11 85.61

Random Sampling 81.91 86.29 92.15 86.78

Uniform Sampling 84.12 84.78 92.30 87.07

Dynamic Sampling 83.49 86.49 92.36 87.45

a small number of pixels, and this class is also hard to distinguish, random

sampling is not sufficient when sampling from this hard class for training, re-

sulting in missing samples and low performance on this hard class. This can530

also be demonstrated by the results of the hard but fewer pixels RV class (DSC

of Random: 81.91% and DSC of UniForm 84.12%). Following our class confus-

ing degree-guided hard-negative class mining strategy, negative samples can be

sampled from each class with different ratios, which is more beneficial in sam-

pling negative samples thus obtaining significant performance improvement.535

4.3.4. The Impact of Region Enhancement Strategy

Table 7: Region enhancement strategy on the ACDC Challenge Dataset.

Number of Pixels
DSC↑

RV myo LV mean

1 83.84 85.82 91.64 87.10

2 83.73 86.30 91.36 87.13

4 (Stride=2) 83.05 86.36 92.60 87.34

4 (Stride=1) 83.49 86.49 92.36 87.45

We evaluated the effectiveness of the region enhancement strategy. Differ-

ent region enhancement schemes are adopted and shown in Fig. 5. Specifically,

using different numbers of pixels and strides in diagonal, horizontal and vertical

directions to build regions can achieve different improvements. As shown in540

Tab. 7, the region enhancement strategy can achieve a consistent improvement
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over the benchmark, and it is observed that the performance is improved with

the increase of the number of neighbouring pixels. The closer the neighboring

pixels are to the center pixel, the further the performance can be improved.

This is because pixels in boundary regions are often more difficult to distin-545

guish and require stronger local location information for fine differentiation. In

contrast, our representation enhancement strategy introduces local location in-

formation from the neighbouring pixels for contrastive learning, thus providing

a supplement to determine the cross-class boundaries.

4.3.5. The Impact of the Fixed High Threshold to Choose Confidence Core550

Table 8: Different fixed high threshold on ACDC Challenge Dataset.

High Threshold
DSC↑

RV myo LV mean

W/O Dynamic 80.90 84.81 91.11 85.61

0.50 83.27 86.00 92.39 87.22

0.75 82.78 85.50 92.46 86.91

0.90 82.97 86.50 92.53 87.33

0.97 83.49 86.49 92.36 87.45

We evaluated the impact of a fixed high threshold used to select the confi-

dence core. In Tab. 8, it can be observed that slightly better performance can

be obtained with a relatively large threshold (0.97 and 0.9). When the confi-

dence threshold drops to 0.75 and 0.5, compared with using the thresholds over

0.9, performance declined to a 87.22% and 86.91%. However, compared to the555

baseline, the performance is still greatly improved. We can also observe that

our method is not highly dependent on fixed high-threshold hyperparameters for

confidence pixel selection. This is because a fixed threshold is needed to ensure

that the selected pixel can be predicted as the correct class. Thus, the pixels

above this threshold can form a class-specific prototype to guide the learning of560

other low-confidence pixels within the class.
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Ground Truth CRC (ours)RACL CIPCnnU-Nnet ReCo

Figure 7: Typical segmentation result comparing different approaches on the ACDC Challenge

Dataset. Blue, green and red denote the classes of RV, myocardium, and LV, respectively.

5. Visualization

Fig. 7 shows the segmentation results using a model trained with 10% data

on the ACDA dataset when compared with the state-of-the-art contrastive learn-

ing methods [36, 6, 5]. The prediction results of the RV class in the first row565

and the myocardium class in the second and third rows show that our method

achieves significant improvements in the identification of boundaries and the seg-

mentation of hard classes. This is attributed to the dynamic learning strategy

which identifies the core representations of a class and pulls different hardness

pixels to the core along with the training, Furthermore, negative class mining570

also identifies the hard negative classes, avoiding a large number of pixels be-

ing misclassified to the hard negative classes. The representation enhancement

strategy introduces local spatial information, further refining the determining

of boundaries and reducing the confusion between different adjacent classes.

6. Conclusion and Discussion575

In this paper, we present a dynamic contrastive learning framework for med-

ical image segmentation that leverages class-confidence and confusion. The
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framework features a novel loss function, the CCDC loss, which dynamically

samples contrastive pixels based on the model’s performance. Our approach

selects the most expressive pixels as positive and negative pairs during different580

training phases and employs a hard negative class mining strategy to enhance

effectiveness. The results show that our method outperforms the state-of-the-

art on three challenging datasets and has potential for other multi-class tasks

such as classification and detection. While our approach has achieved signifi-

cant progress, we acknowledge the need to address the dynamic adjustment of585

easy/hard boundaries in situations where the dataset is challenging. To enhance

robustness, we suggest potential future research directions, including imple-

menting a stopping criterion. Future work also includes exploring the method’s

applicability to other domains or tasks, scalability, efficiency, robustness, and

generalization. Another avenue for future research is to investigate combining590

our method with other techniques to further improve performance.
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